What Makes a Rule Complex?

By RyAN OPREA*

We study the complexity of rules by paying experimental sub-
jects to implement a series of algorithms and then eliciting their
willingness-to-pay to avoid implementing them again in the fu-
ture. The design allows us to examine hypotheses from the theo-
retical “automata” literature about the characteristics of rules that
generate complexity costs. We find substantial aversion to com-
plexity and a number of regularities in the characteristics of rules
that make them complex and costly for subjects. FExperience with
a rule, the way a rule is represented, and the context in which
a rule is implemented (mentally versus physically) also influence
complezity.

When people fail to behave as economists expect them to, they tend to err on
the side of simplicity.! A long tradition in economics (e.g. Simon, 1955) argues
that this is, in part, driven by the fact that people dislike (or are incapable of)
implementing complex rules and procedures. In this paper we propose new ex-
perimental methods to identify what makes a rule complex to implement, and to
measure the costs of this “procedural complexity.” Doing this may allow us to
better understand why people don’t always choose to use optimal procedures (e.g.
strategies, dynamic optimization policies, state-contingent agreements, belief up-
dating rules, choice procedures) or perfectly comply with rules handed down by
governments and organizations (e.g. regulations, laws, bureaucratic rules).

Our investigation is built around the idea that rules are in fact algorithms,
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LFor instance, many key tendencies from behavioral economics seem to involve simplification: sat-
isficing simplifies rational choice by radically reducing the number of rank comparisons made; myopia
simplifies dynamic optimization by ignoring the impact of current acts on future outcomes; representa-
tiveness simplifies Bayes’ rule by ignoring the influence of base rates on posteriors; narrow bracketing
simplifies joint optimization by ignoring the relationships between choices; adaptive learning simplifies
rational expectations by ignoring counterfactuals; the winner’s curse and related errors simplify Bayesian
Nash Equilibrium by ignoring contingencies or information in others’ choices etc.
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(a) Grim (25-1T) (b) Tit-for-3-Tat (countable)

Figure 1. : Automata representations of two rules (strategies in the repeated
prisoner’s dilemma).

Note: In parentheses are names for the equivalent automata used in the experimental design.

implemented not by computers but by human actors and thinkers. The “au-
tomata literature ” (surveyed in Kalai (1990); Chatterjee and Sabourian (2009))
formalizes this idea by mathematically describing rules as “automata,” formal
descriptions of algorithms from computer science. This literature advances sev-
eral hypotheses (reviewed in Section I) about what structural characteristics of
automata make the rules they describe complex, operationalizing “complexity” as
the cost of implementing a rule. We use these hypotheses — and the literature’s
operationalization of complexity as cost — to organize our investigation.

Figure 1 shows examples of automata from the repeated games literature, the
first place this idea was applied in economics. Panel (a) shows the automaton
description of a rule called Grim (the “grim trigger strategy”), a strategy for
playing the repeated prisoner’s dilemma. The automaton consists of two states
(shown as circles) and a set of transitions (shown as arcs). Letters inside the
circles tell the player what to do in each state (e.g. C for “choose to cooperate”,
D for “choose to defect”) and letters next to each arc tell the player when to follow
the corresponding transition (e.g. when your counterpart chooses C, D). The rule
instructs the player to begin by choosing C (cooperate), but then to transition
to the second state and choose D (defect) as soon as the other player chooses D.
The right state is absorbing, meaning no transitions lead away from it, so once
here the player chooses D forever. Panel (b) of Figure 1 shows the automaton
description of another strategy discussed in the literature called “Tit-for-3-tat,”
(T13T), a lenient version of the famous tit-for-tat strategy. This rule instructs
the player to cooperate until her counterpart has defected 3 times and then to
switch to defect, forgiving her afterwards by starting the rule over (shown as an
arc transitioning back to the first state) if she cooperates.?

2For expositional ease, these automata include only transitions that depend on other players’ actions
— to completely describe a strategy, transitions must also depend on the player’s own actions (see Kalai
and Stanford, 1988). Likewise, normally Tf3T requires the player to wait for three contiguous rounds
of defection before defecting; for simplicity we show a cumulative version that doesn’t require the three
rounds of defections to be contiguous.
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Intuitively Tf3T seems more complex to implement than Grim, but in what
sense is this true? What is it about a rule like Tf3T that makes it “more com-
plex” than a rule like Grim, and how is this complexity formally reflected in its
algorithmic structure?

