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1 Introduction

In an orbifold, it is an old story that one has the option of adding phases such as discrete
torsion, which in a Γ orbifold are classified by H2(Γ, U(1)). Recently, there has been renewed
interest in orbifolds and their anomalies, see e.g. [1–9]. As outlined in e.g. [1,4], and as will be
explained in greater detail in our upcoming work [10], recent proposals for anomaly resolution
in orbifolds [2, 4] implicitly require that the ‘resolved’ orbifolds use new degrees of freedom
which do not spoil modular invariance, analogous to (but distinct from) discrete torsion. It
is the purpose of this paper to describe those novel degrees of freedom explicitly.

These new degrees of freedom generalize quantum symmetries of orbifolds [11, 12], for
which reason we use the same nomenclature, and are specific to orbifolds in which a sub-
group of the orbifold group acts trivially on the original space. Unlike ordinary quantum
symmetries, the quantum symmetries we shall be focused on do not always arise from dis-
crete torsion, and so define new phases which preserve modular invariance, but in which the
modular invariance is achieved in a novel fashion.

Specifically, these new degrees of freedom arise in the case that a subgroup K of the
orbifold group Γ acts trivially. These additional modular invariant phases, which we call
“quantum symmetries,” are classified by H1(G,H1(K,U(1))), where G = Γ/K acts effec-
tively. It can happen that a subset of these phases may be equivalent to a subset of discrete
torsion H2(Γ, U(1)), but in general these quantum symmetry phases are not the same as
discrete torsion. For example, consider an orbifold by Γ ∼= Z4 with a trivially acting K ∼= Z2

subgroup, as is discussed in section 4.1.1. In this case, there is no discrete torsion (since
H2(Z4, U(1)) ∼= 1), but there are two possible choices for quantum symmetry phases (since
H1(G,H1(K,U(1))) = Z2).

The purpose of this paper is both to explore these new degrees of freedom, which are of
independent interest, and also to set the stage for their application to anomaly resolution,
which will be explored in detail in [10]. We will offer a conjecture for the result of performing
a gauging with a given choice of phases, at least in the case that K is a central subgroup of
Γ.

Before continuing, we should mention that there exist different generalizations of quan-
tum symmetries in the literature. For example, [3] utilizes fusion categories to build a
generalization with the property that for nonabelian orbifolds, orbifolding by the (fusion
category) quantum symmetry returns the original space. Our generalization, by contrast,
does not involve fusion categories (and when applied to nonabelian orbifolds need not re-
turn the original space), but will instead provide new degrees of freedom in orbifolds with
trivially-acting subgroups.

Orbifolds with trivially-acting subgroups, and more generally gauge theories with trivially-
acting subgroups, such as abelian gauge theories with nonminimal charges, were explored
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in [13–15] as part of a program of developing string compactifications on certain generalized
spaces known as stacks and gerbes. In modern language, a gerbe is a fiber bundle in which
the fibers are ‘groups’ of one-form symmetries, hence a sigma model on a gerbe naturally
admits a one-form symmetry corresponding to translation along the fibers.

One of the most important outcomes of that work was the discovery of decomposition,
first described in [16], an equivalence between two-dimensional theories with one-form sym-
metries (and various generalizations) and disjoint unions of other two-dimensional theories.
Decomposition has since been applied to a number of areas, including Gromov-Witten the-
ory [17–22], gauged linear sigma models [23–29], mirror symmetry [16, 30–33] and heterotic
string compactifications [34]. See e.g. [9,35–39] for more recent work, on topics ranging from
elliptic genera to higher-dimensional analogues.

Naturally, after introducing more general quantum symmetries in orbifolds with trivially-
acting subgroups, in this paper we will also describe decomposition in such theories. This
is both for some semblance of completeness, as well as because decomposition will play a
crucial role in the application to anomalies, as we will discuss in [10].

We begin in section 2 by describing these new more general quantum symmetries and
their basic properties, such as their relation to older notions of quantum symmetries, as well
as the modular invariance of these new phases. In section 3 we then conjecture the form
that decomposition takes in these theories, the modification required by the presence of a
quantum symmetry.

In section 4 we explore a number of examples, both to demonstrate quantum symmetries
explicitly, as well as to explore the effect of decomposition.

In a series of appendices, we collect some related information. In appendix A, we re-
view conventional quantum symmetries in this framework, and how orbifolds-of-orbifolds
returning the original theory (or a variant thereof) is a version of decomposition.

Appendix B is a technical demonstration that the pullback of the quantity d2B (which
plays a role in our discussion) is trivial in cohomology. This will play an essential role in
the application to anomalies discussed in [10], and also seems to be important for describing
D-branes and open strings in these theories.

In appendix C we outline open strings and D-branes in orbifolds with quantum symme-
tries. To define a D-brane here requires a subtle generalization. For example, in an ordinary
orbifold, to define a D-brane, one must give a group action on the D-brane, and if one adds
discrete torsion, then that group action is projectivized. Here, quantum symmetries often
require that associativity of the group action is (weakly) broken. In this appendix we outline
basics.

In appendix D we outline some aspects of non-central extensions. In the rest of this
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paper, we assume that the full orbifold group Γ is a central extension of the effectively-
acting orbifold G, meaning that the trivially-acting subgroup lies within the center of Γ. At
least much of the structure we describe appears to generalize to non-central extensions, and
we outline some details here.

Finally, a remark on nomenclature. Across our several papers on these matters, we have
sometimes mixed additive and multiplicative notations. For example, a trivial quantum
symmetry B is sometimes written as B = 0 and other times is written as B(g) = 1 for all
g ∈ G.

2 Quantum symmetries of the Γ orbifold

2.1 Review of ordinary quantum symmetries

Let us begin with a short review of quantum symmetries in orbifolds. Given a G orbifold,
the quantum symmetry (see e.g. [11, section 8.5], [12]) multiplies twist fields by phases, so
as to leave correlation functions invariant. If G is abelian, the quantum symmetry Ĝ ∼= G;
if G is nonabelian, the quantum symmetry Ĝ is the abelianization G/[G,G].

A famous consequence of quantum symmetries is that they can undo the orbifold: for G
abelian, orbifolding the original orbifold by the quantum symmetry returns the original the-
ory. (For G nonabelian, to recover the original theory one must work with fusion categories,
see e.g. [3]; we shall take a different direction in this paper.)

Those two subsequent orbifolds, the orbifold of [X/G] by the quantum symmetry Ĝ,
can equivalently be described as a single orbifold [X/(G × Ĝ)] with discrete torsion, which
provides the phases produced by the quantum symmetry. The group Ĝ acts trivially on
X; it only acts via G-twisted sector phases. For example, if G = Zn, then orbifolding
by the quantum symmetry is equivalent to an orbifold by Zn × Zn with discrete torsion in
H2(Zn×Zn, U(1)) ∼= Zn, where one Zn factor acts trivially on X (though its contributions to
the path integral are weighted by phases)1. (See for example [11, section 8.5] for an explicit
discussion for the case n = 2.)

The fact that such an orbifold is equivalent to the original space is a special case of the
decomposition for orbifolds with discrete torsion discussed in [9]. For example, the case
n = 2 is discussed in detail in [9, section 5.1], where it is checked that, as a consequence of
decomposition,

QFT ([X/Z2 × Z2]d.t.) = QFT (X) . (2.1)

1See for example [11, section 8.5] for an explicit discussion for the case n = 2. Another perspective can
be found in [40], where the quantum symmetry and the iterated gauging are discussed in the language of
boundaries and interfaces of a 3D Dijkgraaf-Witten TQFT.
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In appendix A, we review the analogous result for general orbifold groups G, demonstrating
that for a quantum symmetry group Ĝ = G/[G,G], the orbifold [X/Γ] for Γ = G× Ĝ with
appropriate discrete torsion is equivalent to [X/[G,G]].

In this paper, we generalize quantum symmetries to orbifolds [X/Γ], where Γ is no longer
a product but rather a central extension, and more importantly, to phases which need not be
determined by discrete torsion. Despite the fact that the phases do not come from discrete
torsion, we will find that they nevertheless are modular invariant, giving us new modular-
invariant phases to add to orbifolds, at least orbifolds in which a subgroup of the orbifold
group acts trivially. We will also find other subtleties in these new phases – for example,
appendix C discusses how D-branes in such orbifolds appear to be defined by non-associative
analogues of equivariant structures.

In the remainder of this section we will discuss these new phases generalizing quantum
symmetries, and discuss basic properties such as their modular invariance.

2.2 Basics of general construction

Next, we will consider more general quantum symmetries arising in an orbifold Γ that is
a central extension of an effectively-acting group G by a trivially-acting group K. (In
appendix D we outline some of the basics needed to generalize to non-central extensions,
which otherwise are left for future work.)

As in the ordinary notion, the idea behind a quantum symmetry is that K acts trivially
on X, but nontrivially on G-twisted sectors. However, since in general Γ can be a nontrivial
extension, the G-twisted sectors are not well-defined, so that description is imprecise. A
better description is that the set of Γ-twisted sectors is acted upon2 by K, with phases
determined by B ∈ H1(G,H1(K,U(1))), as follows. Since K is central, an element B is
equivalent to a map

B : G×K −→ U(1), (2.2)

which we use to give relations of the form3

gz

h

= B(π(h), z)

(︃
g

h

)︃
, g

hz

= B(π(g), z)−1

(︃
g

h

)︃
, (2.3)

for z ∈ K and g, h ∈ Γ a commuting pair. (We assume that B(g, 1) = 1 for all g ∈ G, and
B(1, k) = 1 for all k ∈ K.) This is the precise meaning of the intuition that K acts trivially
on X, but nontrivially on G-twisted sectors. The resulting phases are classified by elements

2Technically, the set of genus-one twisted sectors in the Γ orbifold forms a torsor under K.
3Note that the relations are almost but not quite symmetric under an S transformation. This can be

derived from modular transformations.
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of
H1(G,H1(K,U(1))). (2.4)

In this paper, we will see in examples that with this choice, the resulting Γ orbifold is
well-defined, and typically has the form of (copies) of an orbifold by a subgroup of G. We
will make a precise general prediction for the form of any such Γ orbifold, which we will
check extensively.

Before going on, let us check that the prescription above for quantum symmetries derived
from an element of H1(G,H1(K,U(1))) is invariant under modular transformations. Begin
with the relation

gz

h

= B(π(h), z)

(︃
g

h

)︃
, (2.5)

and perform a modular transformation by[︃
a b
c d

]︃
∈ SL(2,Z). (2.6)

Under this modular transformation

gz

h

↦→ (gz)ahb

(gz)chd

, (2.7)

g

h

↦→ gahb

gchd

, (2.8)

and from the relation (2.3),

(gz)ahb

(gz)chd

= B(π(gchd), za)

(︄
gahb

(gz)chd

)︄
, (2.9)

=
B(π(gchd), za)

B(π(gahb), zc)

(︄
gahb

gchd

)︄
. (2.10)

Since B ∈ H1(G,H1(K,U(1))), and K is assumed central, we know that

B(g, z1z2) = B(g, z1)B(g, z2), (2.11)

B(g1g2, z) = B(g1, z)B(g2, z), (2.12)

hence

B(π(gchd), za)

B(π(gahb), zc)
=

B(π(gchd), z)a

B(π(gahb, z)c
, (2.13)

=
B(π(gcahda), z)

B(π(gachbc), z)
, (2.14)

= B(π(had−bc), z) = B(π(h), z). (2.15)
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Thus, we see that

(gz)ahb

(gz)chd

= B(π(h), z)

(︄
gahb

gchd

)︄
, (2.16)

precisely consistent with a modular transformation of the identity (2.5).

In section 2.1 we reviewed ordinary quantum symmetries, described by trivial extensions
Γ = G × K, and which were produced by discrete torsion. The relationship can be made
precise using the exact sequence(︁

Ker i∗ ⊂ H2(Γ, U(1))
)︁ β−→ H1(G,H1(K,U(1)))

d2−→ H3(G,U(1)), (2.17)

where ι : K → Γ is inclusion and in the sequence above,

ι∗ : H2(Γ, U(1)) −→ H2(K,U(1)). (2.18)

(This is part of a seven-term exact sequence [41] slightly extending the inflation-restriction
sequence (see e.g. [42], [43, example 6.8.3], [44, section I.6], [45, section 3.3]), that is discussed
in greater detail in our previous work [9].) For later use, the maps β and d2 are given as

β(ω)(π(g), z) =
ω(g, z)

ω(z, g)
, (2.19)

(for g ∈ Γ, z ∈ K, with ω a cocycle representing an element of H2(Γ, U(1)) corresponding
to discrete torsion) as we shall discuss in detail in the next section, as well as [9, appendix
C], and

(d2B)(g1, g2, g3) = B(g1, s2s3s
−1
23 ), (2.20)

where gi ∈ G, si = s(gi) for s : G → Γ a section, as discussed in [41, section 8]. (The
quantity s2s3s

−1
23 is the extension class in H2(G,K) of Γ, and so vanishes in cohomology if

the extension splits.)

In any event, a quantum symmetry B ∈ H1(G,H1(K,U(1))) arises from discrete torsion
precisely when it is in the image of β in the sequence (2.17) above. Furthermore, the
reader should note from the sequence (2.17) that not every quantum symmetry B can be so
described – those for which d2B is nontrivial, are not in the image of β and so are not given
by discrete torsion.

2.3 Special case of discrete torsion

An important set of special cases are those in which the quantum symmetry, defined by
B ∈ H1(G,H1(K,U(1))), arises from discrete torsion ω ∈ H2(Γ, U(1)), meaning that B is
in the image of β in the sequence (2.17). In this section we will verify that mathematical
result directly in physics. (See also [9, appendix C] for another discussion of β.)
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We have described quantum symmetries as elements B ∈ H1(G,H1(K,U(1)) that relate
genus-one twisted sectors as

gz

h

= B(π(h), z)

(︃
g

h

)︃
, (2.21)

for g, h commuting elements of Γ, and z ∈ K. If K acts trivially on the original theory
(albeit not on G-twisted sectors), then this implies a relation between phases derived from
discrete torsion ω ∈ H2(Γ, U(1)), specifically

ω(gz, h)

ω(h, gz)
= B(π(h), z)

ω(g, h)

ω(h, g)
, (2.22)

or equivalently,

B(π(h), z) =
ω(gz, h)

ω(h, gz)

ω(h, g)

ω(g, h)
, (2.23)

where we have used the fact that discrete torsion assigns the phase

ϵdt(g, h) =
ω(g, h)

ω(h, g)
(2.24)

to the genus-one diagram
g

h

(2.25)

defined by commuting g, h. In deriving this expression, we have merely assumed that the
twisted sectors are well-defined, meaning that h commutes with both g and gz.

