An Efficient Parallel Architecture for
Resource-Shareable Reed-Solomon Encoder

Yok Jye Tang
Dept. of Electrical & Computer Engineering
The Ohio State University
Columbus, OH 43210 U.S.A.
tang.1121 @osu.edu

Abstract—Reed-Solomon (RS) codes are adopted in many digi-
tal communication and storage systems to ensure data reliability.
For many of these systems, the encoder and decoder are not active
at the same time. In previous designs, RS encoders implemented
as linear feedback shift registers in a concatenated structure are
reused to compute the syndromes so that the decoder complexity
is reduced. However, the parallel versions of such encoders have
very long critical path and hence can not achieve high speed. This
paper proposes a new parallel resource-shareable RS encoder
architecture based on the Chinese Remainder Theorem (CRT).
The generator polynomial of RS codes is decomposed into factors
of degree one and state transformation is developed to enable the
sharing of the hardware units for syndrome computation. As a
result, the critical path is reduced to only one multiplier and one
adder, regardless of the parallelism. Additionally, by utilizing
the property that the degrees of the decomposed polynomial
factors are one, optimizations are also developed to greatly
simplify the CRT-based encoder. For example encoders of a
(255, 229) RS code over GF(2%), our proposed design can
achieve at least 29% higher efficiency in terms of area-time
product for moderate or higher parallelisms compared to the
previous resource-shareable RS encoder and traditional parallel
RS encoders combined with syndrome computation units that
implement the same functionality.

Index Terms—Chinese Remainder Theorem, Encoder, Reed-
Solomon codes, Syndrome computation.

I. INTRODUCTION

Reed-Solomon (RS) error-correcting codes have been used
in numerous communication and storage systems, such as mo-
bile communication, magnetic recording, digital video broad-
casting, and deep-space probing. In many of these systems,
encoder and decoder will not be active at the same time. In this
case, the encoder can be re-designed [1] so that it is shared to
compute the syndromes, which is the first step of RS decoding
and accounts for a significant portion of the decoder area.

BCH codes are subfield subcodes of RS codes. Resource-
shareable encoders have also been investigated for binary BCH
codes. In the design of [2], the generator polynomial of BCH
code is decomposed to multiple short minimal polynomials
and the concatenated linear feedback shift register (LFSR)
structure from [3] is utilized to compute the remainders over
each minimal polynomial. Then the complexity of syndrome

This material is based upon work supported by the National Science
Foundation under Award No. 2011785.

Xinmiao Zhang
Dept. of Electrical & Computer Engineering
The Ohio State University
Columbus, OH 43210 U.S.A.
zhang.8952 @osu.edu

computation is reduced by evaluating the short remainders over
finite field elements. However, this design has large iteration
bound, which limits the achievable critical path and hence
the maximum clock frequency. Although the iteration bound
can be reduced by modifying the encoding scheme [4], the
resulted parities are not protected. In the case of RS codes,
the concatenated LFSR structure in the design of [2] becomes
very similar to that in [1].

Parallel encoders are required to achieve high speed. If
unfolding is applied, the iteration bound in the resulted p-
parallel architecture will be increased to p times. Although
register state look-ahead [5]-[9] can be applied to a single
LFSR to derive parallel architectures, the resource-shareable
encoder of [1] concatenates multiple feedback loops and each
feedback loop takes inputs from previous feedback loops. As
a result, the register state look-ahead computation can not be
easily extended to this case.

This paper proposes an efficient parallel architecture for
resource-shareable RS encoder that can implement both RS
encoding and syndrome computation. The proposed design is
based on the Chinese Remainder Theorem (CRT). According
to the CRT, the encoder has three stages of computation.
Different from that for BCH codes, the generator polynomial
of RS codes is decomposed into factors of degree one. In
this case, the simple feedback loops in the second stage lead
to a very short critical path of only one multiplier and one
adder, regardless of the parallelism. Also state transformation
is developed to enable the sharing of the hardware units for
syndrome computation. Additionally, utilizing the property
that each decomposed factor has degree one, the first stage of
the CRT computation is replaced by constant scalar multipli-
cations, which can be integrated with the other computations,
and the third stage is greatly simplified. Unlike the design in
[4], the parities are also protected in our encoding scheme. For
an example RS (255, 229) code over GF(2%), our proposed
design has much shorter critical path and achieves dozens of
times higher efficiency in terms of area-time product (ATP)
than the parallel encoder achieved by unfolding the resource-
shareable design in [1] for moderate or higher parallelisms.
Compared to the best traditional parallel LFSR designs from
[5], [9] for RS encoding combined with syndrome computation
units that implement the same functionality, our resource-

—+—> c(x)

/ / /
CoyCpy*e®s Cnp

Fig. 2. Syndrome computation architectures: (a) serial; (b) p-parallel

shareable design can achieve at least 29% higher efficiency.

