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Abstract

In a collisionless shock the directed flow energy is converted mainly in thermal energy of the plasma species. At
the termination shock (TS) a substantial portion of energy goes into heating of pickup ions (PUIs), while heating of
the solar wind protons (SW) is weaker than it would be without PUI. Heating of both species is nonadiabatic.
Downstream pressure of the mixture is determined by conservation laws for the whole mixture. SW heating is
sensitive to the details of the shock front, while heating of PUI is not. The profile is an analytical approximation of
the observed TS. Here the downstream temperature and pressure of PUIs are obtained for the first time using test
particle analysis in a model shock profile for various magnetic compression ratios and shock angles. The profile is
an analytical approximation of the observed TS. The results of the analysis are used in the pressure balance
equation and the corresponding SW heating is estimated. The analysis is supported by full particle simulations,
except for the SW heating that was not studied using test particle data due to its apparent dependence on fine
structure of the shock front.

Unified Astronomy Thesaurus concepts: Shocks (2086); Termination shock (1690); Interplanetary shocks (829);
Heliosphere (711)

1. Introduction

Collisionless shocks are one of the most ubiquitous phenomena
in space plasmas. The directed flow energy is converted into other
forms at the shock front: ion and electron heating, particle
acceleration, and magnetic field enhancement. One of the most
important problems of the collisionless shock physics is prediction
of the post-shock (downstream) state of the plasma and fields
given the corresponding plasma and magnetic field state before
the shock (upstream). In the absence of dissipative processes the
relations between the upstream and downstream parameters
(Rankine–Hugoniot relations, boundary conditions, and jump
conditions) are just conservation laws of particle number,
momentum, and energy. There is a complete hierarchy of scales
in collisionless shocks and, accordingly, the boundary conditions
depend on the scale at which the boundaries are placed. The
standard Rankine–Hugoniot relations (RH) are formulated on
the largest, magnetohydrodynamic (MHD) scale, at which the
distributions thermalize (Kennel 1994). In many space plasma
environments the ambient conditions change on spatial or
temporal scales, which are too short to achieve such thermaliza-
tion. Observational comparison of the upstream and downstream
plasma is often done in various regions that do not satisfy the
conditions for establishing the MHD RH. In the close vicinity of
the shock front, ion distributions are significantly gyrophase
dependent, and the jump conditions at the very transition should
take this into account (Gedalin & Balikhin 2008; Gedalin 2016a).
On larger scales or for measurements invoking substantial
temporal and/or spatial averaging, the distributions become
gyrotropic but can still remain anisotropic, since isotropization
may be slow. The corresponding RH should take into account this
anisotropy (Lyu & Kan 1986; Gedalin 2017; Gedalin et al. 2020).
Additional complications arise when there are different popula-
tions of ions that undergo gyrotropization and isotropization on
different scales. Eventual equilibration of temperatures may never
happen. Even for different populations of ions of the same

kind eventual merging into one thermal population may never
be observed. The latter situation is expected to be typical when
pickup ions (PUIs) are important constituents, as at the
termination shock (Zank et al. 1996; Li et al. 2008; Richardson
et al. 2008; Burrows et al. 2010; Matsukiyo & Scholer 2011, 2014;
Ariad & Gedalin 2013; Jokipii 2013; Mostafavi et al. 2017, 2018;
Kumar et al. 2018). In this case, MHD has to be replaced with a
multispecies model, where each population obeys the corresp-
onding conservation laws separately, while the magnetic field
jump is obtained by combining all species together. In this
approach one has to know the equations of state for each species.
Typically, some form of thermodynamics motivated state
equations are assumed (Florinski et al. 2009; Borovikov et al.
2011; Pogorelov et al. 2013; Zank et al. 2014; Mostafavi et al.
2018). This approach implicitly assumes that the population is in a
kind of local thermodynamic equilibrium. However, observations
show that this is not the case. In fact, the downstream ion
distribution is determined primarily by ion dynamics in the
macroscopic fields of the shock front. Interaction with the
electromagnetic fluctuations plays a secondary role causing slow
relaxation toward equilibrium, while binary collisions are
negligible. The resolution of particle observations in the vicinity
of the heliospheric termination shock corresponds to the scale on
which the solar wind protons are possibly (but not certainly)
isotropic but PUI are still anisotropic. Yet most studies of RH at
the termination shock aim at the determination of jump conditions
on the MHD scale, assuming isotropy of the distributions. Some
previous analyses within a two-fluid model (solar wind and PUI)
introduced heat flux and collisionless viscosity of PUI (Zank et al.
2014; Mostafavi et al. 2016, 2017, 2018; Zank 2016). This
approach explicitly assumes that ion scattering within the shock
transition is substantial so that the focused transport equation is
valid throughout the shock (Zank et al. 2014). However, the shock
transition is scatter-free (Toptyghin 1980; Drury 1983), so that the
approach loses the physics of relation between the kinetic and
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MHD scales. Accordingly, the obtained magnetic profiles are
monotonic and cannot explain observed overshoots (Mostafavi
et al. 2018). Previous attempts to take into account the ion kinetics
at a shock front assumed magnetic moment conservation (Fahr &
Chalov 2008; Fahr et al. 2012; Fahr & Siewert 2013, 2015).
However, it has been shown that magnetic moment is, in general,
not conserved (Terasawa 1979; Gedalin 2020), and such
approximation may be satisfactory only in the perpendicular
regime. Proper establishment of the boundary conditions on MHD
scales requires establishing a relation of the ultimately isotropic
distributions to the collisionless ion dynamics within a shock
front. This objective requires proper determination of downstream
gyrophase averaged distributions, which are gyrotropic but
anisotropic, with further relating these to the isotropic pressure
(Gedalin et al. 2020). In the present paper, we numerically
determine the parameters of these distributions, which will be
used for modifying the Rankine–Hugoniot relation.