In order to be consistent, the right-hand-side of equation (2.23) must not depend on g, and
can only depend upon π(h) instead of all of h. We will see that the first statement is always
true, and the second is true so long as the restriction of ω to H2(K,U(1)) is trivial. (If the
restriction is not trivial, then B = B(h, z) and so defines an element of H1(Γ, H1(K,U(1)))
instead of H1(G,H1(K,U(1))).)

Both of these well-definedness statements are a consequence of the fact that, as noted in
e.g. [46, equ’n (42)], for the genus-one discrete torsion phases

ϵdt(g, h) =
ω(g, h)

ω(h, g)
, (2.26)

(for g, h commuting) one has

ϵdt(x, y) ϵdt(x, z) = ϵdt(x, yz). (2.27)

To demonstrate that B(π(h), z) is independent of g, one rearranges

ϵdt(h, g) ϵdt(h, z) = ϵdt(h, gz), (2.28)
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to quickly find that
ω(gz, h)

ω(h, gz)

ω(h, g)

ω(g, h)
=

ω(z, h)

ω(h, z)
. (2.29)

The left-hand side is equation (2.23) for B, and the right-hand side is the restriction of B
to g = 1. Since they are equal, we see that, as advertised, B is independent of g, and in
particular, we can write

B(π(h), z) =
ω(z, h)

ω(h, z)
= ϵdt(z, h). (2.30)

In a similar fashion, one can show that so long as the restriction of ω to H2(K,U(1)) is
trivial, B only depends on π(h), not h. Specifically, suppose that h′ = hk for k ∈ K. Then,
using the identity (2.27), we have that

ϵdt(z, h
′) = ϵdt(z, hk) = ϵdt(z, h)ϵdt(z, k), (2.31)

but since z, k are both in K, so long as the restriction of ω to H2(K,U(1)) is trivial,
ϵ(z, k) = 1, hence

ϵdt(z, h
′) = ϵdt(z, h), (2.32)

and so B depends only upon π(h), not h.

We can also make contact with another expression for a phase derived from discrete
torsion. As the expression (2.23) for B is independent of g, without loss of generality we can
take g = h−1, then from (2.23), we find another expression for B:

B(π(h), z) =
ω(h−1z, h)

ω(h, h−1z)

ω(h, h−1)

ω(h−1, h)
. (2.33)

Now,
ω(h, h−1)

ω(h−1, h)
= 1, (2.34)

and

β(π(h), ω)(z) =
ω(h, h−1z)

ω(h−1z, h)
(2.35)

was the phase factor defined by discrete torsion ω in [9, appendix C], so we see that

B(π(h), z) =
1

β(π(h), ω)(z)
. (2.36)

In [9] this phase factor was computed from the mathematics of the Lyndon-Hochschild-Serre
spectral sequence, whereas here we have seen a simple physical realization.

Thus, we see that so long as the restriction of discrete torsion to H2(K,U(1)) is trivial,
discrete torsion defines a quantum symmetry B ∈ H1(G,H1(K,U(1)), given by B = 1/β(ω).
that K is central in Γ.
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Conversely, if d2B = 1, then we can find a corresponding element of discrete torsion, as
follows. In this case, there exists a two-cochain λ such that

B
(︁
g1, s2s3s

−1
23

)︁
=

λ(g2, g3)

λ(g1g2, g3)

λ(g1, g2g3)

λ(g1, g2)
. (2.37)

Then, define ω by

ω(s1k1, s2k2) =
λ(g1, g2)

B (g1, k2)
. (2.38)

Now. only some elements of H1(G,H1(K,U(1))) can be written as 1/β(ω) for some ω
in H2(Γ, U(1)). In particular, in this paper we are interested in B in H1(G,H1(K,U(1)))
whose image in H3(G,U(1)) is nontrivial, and those B are not in the image of ω, as follows
from the exact sequence (2.17), which was reviewed in greater detail in [9].

For reference elsewhere, from the sequence (2.17), for B ∈ H1(G,H1(K,U(1))) such
that d2B ̸= 1 (and so are not determined by discrete torsion), although d2B is a nontrivial
element of H3(G,U(1)), we will show in appendix B that π∗(d2B) is trivial in H3(Γ, U(1))
– at least, trivial in cohomology, though not necessarily identically 1.

In passing, note that for B determined by discrete torsion ω ∈ H2(Γ, U(1)), as ϵdt(g, h) =
ϵdt(h, g)

−1, to be consistent, relation (2.21) also requires

h

gz

= B(π(h), z)−1

(︄
h

g

)︄
, (2.39)

exactly as we saw is required for modular invariance in section 2.2.

2.4 General case

As noted above, not all B ∈ H1(G,H1(K,U(1))) are determined by discrete torsion in
H2(Γ, U(1)). However, we would like an analogous description, in order to e.g. make sense
of D-branes in these orbifolds. In this section we will discuss how one can compute cochains
ω (not cocycles) whose corresponding phases

ϵ(g, h) =
ω(g, h)

ω(h, g)
(2.40)

encode B.

To that end, first pick a section s : G → Γ, and note that every g ∈ Γ can be uniquely
written in the form g = s(π(g))kg, where kg is in (the image of) K, and π : Γ → G. Then,
as previously discussed, any given twisted sector

g

h

= s(π(g))kg

s(π(h))kh

(2.41)
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is proportional to a sector without the factors of k:

s(π(g))kg

s(π(h))kh

=
B(π(h), kg)

B(π(g), kh)

(︄
s(π(g))

s(π(h))

)︄
. (2.42)

Since, aside from the quantum symmetry, K otherwise acts trivially, we could equivalently
say that we multiply the

g

h

(2.43)

by a phase

ϵ(g, h) ≡ B (π(h), s(π(g))−1g)

B (π(g), s(π(h))−1h)
. (2.44)

(We suspect, but have not carefully checked, that this is equivalent to including the coupling
[4, equ’n (2.31)].)

As a consistency check, it is straightforward to show that, for example,

gz h

g h

=
ϵ(gz, h)

ϵ(g, h)
= B(π(h), z), (2.45)

using the fact that B is a homomorphism (2.11), (2.12). Note that although a particular
realization in terms of phases ϵ depends upon the choice of section s, the ratio of phase
factors is independent of the choice of s.

The idea of multiplying a given sector by a phase factor is clearly analogous to that in
discrete torsion, and obeys similar constraints. For example, it is also straightforward, using
the fact that B is a homomorphism (2.11), to demonstrate that

1. ϵ(g, g) = 1,

2. ϵ(g, h) = ϵ(h, g)−1,

3. ϵ(g, h1h2) = ϵ(g, h1)ϵ(g, h2) ((d2B)(π(g), π(h1), π(h2))
−1,

for the phases ϵ defined in (2.44), and where [41, section 8]

(d2B)(g1, g2, g3) = B
(︁
g1, s(g2)s(g3)s(g2g3)

−1
)︁

(2.46)

for g1,2,3 ∈ G, and where d2 is the same map that appeared in the short exact sequence (2.17).
In the special case that d2B = 1, these are the conditions that were previously derived on
phases in [46, equ’ns (42)-(44)] to guarantee modular invariance, in the sense that

ϵ(gahb, gchd) = ϵ(g, h) (2.47)
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for [︃
a b
c d

]︃
∈ SL(2,Z). (2.48)

In more general cases, d2B acts as an obstruction to this identity.

Now, despite this obstruction, this theory can nevertheless still be modular invariant. To
see this, the reader should note that the relation between the identity (2.47) and modular
invariance is slightly subtle when K acts trivially. In such a case, different sectors from
possibly different SL(2,Z) orbits can contribute to the same effective orbifold sector. In
particular, one can show that the partition function is modular invariant for any B, although
for d2B ̸= 1 the phases ϵ themselves are not SL(2,Z)-invariant.

We can see this as follows. For g = π(g), h = π(h) the images in G of a a commuting
pair of elements g, h ∈ Γ, define

ϵ(g, h) =
∑︂

k1,k2∈K

ϵ
(︁
s(g)k1, s(h)k2

)︁
, (2.49)

where we assume that K is central in Γ. In particular, ϵ is the sum of the contributions to
an effective-G-orbifold genus one sector defined by the commuting pair g, h. Then, we claim
that for any [︃

a b
c d

]︃
∈ SL(2,Z), (2.50)

we have
ϵ
(︂
gah

b
, gch

d
)︂

= ϵ(g, h). (2.51)

To see this, first note that

ϵ(g, h) =
∑︂
k1,k2

ϵ
(︁
s(g)k1, s(h)k2

)︁
, (2.52)

=
∑︂
k1,k2

B
(︁
h, k1

)︁
B (g, k2)

, (2.53)

then we compute

ϵ
(︂
gah

b
, gch

d
)︂

=
∑︂
k1,k2

B
(︂
gch

d
, k1

)︂
B
(︂
gah

b
, k2

)︂ , (2.54)

=
∑︂
k1,k2

B(g, k1)
c B(h, k1)

d

B(g, k2)a B(h, k2)b
, (2.55)

=
∑︂
k1,k2

B
(︁
h, kd

1k
−b
2

)︁
B
(︁
g, ka

2k
−c
2

)︁ . (2.56)
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Finally, note that we can perform a change of basis, defining

ℓ1 = kd
1k

−b
2 , ℓ2 = ka

2k
−c
1 , (2.57)

which can be inverted as
k1 = ℓa1ℓ

b
2, k2 = ℓa1ℓ

d
2. (2.58)

In the new basis, we can write

ϵ
(︂
gah

b
, gch

d
)︂

=
∑︂
ℓ1,ℓ2

B
(︁
h, ℓ1

)︁
B (g, ℓ2)

, (2.59)

= ϵ(g, h), (2.60)

demonstrating that the theory defined by any B, not just those with d2B = 1, is modular
invariant.

Thus, theories with quantum symmetries such that d2B ̸= 1 are modular-invariant, but
the reasons are subtle. Modular invariance acts on both the G twisted sectors as well as the
Γ-twisted sectors. However, as

(π(gahb), π(gchd)) = (π(g)aπ(h)b, π(g)c, π(h)d), (2.61)

a modular transformation in Γ will never slip between modular orbits in G; at most, it will
exchange fibers over the same modular orbit of G. The effect of the quantum symmetry is
to modify the coefficients of the G-twisted sector contributions, and although Γ-modular-
invariance is broken if d2B ̸= 1, G-modular-invariance is not, as the effect of summing up
the contributions from the action of K can be arranged consistently in modular orbits of G.

To summarize, so far we have found that for these orbifolds with quantum symmetries,
the phases (2.44) are consistent with modular invariance, and so we see that, at least in
orbifolds of this form, with a trivially-acting subgroup, discrete torsion is not the only pos-
sible modular-invariant modification one can introduce. (See also [49] for a discussion of
momentum/winding lattice phases in orbifolds of non-simply-connected spaces, as another
analogous example.)

As another consistency check, in the special case that B is determined by discrete torsion
ω, that B = 1/β(ω), from (2.42), one expects

ϵ(g, h) =
ϵdt(g, h)

ϵdt(s(π(g)), s(π(h)))
, (2.62)

where ϵdt denotes the ratio of group 2-cocycles ω defining the genus-one phase arising in
discrete torsion. Using multiplicative properties of ϵdt, as well as the assumption that its
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restriction to K is trivial, it is straightforward to compute that

ϵ(g, h) =
B(π(h), s(π(g))−1g)

B(π(g), s(π(h))−1h)
=

ϵdt(s(π(g))
−1g, h)

ϵdt(s(π(h))−1h, g)
, (2.63)

= ϵdt(s(π(g))
−1, h) ϵdt(g, h) ϵdt(g, s(π(h))

−1h)

·ϵdt(s(π(g))−1g, s(π(h))−1h)−1, (2.64)

= ϵdt(g, h) ϵdt(s(π(g))
−1, h) ϵdt(s(π(g)), s(π(h))

−1h), (2.65)

= ϵdt(g, h)
ϵdt(s(π(g)), s(π(h))

−1h)

ϵdt(s(π(g)), h)
, (2.66)

=
ϵdt(g, h)

ϵdt(s(π(g)), s(π(h)))
, (2.67)

as expected.

So far, given a general quantum symmetry, we have derived genus-one phase factors ϵ(g, h)
that encode the quantum symmetry on twisted sectors. To make sense of D-branes, we need a
bit more. Specifically, we need an analogue of group cocycles. Now, in general, these phase
factors cannot be described by group cocycles, as that description only reproduces those
quantum symmetries arising from discrete torsion. However, we can certainly construct
group cochains representing the phases ϵ(g, h).

Specifically, recall a group cochain ω is a map Γ × Γ → U(1), not necessarily obeying a
group cocycle condition. We can construct a set of group cochains ω(g, h) such that

ϵ(g, h) =
ω(g, h)

ω(h, g)
(2.68)

as follows. First, pick an ordering on the elements of the group Γ. (Different orderings will
result in different cochains, but the same phase ϵ.) Then, define

ω(g, h) =

{︃
ϵ(g, h) g ≤ h,

1 else.
(2.69)

This construction is certainly not unique, but does demonstrate the existence of cochains ω
that reproduce the phases ϵ.

Another, potentially more useful, description of the cochain is as follows. Pick a section
s : G → Γ, with respect to which any g ∈ Γ can be uniquely written g = ks(π(g)), for k ∈ K,
then define

ω(k1s(π(g1)), k2s(π(g2))) ≡ 1

B(π(g1), k2)
. (2.70)

Then,

ϵ(z, h) =
ω(z, h)

ω(h, z)
=

B(π(h), z)

B(1, s(π(h))−1h)
, (2.71)

= B(π(h), z), (2.72)
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using the fact that B(1, s(π(h))−1h) = 1.