The structure of this paper is as follows. Section II intro-
duces RS encoding and previous work on resource-shareable
encoder design. The proposed parallel resource-shareable RS
encoding scheme is detailed in Section III. Section IV provides
complexity analysis for encoders with general parameters.
More detailed complexity analysis and comparisons are carried
out in Section V for an example code. Conclusions follow in
Section VI.

II. RESOURCE SHAREABLE REED-SOLOMON ENCODER

For a narrow-sense (n, k) RS code with t = (n—k)/2 error-
correction capability, the generator polynomial is constructed
as

g(x) = (z+a') (@ +a®) - (1+a™), (0

where « is a primitive element of GF'(27) and n < 29 — 1.
For systematic RS encoding, a k-symbol message, m(x),
is encoded into a n-symbol codeword c(x) = m(x)x? +
Remy ;) (m(z)z?"), where Rem . (m(x)z?") is the remain-
der polynomial of dividing m(z)z?" by g(x). Rewrite the
generator polynomial as g(z) = 2! + goy 12271 4+ .- +
g1zl + go, where go; 1, , 91,90 € GF(2%). The serial
LFSR in Fig. 1 computes Rem,,) (m(z)z*") by taking in the
coefficients of m(x) serially starting from the most significant
one. After the last coefficient is processed, the coefficients
of Remy,)(m(z)x?") are located in the registers. To allow
these coefficients to be serially shifted out in the next 2¢ clock
cycles, the output of the right-most register is connected to the
encoder output through the switch in Fig. 1.

c(x)

al O£2 a2t
encode/ SO0 fD\U
decode
So Sq Sat1

Fig. 3. Resource-shareable RS encoder with concatenated feedback loops

Letd(x) = ¢, 2" 14 -+ z' +¢ be the received word.
Syndromes defined as S; = ¢/(a’*!) (0 < i < 2t — 1) need
to be calculated for RS decoding. By applying Horner’s rule,
Si= (- (1t + e _5)at + ..)att 4). Hence, it
can be computed by using the serial architecture in Fig. 2 (a).
By grouping p consecutive coefficients of ¢/(z), the p-parallel
syndrome computation architecture in Fig. 2(b) can be derived
to compute S; in [n/p] clock cycles.

For RS codes, g(z) consists of 2¢ factors in the format of
x + ot as shown in (1), where 0 < i < 2t. Accordingly, by
utilizing the z-transform, the LFSR in Fig. 1 can be converted
to the structure in Fig. 3 that consists of multiple concatenated
feedback loops [1]. The i-th feedback loop in Fig. 3 happens to
have the same constant multiplier as that needed in the archi-
tecture for computing .S; shown in Fig. 2(a). Hence, by adding
the AND gates and switching the lower inputs of the AND
gates between ‘1’ and ‘0’, the architecture in Fig. 3 implements
RS encoding and syndrome computation, respectively. For
architecture with feedback loops, the minimum achievable
critical path is lower bounded by the iteration bound 7.,
which is defined as the maximum of the loop bounds. The
bound of a loop is the computation time of the loop divided by
the number of registers in the loop [10]. For the architecture in
Fig. 3, the o constant multiplier contributes to one XOR gate
in the data path [11]. Due to the long chain of XOR and AND
gates at the bottom, the iteration bound of this architecture is
Too = (2t+1)TX0R+(2t*1)TAND, where TXOR and TAND
are the propagation delays of an XOR gate and an AND gate,
respectively. Hence, its achievable critical path is long. Unlike
that in the resource-shareable BCH encoder [2], the feedback
loops in RS encoders can not be combined to shorten the chain
of XOR and AND gates since the individual feedback loops
themselves are also used to compute the syndromes.