2. Basic Setup

Since ion dynamics inside the shock front is nonadiabatic
and the equations of motion are not integrable, the analysis will
be performed numerically, by tracing ions in the electric and
magnetic fields of a model shock profile. In the present paper
we restrict ourselves by the consideration of a stationary and
one-dimensional profiles, leaving the analysis of time-depend-
ence and nonplanarity for further studies. The main features,
ramp and overshoot, of the shock profile chosen for our
analysis are taken to be generally similar to the observed
termination shock (Burlaga et al. 2008; Richardson et al. 2008).
The main component of the magnetic field Bz is modeled using
the asymmetric overshoot profile
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Here θu is the angle between the shock normal and the
upstream magnetic field vector, x is the coordinate along the
normal directed toward upstream, x–z is the shock coplanarity
plane, Bu and Bd are the upstream and downstream magnitudes
of the magnetic fields, respectively, R is the ratio of the
downstream and upstream z components of the magnetic field,
and the rest of the parameters are adjusted so that a profile in
Figure 1 is obtained. The cross-shock electric field Ex and
noncoplanar magnetic field By are modeled using By∝ Ex∝
dBz/dx, so that the de Hoffman–Teller cross-shock potential
fHT=− ∫Exdx and the Normal Incidence Frame (NIF) cross-
shock potential

òf f q= + V c B dxtan 6u u yNIF HT ( ) ( )

are variable model parameters. Ion tracing is performed in the de
Hoffman–Teller frame (HT), where the upstream plasma flow is
along the magnetic field, q=V V V, 0, tanu u u uHT, ( ), and there is
no motional electric field, Ey=Ez= 0. NIF is the frame in which
the upstream plasma flow is along the shock normal. The
magnetic compression Bd/Bu and the shock angle θu were varied
in the intervals 1.6� Bd/Bu� 2.7 and 57°.5� θu� 87°.5. The
overshoot amplitude was chosen so that max(Bz)/Bzd= 2.25.
Here Bzd is the z-component of the magnetic field in the
downstream region far beyond the overshoot. The cross-shock
potential was chosen as f = m V0.1 2p uHT

2( ) and f =NIF

m V0.2 2p u
2( ). Here Vu is the upstream velocity of the plasma

flow along the shock normal. In the numerical analysis
Vu/c= 10−3, where c is the speed of light. Figure 2 shows the
cross-shock potential as a function of the coordinate along the

Figure 1. The magnetic profile used in the analysis, |B| (black), Bz (blue), and By (red).

Figure 2. The cross-shock potential used in the analysis.
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shock normal. The potential is zero far upstream of the ramp. The
maximum potential is fmax= fNIF(max(Bz)/Bzd)≈ 0.45. The
Afvénic shock Mach M=Vu/vA= 7 for all runs. Here Alfvén
speed is defined as follows: p=v B n m4u p pA

2 2 , where np is the
upstream density of solar wind protons, not including PUI. The
ramp width is chosen as D= (c/ωp), where w p= n e m4p p p

2 2 .
In each run, 40,000 PUI were traced across the shock. The
upstream distribution PUIs is chosen in the form of a filled
shell (Vasyliunas & Siscoe 1976), i.e., fu(u)∝ u−3/2H(uc− u),
where q= - + + -u v V v v V tanx u y z u u