To answer questions like this, we conduct an experiment (described in Sec-
tion IT) in which we assign subjects a sequence of abstract rules of the form e.g.
“Choose x until you see a, after which switch to y” and show them a sequence of
randomly generated events (letters in the alphabet). The subject’s task is simply
to correctly implement the rule in response to the random events by typing a
sequence of letters on her keyboard. After subjects have implemented a number
of different rules, we elicit their willingness to pay to avoid having to implement
each rule again in the future, allowing us to measure the subjective cost of imple-
menting each rule. By varying characteristics of the automata describing these
rules, we can measure what algorithmic characteristics cause a rule to be complex
and costly.

For instance, one popular theory from the automata literature is state com-
plexity (or s-complexity), the hypothesis that states generate complexity costs.
States describe the degree to which a rule-follower must condition her behavior
on the past and they also summarize the distinct ways a rule requires a decision
maker to process and respond to information. In our example, Tf3T contains
two more states than Grim and by comparing how much subjects are willing to
pay to avoid Tf3T versus Grim we can measure the subjective cost of adding two
states to a rule, allowing us to evaluate s-complexity. In the experiment we find
that subjects are willing to pay twice as much to avoid Tf3T as Grim, providing
some evidence that states produce complexity costs. (Other natural complexity
measures like implementation time are also generated by our data and we can
perform the same exercise on them — for instance it takes subjects three times as
long to implement Tf3T as Grim.)

Of course many algorithmic characteristics (not only states) differ between Tf3T
and Grim and so the experiment is designed around a set of carefully chosen rules
that independently vary automata characteristics to study their effects. For in-
stance, Tf3T also contains many more transitions than Grim, and transition com-
plexity (t-complexity, e.g. Banks and Sundaram (1990)) is the theory that this
generates complexity in a rule. Transitions summarize the intensity with which a
rule requires a decision maker to monitor and respond to the environment, sum-
marizing a different aspect of a rule than states. Independently varying states
and transitions and comparing behavior across our rules, we find that adding a
transition indeed adds complexity costs, but that the effect is half as large as
that of adding a state. Grim also has a simpler architecture than Tf3T because it
contains an absorbing state and thus never requires the rule-follower to return to
previously visited states. We find evidence that the architecture of rules shapes
complexity too: ceteris paribus, rules with absorbing states are considerably less
complex. Overall, our cost estimates suggest that rules like Tf3T are more com-
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plex (costly) than rules like Grim and we therefore might expect them to be used
less frequently. As we discuss in Section IV, this is in fact true in experimental
repeated prisoner’s dilemmas.

Our experiment also allows us to study how people represent rules to them-
selves and how this influences complexity. For instance, the literature generally
assumes efficient representation: people don’t over-complicate plans of action by
representing them as rules containing unnecessary states. We test this by giving
subjects similar rules that do and do not contain redundant states and we find
strong evidence against efficient representation: subjects do not treat rules that
contain redundant states as any less complex. A related but more fundamental
assumption is that people only represent behavior using rules describable by finite
state machines (FSMs), the basic class of algorithms studied by the automata lit-
erature. Tf3T, for example, cannot be represented as an FSM with fewer than
four states, but if represented as a slightly richer type of algorithm (a “pushdown
automata”) that can simply count the number of ‘D’ events (by holding and ma-
nipulating a simple object in working memory), it can be represented with only
two states and thus be dramatically simplified. When we compare responses to
rules like Tf3T to rules that cannot be represented as counting rules, we find that
indeed Tf3T is far less complex (less costly, faster to implement), suggesting that
subjects are not constrained to represent behavioral patterns as FSM-like rules.
Our results thus suggest that richer descriptions of algorithms than are typically
studied in the automata literature are likely important for fully understanding
and characterizing procedural complexity.

Finally, our experimental task is abstract but we take some first steps towards
understanding how context influences the complexity of rules. For instance, we
show that familiarity with a rule has a powerful alleviative effect on complexity:
subjects given repeated exposure to a rule learn to implement it much faster and
grow less willing to pay to avoid the rule. Likewise, a treatment variation in
our design reveals that it is significantly more complex (from both a time and
cost perspective) for subjects to enact rules mentally (e.g. to think through a
counterfactual or forecast another’s behavior) than it is to implement a procedure
via a sequence of acts (e.g. to enact a strategy in a repeated game).

The purpose of our experiment is not to “test automata models” or even to
propose automata as models of human cognition. Rather, automata are formal
ways of describing and taxonomizing rules, and the purpose of our experiment is
to study what (if any) components of these formal descriptions (e.g. states, tran-
sitions) systematically translate into complexity costs for decision makers, given
the rules they describe. To the degree algorithmic characteristics predict com-
plexity costs, we may be able to use automaton descriptions of rules, procedures,
strategies etc. (combined with estimates using methods like ours) to model, pre-
dict and explain behavior in applications (e.g. to understand what sorts of rules
people are unlikely to use or follow).