A p-parallel version of the RS encoder in Fig. 3 can be
derived by the unfolding technique [10]. However, the iteration
bound in the p-unfolded architecture will be pT.,. Parallel
designs of a single LFSR, such as the one in Fig. 1, can be
derived by applying look-ahead computation to the register
state [S]-[9]. However, different from that in the single LFSR,
the output of the rightmost XOR gate on the bottom of the
architecture in Fig. 3 that is fed back to every register includes
the contributions of every register in the previous clock cycle.
Due to this reason, the look-ahead register state computation

Multiplied by Divided by Multiplied by
2g(x) go(x) fo(x)
{Multlplled by Divided by Multiplied by
[} z4(x) g1(x) f1(x) 2t
m(x)x2t r(x)

Multiplied by Divided by Multiplied by
21.1(x) 9i-1(x) fra(x)

Fig. 4. Architecture for CRT-based remainder computation

can not be directly applied to the RS encoder in Fig. 3 to
derive parallel designs.

III. CRT-BASED RESOURCE-SHAREABLE RS ENCODER

The CRT decomposes the division by a longer polynomial
to the divisions by individual factors of the polynomial.
Intuitively, this may help to disconnect the feedback loops
that are concatenated in the RS encoder architecture in Fig.
3 and reduce the iteration bound. This section proposes a
parallel CRT-based RS encoder architecture that supports both
encoding and syndrome computation. Each feedback loop in
the proposed architecture only consists of one multiplier and
one adder. As a result, the iteration bound and hence the
achievable critical path is substantially reduced. Additionally,
by making use of the property that the generator polynomials
of RS codes are decomposed into factors with degree one,
optimizations are developed to greatly simplify the involved
computations.

Suppose that g(x) can be decomposed into ! polynomials
as g(x) = go(x)g1(x) - - - g1—1(x), where g;(x) and g;(x) for
any ¢ # j do not have any common factor except 1. Let
filx) = g(x)/gi(x) (0 < ¢ < 1). By using the Euclidean
algorithm, for each f;(z), a polynomial z;(x) satisfying
zi(z)fi(x) = 1 mod g;(z) and 0 < deg(z;(z)) < deg(gi(z))
can be derived. Here deg(-) denotes the degree of the poly-
nomial. Then, according to the CRT, the Remg, (m(x)z?")
needed for RS encoding can be computed as

g(:r Z fz
2

Let r(z) = Remy(,) (m(z)z?") = rop_12% 71+ 4rizl +ro.
The block diagram of the architecture that implements such
computations is shown Fig. 4. It consists of three stages: 1)
multiply the input with each z;(x); 2) divide the output of the
first stage by each g;(x) to get the remainder; 3) multiply each
remainder from the second stage by f;(z) and sum up all the
products.

The generator polynomial of a RS code is a product of
(r + aift) for i = 0,1,--- ,2t — 1 as shown in (1). Hence,
to apply the CRT formula in (2), [= 2t and g;(z) = (v +
a't1), The first stage of the CRT-based RS encoding is to
multiply m(x)x?" with z;(x). Since deg(gi(z)) = 1, zi(x)
is a constant that can be pre-computed from the Euclidean
algorithm. Assume that z;(x) = $3;. The multiplication with 3;
can be put off and combined with the constant multiplications
needed in the third stage of the CRT calculation.

Rem

Rem 2,

(@) (zi(w)m(z)x

i+1

R;(t+1)

~1R0 T
N

Remgx(z)(-)‘\u(t)

Fig. 5. Architecture for computing the remainder of the division by g;(x) =
(z + a1

In the case that g;(z) = x + a1, the division by g;(z) for
the second stage of the CRT calculation can be implemented
by the simple feedback loop shown in Fig. 5. This is a serial
architecture. Denote the input and state of the register in clock
cycle ¢ as u(t) and R;(¢), respectively. From the feedback loop,
it can be derived that

R;(t +1) = o™ R;(t) + o' u(t).

Substituting this equation back to itself for p iterations [5], the
state of the register after p clock cycles is

Ri(t +p) = a0V x R;(t) + B, x u,(t), 3)

where B,; = [alFDP ... a1 and w,(t) =
[u(t), - ,u(t +p — 2),u(t + p — 1)]7, where ‘T’ denotes
transpose. From (3), a p-parallel architecture for the division
by (z + a**1!) can be derived.