Let us check when the cochain ω defined above is a cocycle. Let g1,2,3 be three elements
of γ, each written as gi = kis(π(gi)). Then,

(dω)(g1, g2, g3) =
ω(g2, g3)ω(g1, g2g3)

ω(g1g2, g3)ω(g1, g2)
, (2.73)

=
B(π(g1g2), k3)B(π(g1), k2)

B(π(g2), k3)B(π(g1), k2k3s(π(g2))s(π(g3))s(π(g2g3))−1)
, (2.74)

= B
(︁
π(g1), s(π(g2))s(π(g3))s(π(g2g3))

−1
)︁−1

. (2.75)

Now, from [41, section 8],

π∗(d2B)(g1, g2, g3) = B
(︁
π(g1), s(π(g2))s(π(g3))s(π(g2g3))

−1
)︁
, (2.76)

so we see that the cochain ω defined in (2.70) is a cocycle if and only if the pullback of
d2B is trivial (not just in cohomology), and hence B is in the image of β, using the exact
sequence (2.17).

In passing, it is straightforward to check that when K is central, π∗(d2B) is a group
3-cocycle:

(d(π∗d2B))(g1, g2, g3, g4) =
(π∗d2B)(g2, g3, g4)

(π∗d2B)(g1g2, g3, g4)

(π∗d2B)(g1, g2g3, g4)

(π∗d2B)(g1, g2, g3g4)
(π∗d2B)(g1, g2, g3),

=
B(π(g2), s3s4s

−1
34 )

B(π(g1g2), s3s4s
−1
34 )

B(π(g1)s23s4s
−1
234)

B(π(g1), s2s34s
−1
234)

B(π(g1), s2s3s
−1
23 ),

= B(π(g1), 1) = 1, (2.77)

where for example sa = s(π(ga)).

Furthermore, from equation (2.75) above, we see that π∗d2B is always trivial in coho-
mology in H3(Γ, U(1)), even if d2B is not trivial in H3(G,U(1)), at least for K central. In
appendix B we will demonstrate that even for non-central extensions, the pullback π∗d2B is
trivial in cohomology.

3 General conjecture for decomposition

In this section we will relate orbifolds with quantum symmetries to simpler orbifolds, via
a generalization of decomposition [9, 16, 35, 36]. (Related observations concerning module
categories have also been made in the mathematics literature on fusion categories, see e.g. [47,
examples 7.4.10, 9.7.2].)
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Previously, in [9, 16], it was possible to give a derivation of the form of decomposition
by studying the structure of D-branes. In [16], this meant studying group actions on honest
representations, and in [9], this meant studying group actions on projective representations.
Unfortunately, we do not yet have a complete understanding of D-branes in orbifolds with
quantum symmetries – see instead appendix C for partial results. As a result, we cannot give
a derivation of the same form. Nevertheless, previous results do strongly constrain possible
answers, so we are able to give a fairly full accounting of possibilities, which we check in
numerous examples later in this paper. In our upcoming work [10] we will apply these ideas
to resolutions of anomalies.

Let Γ be a central extension of G by (abelian) K, and suppose one has a quantum
symmetry defined by B ∈ H1(G,H1(K,U(1))). We begin with the case that the orbifold
can be described solely in terms of a quantum symmetry B. (Many choices of discrete
torsion can be folded into B, as we have discussed, but not all – we will discuss more general
cases shortly.) This case is tightly constrained by our previous results [9]. Specifically, there
we discussed discrete torsion ω whose restriction to K was trivial. We argued there that
decomposition in the Γ orbifold with discrete torsion was of the form

QFT ([X/Γ]ω) = QFT

(︄[︄
X × ˆ︂Coker β(ω)

Ker β(ω)

]︄
ω̂

)︄
(3.1)

for suitable choices of discrete torsion described in [9]. We can identify β(ω)−1 with a choice
of quantum symmetry, and although not every quantum symmetry can be so described, this
result does provide a large set of special cases.

In order to reproduce that result, we conjecture in the present case that the Γ orbifold,
which we denote [X/Γ]B, decomposition takes the form

QFT ([X/Γ]B) = QFT

(︄[︄
X × ˆ︂CokerB

KerB

]︄
ω̂

)︄
, (3.2)

with discrete torsion ω̂ determined just as in decomposition [9, 16, 35, 36], meaning that for
any irreducible representation ρ of Coker B, we take ω̂(ρ) to be the restriction to Ker B
of the image of the extension class of Γ, an element of H2(G,K), in H2(G,U(1)). (We are
assuming, as elsewhere, that K is central.)

As a special case, when B is trivial, Ker B = G and Coker B = K, so the prediction
reduces to

QFT ([X/Γ]) = QFT

(︄[︄
X × K̂

G

]︄
ω̂

)︄
, (3.3)

which matches the prediction of decomposition [9, 16,35,36] in this case.

We will explicitly verify the conjecture above in examples, by comparing the predictions
to genus-one partition functions, in sections 4.1, 4.2.1, 4.3.1, 4.4.1, 4.5.1, 4.6.1.
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Next, let us generalize this story slightly, by explicitly allowing for discrete torsion ω ∈
H2(Γ, U(1)) in the Γ orbifold, whose restriction to K we will assume trivial, in addition to
the quantum symmetry B. Following the pattern of [9], and mindful of special cases in which
B = 1/β(ω′) for some ω′, we break the analysis up into cases using the maps ι, π in

1 −→ K
ι−→ Γ

π−→ G −→ 1, (3.4)

as follows:

1. Suppose that ι∗ω ̸= 0 as an element of H2(K,U(1)). We do not have a conjecture for
this case, though we will compute an example in section 4.6.2.

2. Suppose that ι∗ω = 0 and β(ω) ̸= 0, where β(ω) ∈ H1(G,H1(K,U(1))). Then,

QFT ([X/Γ]B,ω) = QFT

(︄[︄
X × ˆ︂Coker (B/β(ω))

Ker (B/β(ω))

]︄
ω̂

)︄
, (3.5)

with discrete torsion ω̂ defined as in [9] and restricted to Ker B/β(ω).

This result is more or less uniquely determined by previous results, for reasons already
described. For example, suppose that B itself is determined by some discrete torsion
ω′. (This can happen, though will not always be the case.) Then the quantity

B/β(ω) = 1/(β(ω′)β(ω)) = 1/β(ω + ω′), (3.6)

and this prescription reduces to a special case of [9].

We will check this prediction explicitly in examples by comparing to genus-one partition
functions, in sections 4.3.2, 4.4.2, 4.6.3.

3. Suppose that ι∗ω = 0 and ω = π∗ω for ω ∈ H2(G,U(1)). Then,

QFT ([X/Γ]B,ω) = QFT

(︄[︄
X × ˆ︂CokerB

KerB

]︄
ω+ω̂0

)︄
, (3.7)

where ω̂0 is the discrete torsion predicted in the case that ω is trivial.

This case is also more or less uniquely determined by consistency with previous results.
We will check this prediction explicitly in examples by comparing to genus-one partition
functions, in sections 4.2.2, 4.5.2.

We note that just as in our earlier work [9], to improve readability we unfortunately
found it useful to mix additive and multiplicative notation.

Finally, in passing we note that a relation to theories realized as boundaries of higher-
dimensional theories is implicit in [48, prop. 4.243].
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4 Examples

4.1 Extension of cyclic groups to larger cyclic groups

4.1.1 Extension of Z2 to Z4

In this section we will describe an example from [6] in the current language. In this example,
one starts with a G = Z2 orbifold, and extend G by K = Z2 (with trivial action on the
space, but nontrivial action on G twist fields) to Γ = Z4:

1 −→ Z2 −→ Z4 −→ Z2 −→ 1. (4.1)

(This example was also considered from a different perspective in [1, section 5.1.1].)

In this case, H2(Γ, U(1)) = 0, so we see that

H1(G,H1(K,U(1))) = Hom(Z2, H
1(Z2, U(1))) = Hom(Z2,Z2) = Z2 (4.2)

injects into H3(G,U(1)), from (2.17). In particular, this means that the quantum symmetry
phases are novel effects here, not captured by discrete torsion (which is of course absent for
Z4).

In any event, there are two choices of quantum symmetry B ∈ H1(G,H1(K,U(1))), and
we describe both cases below. First, consider the trivial case that B = 0. In this case, Ker
B = G = Z2 and Coker B = K = Z2, so from equation (3.2) we predict that

QFT ([X/Z4]) = QFT

(︄∐︂
2

[X/Z2]

)︄
. (4.3)

Next, consider the case that B is the nontrivial element of H1(G,H1(K,U(1))) = Z2. In
this case, we have trivially Ker B = CokerB = 0, so from equation (3.2) we predict that

QFT ([X/Z4]B) = QFT(X). (4.4)

Now, let us compare to physics. The case that B is trivial corresponds to ordinary
decomposition, described in [16], and so will not be reviewed here. Let us turn to the case
that B is nontrivial. First, from the form of B ∈ H1(G,H1(K,U(1))) above, there is a
quantum symmetry under which x2 (the image of the generator of K) acts on the twist field
associated with x by (−1), so that the genus-one Z4 orbifold partition functions obey

x2

xn

= (−)n
(︃

1

xn

)︃
, (4.5)
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and more generally
Zi,j = (−)iZi,j−2 = (−)jZi−2,j, (4.6)

where i, j ∈ {0, · · · , 3}. In particular,

Zi,2 = (−)iZi,0 (4.7)

is equivalent to (4.5).

Taking into account these relationships and computing the entire genus-one partition
function, we find

Z ([X/Z4]B) =
1

|Z4|
∑︂
gh=hg

Zg,h, (4.8)

=
1

4
(Z0,0 + Z0,2 + Z2,0 + Z2,2) , (4.9)

= Z0,0 = Z(X), (4.10)

matching the prediction.

4.1.2 Extension of Z2 by Zk

This example is a variation on the previous one. Instead of extending the effectively-acting
Z2 by another Z2, consider extending it by Zk (that acts trivially on X) for k ≥ 2:

1 −→ Zk −→ Z2k −→ Z2 −→ 1. (4.11)

The possible values of the quantum symmetry B are classified by

H1(G,H1(K,U(1))) = Hom(Z2,Zk) =

{︃
1 k odd,
Z2 k even.

(4.12)

In the case that the quantum symmetry is trivial, Ker B = Z2, Coker B = K = Zk, and
from ordinary decomposition [16],

QFT ([X/Z2k]) = QFT

(︄∐︂
k

[X/Z2]

)︄
. (4.13)

Next, consider the case that B is nontrivial – for which we also assume that k is even.
In this case, Ker B = 0, and Coker B = Zk/2. Thus, from equation (3.2), we predict that

QFT ([X/Z2k]B) = QFT

⎛⎝∐︂
k/2

X

⎞⎠ . (4.14)
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Now, let us check this prediction in physics. We only consider the case that the quantum
symmetry B is nontrivial (and also that k is even), as the case B trivial corresponds to
ordinary decomposition. If we let x denote the generator of Z2k, so that x2 generates the
image of K, then the quantum symmetry acts in the form

x2

x

= −
(︃

1

x

)︃
, (4.15)

or more generally,
Zi,j = (−)iZi,j−2 = (−)jZi−2,j, (4.16)

where i, j ∈ {0, · · · , 2k − 1}. In this example, this is the concrete meaning of B.

Taking into account these relationships and computing the entire genus-one partition
function, we find

Z ([X/Z2k]B) =
1

|Z2k|
∑︂
gh=hg

Zg,h, (4.17)

=
1

2k

k−1∑︂
i,j=0

Z2i,2j, (4.18)

=
1

2k
(k)2Z0,0 =

k

2
Z (X) , (4.19)

= Z

⎛⎝∐︂
k/2

X

⎞⎠ , (4.20)

matching the prediction (4.14).

Another way to understand this problem is via decomposition [9, 16, 35, 36]. For k even,
as we have assumed, the orbifold group Z2k can be described as an extension of Z4 by Zk/2:

1 −→ Zk/2 −→ Z2k −→ Z4 −→ 1, (4.21)

The Zk/2 acts trivially on both the space X as well as the twisted sectors – the former
because it is a subgroup of the Zk that acted trivially on X, the latter because the action
on twisted sectors was encoded in Z2 subgroup which Zk/2 has quotiented out.

Then, applying decomposition [9, 16,35,36], we have immediately that

QFT ([X/Z2k]B) = QFT

(︄[︄
X × Ẑk/2

Z4

]︄
B

)︄
= QFT

⎛⎝∐︂
k/2

[X/Z4]B

⎞⎠ , (4.22)

and as we know that
QFT ([X/Z4]B) = X, (4.23)
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decomposition therefore tells us that

QFT ([X/Z2k]B) = QFT

⎛⎝∐︂
k/2

X

⎞⎠ , (4.24)

in agreement with the prediction (4.14) and also with physics results in this case.

4.1.3 Extension of Z3 to Z9

In this section we start with a G = Z3 orbifold, extend G by K = Z3 to Γ = Z9:

1 −→ Z3 −→ Z9 −→ Z3 −→ 1. (4.25)

In this case,
B ∈ Hom(G,H1(K,U(1)) = Z3. (4.26)

Our prediction (section 3) falls into the following cases:

1. In the case B is trivial, this reduces to ordinary decomposition, for which

QFT ([X/Γ]) = QFT

(︄[︄
X × K̂

G

]︄)︄
= QFT

(︄∐︂
3

[X/Z3]

)︄
. (4.27)

2. In both of the cases that B is nontrivial, Ker B = 0 and Coker B = 0, so we predict
(section 3) that

QFT ([X/Γ]B) = QFT(X). (4.28)

We can confirm these predictions explicitly at the level of partition functions. The anal-
ysis for the case B is trivial is standard, and will not be repeated here. Suppose B is
nontrivial.

• Consider genus-one Γ-twisted sectors which project to

1

1

(4.29)

in the G orbifold. Phases are various powers of B(1, z) for z ∈ K, but for all z,
B(1, z) = 1. Thus, the sector above appears with multiplicity |K|2 = 9.
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• Consider, for example, genus-one Γ-twisted sectors which project to the G-twisted
sector

1

g

(4.30)

for g ̸= 1 an element of G = Z3. The different Γ-twisted sectors which project to this
sector are weighted by different roots of unity, and the sum over such sectors collapses
to copies of sums over roots of unity, which vanishes. Therefore, there are no net
contributions to the Γ-orbifold partition function from these sectors, and similarly one
can show that there are no net contributions from any sectors that do not project to
the trivial sector.

Summarizing, the genus-one partition function is given by

Z ([X/Γ]B) =
1

Γ

∑︂
g,h

g

h

, (4.31)

=
|K|2

|Γ|

(︃
1

1

)︃
= 1

1

, (4.32)

= Z(X), (4.33)

confirming the prediction.