2 2 2( ) ( ) is the velocity
of PUIs in the solar wind frame, uc is the cutoff speed, and H is
the Heaviside step function. The initial distribution already has the
form fu(vP, v⊥), independent of gyrophase. Upon crossing the
shock, in the quiet downstream region, each ion has certain (vP,
v⊥), which do not change with distance from the shock, in contrast
with the gyrophase, which is position dependent. Therefore, it is
sufficient to numerically determine (vP, v⊥) for each PUI at some
x> 0, where the fields are already constant, in order to construct
the corresponding downstream fd(vP, v⊥). These distribution
functions are used to derive the following moments:

ò= ^ ^ ^n f v v v dv dv, 7( ) ( ) 

ò= ^ ^ ^nV v f v v v dv dv, 8( ) ( )   

ò= - ^ ^ ^P m v V f v v v dv dv, 9p
2( ) ( ) ( )    

ò=^ ^ ^ ^ ^P m v f v v v dv dv
1

2
, . 10p

2 ( ) ( ) 

Boundary conditions require the xx component of the total
pressure

q q= + - +^ ^P P P P nm Vcos cos , 11xx p
2 2 2( ) ( ) 

which includes both kinetic and dynamic pressures. The above
expression is valid both upstream and downstream.

3. Ion Distributions

Figure 3 illustrates the upstream and downstream distributions
of PUI for Bd/Bu= 2.7 and θu= 85°. In order to better represent
the contribution of large v⊥, the distributions are shown as contour
plots of ^ ^v f v vln ,[ ( )] , with the normalization ∫v⊥f (vP,

v⊥)dv⊥dvP= 1. The downstream distribution consists of two
clearly separated populations of PUIs, which are directly
transmitted (index t hereinafter) and those that are reflected
(index r hereafter) once and proceed further downstream
afterwards (Gedalin 1996, 2016b; Lee et al. 1996; Zank et al.
1996, 2010; Zilbersher & Gedalin 1997). The latter have larger
v⊥. In what follows, all parameters refer to PUI and normalized
variables are used: velocities are normalized to the upstream
plasma velocity along the shock normal Vu, densities are
normalized to the upstream density of PUI nu, pressures are
normalized to n m Vu p u

2, and temperatures are normalized to m Vp u
2.

The normalized upstream temperature of PUI is then Tu= 0.14.
In this run nd= 2.71, Pd,⊥= 1.79, and Pd,xx= 2.16. Separate
treatment of transmitted and reflected populations has been
proposed for boundary conditions (Zank et al. 2010). It was
suggested (Lee et al. 1996; Zank et al. 1996, 2010) that it is those
ions that satisfy the condition f<m v e2p x

2
maxthat are reflected.

In this run, transmitted and reflected ions are separated by
v⊥= 1.23. The expected percentage of the ions reflected by the
cross-shock potential (Zank et al. 2010) for our model shock is
15%, while the direct numerical ion tracing shows that 22% of
PUI are reflected. This means that reflection is not determined by
the potential alone and gyration in the magnetic field is essential.
Accordingly, nr= 0.72, i.e., about 26% of the downstream PUI
density belongs to PUI, which have been reflected once. The
pressure of the reflected PUI is Pr,⊥= 1.31, which constitutes
almost 0.75 of the perpendicular downstream pressure of PUI.
The ratio Pr,xx/Pd,xx= 0.65. The total downstream perpendicular
temperature is Td,⊥= 0.65, and the temperature ratio is
Td,⊥/Tu= 4.65, in agreement with the previously found
heating (Gedalin et al. 2020). This heating is substantially stronger
than the one predicted by magnetic moment conservation (Fahr &
Chalov 2008). Transmitted and reflected ions are heated
differently. For reflected ions alone Tr,⊥/Tu= 12.85 and
Tr,⊥= 1.8. The downstream temperature of reflected ions as
predicted by Equation (10) of Zank et al. (2010) is Tr,⊥≈ 22.5, by
an order of magnitude larger than found in the present analysis.
Figure 4 shows the downstream distribution of PUIs for several
combinations of the magnetic compression and angle. For lower
angles, there appears a weak third population that corresponds to
doubly reflected PUI, which is more pronounced for higher
magnetic compressions. In general, the population of reflected
ions is stronger for larger Bd/Bu. Note that the maximum cross-
shock potential fmax in the numerical analysis depends only

Figure 3. The upstream (left) and downstream (right) distributions of PUI for Bd/Bu = 2.7 and θu = 85°. The colorbar values indicate ^ ^v f v vln ,[ ( )] . See
normalization in the text.
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weakly on the magnetic compression and angle. It is smaller for
higher Bd/Bu for the same θu. This observation supports the above
conclusion that the cross-shock potential is not the only and
probably not the main parameter that determines the intensity of
PUI reflection.