The p-parallel syndrome computation architecture in Fig.
2(b) can be also described by register state update. Denote
the inputs to this architecture in clock cycle ¢ also by u,(t).
Following the computations carried out in Fig. 2(b), it can be
observed that

i+1)2
ali+D2,

R;(t +p) = al VP X Ri(t) + Bl ; x u,(t), 4)

where B;,i = [@tFDE=1) L o+ (0],

Comparing (3) and (4), the only difference lies in the matri-
ces multiplied to u,(t). Besides, B, ; = a'T'B,, ;. To enable
the sharing of hardware units for 1mplementmg the division
by (z + a/*!) and S; syndrome computation, the technique
of state transformation that was originally proposed for the
LFSR for cyclic redundancy check in [9] can be extended
and applied to (3). The register state can be transformed to
R;(t) = T; x Ry;(t), where T; = "1, Then the formula in
(3) becomes

Rri(t +p) = aP x Ry, (1) + o~ CHUB,; x u,(t). (5)

which is in exactly the same format as (4). Therefore, (4) can
be implemented for both division by (z 4+ a*1) and S; com-
putation, except that T; = a'*! needs to be multiplied back
afterwards to reverse the state transformation in the former
case. Nevertheless, since 7; is a constant, its multiplication
can be also combined with the third-stage calculation in the
CRT-based encoding.

In the third stage of the encoding, the output from the sec-
ond stage is multiplied with f;(x). Since the remainder of the

division by (x + a'T1) is a single coefficient, this polynomial
multiplication is reduced to coefficient-by-coefficient multipli-
cations. Also recall that ; for the first stage calculation and
T; = o't! for reversing the state transformation need to be
multiplied. Use +; to represent the output of the i-th block in
the second stage. Then the coefficients of the overall remainder
polynomial for RS encoding can be calculated as

To 0,0 0,1 Vo,2t—1 Yo
1 V1,0 V1,1 U1,2t—1 4!
T2t—1 V2t—1,0 V2t—1,1 V2t—1,2t—1 Y2t—1

where v;; = ;a1 f; ; and f; ; is the coefficient of z7 in
fi(z).

Let V be the 2t x 2t matrix in (6). The proposed p-parallel
CRT-based resource-shareable RS encoder is illustrated in Fig.
6. During the encoding process, p coefficients of m(x)x?! are
sent as the inputs in each clock cycle starting with the most
significant ones. In Fig. 5, by adding the input to the output of
the register, the input polynomial is effectively multiplied by
x. Hence, only 2t — 1 zeros need to be padded after the least
significant coefficient of m(z) to achieve m(z)xz?t. Block G;
implements the computation in (4). After [n/p] clock cycles,
the computations in the G; blocks (0 < ¢ < 2t) are completed.
Then their outputs are multiplied with the constant V' matrix
in (6) to derive the 2t coefficients of Rem,(,)(m(z)z?"). For
syndrome computation, the coefficients of ¢'(x) are sent in.
After [n/p] clock cycles, the syndrome S; is available at the
output of the G; block. Since the multiplication with the V'
matrix does not have any feedback loops, the iteration bound
of the overall encoder in Fig. 6 is decided by the feedback
loops in the G; blocks. From (4), the feedback loop in block
G; only consists of an adder and a multiplier with constant
a7+ 1P Therefore, the proposed architecture has much smaller
iteration bound and hence can achieve much shorter critical
path than the architecture in Fig. 3 and its parallel version.

Comparing Fig. 4 and Fig. 6, our proposed RS encoder is
substantially simplified from straight-forward CRT computa-
tion. Utilizing the property that the generator polynomial of RS
codes is decomposed into factors of degree one, the first stage
polynomial multiplication in Fig. 4 is reduced to constant co-
efficient multiplications. Additionally, these constant multipli-
cations can be combined with the third-stage calculation. Also
the outputs of the second stage become single coefficients. As
a result, the polynomial multiplications in the third stage of
Fig. 4 become coefficient-by-coefficient multiplications. Due
to these modifications, the CRT computation is substantially
simplified in the case of RS encoding.

CRT-based encoder was previously exploited in [12] for
BCH codes. Different from those of RS codes, the generator
polynomial of a BCH code is a product of minimal polyno-
mials, whose degrees are typically g for codes constructed
over GF'(27) and can not be further decomposed into smaller
factors. In this case, the first and third stages of the CRT-based
remainder computation have high complexity. As a result,

%o~
Y1
m(x)XZt p > 2t
or c'(x) . xV r(x)
[]
ot—1 >
\A 4

S0S1°** Sat1

Fig. 6. Proposed p-parallel CRT-based resource-shareable RS encoder archi-
tecture

TABLE I

COMPLEXITY AND ITERATION BOUND FOR p-PARALLEL
t-ERROR-CORRECTING RS ENCODERS OVER GF'(29)

[1] unfolded Proposed
of const. mult. over GF(29) 2tp 2tp + (2t)2
of adder over GF'(29) p(4t — 1) 2tp + 2t(2t — 1)
of g-bit AND gates p(2t — 1) 0
of g-bit registers 2t 2t
’ Iteration bounds (# of T'xoR) 4tp logaq +1

unlike our proposed CRT-based RS encoder, the CRT-based
BCH encoder in [12] has much larger area compared to the
encoder utilizing concatenated LFSRs [2], [3], especially for
higher parallelisms.