4.2 Extension of Z2 × Z2 to Z2 × Z4

In this section we begin with a G = Z2 × Z2 orbifold, extended by K = Z2 to Γ = Z2 × Z4.

We write G = ⟨a, b⟩, where a2 = 1 = b
2
, and Γ = ⟨a, b⟩, where a = aK and b = bK, with

K = ⟨b2⟩.

Now, the quantum symmetry is defined by an element B ∈ H1(G,H1(K,U(1))), which is
defined by its action on the generators a, b. We will systematically study the orbifold [X/Γ]
for all choices of B, initially without and later with discrete torsion, and compare with the
predictions of section 3.

First, the possible values for B are as follows4:

1. B(a) = +1, B(b) = +1 (the trivial case),

4Here, and in many instances below, we are identifying H1(Z2, U(1)) ∼= Hom(Z2, U(1)) ∼= Z2 = {+1,−1}.
So for the case at hand, with K = {1, b2}, if we write B(a) = −1, we mean that

B(a)(1) = 1, B(a)(b2) = −1. (4.34)
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2. B(a) = −1, B(b) = +1,

3. B(a) = +1, B(b) = −1,

4. B(a) = −1, B(b) = −1.

We will first analyze orbifolds without additional discrete torsion ω ∈ H2(Γ, U(1)), then
separately study the effect of adding ω ∈ H2(Γ, U(1)).

4.2.1 Without discrete torsion

For each possible B, we make a prediction for the structure of the orbifold [X/Γ] using the
conjecture of section 3, as follows:

1. First, consider the case that B is trivial: B(a) = +1 and B(b) = +1. In this case, the
[X/Γ] orbifold can be understood via decomposition [9, 16,35,36], which predicts

QFT ([X/Γ]) = QFT

(︄∐︂
2

[X/Z2 × Z2]

)︄
, (4.35)

a disjoint union of two copies of [X/Z2 × Z2]. For essentially the same reasons as [9,
section 6.1], since the extension is a pullback from

1 −→ Z2 −→ Z4 −→ Z2 −→ 1, (4.36)

neither copy has discrete torsion.

2. Next, consider the case that B(a) = −1 and B(b) = +1. Here, Coker B = 0 and Ker
B = Z2 = ⟨b⟩, so from section 3 we predict that

QFT ([X/Γ]B) = QFT
(︁
[X/Z2 = ⟨b⟩]

)︁
. (4.37)

3. Next, consider the case that B(a) = +1 and B(b) = −1. Here, Coker B = 0 and Ker
B = Z2 = ⟨a⟩, so we predict that

QFT ([X/Γ]B) = QFT ([X/Z2 = ⟨a⟩]) . (4.38)

4. Finally, consider the case that B(a) = −1 and B(b) = −1. Here, Coker B = 0 and
Ker B = ⟨ab⟩, so we predict that

QFT ([X/Γ]B) = QFT
(︁
[X/Z2 = ⟨ab⟩]

)︁
. (4.39)

Finally, we check the predictions in each case by computing genus-one partition functions.
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1. First, consider the case that B is trivial: B(a) = +1 and B(b) = +1. Essentially this
case was discussed in [9, section 6.1], where it was argued that the genus-one partition
function

Z ([X/Γ]) = Z

(︄∐︂
2

[X/Z2 × Z2]

)︄
. (4.40)

2. Next, consider the case B(a) = −1 and B(b) = +1. The center K acts nontrivially on
twisted sectors twisted by a, for example,

b2

a

= −
(︃

1

a

)︃
, b2

b

= +

(︃
1

b

)︃
. (4.41)

Using relations of this form, it is straightforward to check that the genus-one partition
function obeys

Z ([X/Γ]B) =
1

|Γ|
∑︂
gh=hg

g

h

, (4.42)

=
4

8

[︄
1

1

+ 1

b

+ b

1

+ b

b

]︄
, (4.43)

= Z
(︁
[X/Z2 = ⟨b⟩]

)︁
, (4.44)

matching the prediction.

3. Next, consider the case B(a) = +1 and B(b) = −1. Here, the centerK acts nontrivially
on twisted sectors twisted by b, for example,

b2

a

= +

(︃
1

a

)︃
, b2

b

= −
(︃

1

b

)︃
. (4.45)

Using relations of this form, it is straightforward to check that the genus-one partition
function obeys

Z ([X/Γ]B) =
1

|Γ|
∑︂
gh=hg

g

h

, (4.46)

=
4

8

[︃
1

1

+ 1

a

+ a

1

+ a

a

]︃
, (4.47)

= Z ([X/Z2 = ⟨a⟩]) , (4.48)

matching the prediction.

4. Finally, consider the case B(a) = −1 and B(b) = −1. Here, the center K acts non-
trivially on twisted sectors twisted by either a or b, for example,

b2

a

= −
(︃

1

a

)︃
, b2

b

= −
(︃

1

b

)︃
, b2

ab

= +

(︃
1

ab

)︃
. (4.49)
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Using relations of this form, it is straightforward to check that the genus-one partition
function obeys

Z ([X/Γ]B) =
1

|Γ|
∑︂
gh=hg

g

h

, (4.50)

=
4

8

[︄
1

1

+ 1

ab

+ ab

1

+ ab

ab

]︄
, (4.51)

= Z
(︁
[X/Z2 = ⟨ab⟩]

)︁
, (4.52)

matching the prediction.

4.2.2 With discrete torsion

So far we have considered the [X/Γ] orbifold without discrete torsion. Now, from [9, section
D.2], we know that H2(Z2 × Z4, U(1)) = Z2, so one can turn on one nontrivial element of
discrete torsion in the Γ = Z2 × Z4 orbifold. We do so next, denoting by ω the nontrivial
element of H2(Γ, U(1)). Letting ι : K ↪→ Γ denote the inclusion and π : Γ → G the
projection, then as observed in [9, section 6.1], ι∗ω = 0 and ω = π∗ω, for ω the nontrivial
element of H2(Z2 × Z2, U(1)). This will play an important role in applying section 3.

Next, we will make predictions for each of the four cases above, using the methods of
section 3.

1. First, consider the case that B is trivial, B(a) = +1 and B(b) = +1. This case was
studied in [9, section 6.1], which made (and confirmed) the prediction

QFT ([X/Γ]ω) = QFT

(︄∐︂
2

[X/Z2 × Z2]ω

)︄
. (4.53)

2. The remaining three cases are identical to the cases studied in the Γ orbifold without
discrete torsion. For each B, Ker B = Z2, which does not admit discrete torsion, so
the predicted orbifold is the same.

Finally, we check each of these predictions by computing genus-one partition functions.

1. First, consider the case that B is trivial, B(a) = +1 and B(b) = +1. This case was
studied in [9, section 6.1], where it was shown that

Z ([X/Γ]ω) = Z

(︄∐︂
2

[X/Z2 × Z2]ω

)︄
. (4.54)
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2. Next, consider the case that B(a) = −1 and B(b) = +1. Here, the center K acts
nontrivially on twisted sectors twisted by a. The genus-one partition function is given
by

Z ([X/Γ]ω) =
1

|Γ|
∑︂
gh=hg

ϵ(g, h)

(︃
g

h

)︃
, (4.55)

=
4

8

[︄
1

1

+ 1

b

+ b

1

+ b

b

]︄
, (4.56)

= Z
(︁
[X/Z2 = ⟨b⟩]

)︁
, (4.57)

matching the prediction.

3. Next, consider the case that B(a) = +1 and B(b) = −1. The centerK acts nontrivially
on twisted sectors twisted by b. The genus-one partition function is given by

Z ([X/Γ]ω) =
1

|Γ|
∑︂
gh=hg

ϵ(g, h)

(︃
g

h

)︃
, (4.58)

=
4

8

[︃
1

1

+ 1

a

+ a

1

+ a

a

]︃
, (4.59)

= Z ([X/Z2 = ⟨a⟩]) , (4.60)

matching the prediction.

4. Finally, consider the case B(a) = −1 and B(b) = −1. Here, the center K acts non-
trivially on twisted sectors twisted by either a or b. The genus-one partition function
is given by

Z ([X/Γ]ω) =
1

|Γ|
∑︂
gh=hg

ϵ(g, h)

(︃
g

h

)︃
, (4.61)

=
4

8

[︄
1

1

+ 1

ab

+ ab

1

+ ab

ab

]︄
, (4.62)

= Z
(︁
[X/Z2 = ⟨ab⟩]

)︁
, (4.63)

matching the prediction.

4.2.3 Summary

We summarize the results of this analysis in table 4.1.
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Case B(a) B(b) Without discrete torsion With discrete torsion
1 +1 +1 [X/Z2 × Z2]

∐︁
[X/Z2 × Z2] [X/Z2 × Z2]d.t.

∐︁
[X/Z2 × Z2]d.t.

2 −1 +1 [X/Z2 = ⟨b⟩] [X/Z2 = ⟨b⟩]
3 +1 −1 [X/Z2 = ⟨a⟩] [X/Z2 = ⟨a⟩]
4 −1 −1 [X/Z2 = ⟨ab⟩] [X/Z2 = ⟨ab⟩]

Table 4.1: Summary of results for Z2 × Z4 orbifold extending Z2 × Z2 orbifold.

4.3 Extension of Z2 × Z2 to D4

In this section we consider a G = Z2×Z2 theory, generated by a and b of order two, extended
to Γ = D4:

1 −→ Z2 −→ D4 −→ Z2 × Z2 −→ 1, (4.64)

where Γ = D4 is the dihedral group of order 8, and K = Z2. We will write the elements of
D4 as

{1, z, a, b, az, bz, ab, ba = abz}, (4.65)

where a2 = b4 = 1, b2 = z, z is central (generating the image of K), a projects to a, and b
projects to b. (This example was also considered from a different perspective in [1, section
5.2.1].)

The quantum symmetry B is an element of

H1(G,H1(K,U(1)) = Hom(Z2 × Z2, Ẑ2). (4.66)

Any nontrivial B is necessarily surjective, hence Ker B = Z2 and Coker B = 0. From the
general conjecture (3.2), we predict that

QFT ([X/Γ]B) = QFT ([X/Z2]) , (4.67)

for any nontrivial B, with the choice of Z2 ⊂ Z2 ×Z2 depending upon the choice of B. If B
is trivial, then we have

QFT [[X/Γ]) = QFT

(︄[︄
X × K̂

Z2 × Z2

]︄
ω̂

)︄
= QFT

(︂
[X/Z2 × Z2]

∐︂
[X/Z2 × Z2]d.t.

)︂
, (4.68)

as explored in detail in [16, section 5.2].

To make this more precise, let us consider the four possible values ofB ∈ H1(G,H1(K,U(1))),
and the physical meaning of each. We can enumerate the possibilities as follows:

1. B(a) = +1, B(b) = +1,
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2. B(a) = −1, B(b) = +1,

3. B(a) = +1, B(b) = −1,

4. B(a) = −1, B(b) = −1.

We will first consider cases without discrete torsion, then add discrete torsion ω ∈
H2(Γ, U(1)).

4.3.1 Without discrete torsion

1. First, consider the case in which

B(a) = +1 = B(b). (4.69)

This orbifold can be understood in terms of decomposition [9,16,35,36], which predicts
that

QFT ([X/D4]) = QFT
(︂
[X/Z2 × Z2]

∐︂
[X/Z2 × Z2]d.t.

)︂
, (4.70)

where the second Z2×Z2 orbifold has discrete torsion. (See [16, section 5.2] for further
analyses of this example.)

2. Next, consider the second case, in which B(a) = −1 and B(b) = +1. Here, Ker
B = ⟨b⟩, so we predict that

QFT ([X/Γ]B) = QFT
(︁
[X/Z2 = ⟨b⟩]

)︁
. (4.71)

Now, we check that prediction at the level of partition functions. The center K acts
trivially on the space but nontrivially on twisted sectors twisted by a, as dictated by
B. For example:

z

b

= +

(︃
1

b

)︃
, bz

b

= +

(︃
b

b

)︃
, bz

bz

= +

(︃
b

bz

)︃
, (4.72)

z

a

= −
(︃

1

a

)︃
, z

ab

= −
(︃

1

ab

)︃
, z

abz

= −
(︃

1

abz

)︃
, (4.73)

and so forth.

For this B, it is straightforward to compute the genus-one partition function

Z ([X/D4]) =
1

|D4|
∑︂
gh=hg

g

h

, (4.74)

=
4

8

[︄
1

1

+ 1

b

+ b

1

+ b

b

]︄
= Z ([X/Z2]) , (4.75)

a Z2 = ⟨b⟩ orbifold, agreeing with the prediction.
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3. Next, consider the third case, in which B(a) = +1 and B(b) = −1. Here, Ker B = ⟨a⟩,
so we predict that

QFT ([X/Γ]B) = QFT ([X/Z2 = ⟨a⟩]) . (4.76)

Now, we check that prediction at the level of partition functions. The center K acts
trivially on the space, but nontrivially on twisted sectors twisted by b, as dictated by
B, for example:

z

b

= −
(︃

1

b

)︃
, bz

b

= −
(︃

b

b

)︃
, bz

bz

= −
(︃

b

bz

)︃
, (4.77)

z

a

= +

(︃
1

a

)︃
, z

abz

= −
(︃

1

abz

)︃
, (4.78)

and so forth.

For this B, it is now straightforward to compute the genus-one partition function:

Z ([X/D4]) =
1

|D4|
∑︂
gh=hg

g

h

, (4.79)

=
1

8

[︃
1

1

+ z

1

+ 1

z

+ z

z

+ 1

a

+ · · · + az

az

]︃
, (4.80)

=
4

8

[︃
1

1

+ 1

a

+ a

1

+ a

a

]︃
= Z ([X/Z2]) . (4.81)

All sectors involving a “b” have cancelled out, and the theory is equivalent to a Z2

orbifold by Z2 = ⟨a⟩, agreeing with the prediction.