Figure 5 shows the ratio of the density compression to the
magnetic compression (nd/nu)/(Bd/Bu). This ratio varies in the
range 1–1.17. Deviation from unity is stronger for lower
angles. For applications with boundary conditions one can use
the approximation nd/nu= Bd/Bu.

Besides the density compression, we are interested in the
perpendicular heating Td,⊥/Tu (parallel heating is negligible)
and total Pd,xx.

Figure 6 shows the perpendicular heating Td,⊥/Tu as a
function of Bd/Bu and θu. Figure 7 shows the dependence of the
perpendicular heating Td,⊥/Tu as a function of Bd/Bu for
various θu. For Bd/Bu> 2 the relation is approximately linear:

»^T

T

B

B
1.75 , 12d

u

d

u

, ( )

with only weak dependence on the shock angle, as can be seen
in Figure 8, which shows the dependence of the perpendicular
heating Td,⊥/Tu as a function of θu for various Bd/Bu. For

larger angles, heating is stronger for larger magnetic
compressions.
Figure 9 shows the dependence of Pd,xx on Bd/Bu and θu.

The dependence on Bd/Bu for various θu is shown in Figure 10
while the dependence on θu for various Bd/Bu is shown in
Figure 11. The dependence on the angle for θu> 65° is weak.
A numerically fitted dependence is

= + - >P P
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B
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where r0= 1.82 and P0= 1.4, while Pd,xx= P0 for Bd/Bu< 1.8.
At this stage we have no analytical support for this fit.
Mach number affects ion heating only indirectly, via the

shock structure, which is Mach dependent. For given magnetic
compression, overshoot strength, and shock angle, the Alfvén
Mach number is a parameter that does not enter any
dependencies. In order to study the dependence of the heating
on the Mach number one has to know the dependence of Bd/Bu

and B Bmax z zd( ) on the shock angle and Mach number. At this
stage no good theory exists that could provide us with this
knowledge.

Figure 4. The downstream distributions of PUI for several combinations of the magnetic compression and angle. From left to right: (a) Bd/Bu = 2.2 and θu = 60°, (b)
Bd/Bu = 2.6 and θu = 60°, (c) Bd/Bu = 2.2 and θu = 80°, and (d) Bd/Bu = 2.6 and θu = 80°. The colorbar values indicate ^ ^v f v vln ,[ ( )] . See normalization in
the text.

Figure 5. Ratio of density compression to magnetic compression (nd/nu)/(Bd/Bu).
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Figure 6. Perpendicular heating Td,⊥/Tu as a function of Bd/Bu and θu.

Figure 7. Perpendicular heating Td,⊥/Tu as a function of Bd/Bu for different θu.

Figure 8. Perpendicular heating Td,⊥/Tu as a function of θu for different Bd/Bu. At the high end of θu larger values of Td,⊥/Tu correspond to larger Bd/Bu.

Figure 9. The downstream pressure Pd,xx as a function of Bd/Bu and θu.
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4. Estimate of Heating at the Termination Shock

The pressure balance reads

p
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The kinetic pressure of the solar wind and electrons in the
upstream region can be neglected. Typical electron heating
values (Schwartz et al. 1988) are much smaller than the SW
proton heating, so that the downstream electron pressure is a
small correction beyond the precision of the analysis. Thus, the
appropriate approximation reads
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Let ξ= nu,PUI/nu, where nu= nu,SW+ nu,PUI then the pressure
balance will take the form
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where we used the approximation that the density compression
Rd= nd/nu is the same for all species. Using ξ= 0.2, Rd= 2.7,
R= 2.5, M= 6.5, =T m V 0.14u p u,PUI

2 , and =R T m Vd d p u,PUI
2

1.2 2.7 one finds »T m V 0.18d p u,SW
2 . In absolute units, we have

for Vu= 300 km s−1:

» ´ » ´
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where we introduced the mean downstream temperature of
the mixture Td= (Pd,SW+ Pd,PUI)/nd (Zank et al. 2010). The

relative SW heating Td,SW/Tu,SW is much larger than the
relative PUI heating Td,PUI/Tu,PUI. The absolute SW heating
Td,SW− Tu,SW is much smaller than the absolute PUI heating
Td,PUI− Tu,PUI. For Vu= 200 km s−1 (Richardson 2008;
Richardson et al. 2008) one gets

» ´ » ´
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T T
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An increase of the PUI fraction to ξ= 0.3 (Ariad &
Gedalin 2013) with Vu= 200 km s−1 gives

» ´ » ´

= ´

T T
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d d
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Note the strong dependence of the SW temperature on the
fraction of PUI. For comparison, for ξ= 0.05 and Vu=
200 km s−1 the relation (17) would give Td,SW≈ 8× 105 K.
The mean downstream temperature varies weakly and remains
on the order of 106 K.