IV. COMPLEXITY AND ITERATION BOUND ANALYSES

This section analyzes the complexity of our proposed p-
parallel recourse-shareable encoder for a ¢-error-correcting RS
code constructed over GF'(29).

The complexity and iteration bound of the proposed p-
parallel CRT-based RS encoder are summarized in the last
column of Table I. In our design, each G; block implements
(4) and the architecture is the same as that in Fig. 2(b).
The feedback loop consists of one constant multiplier over
GF(2%), one GF'(29) adder, and one g¢-bit register. Addition-
ally, there are p — 1 constant multipliers and p — 1 adders
outside of the feedback loop. As shown in Fig. 6, the outputs
of the G; blocks are multiplied by the 2¢ x 2¢ constant V'
matrix. This matrix multiplication can be carried out by (2t)?
constant multipliers and 2¢(2t — 1) adders. Over GF'(29),
each adder is implemented by a g-bit XOR and each constant
multiplier can be implemented as a g X ¢ binary constant matrix
multiplication. Since only the G; blocks have feedback loops,
the iteration bound of the overall encoder is decided by these
feedback loops. A ¢ x ¢ constant matrix can have at most ¢ ‘1’s
in a row. Hence the iteration bound of our proposed encoder
is at most (logaqg + 1)TxorR.

For comparisons, the complexity and iteration bound of the
p-unfolded version of the serial design in [1] are also listed in
Table I. Fig. 3 shows the serial architecture from [1]. It consists
of 2t constant multipliers, 4t — 1 adders, 2t q¢-bit registers,

TABLE II
COMPLEXITY AND CRITICAL PATH COMPARISONS FOR RESOURCE-SHAREABLE ENCODERS WITH DIFFERENT PARALLELISMS FOR A
13-ERROR-CORRECTING RS (255,229) CODE

p Design Encoding Syndrome computation Total area Critical path ATP Latency
(# of XORs) (# of XORs) (normalized) (# of gates) (normalized) (# of clks)
13 | [1] unfolded 13208 - 13208 (1) 676 8928608 (65) 20
51+t 32528 11583 44111 (3.34) 4 176444 (1.29) 22
(8t 11706 10959 22665 (1.72) 8 181320 (1.32) 20
Proposed™ 34285 - 34285 (2.60) 4 137140 (1) 22
26 | [1] unfolded 25792 - 25792 (1) 1352 34870784 (190) 10
51+t 43199 23151 66350 (2.57) 4 265400 (1.45) 13
[81f 22388 21903 44291 (1.72) 8 354328 (1.93) 10
Proposed* 45853 - 45853 (1.78) 4 183412 (1) 13
52 | [1] unfolded 50960 - 50960 (1) 2704 137795840 (510) 5
51+t 64156 44820 108976 (2.14) 4 435904 (1.61) 8
(81t 43786 43572 87358 (1.71) 8 698864 (2.59) 5
Proposed* 67522 - 67522 (1.33) 4 270088 (1) 8

* Pipelining is applied to reduce the critical path

T Extra units are added to enable syndrome computation

and 2t — 1 ¢-bit AND gates. In a p-unfolded architecture, p
times more computation units are needed while the number
of registers remains the same [10]. Hence, the p-unfolded
architecture of the encoder in Fig. 3 requires 2¢p constant
multipliers, p(4t — 1) adders, 2t g-bit registers, and p(2¢t — 1)
g-bit AND gates. Due to the concatenation, the computations
carried out by the XOR and AND gates at the bottom of Fig.
3 can not be implemented in a tree structure. Accordingly, as
mentioned in Section II, the iteration bound of this architecture
is Too = (2t + 1)Txor + (2t — 1)Tanp, which is around
4tTxor. As a result, the iteration bound of the p-unfolded
architecture is pTo, = 4tpT'x0oR.