4. Next, consider the fourth case, in which B(a) = −1 and B(b) = −1. Here, Ker
B = ⟨ab⟩, so we predict that

QFT ([X/Γ]B) = QFT
(︁
[X/Z2 = ⟨ab⟩]

)︁
. (4.82)

Now, we check that prediction at the level of partition functions. In this case, B
dictates the relations

z

b

= −
(︃

1

b

)︃
, bz

b

= −
(︃

b

b

)︃
, bz

bz

= −
(︃

b

bz

)︃
, (4.83)

z

a

= −
(︃

1

a

)︃
, z

ab

= +

(︃
1

ab

)︃
, z

abz

= +

(︃
1

abz

)︃
, (4.84)

and so forth.
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For this B, it is straightforward to compute the genus-one partition function:

Z ([X/D4]) =
1

|D4|
∑︂
gh=hg

g

h

, (4.85)

=
4

8

[︄
1

1

+ 1

ab

+ ab

1

+ ab

ab

]︄
= Z ([X/Z2]) . (4.86)

This is a Z2 = ⟨ab⟩ orbifold, agreeing with the prediction.

4.3.2 With discrete torsion

Now, the Γ = D4 orbifold admits one possible nonzero value of discrete torsion, as [9,
appendix D.3]

H2(D4, U(1)) = Z2. (4.87)

Before describing the result of turning on that discrete torsion, let us walk through its
analysis formally. A D4 orbifold with trivially-acting central Z2 and discrete torsion was
studied in [9, section 5.5], and in the notation of that reference, ι∗ω = 0 but β(ω) ̸= 0.

Now, β(ω) ∈ H1(G,H1(K,U(1))) where in this case, G = D4/Z2 = Z2 × Z2. For a
general ω ∈ H2(Γ, U(1)), one defines [9]

β(ω)(q, k) =
ω(ks(q), s(q)−1)

ω(s(q)−1, ks(q))
, (4.88)

where s : G → Γ is a section, which here we can take to be

s(1) = 1, s(a) = a, s(b) = b, s(ab) = ab, (4.89)

for which one computes the nontrivial cases [9, section 5.5]

β(ω)(a, z) = −1, β(ω)(b, z) = +1, β(ω)(ab, z) = −1. (4.90)

(As noted in section 2.3, β(ω) is independent of the choice of section s.)

The effect of β(ω), it should now be clear, is to modify the map B, essentially by flipping
its action on a-twisted sectors. We shall see this explicitly next.

Next, we systematically describe the results for [X/D4] orbifolds with discrete torsion, in
all cases.

1. We begin with the first case, with trivial B. This is an example of decomposition with
discrete torsion, described in [9, section 5.5]. The result is

QFT ([X/D4]d.t.) = QFT ([X/Z2]) , (4.91)

where the Z2 is generated by b.
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2. Next, consider the case B(a) = −1, B(b) = +1. In this case, B/β(ω) is trivial, so we
predict

QFT ([X/Γ]B,ω) = QFT

(︄∐︂
2

[X/Z2 × Z2]ω̂

)︄
, (4.92)

for some discrete torsion ω̂ on the components.

Next, we check the prediction at the level of partition functions. Here, it is straight-
forward to compute

Z ([X/D4]d.t.) =
1

|D4|
∑︂
gh=hg

ϵ(g, h)

(︃
g

h

)︃
, (4.93)

=
4

8

[︄
1

1

+ 1

a

+ 1

b

+ 1

ab

+ a

1

+ a

a

+ b

1

+ b

b

+ ab

1

+ ab

ab

]︄
, (4.94)

= [X/D4] = [X/Z2 × Z2]
∐︂

[X/Z2 × Z2]d.t.. (4.95)

Thus, this case is equivalent to the original D4 orbifold, agreeing with our prediction.

3. Next, consider the third case, B(a) = +1, B(b) = −1. In this case, (B/β(ω))(a) = −1,
(B/β(ω))(b) = −1, so that Ker B/β(ω) = ⟨ab⟩, with no cokernel, hence we predict

QFT ([X/Γ]B,ω) = QFT
(︁
[X/Z2 = ⟨ab⟩]

)︁
. (4.96)

Now, we will check that prediction. The genus-one partition function is given by

Z ([X/D4]d.t.) =
1

|D4|
∑︂
gh=hg

ϵ(g, h)

(︃
g

h

)︃
, (4.97)

=
4

8

[︄
1

1

+ 1

ab

+ ab

1

+ ab

ab

]︄
= Z ([X/Z2]) . (4.98)

Thus, this case is equivalent to a Z2 = ⟨ab⟩ orbifold, agreeing with our prediction.

4. Now, consider the fourth case. Here, (B/β(ω))(a) = +1, (B/β(ω))(b = −1, hence Ker
B/β(ω) = ⟨a⟩, with no cokernel, and so we predict

QFT ([X/Γ]B,ω) = QFT ([X/Z2 = ⟨a⟩]) . (4.99)

Next, we check the prediction. The genus-one partition function is given by

Z ([X/D4]d.t.) =
1

|D4|
∑︂
gh=hg

ϵ(g, h)

(︃
g

h

)︃
, (4.100)

=
4

8

[︃
1

1

+ 1

a

+ a

1

+ a

a

]︃
= Z ([X/Z2]) , (4.101)
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the Z2 = ⟨a⟩ orbifold of X, using the discrete torsion phases in [9, table D.4]. This
agrees with our prediction, as expected.

4.3.3 Summary

We summarize the results of this analysis in table 4.2. As anticipated earlier, the effect of
turning on discrete torsion in the D4 orbifold is to exchange the B(a) values.

Case B(a) B(b) Without discrete torsion With discrete torsion

1 +1 +1 [X/Z2 × Z2]
∐︁

[X/Z2 × Z2]d.t. [X/Z2 = ⟨b⟩]
2 −1 +1 [X/Z2 = ⟨b⟩] [X/Z2 × Z2]

∐︁
[X/Z2 × Z2]d.t.

3 +1 −1 [X/Z2 = ⟨a⟩] [X/Z2 = ⟨ab⟩]
4 −1 −1 [X/Z2 = ⟨ab⟩] [X/Z2 = ⟨a⟩]

Table 4.2: Summary of results for D4 orbifold extending Z2 × Z2 orbifold.

4.4 Extension of Z2 × Z4 to Z4 ⋊ Z4

Consider an orbifold [X/Z2 × Z4], where the orbifold group is extended by K = Z2 to
Γ = Z4 ⋊ Z4, a semidirect product of two copies of Z4. We will use the same notation as
in [9], and describe Z4 ⋊ Z4 as generated by x, y subject to the constraints

x4 = 1 = y4, y = xyx. (4.102)

In this notation, we take K = ⟨x2⟩, so that K is central in Z4 ⋊ Z4, and G = Z2 × Z4 is
generated by xK and yK.

As in the previous example, we will walk through the physical implications of each choice
of B, to get a more complete picture of the physics here.

In this case, the possible B ∈ H1(G,H1(K,U(1)) are determined by their action on the
generators of G, as listed below:

1. B(xK) = +1, B(yK) = +1,

2. B(xK) = +1, B(yK) = −1,

3. B(xK) = −1, B(yK) = +1,

4. B(xK) = −1, B(yK) = −1.

First we will analyze these cases without discrete torsion, then we will consider the effect
of adding discrete torsion ω ∈ H2(Γ, U(1)).
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4.4.1 Without discrete torsion

We list the predictions of our conjecture (3.2) below.

1. In the first case, B is trivial, so this case reduces to ordinary decomposition [9,16,35,36],
for which

QFT ([X/Z4 ⋊ Z4]) = QFT
(︂
[X/Z2 × Z4]

∐︂
[X/Z2 × Z4]d.t.

)︂
. (4.103)

2. In the second case, where B(xK) is trivial but B(yK) nontrivial, we have that Ker
B = Z2 × Z2 = ⟨xK, y2K⟩ and Coker B = 0, hence from (3.2) we predict that

QFT ([X/Z4 ⋊ Z4]) = QFT ([X/Z2 × Z2]) . (4.104)

In this case, since only the trivial irreducible representation of K appears, there is no
discrete torsion.

3. In the third case, where B(xK) is nontrivial but B(yK) trivial, we have that Ker
B = Z4 = ⟨yK⟩ and Coker B = 0, hence from (3.2) we predict that

QFT ([X/Z4 ⋊ Z4]) = QFT ([X/Z4]) . (4.105)

4. In the fourth case, where both B(xK) and B(yK) are nontrivial, Coker B = 0 again
but Ker B = (Z2 × Z4)/Z2 = Z4 = ⟨xyK⟩, and from (3.2) we predict that

QFT ([X/Z4 ⋊ Z4]) = QFT ([X/Z4]) . (4.106)

Now, we will check the prediction in each case.

1. First, consider the trivial case B(xK) = +1 and B(yK) = +1. This corresponds to
an ordinary Z4 ⋊ Z4 orbifold, with K = Z2 acting trivially both on the underlying
space as well as on the twisted sectors of G. This case can be described by ordinary
decomposition [9, 16,35,36], which predicts

QFT ([X/Z4 ⋊ Z4]) = QFT
(︂
[X/Z2 × Z4]

∐︂
[X/Z2 × Z4]d.t.

)︂
, (4.107)

a disjoint union of two copies of [X/Z2 × Z4], with discrete torsion in one copy. This
can be seen directly in e.g. partition functions, as follows. Some of the Z2×Z4 twisted
sectors are missing from the Z4 ⋊ Z4 orbifold partition function, such as

xK

yK

, (4.108)

as the two group elements do not lift to commuting pairs in Z4⋊Z4. These are precisely
the same pairs of group elements in Z2×Z4 that can be weighted by nontrivial discrete
torsion phases, see e.g. [9, table D.2]. Summing the two partition functions cancels out
the missing twisted sectors, recovering the correct Z4 ⋊Z4 orbifold partition function.
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2. Next, we consider the case B(xK) = +1 and B(yK) = −1. This implies that the
central K acts trivially on the space, but nontrivially on twisted sectors twisted by y,
as illustrated below:

x2

y

= −

(︄
1

y

)︄
, x2

y2
= +

(︄
1

y2

)︄
, x2

x

= +

(︃
1

x

)︃
. (4.109)

Using these relations, it is straightforward to check that in the genus-one partition
function of the Z4 ⋊ Z4 orbifold, all twisted sectors with a y or y3 cancel out, and
checking multiplicities, one finds

Z ([X/Z4 ⋊ Z4]) = Z ([X/Z2 × Z2]) , (4.110)

where the Z2 × Z2 = ⟨xK, y2K⟩.

3. Next, we consider the case B(xK) = −1 and B(yK) = +1. This implies that the
central K acts nontrivially on twisted sectors twisted by x, as illustrated below:

x2

x

= −
(︃

1

x

)︃
, x2

x2

= +

(︃
1

x2

)︃
, x2

y

= +

(︄
1

y

)︄
. (4.111)

As a result, twisted sector contributions with an odd number of x’s along either leg
cancel out from the genus-one partition function. Taking into account multiplicities,
we find that the partition function is given by

Z ([X/Z4 ⋊ Z4]) = Z ([X/Z4]) , (4.112)

where the effectively-acting Z4 on the right is ⟨yK⟩.

4. Next, we consider the case B(xK) = −1 and B(yK) = −1. This implies that the
central K acts nontrivially on twisted sectors twisted by either x or y, as illustrated
below:

x2

x

= −
(︃

1

x

)︃
, x2

x2

= +

(︃
1

x2

)︃
, x2

y

= −

(︄
1

y

)︄
. (4.113)

x2

xy

= +

(︄
1

xy

)︄
, x3

xy3
= +

(︄
x

xy3

)︄
. (4.114)

As a result, genus-one twisted sectors such that the sum of the number of x’s and y’s
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on any leg are odd will cancel out. The partition function of this theory has the form

Z ([X/Z4 ⋊ Z4])

=
1

|Z4 ⋊ Z4|
∑︂
gh=hg

g

h

, (4.115)

=
4

|Z4 ⋊ Z4|

[︄
1

1

+ 1

y2K

+ 1

xyK

+ 1

xy3K

+ xyK

1

+ xyK

xyK

+ xyK

y2K

+ xyK

xy3K

+ y2K

1

+ y2K

y2K

+ y2K

xyK

+ y2K

xy3K

+ xy3K

1

+ xy3K

xyK

+ xy3K

xy3K

+ xy3K

y2K

]︄
, (4.116)

= Z ([X/Z4]) , (4.117)

where the Z4 = ⟨xyK⟩, using the fact that (xy)2 = y2, (xy)3 = xy3 in Z4 ⋊ Z4.

As expected, each case matches our prediction (3.2).

4.4.2 With discrete torsion

Now, let us turn on discrete torsion in the Z4 ⋊ Z4 orbifold. Since H2(Z4 ⋊ Z4, U(1)) = Z2,
there is exactly one nontrivial choice.

Before describing the physics results in this case, let us take a moment to analyze this
case formally and predict the result. In the notation of [9], this is a case in which ι∗ω = 0
and β(ω) ̸= 0, where β(ω) is the image of ω ∈ H2(Γ, U(1)) in H1(G,H1(K,U(1))). As
computed in [9, section 5.6],

β(ω)(xK, x2) = +1, β(ω)(yK, x2) = −1, (4.118)

so the effect of turning on ω should be to flip the value of B(yK).

Now, let us check this prediction, by walking through each case explicitly.

1. In the first case, B itself is trivial. Now, the Γ = Z4 ⋊Z4 orbifold with trivially-acting
central K = Z2 = ⟨x2⟩ and discrete torsion was discussed in detail in [9, section 5.6],
where it was argued that

QFT ([X/Γ]d.t.) = QFT ([X/Z2 × Z2]) . (4.119)

2. Next, we consider the case B(xK) = +1, B(yK) = −1, with discrete torsion in the
Γ = Z4 ⋊ Z4 orbifold. As observed in the case without discrete torsion, B encodes an
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action of K on the twisted sectors twisted by y, as described in equation (4.109. In
particular, B relates by a sign twisted sectors with an odd number of powers of y. The
twisted sector phases of Z4⋊Z4, as listed in [9, table D.6], have the same effect: twisted
sectors with odd powers of y are also related by signs. The combined effect of both
B and the discrete torsion is, therefore, to cancel out, leaving us with a Γ = Z4 ⋊ Z4

orbifold in which K = ⟨x2⟩ acts trivially on both the underlying space X as well as
twisted sectors. This can be described by ordinary decomposition, and as we described
earlier, and can be checked directly in partition functions, we have

QFT ([X/Z4 ⋊ Z4]) = QFT
(︂
[X/Z2 × Z4]

∐︂
[X/Z2 × Z4]d.t.

)︂
, (4.120)

a disjoint union of two Z2 × Z4 orbifolds.