5. Particle-in-cell Simulations

Particle tracing calculations are performed using simplifying
assumptions regarding the profile of magnetic field and the cross-
shock potential. It is therefore desirable to compare the predictions
obtained with self-consistent shock simulations, where the PUI
dynamics and shock structure are mutually dependent. We have
performed a series of 1D particle-in-cell (PIC) simulations with
varying upstream conditions, such as the upstream fraction of
PUI, shock speed, and shock angle θu. The shock is formed using
reflection from a wall located at the origin. The upstream plasma
is continuously injected at the opposite boundary of the simulation
domain. Upstream plasma is assumed to consist of electrons
with an isotropic Maxwellian distribution with density n0 and
temperature Te, PUIs with a filled-shell distribution (Vasyliunas &
Siscoe 1976) with density nPUI and cutoff speed Uc

PUI, and solar
wind protons with an isotropic Maxwellian distribution with
density nSW= n0− nPUI and temperature TSW= Te. The three

Figure 10. The downstream pressure Pd,xx as a function of Bd/Bu for various θu.

Figure 11. The downstream pressure Pd,xx as a function of θu for various Bd/Bu.
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simulations chosen for presentation here are identical with the
exception of the shock angle. The upstream electron
b p= =n T B8 0.1e o e 0

2 , the PUI fraction is nPUI/n0= 0.2, the
cutoff speed is =U V7c

PUI A (corresponding approximately to the
shock speed, see below), the domain length is Lx= 200di, the
number of cells is approximately 1.8× 105, corresponding to
approximately resolution of approximately one Debye lengths.
The ratio of upstream plasma frequency to electron cyclotron
frequency is ωpe/Ωce= 10 and mass ratio mi/me= 400. Here
di= c/ωpi is the proton inertial length, w p=a an e m4p 0

2 1 2, and
mα is the mass of species α. The simulations were performed
using the VPIC code (Bowers et al. 2008).

Figure 12 shows a summary of the simulations performed
with θu= 60°, θu= 70°, and θu= 82°. For each angle, the top
rows show the profiles of magnetic field, solar wind proton
density, and PUI density. While all the simulations have the
same injection speed, the shock speed with respect to the
simulation frame varies slightly, resulting in slightly different
total shock speed for three cases, MA= (6.7, 7, 7.2)VA for
θu= 60°, 70°, 82°, respectively. The compression ratio is
similar in all three cases: Bd/Bu≈ 2.5, where Bd is averaged
over the downstream wavetrain. For lower angles, the PUI
density increase immediately behind the shock ramp is slightly
higher than that of the solar wind protons and that of the
magnetic field, but eventually it approaches the same value at a
distance of the order of 100di. The second and third rows in
Figure 12 show the parallel and perpendicular (with respect to
the local magnetic field) temperatures of PUIs and solar wind
protons, respectively. The temperature is defined as the second

moment of the distribution. The large increase in the upstream
PUI temperature at θ= 60° is due to backstreaming PUIs,
which are not present at larger angles. The ratio of downstream
to upstream T⊥ increases slightly with shock angle and shock
speed, from approximately 4.2 at θ= 60° and MA= 6.7 to
approximately 5 at θu= 82° and MA= 7.2. The relative
increase of solar wind proton temperature is much higher that
that of the PUIs, although the downstream PUI temperature is
still significantly higher than that of SW protons.

6. Conclusions

In the present paper we have found, for the first time, the
downstream gyrotropic distributions of PUI for a variety of the
shock magnetic compressions and shock angles in the quasi-
perpendicular regime. The analysis provides the downstream
perpendicular and parallel temperatures, and the downstream
density. The temperature of the isotropic distribution at the
MHD scale can be obtained as T= (2/3)T⊥+ (1/3)TP. The
results can be used in the jump conditions at the termination
shock, while the upstream PUI-to-solar wind density ratio is a
free adjustable parameter. Here we restricted ourselves only
with the analysis of the dependence of the downstream PUI
distributions on the major shock parameters. The expected SW
heating was estimated using the total pressure balance and the
obtained PUI heating. Obviously, shock heating of the solar
wind does not depend on PUIs. However, SW heating is more
sensitive to as yet unknown fine structure of the shock front.
Therefore, here we avoided studying SW heating in our test
particle analysis.

Figure 12. Indicative results of PIC simulations for three different angles.
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