The RS codes utilized in practical applications are typically
constructed over moderate or smaller finite fields, such as
GF(28), and have non-trivial error-correcting capability . In
this case, it can be observed from Table I that our proposed
design apparently has much lower iteration bound and hence
can achieve much shorter critical path compared to the p-
unfolded version of the design in [1]. Also unlike the design
in [1], the iteration bound of our architecture does not change
with p or t. Hence, the speed advantage of our design would
be even more significant for higher parallelism and/or codes
with higher error-correcting capability.

The complexity of each constant multiplier is dependent on
the constant. The multiplication with o’ when 4 is not small
requires more XOR gates than an adder. Hence, the areas of
both the proposed design and that from [1] are dominated by
the multipliers. For highly parallel design such that p is much

larger than ¢, the area of the proposed encoder would become
close to that of the unfolded version of the encoder from [1].

V. COMPLEXITY AND ITERATION BOUND COMPARISONS
FOR EXAMPLE RS ENCODERS

To further illustrate the advantages of the proposed resource-
shareable RS encoder, this section compares the proposed
design with different parallelisms to the unfolded version of
the design in [1] for an example (255, 229) RS code over
GF(2%) with t = (n—k)/2 = 13. There are no other existing
design for resource-shareable RS encoder that can implement
both encoding and syndrome computation. Hence, the combi-
nation of traditional parallel LFSR RS encoders and syndrome
computation units are utilized for further comparison.

The complexities of our proposed design with p
13,26, 52 are listed in Table II. The numbers of XOR gates
are derived according to the actual numbers of ‘1’s in the
binary constant matrices for the involved finite field element
multiplications. It is also assumed that the area of a register is
around 3 times the area of an XOR gate. The iteration bound of
our architecture is 47xor for codes over GF(28) regardless
of p or t. Since the data paths in the non-feedback parts
of GG; and the V' matrix multiplication are longer, pipelining
registers can be inserted into each part to reduce the critical
path to 4 XOR gates. The total area in Table II includes the
complexity of the pipelining registers. Similarly, the numbers
of XOR gates for the unfolded versions of [1] listed in Table
II are also derived according to the actual numbers of ‘I’s in

the corresponding binary constant matrices. In the total area
estimation, it is assumed that each AND gate takes 1/2 the area
of an XOR gate to implement. For comparisons, the areas of
our proposed design are normalized with respect to the areas
of the design from [1].

Although the pipelining leads to a few additional clock
cycles in the latency, the critical path of our design is only
a fraction of that from [1]. Hence, our design can achieve
much higher clock frequency and processing speed. The area
of our design is larger. However, the difference becomes
smaller for larger p. The number of XOR gates needed for
a matrix multiplication can be further reduced by applying
substructure sharing without changing the critical path [7]. The
multiplication of the V' matrix with 2¢ X 2¢ finite field elements
can be converted to the multiplication of a 2tq x 2tq constant
binary matrix multiplication. More shareable substructures can
be typically found for matrices of larger dimension. Hence,
it is expected that area overhead of our design compared to
that from [1] would become smaller if substructure sharing is
adopted. To compare designs with different area and through-
put, the efficiency in terms of ATP can be adopted. It should
be noted that although pipelining increases the latency, it does
not change the number of clock cycles needed to process each
encoding since p data symbols are still processed in each clock
cycle. Hence, the ATP used for comparison can be defined as
(total area) x (critical path). It can be observed from Table II,
the ATP of the unfolded version of the design from [1] is 65
times higher than the proposed design when p = ¢ and this
ratio further increases for larger p.

Parallel designs of binary LFSRs based on state look-ahead
are available in [5]-[9]. These architectures consist of an input
pre-processing matrix multiplication and a matrix multiplica-
tion in a feedback loop. These designs can be extended to
implement non-binary LFSRs for RS encoding by replacing
the constant finite field elements in the matrices with the
corresponding g X ¢ binary matrices. The designs in [6], [7] try
to find a transformation matrix by exhaustive search to reduce
the complexities of the pre-processing and feedback matrix
multiplications. In the encoders for RS codes over GF(29),
the sizes of the matrices are increased by ¢ times compared to
those for binary LFSRs. Hence, the exhaustive search becomes
unfeasible. For RS encoding, the design in [9] does not have
any advantage over [8]. Hence, the encoder-only design in [8]
combined with units for syndrome computation is compared
with the proposed resource-shareable design that implements
both encoding and syndrome computation in Table II. The
design from [5] combined with syndrome computation units
is also included for comparison since it has the shortest critical
path among previous designs.