3. Next, we consider the case B(xK) = −1, B(yK) = +1. In this case, as before, roughly,
the B by itself would cancel out genus-one twisted sectors with odd powers of x, and
the discrete torsion would cancel out genus-one twisted sectors with odd powers of y;
however, sectors involving e.g. xy, xy3 survive. Using [9, table D.6], the genus-one
partition function is

Z ([X/Z4 ⋊ Z4]d.t.)

=
1

|Z4 ⋊ Z4|
∑︂
gh=hg

ϵ(g, h)

(︃
g

h

)︃
, (4.121)

=
4

|Z4 ⋊ Z4|

[︄
1

1

+ 1

y2K

+ 1

xyK

+ 1

xy3K

+ xyK

1

+ xyK

xyK

+ xyK

y2K

+ xyK

xy3K

+ y2K

1

+ y2K

y2K

+ y2K

xyK

+ y2K

xy3K

+ xy3K

1

+ xy3K

xyK

+ xy3K

xy3K

+ xy3K

y2K

]︄
, (4.122)

= Z ([X/Z4]) , (4.123)

where the Z4 = ⟨xyK⟩, using the fact that (xy)2 = y2, (xy)3 = xy3 in Z4 ⋊ Z4.

4. Finally, we consider the case B(xK) = −1 and B(yK) = −1, for a Z4 ⋊ Z4 orbifold
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with discrete torsion. Using the methods above, it is straightforward to compute that

Z ([X/Z4 ⋊ Z4]d.t.)

=
1

|Z4 ⋊ Z4|
∑︂
gh=hg

ϵ(g, h)

(︃
g

h

)︃
, (4.124)

=
4

|Z4 ⋊ Z4|

[︄
1

1

+ 1

yK

+ 1

y2K

+ 1

y3K

+ yK

1

+ yK

yK

+ yK

y2K

+ yK

y3K

+ y2K

1

+ y2K

yK

+ y2K

y2K

+ y2K

y3K

+ y3K

1

+ y3K

yK

+ y3K

y2K

+ y3K

y3K

]︄
, (4.125)

= Z ([X/Z4]) , (4.126)

where the Z4 = ⟨yK⟩.

4.4.3 Summary

These results are summarized in table 4.3. As anticipated, the effect of discrete torsion is to
flip the value of β(yK).

Case B(xK) B(yK) Without discrete torsion With discrete torsion
1 +1 +1 [X/Z2 × Z4]

∐︁
[X/Z2 × Z4]d.t. [X/Z2 × Z2]

2 +1 −1 [X/Z2 × Z2 = ⟨xK, y2K⟩] [X/Z2 × Z4]
∐︁

[X/Z2 × Z4]d.t.
3 −1 +1 [X/Z4 = ⟨yK⟩] [X/Z4 = ⟨xyK⟩]
4 −1 −1 [X/Z4 = ⟨xyK⟩] [X/Z4 = ⟨yK⟩]

Table 4.3: Summary of results for D4 orbifold extending Z2 × Z2 orbifold.

4.5 Extension of D4 to Z4 ⋊ Z4

In this section, we will discuss an example of a D4 orbifold being extended by K = Z2 to
Γ = Z4⋊Z4. In this example, the extension is the central subgroup K = ⟨y2⟩, in the notation
of [9].

We will follow the same notation as [9], so we denote the elements of D4 by

{1, z, a, b, az, bz, ab, ba = abz}, (4.127)
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where
a2 = 1 = b4, b2 = z, (4.128)

with z central in D4. The projection π : Γ → D4 maps

π(x) = b = π(xy2), π(y) = a = π(y3). (4.129)

The possible B ∈ H1(G,H1(K,U(1)) are enumerated by their valued on the generators
below:

1. B(a) = +1, B(b) = +1,

2. B(a) = +1, B(b) = −1,

3. B(a) = −1, B(b) = +1,

4. B(a) = −1, B(b) = −1.

We will first consider cases without discrete torsion, then cases with discrete torsion
ω ∈ H2(Z4 ⋊ Z4, U(1)).

4.5.1 Without discrete torsion

From section 3, we predict that

QFT ([X/Γ]B) = QFT

(︄[︄
X × ˆ︂CokerB

KerB

]︄
ω̂0

)︄
, (4.130)

where ω̂0 is the discrete torsion that one computes from ordinary decomposition, without a
quantum symmetry. Here, since K is central, ω̂0 is the image of the extension class under
the corresponding irreducible representation. We studied this example without a quantum
symmetry in [9, section 6.2], where we argued that ω̂0 = 0, so to predict each case, one
merely needs to compute the kernel and cokernel of B, which we do below.

1. First, consider the case B(a) = +1, B(b) = +1, meaning the case without a quantum
symmetry. Since B is trivial, the kernel is G = D4, and the cokernel is Ẑ2, so the result
reduces to that of ordinary decomposition:

QFT ([X/Γ]B) = QFT

(︄∐︂
2

[X/D4]

)︄
. (4.131)
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2. Next, consider the case B(a) = +1, B(b) = −1. In this case, the cokernel of B is
trivial, but

KerB = ⟨a, b2⟩ = ⟨yK, x2K⟩ = Z2 × Z2, (4.132)

hence we predict
QFT ([X/Γ]B) = QFT ([X/Z2 × Z2]) . (4.133)

3. Next, consider the case B(a) = −1, B(b) = +1. In this case, the cokernel of B is
trivial, but

KerB = ⟨a2, b⟩ = ⟨b⟩ = ⟨xK⟩ = Z4, (4.134)

hence we predict
QFT ([X/Γ]B) = QFT ([X/Z4]) . (4.135)

4. Next, consider the case B(a) = −1, B(b) = −1. In this case, the cokernel of B is
trivial, but

KerB = ⟨a2, ab, b2⟩ = ⟨ab, b2⟩ = ⟨xyK, y2K⟩ = Z2 × Z2, (4.136)

hence we predict
QFT ([X/Γ]B) = QFT ([X/Z2 × Z2]) . (4.137)

Next, we briefly review the physics each case for B, without discrete torsion. In each
case, we find that partition function computations verify the predictions above. (We have
included the case of trivial B for completeness.)

1. First, consider the case that B(a) = +1 and B(b) = +1. This is an ordinary Z4 ⋊ Z4

orbifold, with K = Z2 acting trivially both on the underlying space as well as on the
twisted sectors ofG. This case can be described by ordinary decomposition [9,16,35,36],
which predicts (see [9, section 6.2])

QFT ([X/Z4 ⋊ Z4]) = QFT

(︄∐︂
2

[X/D4]

)︄
, (4.138)

or in other words, that this theory is equivalent to a disjoint union of two D4 orbifolds,
neither with discrete torsion.

2. Next, we consider the case that B(a) = +1 and B(b) = −1. This implies that the
central K acts trivially on the space, but nontrivially on twisted sectors twisted by x,
for example

y2

x

= −
(︃

1

x

)︃
, xy2

y

= +

(︄
x

y

)︄
, y2

y2
= +

(︄
1

y2

)︄
= +

(︃
1

1

)︃
. (4.139)
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Essentially as a result, in the genus-one partition function, twisted sectors with an odd
number of powers of x on either leg cancel out. It is straightforward to compute that
the genus-one partition function is

Z ([X/Z4 ⋊ Z4]) =
1

|Z4 ⋊ Z4|
∑︂
gh=hg

g

h

, (4.140)

= Z ([X/Z2 × Z2]) , (4.141)

an orbifold by Z2 × Z2 = ⟨x2K, yK⟩.

3. Next, we consider the case that B(a) = −1 and B(b) = +1. This implies that the
central K acts trivially on the space but nontrivially on twisted sectors twisted by y,
for example

y2

y

= −

(︄
1

y

)︄
, y2

x

= +

(︃
1

x

)︃
. (4.142)

Essentially as a result, in the genus-one partition function, twisted sectors with an odd
number of powers of y on either leg cancel out. It is straightforward to compute that
the genus-one partition function is

Z ([X/Z4 ⋊ Z4]) =
1

|Z4 ⋊ Z4|
∑︂
gh=hg

g

h

, (4.143)

= Z ([X/Z4]) , (4.144)

an orbifold by Z4 = ⟨xK⟩.

4. Finally, we consider the case that B(a) = −1 and B(b) = −1. This implies that the
central K acts trivially on the space but nontrivially on twisted sectors twisted by
either a or b, for example

y2

x

= −
(︃

1

x

)︃
, y2

y

= −

(︄
1

y

)︄
, y2

xy

= +

(︄
1

xy

)︄
. (4.145)

Essentially as a result, in the genus-one partition function, twisted sector with an odd
number of powers of x and y on either leg cancel out. It is straightforward to compute
that the genus-one partition function is

Z ([X/Z4 ⋊ Z4]) =
1

|Z4 ⋊ Z4|
∑︂
gh=hg

g

h

, (4.146)

= Z ([X/Z2 × Z2]) , (4.147)

an orbifold by Z2 × Z2 = ⟨x2K, xyK⟩, without discrete torsion.
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4.5.2 With discrete torsion

Now, let us turn on discrete torsion ω in the Z4⋊Z4 orbifold. As discussed in [9, section 6.2],
ι∗ω = 0, β(ω) = 0, and in fact this discrete torsion is a pullback from ω ∈ H2(D4, U(1)).

From section 3, we predict

QFT ([X/Γ]B,ω) = QFT

(︄[︄
X × ˆ︂CokerB

KerB

]︄
ω+ω̂0

)︄
. (4.148)

From our discussion in the case without discrete torsion, we know that ω̂0 = 0, and we have
already computed the kernels and cokernels, so we merely need to add the restriction of ω
to the kernel in each case to get our prediction, as we list below. We include the case that
B is trivial for completeness.

1. First, consider the case that B is trivial: B(a) = +1, B(b) = +1. In this case, the
kernel is D4 and the cokernel is Ẑ2, so we find

QFT ([X/Γ]B,ω) = QFT

(︄∐︂
2

[X/D4]ω

)︄
, (4.149)

as discussed in [9, section 6.2].

2. Next, consider the case that B(a) = +1, B(b) = −1. Here, the cokernel is trivial and
the kernel is ⟨yK, x2K⟩ = Z2 × Z2, so we predict

QFT ([X/Γ]B,ω) = QFT ([X/Z2 × Z2]ω) . (4.150)

3. Next, consider the case that B(a) = −1, B(b) = +1. Here, the cokernel is trivial and
the kernel is ⟨xK⟩ = Z4. Since this group has no discrete torsion, the restriction of ω
is trivial, so we predict

QFT ([X/Γ]B,ω) = QFT ([X/Z4]) . (4.151)

4. Next, consider the case that B(a) = −1, B(b) = −1. Here, the cokernel is trivial and
the kernel is ⟨xyK, y2K⟩ = Z2 × Z2, so we predict

QFT ([X/Γ]B,ω) = QFT ([X/Z2 × Z2]ω) . (4.152)

Next, we compute genus-one partition functions. In each case, we find that the partition
function computations are consistent with the predictions above.
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1. First, consider the case that B(a) = +1 and B(b) = +1. This is an ordinary Z4 ⋊ Z4

orbifold with discrete torsion, with trivially-acting K = Z2 = ⟨y2⟩. This particular
example was discussed in [9, section 6.2], where it was argued

QFT ([X/Z4 ⋊ Z4]d.t.) = QFT

(︄∐︂
2

[X/D4]ω

)︄
, (4.153)

or in other words that this theory is equivalent to a disjoint union of two D4 orbifolds,
each with discrete torsion ω.

2. Next, we consider the case that B(a) = +1 and B(b) = −1, and turn on discrete
torsion in the Z4 ⋊ Z4 orbifold. The analysis proceeds very similarly to the case we
considered previously without discrete torsion, as the cancellations due to β involve
pairs which have the same discrete torsion phases, using the phases in [9, table D.6].
It is straightforward to check that the genus-one partition function is

Z ([X/Z4 ⋊ Z4]d.t.) =
1

|Z4 ⋊ Z4|
∑︂
gh=hg

ϵ(g, h)

(︃
g

h

)︃
, (4.154)

= Z ([X/Z2 × Z2]d.t.) , (4.155)

an orbifold by Z2 × Z2 = ⟨x2K, yK⟩ with discrete torsion.

3. Next, we consider the case that B(a) = −1 and B(b) = +1, and turn on discrete
torsion in the Z4 ⋊ Z4 orbifold. The analysis proceeds very similarly to the case we
considered previously without discrete torsion, as the cancellations due to β involve
pairs which have the same discrete torsion phases, using the phases in [9, table D.6].
It is straightforward to check that the genus-one partition function is

Z ([X/Z4 ⋊ Z4]d.t.) =
1

|Z4 ⋊ Z4|
∑︂
gh=hg

ϵ(g, h)

(︃
g

h

)︃
, (4.156)

= Z ([X/Z4]) , (4.157)

an orbifold by Z4 = ⟨xK⟩.

4. Finally, we consider the case that B(a) = −1 and B(b) = −1, and turn on discrete
torsion in the Z4 ⋊ Z4 orbifold. The analysis proceeds very similarly to the case we
considered previously without discrete torsion, as the cancellations due to β involve
pairs which have the same discrete torsion phases, using the phases in [9, table D.6].
It is straightforward to check that the genus-one partition function is

Z ([X/Z4 ⋊ Z4]d.t.) =
1

|Z4 ⋊ Z4|
∑︂
gh=hg

ϵ(g, h)

(︃
g

h

)︃
, (4.158)

= Z ([X/Z2 × Z2]d.t.) , (4.159)

an orbifold by Z2 × Z2 = ⟨x2K, xyK⟩, with discrete torsion.
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4.5.3 Summary

We summarize the results of this analysis in table 4.4.

Case B(a) B(b) Without discrete torsion With discrete torsion
1 +1 +1 [X/D4]

∐︁
[X/D4] [X/D4]ω

∐︁
[X/D4]ω

2 +1 −1 [X/Z2 × Z2 = ⟨x2K, yK⟩] [X/Z2 × Z2 = ⟨x2K, yK⟩]d.t.
3 −1 +1 [X/Z4 = ⟨xK⟩] [X/Z4 = ⟨xK⟩]
4 −1 −1 [X/Z2 × Z2 = ⟨x2K, xyK⟩] [X/Z2 × Z2 = ⟨x2K, xyK⟩]d.t.

Table 4.4: Summary of results for Z4 ⋊ Z4 orbifold extending D4 orbifold.