It can be observed from Table II that the proposed encoder
achieves the same shortest critical path as the design from
[5]. Also the efficiency of our design in terms of ATP is
(1.29 — 1) x 100 = 29% higher than that of the encoder
from [5] combined with syndrome computation units when
p = t and the efficiency further improves for larger p.
Although our design requires larger area than the design

from [8] combined with syndrome computation units when
p = t, the encoder from [8] has twice longer critical path.
As a result, our design is 32% more efficient when p = t.
Additionally, the area requirement of the design from [8]
increases fast and its efficiency becomes much lower for larger
p. Overall, it is evident that the proposed design is much more
efficient than traditional parallel LESR RS encoders combined
with syndrome computation units that implement the same
functionality, especially for larger p.

VI. CONCLUSION

This paper proposes a new parallel resource-shareable RS
encoder based on the CRT. By utilizing the property that
the generator polynomial of RS codes can be decomposed
to factors of degree one, optimizations are developed to
substantially reduce the complexity of the CRT-based encoder.
Additionally, state transformation is developed to enable the
sharing of the hardware units of the RS encoder for syndrome
computation. As a result, the proposed design has much shorter
critical path than the previous resource-shareable RS encoder.
Compared to traditional parallel LFSR RS encoders combined
with syndrome computation units that implement the same
functionality, the proposed encoder also achieves much higher
efficiency, especially when a larger parallelism is needed.
Future work will exploit alternative methods for implementing
resource-shareable RS/BCH encoders.

REFERENCES

[1] G. Fettweis and M. Hassner, “A combined Reed-Solomon encoder and
syndrome generator with small hardware complexity,” Proc. of IEEE Int.
Symp. on Circuits and Syst., San Diego, CA, USA, 1992, pp. 1871-1874.

[2] H. Tang, G. Jung and J. Park, “A hybrid multimode BCH encoder
architecture for area efficient re-encoding approach,” Proc. of IEEE Int.
Symp. on Circuits and Syst., Lisbon, Portugal, 2015, pp. 1997-2000.

[3] H. Yoo, J. Jung, J. Jo and I. Park, “Area-efficient multimode encoding
architecture for long BCH codes,” IEEE Trans. on Circuits and Syst.-11,
vol. 60, no. 12, pp. 872-876, Dec. 2013.

[4] A. K. Subbiah and T. Ogunfunmi, “Area-effcient re-encoding scheme
for NAND flash memory with multimode BCH error correction,” Proc.
of IEEE Int. Symp. on Circuits and Syst., Florence, Italy, 2018, pp. 1-5.

[51 J. H. Derby, “High-speed CRC computation using state-space transfor-
mations,” Proc. of IEEE Global Telecom. Conf., San Antonio, TX, USA,
2001, pp. 166-170.

[6] G. Hu, J. Sha, and Z. Wang, “High-speed parallel LFSR architectures
based on improved state-space transformations,” IEEE Trans. on VLSI
Syst., vol. 25, no. 3, pp. 1159-1163, Mar. 2017.

[71 X. Zhang, “A low-power parallel architecture for linear feedback shift
registers,” IEEE Trans. on Circuits and Syst.-I1, vol. 66, no. 3, pp. 412-
416, Mar. 2019.

[8] X. Zhang, and Y. J. Tang, “Reducing parallel linear feedback shift
register complexity through input tap modification,” Proc. of IEEE Int.
Symp. on Circuits and Syst., Sapporo, Japan, 2019, pp. 1-5.

[9] X. Zhang, and Y. J. Tang, “Low-complexity parallel cyclic redundancy

check,” Proc. of IEEE Int. Symp. on Circuits and Syst., May 2021.

K. K Parhi, VLSI Digital Signal Processing Systems: Design and

Implementation, John Wiley & Sons, 1999.

X. Zhang and K. K. Parhi, “High-speed VLSI architectures for the AES

algorithm,” IEEE Trans. on VLSI Syst., vol. 12, no. 9, pp. 957-967, Sept.

2004.

H. Chen, “CRT-based high-speed parallel architecture for long BCH

encoding,” IEEE Trans. on Circuits and Syst.-1I, vol. 56, no. 8, pp. 684-

686, Aug. 20009.

[10]

[11]

[12]