4.6 Extension of Z2 × Z2 to D4 × Z2 × Z2

In this section, we begin with a G = Z2 × Z2 = ⟨a, b⟩ orbifold, which we centrally extend
by K = (Z2)

3 to Γ = D4 × Z2 × Z2, where we write (Z2)
2 = ⟨x, y⟩. In particular, in this

example, the restriction of discrete torsion in Γ to K can be nontrivial, so we will be able to
explore cases in which ι∗ω ̸= 0.

4.6.1 Without discrete torsion

First, let us assume that the Γ orbifold has no discrete torsion, and work out the conse-
quences. We will describe details for some representative values of B ∈ H1(G,H1(K,U(1)))
below.

First, if B is trivial, then the [X/Γ] orbifold is described by decomposition [9,16,35,36],
which predicts

QFT ([X/Γ]) = QFT

(︄∐︂
4

[X/D4]

)︄
, (4.160)

and furthermore (see esp. [16, section 5.2]),

QFT ([X/D4]) = QFT
(︂
[X/Z2 × Z2]

∐︂
[X/Z2 × Z2]d.t.

)︂
, (4.161)

so in particular,

QFT ([X/Γ]) = QFT

(︄∐︂
4

[X/Z2 × Z2]
∐︂∐︂

4

[X/Z2 × Z2]d.t.

)︄
. (4.162)

It is straightforward to check using by-now standard methods that closed-string partition
functions agree with the predictions above, so we move on to less trivial cases.
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Next, consider the case that B(a) = (+,−,+) but B(b) is trivial. The notation means
that z ∈ D4 and y act trivially on a, but x acts nontrivially. In this case, Ker B = Z2 = ⟨b⟩,
and Coker B = (Z2)

2, so we predict

QFT ([X/Γ]B) = QFT

(︄[︄
X × ˆ︂Z2 × Z2

Z2

]︄)︄
= QFT

(︄∐︂
4

[X/Z2 = ⟨b⟩]

)︄
. (4.163)

The same kernel and cokernel arise, and so one has the same prediction, for the cases
β(a) = (+,+,−) and (+,−,−) while β(b) = (+,+,+).

It is straightforward to verify this prediction using partition functions. Returning to the
case β(a) = (+,−,+), in the partition function

Z ([X/Γ]B) =
1

|Γ|
∑︂
gh=hg

g

h

, (4.164)

it is straightforward to check that all contributions from genus-one twisted sectors involving
a are cancelled out by corresponding sectors with x’s. The remaining genus-one twisted
sectors project to those of a ⟨b⟩ = Z2 orbifold, with multiplicity 43 (arising from possible
multiplications by z, x, and y.) As a result,

Z ([X/Γ]B) =
43

|Γ|
(︁
⟨b⟩ twisted sectors

)︁
= Z

(︄∐︂
4

[X/Z2 = ⟨b⟩]

)︄
, (4.165)

confirming the prediction above. The other cases above are treated identically.

Certainly a variety of other cases exist, but as we feel we have sufficient examples of this
form, for the sake of brevity we will move on.

4.6.2 With discrete torsion in Z2 × Z2 ⊂ Γ

Next, let us assume that there is discrete torsion in Z2 × Z2 ⊂ Γ. Note that in this case,
ι∗ω ̸= 0. As a result, we do not have a prediction for decomposition here, but we can collect
results experimentally.

If B is trivial, then this reduces to an example studied in [9, section 4.5], where it was
shown

QFT ([X/Γ]ω) = QFT ([X/D4]) = QFT
(︂
[X/Z2 × Z2]

∐︂
[X/Z2 × Z2]d.t.

)︂
. (4.166)

Suppose next that B(a) = (+,−,+) and B(b) trivial. We will see that the genus-one
partition function is the same as that of [X/D4].
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First, consider the genus-one twisted sectors that project to

1

1

. (4.167)

Excluding contributions from z (the generator of the center of D4), the contributing sectors
are

1

1

+ x

1

+ y

1

+ xy

1

+ 1

x

+ 1

y

+ 1

xy

+ x

x

− x

y

− x

xy

− y

x

+ y

y

− y

xy

− xy

x

− xy

y

+ xy

xy

, (4.168)

where the signs are entirely due to discrete torsion. Since none of the group elements project
to elements of G involving a or products thereof, B does not contribute any relative signs.
Thus, we see that, ignoring contributions from z’s, these genus one sectors are equivalent to

(10− 6)

(︃
1

1

)︃
= (4)

(︃
1

1

)︃
. (4.169)

Now, consider the genus-one twisted sectors that project to

a

1

. (4.170)

Excluding contributions from z (the generator of the center of D4), the contributing sectors
are

a

1

+ xa

1

+ ya

1

+ xya

1

+ a

x

+ a

y

+ a

xy

+ xa

x

− xa

y

− xa

xy

− ya

x

+ ya

y

− ya

xy

− xya

x

− xya

y

+ xya

xy

, (4.171)

where the signs listed are entirely due to discrete torsion. In this case, B contributes non-
trivial relative phases. For example,

a

x

= −
(︃

a

1

)︃
. (4.172)

Taking into account these signs, as well as discrete torsion, we find that the sum of the
genus-one twisted sectors above is again

(4)

(︃
a

1

)︃
. (4.173)

Other genus-one sectors involving factors of a are similar.

Putting these contributions together, and taking into account contributions from z’s, we
find

Z ([X/Γ]B,ω) =
(4)

|D4 × (Z2)2|
(sectors of D4 orbifold) , (4.174)

= Z ([X/D4]) = Z
(︂
[X/Z2 × Z2]

∐︂
[X/Z2 × Z2]d.t.

)︂
. (4.175)
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4.6.3 With discrete torsion in D4 ⊂ Γ

Finally, let us consider the possibility that there is discrete torsion in D4 ⊂ Γ. In these cases,
ι∗ω = 0 but β(ω) ̸= 0.

If B is trivial, then from decomposition, this reduces to |Z2 ×Z2| = 4 copies of [X/D4]ω,
for which it was shown in [9, section 5.5] that

QFT ([X/D4]ω) = QFT
(︁
[X/Z2 = ⟨b⟩]

)︁
, (4.176)

hence

QFT ([X/Γ]ω) = QFT

(︄∐︂
4

[X/D4]ω

)︄
= QFT

(︄∐︂
4

[X/Z2 = ⟨b⟩]

)︄
. (4.177)

Suppose instead that B(a) = (+,−,+) and B(b) is trivial. Then from section 3, we
predict that

QFT ([X/Γ]B,ω) = QFT

(︄[︄
X × ˆ︂CokerB/β(ω)

KerB/β(ω)

]︄)︄
, (4.178)

where β(ω) was computed in the closely-related case of a D4 orbifold with discrete torsion
and trivially-acting center in [9, section 5.5]. In the notation of this section,

β(ω)(a) = (−,+,+), β(ω)(b) = (+,+,+), (4.179)

so that
(B/β(ω))(a) = (−,−,+), (B/β(ω))(b) = (+,+,+). (4.180)

From this we compute

KerB/β(ω) = Z2 = ⟨b⟩, CokerB/β(ω) = Z2 × Z2. (4.181)

Hence, in this case, we predict

QFT ([X/Γ]B,ω) = QFT

(︄∐︂
4

[X/Z2 = ⟨b⟩]

)︄
. (4.182)

It is straightforward to check this statement at the level of genus-one partition functions.
Briefly, for B(a) = (+,−,+) and B(b) trivial, with discrete torsion in D4 but not Z2 × Z2,
it is straightforward to check that, because of B(a), all contributions from sectors involving
a cancel out, and between z, x, y, the remaining sectors have multiplicities as, for example

b

1

= (43)

(︃
b

1

)︃
, (4.183)
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and the restriction of the D4 discrete torsion to ⟨b⟩ ⊂ D4 is trivial. The genus-one partition
function then has the form

Z ([X/Γ]B,ω) =
43

|Γ|

(︄
1

1

+ b

1

+ 1

b

+ b

b

)︄
, (4.184)

= (2)

(︄
1

1

+ b

1

+ 1

b

+ b

b

)︄
, (4.185)

= (4)Z
(︁
[X/Z2 = ⟨b⟩]

)︁
= Z

(︄∐︂
4

[X/Z2 = ⟨b⟩]

)︄
, (4.186)

confirming the prediction.

4.6.4 Summary

So far we have worked out predictions for several cases. Computing partition functions
is straightforward using the methods already described, so we omit their explicit descrip-
tion; suffice it to say, in all cases, the genus-one partition functions match predictions. We
summarize the results in table 4.5.

B(a) B(b) W/o d.t. D.t. in (Z2)
2 D.t. in D4

(+ + +) (+ + +)
∐︁

4[X/D4] [X/D4]
∐︁

4[X/Z2 = ⟨b⟩]
(+±∓)

(+−−)
(+ + +)

∐︁
4[X/Z2 = ⟨b⟩] [X/D4]

∐︁
4[X/Z2 = ⟨b⟩]

Table 4.5: Summary of results forD4×(Z2)
2 orbifold. In terms of Z2×Z2 = ⟨x, y⟩, results are

symmetric between actions involving x, y, and xy. In all cases, predictions match partition
functions. The reader should note that the orbifold [X/D4] is reducible, and is a sum of two
copies of [X/Z2 × Z2], as indicated in equation (4.161).

5 Conclusions

In this paper, we have described a new set of phase factors for orbifolds with trivially-
acting subgroups, generalizing quantum symmetries. We have also described decomposition
[9, 16, 35, 36] for orbifolds with quantum symmetries, and detailed both the form of the
resulting theories and decomposition in a variety of examples.
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In our next paper [10], we will apply these new phase factors to resolve anomalies in
orbifolds.

One matter left for future work is the definition of D-branes and the open string sector
in the presence of quantum symmetries. In appendix C we outline basics, in particular the
fact that if d2B ̸= 0, then associativity of the group action on the D-brane must be (weakly)
broken. We intend to explore this in more detail in future work.

Another matter left for future work concerns non-central extensions. In most of this
paper, we assume that the full orbifold group Γ is a central extension of the effectively-
acting group G, meaning that the trivially-acting subgroup K lies within the center of Γ.
However, much of the structure we describe also seems to apply to non-central extensions.
We outline some basics in appendix D, and intend to explore non-central extensions in more
detail in future work.
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A Notes on conventional quantum symmetries in orb-

ifolds

It is a well-known result that in an orbifold [X/G], there is an abelian G/[G,G] symmetry
such that orbifolding by the latter returns [X/[G,G]]. Indeed, much of this paper is devoted
to generalizing this result. In this appendix we will display this old result in modern language,
in the spirit of decomposition [9].

Given some G orbifold of a space X, we extend G to Γ = G × Ĝ, where Ĝ = Gab =
G/[G,G] acts trivially on X, and nontrivially on G-twisted sectors.

We turn on discrete torsion defined by the two-cocycle ω

ω((g1, g
′
1), (g2, g

′
2)) = α(g1, g

′
2) (A.1)

where
α : G× Ĝ −→ U(1) (A.2)
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is a homomorphism in both arguments. (It is straightforward to check that ω is a two-cocycle,
so long as α is a homomorphism in both arguments.) Then the G action on H1(Ĝ, U(1)) is

(g · ϕ)(g′) = α(g, g′)ϕ(g′). (A.3)

We want to show that for some choice of α, this action is transitive, meaning that all of
H1(Ĝ, U(1)) is in a singleG-orbit. Since we can start with the trivial element ofH1(G′, U(1)),
namely ϕ(g′) = 1, we just have to show that we can pick α such that every possible ϕ(g′) is
given by α(g, g′) for some g. However, since

H1(Ĝ, U(1)) ∼= Gab = G/[G,G], (A.4)

this is always possible. Let f : G/[G,G] → H1(Ĝ, U(1)) denote the isomorphism, and
p : G → G/[G,G] the projection, then as f ◦ p is surjective, we can take

α(g, g′) = (f ◦ p)(g)(g′). (A.5)

Now, let us apply the generalized decomposition of [9] to this case. Clearly the restriction
of ω to K = Ĝ is trivial, but β(ω) ̸= 0, and in fact is given by [9, equ’n (C.28)]

β(ω)(g, z) =
ω(g, g−1z)

ω(g−1z, g)
=

ω((g, 1), (g−1, z))

ω((g−1, z), (g, 1))
=

α(g, z)

α(g−1, 1)
, (A.6)

= (f ◦ p)(g)(z). (A.7)

The kernel of this map is [G,G], and there is no cokernel, as it is surjective.

Then, decomposition implies

QFT
(︂
[X/G× Ĝ]ω=α

)︂
= QFT

(︃[︃
X × Coker β(ω)

Ker β(ω)

]︃)︃
= QFT ([X/[G,G]) . (A.8)

B Triviality of π∗(d2B) in cohomology

As observed in section 2.2, not every quantum symmetry B ∈ H1(G,H1(K,U(1))) is deter-
mined by discrete torsion. Those which are not determined by discrete torsion have nontrivial
images d2B ∈ H3(G,U(1)). In this appendix we will show that although their images can
be nontrivial elements of H3(G,U(1)), their pullbacks π∗(d2B) ∈ H3(Γ, U(1)) are trivial
as elements of H3(Γ, U(1)) – trivial in cohomology, in other words, though not necessarily
identically equal to 1.

Given B ∈ H1(G,H1(K,U(1))) and a section s : G → Γ, define

λ(g1, g2) = B(π(g1), s1g2s
−1
2 s−1

1 ), (B.1)
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where gi ∈ Γ and si = s(π(gi)). Then,

(dλ)(g1, g2, g3) =
B(π(g2), s2g3s

−1
3 s−1

2 )B(π(g1), s1g2g3s
−1
23 s

−1
1 )

B(π(g1g2), s12g3s
−1
3 s−1

12 )B(π(g1), s1g2s
−1
2 s−1

1

, (B.2)

= B
(︁
π(g1), s1g2g3s

−1
23 s

−1
1 · s12s3g−1

3 s−1
12 · s1s2g−1

2 s−1
1

)︁
·B
(︁
π(g2), s2g3s

−1
3 s−1

2 · s−1
1 s12s3g

−1
3 s−1

12 s1
)︁
, (B.3)

= B
(︁
π(g1), s1s2g

−1
2 s−1

1 · s1g2g3s−1
23 s

−1
1 · s12s3g−1

3 s−1
12

)︁
·B
(︁
π(g2), s2g3s

−1
3 s−1

2 · s−1
1 s12s

−1
2 · s2s3g−1

3 s−1
2 · s2s−1

12 s1
)︁
, (B.4)

= B
(︁
π(g1), s1s2s

−1
12 · s12g3s−1

23 s
−1
1 · s12s−1

2 s−1
1 · s1s2s3g−1

3 s−1
12

)︁
, (B.5)

= B
(︁
π(g1), s1s2s3s

−1
23 s

−1
1

)︁
, (B.6)

= (d2B)(π(g1), π(g2), π(g3)) = (π∗d2B)(g1, g2, g3). (B.7)

In the expression above, we have not assumed that Γ is a central extension, instead using
the more general conventions outlined in appendix D.

In any event, we now see that π∗(d2B) is trivial in cohomology, even when Γ is not a
central extension of G.

C Open string sector

In this appendix we outline some ideas regarding open string sectors in these theories with
quantum symmetries. Briefly, ordinarily one would describe D-branes in terms of (possibly
projective) equivariant structures on some sheaf or bundle on the covering space; however, if
d2B ̸= 1, then associativity is broken. That said, associativity is broken by π∗(d2B), which
as we saw in appendix B is trivial in cohomology, so associativity holds ‘up to homotopy,’
and is only broken in a weak sense.

In this appendix, we will only outline such weakly associative versions of (projectively)
equivariant structures. We leave a more detailed examination of the open string sector for
future work.

To define D-branes, let us attempt to proceed in the same fashion as for discrete torsion
in [50–52], in which the action of the group Γ on the Chan-Paton factors is twisted by a
group cochain.

Let ω be a 2-cochain in Γ such that

(dω)(g1, g2, g3) = B(π(g1), s(π(g2))s(π(g3))s(π(g2g3))
−1 = π∗(d2B)(g1, g2, g3)

−1, (C.1)

where s denotes a normalized section s : G → Γ (normalized meaning that s(1) = 1), and
where we also assume that the cochain is normalized so that

ω(g, 1) = ω(1, g) = 1. (C.2)
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(Note in passing that this includes as a special case ω that are coclosed, corresponding to
elements of discrete torsion.) Such a cochain ω exists precisely because π∗(d2B) is trivial in
cohomology, even if d2B itself is not.

Let ϕ be a twisted representation of Γ, twisted in the sense that

ϕ(g1)ϕ(g2) = ω(g1, g2)ϕ(g1g2). (C.3)

(The normalization condition allows us to consistently identify ϕ(1) with the identity.) This
is very similar to a projective representation, except that ω is a cochain rather than a cocycle.
As a result, multiplication is not quite associative:

ϕ(g1) (ϕ(g2)ϕ(g3)) = ω(g1, g2g3)ω(g2, g3)ϕ(g1g2g3), (C.4)

(ϕ(g1)ϕ(g2))ϕ(g3) = ω(g1, g2)ω(g1g2, g3)ϕ(g1g2g3), (C.5)

hence

ϕ(g1) (ϕ(g2)ϕ(g3)) = (dω)(g1, g2, g3) (ϕ(g1)ϕ(g2))ϕ(g3). (C.6)

If dω = 1, as happens in the case of discrete torsion, then we see that multiplication of
the ϕ is associative, and we see that the ϕ form a projective representation of Γ.

However, if dω ̸= 1, then associativity does not hold, and we do not have a projective
representation of Γ. Furthermore, if we implement this group action in boundary OPEs
between topological defect lines at the boundary, this means that such boundary OPEs are
nonassociative.

This may seem rather strange, but nonassociative boundary OPEs have been considered
previously in [53–56] in the context of D-branes in the presence of5 nontrivial H flux. In
fact, the analogy can be made more precise. Discrete torsion in orbifolds can be described
in terms of B fields, see [51,52], and the image of H1(G,H1(K,U(1))) in H3(G,U(1)) is an
analogue of the curvature H. If the element of H1(G,H1(K,U(1))) is in the image of discrete
torsion, then we get an ordinary associative projective equivariant structure. If the element
of H1(G,H1(K,U(1))) has a nonzero image in H3(G,U(1)), which morally is the analogue
of a non-trivial H, then the equivariant structure is nonassociative, in precise analogy with
the nonassociative boundary OPEs arising in cases with nontrivial H flux in [53–56].

Now, to be clear, no examples exist in which ϕ acts as a linear transformation on a finite-
dimensional vector space. In such a case, ϕ(k) is simply a finite-dimensional matrix, and
matrix multiplication is always associative in finite dimensions. However, if the vector space
is infinite-dimensional, then, matrix multiplication can be nonassociative, see for example

5We would like to thank R. Szabo for a useful discussion of this matter.
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[57–61]. An example from [57] is defined by the matrices

V =

⎡⎢⎢⎢⎣
1 1 1 · · ·
0 1 1 · · ·
0 0 1 · · ·
...

...
...

. . .

⎤⎥⎥⎥⎦ , U =

⎡⎢⎢⎢⎣
1 −1 0 0 · · ·
0 1 −1 0 · · ·
0 0 1 −1 · · ·
...

...
...

...
. . .

⎤⎥⎥⎥⎦ , A =

⎡⎢⎢⎢⎣
0 0 0 · · ·

−1 0 0 · · ·
−1 −1 0 · · ·
...

...
...

. . .

⎤⎥⎥⎥⎦ , (C.7)

where in U each row has one successive (+1,−1) pair with other entries equal to zero. It is
easy to see that UA and V U are both the identity, hence

V (UA) = V ̸= A = (V U)A. (C.8)

In passing, physically this would require infinite-rank Chan-Paton factors in the case that
the quantum symmetry does not arise from discrete torsion. Similarly, in the case that the
curvature H of the B field is nonzero in de Rham cohomology, any sheaf twisted by H also
has infinite rank (see e.g. [62, section 4.1]), in line with the role of H in nonassociative open
string products in [53–56,63–65].

In principle, given such a nonassociative equivariant structure, one could then construct
closed-string phases in much the same fashion described for discrete torsion in e.g. [66],
though we shall not try to do so here.

We have outlined one possible way to understand open string sectors in orbifolds with B
such that d2B ̸= 1, breaking associativity, but there are other approaches. For example,

• Another approach is described in [67, section 2.3], where groups G with an anomaly in
H3(G,U(1)) are described as groupoids, which have representations on 2-vector spaces.
Similar approaches are described in [68,69], [70, sections 8-9], [71, appendix E].

• Non-associative equivariant structures in a different context are described in [72–75].

We leave a detailed examination of open string sectors for future work.

D Non-central extensions

In the rest of this paper, we have focused on central extensions. However, some preliminary
computations suggest that similar results should hold for non-central extensions. We do not
claim a complete understanding of such cases, but collect here a few pertinent results.
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D.1 Basics

Consider an orbifold of a space X by a group Γ, where a subgroup K ⊂ Γ acts trivially, with
effectively-acting coset G = Γ/K:

1 −→ K −→ Γ
π−→ G −→ 1. (D.1)

We do not assume that K is necessarily central.

We can describe the quantum symmetry as follows. For g ∈ Γ, k ∈ K, the quantum
symmetry is a phase assigned to twist fields, depending on their projection to G, which we
take to obey

B(π(g1)π(g2), k) = B(π(g1), k)B(π(g2), g
−1
1 kg1). (D.2)

As the action of the identity should be trivial, we also require

B(1, k) = 1 = B(g, 1) (D.3)

for g ∈ G, k ∈ K. For g, h ∈ Γ, z ∈ K, and s : G → Γ a section (meaning π ◦ s is the
identity on G), the quantum symmetry is a relation

gz

h

= B
(︁
π(h), s(π(h))zs(π(h))−1

)︁(︃
g

h

)︃
, (D.4)

g

hz

= B
(︁
π(g), s(π(g))zs(π(g))−1

)︁−1
(︃

g

h

)︃
, (D.5)

where B : G×K → U(1) is a map such that

B(g1g2, k) = B(g1, k)B(g2, s(g1)
−1ks(g1)), (D.6)

B(g, k1k2) = B(g, k1)B(g, k2), (D.7)

for g, g1,2 ∈ G.

The phase above is independent of the choice of section s: over any h ∈ G, the value of
any two choices of section will differ by an element k ∈ K, and note

B
(︁
π(h), (sk)z(sk)−1

)︁
= B

(︁
π(h), (sks−1)(szs−1)(sk−1s−1)

)︁
, (D.8)

= B
(︁
π(h), sks−1

)︁
B
(︁
π(h), sk−1s−1

)︁
B
(︁
π(h), szs−1

)︁
, (D.9)

= B
(︁
π(h), szs−1

)︁
. (D.10)

Given a section, we can interpret these quantum symmetries as defining discrete-torsion-
like phases associated to sectors in the effective G, specifically,

g

h

= ϵ(g, h)

(︄
π(g)

π(h)

)︄
, (D.11)
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for commuting g, h ∈ Γ, where

ϵ(g, h) =
B
(︁
π(h), shs

−1
g gs−1

h

)︁
B
(︁
π(g), sgs

−1
h hs−1

g

)︁
,
, (D.12)

where we have abbreviated sg = s(π(g)). As a consistency check, note that

gz
h

g
h

=
ϵ(gz, h)

ϵ(g, h)
, (D.13)

=
B(π(h), shs

−1
g gzs−1

h )

B(π(h), shs−1
g gs−1

h )
, (D.14)

= B(π(h), shs
−1
g gz(s−1

g g)−1s−1
h ), (D.15)

= B(π(h), shs
−1
g gs−1

h )B(π(h), shzs
−1
h )B(π(h), shg

−1sgs
−1
h ), (D.16)

= B(π(h), shzs
−1
h ), (D.17)

matching the original definition (D.4).

Now, let us consider the genus-one phases ϵ(g, h) arising from a quantum symmetry in
a Γ-orbifold, given in equation (D.11). It is straightforward to show that ϵ(g, g) = 1 and
ϵ(g, h) = ϵ(h, g)−1. It is also straightforward to see that

ϵ(g, h1h2) = ϵ(g, h1)ϵ(g, h2)B
(︁
π(g), sgs

−1
1 h1s

−1
2 h−1

1 s12s
−1
g

)︁
·B
(︁
π(h1), s12s

−1
g gs−1

12 s1g
−1sgs

−1
1

)︁
·B
(︁
π(h2), s

−1
1 s12s

−1
g gs−1

12 s1s2g
−1sgs

−1
2

)︁
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Using the fact that

s−1
1 s12s

−1
g gs−1

12 s1s2g
−1sgs

−1
2

= (s−1
1 s12s

−1
2 )(s2s

−1
g gs−1

2 )(s2s
−1
12 s1)(s2g

−1sgs
−1
2 ), (D.19)

where each factor on the right lies in K, we can then write

B
(︁
π(h2), s

−1
1 s12s

−1
g gs−1

12 s1s2g
−1sgs

−1
2

)︁
= B(π(h2), s

−1
1 s12s

−1
2 )B(π(h2), s2s

−1
12 s1)B(π(h2), s2s

−1
g gs−1

2 )B(π(h2), s2g
−1sgs

−1
2 ),

= 1. (D.20)

Thus, we can write

ϵ(g, h1h2) = ϵ(g, h1)ϵ(g, h2)(d2B)(π(g), π(h1)π(h2))
−1

·B
(︁
π(g), (sgs

−1
1 h1s

−1
2 h−1

1 s12)(s
−1
12 s2s1s

−1
g )
)︁

·B
(︁
π(h1), s12s

−1
g gs−1

12 s1g
−1sgs

−1
1

)︁
, (D.21)
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where d2 is the map H1(G,H1(K,U(1))) → H3(G,U(1)) appearing in section 2.2, so that
explicitly

(d2B)(π(g), π(h1), π(h2)) = B
(︁
π(g), sgs

−1
1 s−2

2 s12s
−1
g

)︁
. (D.22)

Now, to settle all issues associated with quantum symmetries in non-central extensions,
there are several more things we need to do at this point. For example, we need to demon-
strate that B only depends upon the conjugacy class of g, to show that B acts on twist fields
of G; we need to elaborate on what circumstances this is a symmetry, when the correlation
functions are invariant; and we need to discuss why physically in this more general case the
quantum symmetries are classified by H1(G,H1(K,U(1)), defined with the crossed module
condition. We leave all of that for future work, and focus here on merely outlining a few
other matters. We conclude this appendix with an example.

D.2 Example

Consider the case that K = Z4 = ⟨i⟩ ⊂ Γ = H, the group of quaternions. We have the short
exact sequence

1 −→ Z4 −→ H −→ Z2 −→ 1. (D.23)

Specifically, consider the orbifold [X/Γ]B, where the quantum symmetry B is defined to be
the nontrivial element of H1(G,H1(K,U(1))).

Explicitly, if we let ξ denote the generator of G = Z2, and i the generator of K = Z4,
then we take

B(ξ, k) = exp(πi/2). (D.24)

Let us quickly check that this has the crossed homomorphism structure. Take the section
s : G → Γ to be defined by s(ξ) = j, so that s(ξ)−1 = −j. Then,

B(ξ, i) = exp(πi/2), (D.25)

B(ξ, s(ξ)−1(i)s(ξ)) = B(ξ, (−j)(i)(j)) = B(ξ,−jk) = B(ξ, i3), (D.26)

= exp(3πi/2), (D.27)

B(ξ2, i) = 1, (D.28)

and indeed one can see that

B(ξ2, i) = B(ξ, i)B(ξ, s(ξ)−1(i)s(ξ)) (D.29)

as expected.
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Using this quantum symmetry, one can compute

(−)

±j,±k

= B(ξ, i2)

(︄
1

±j,±k

)︄
= (−)

(︄
1

±j,±k

)︄
, (D.30)

−j

±j

= B(ξ, i2)

(︄
j

±j

)︄
= (−)

(︄
j

±j

)︄
, (D.31)

−k

±k

= (−)

(︃
k

±k

)︃
, (D.32)

hence the genus-one partition function is given by

Z ([X/H]B) =
1

|H|
∑︂
gh=hg

g

h

, (D.33)

=
42

8

(︃
1

1

)︃
= 2

(︃
1

1

)︃
, (D.34)

since all genus-one sectors that do not project to the trivial sector cancel out. Thus, at the
level of genus-one partition functions, we find

[X/H]B =
∐︂
2

X = X
∐︂

X. (D.35)
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