Overall, our findings (described in detail in Section III) can be summarized as
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follows:

1)

Most subjects find implementing complex rules costly, but these costs are
highly heterogeneous across subjects and linked to independent measures of
cognitive ability.

Algorithmic characteristics of rules significantly influence their complexity.
Rules that require more states are significantly more complex (more costly,
take longer to implement). Adding a transition is also costly, but adds half
as much cost.

“Architectural” characteristics of algorithms other than simple state and
transition counts influence complexity too: rules that eventually terminate
in absorbing states (rather than endlessly doubling back to previously
visited states) are signficantly less complex (equivalent to removing a state
from the rule).

Subjects have difficulty efficiently representing rules to themselves by dis-
carding redundant states. However, subjects are able to represent some
rules to themselves in efficient ways not achievable using the simplest types
of algorithms usually studied in the literature. For instance, subjects seem
able to conserve complexity by tracking simple sequences in working
memory, allowing them to remove costly states from rules.

Complexity costs fall significantly as subjects become experienced at (famil-
iar with) a rule, but this “procedural learning” is fragile and not easily
transferred to even superficial perturbations of the learned rule.

The context in which a rule is implemented can matter a great deal for
complexity. Employing a rule mentally (e.g. to make inferences) is signif-
icantly more costly than employing a rule physically (e.g. to implement a
strategy).

The features of rules that generate cost are closely related to the features
that generate implementation time, another important complexity metric.
By contrast, there is only a very weak relationship between the drivers of
costs and of implementation mistakes.

Although our motivating examples are strategies, we emphasize that any de-
cision procedure or rule has algorithmic structure and so the methods and mea-
surements we study here have potential applications across economics. Perhaps
most intriguingly, aversion to procedural complexity has been used to explain
(via automata models) important findings in behavioral economics including sat-
isficing, primacy and recency effects, choice overload and status quo bias (Salant,
2011), stochastic choice (Kalai and Solan, 2003), non-Bayesian inference (Chau-
vin, 2020), biases in information processing (Wilson, 2014), and failures of back-
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wards induction (Neyman, 1985).3 Understanding the degree to which distaste for
complexity underlies and ties together classic findings from behavioral economics
is a particularly important application for our methods. Earlier, automata were
used to understand how aversion to complexity might solve equilibrium selection
problems in games (e.g. Rubinstein, 1986; Abreu and Rubinstein, 1988; Kalai
and Stanford, 1988), another promising application.* A third potentially valu-
able application is to use methods like ours to study the algorithmic complexity
of regulations, bureaucracies, laws, tax codes etc. in order to understand why
policies and institutions don’t always work as intended and to guide the design
of more effective alternatives (see Abeler and Jager (2015) for related work).

Though our focus is on understanding what makes behavior complex (“imple-
mentation complexity” ), our methods may also be useful for understanding what
makes some decision problems complex (“computational complexity”). This is be-
cause the computational complexity of a problem is typically operationalized (e.g.
in computer science) as the implementation complezity of the most efficient evalu-
ative procedure capable of solving it. In some cases, optimal decision making may
be complex because it requires decision makers to use elaborate solution proce-
dures that are complex to implement (costly, time-intensive, difficult) in a similar
way and for similar reasons that other rules (such as those in our experiment) are.”
For example, Salant (2011) shows in an automata model that the computational
problem of selecting an optimal option from a list is implementation-complex
in exactly the sense we measure here. Several recent experimental papers (e.g.
Carsten Murawski and Peter Bossaerts, 2016) have studied how the computational
complexity of optimization problems impacts subjects’ performance, and study-
ing the degree to which implementation complexity measures like ours (perhaps
elicited over more sophisticated types of algorithms like Turing machines) can be
used to understand the effects of computational complexity on choice seems an
important task for future research.

Finally, we operationalize complexity behaviorally, as a measure of the subjec-
tive burden a rule places on a decision maker. In doing this we follow several
adjacent literatures. Computer science similarly defines complexity as a mea-
sure of the resources a machine must expend in order to implement an algorithm

3Recent experimental evidence suggests that subjects prefer to evaluate risk and lotteries procedurally
(Halevy and Mayraz, 2020; Nielsen and Rehbeck, 2020) meaning procedural complexity may influence
risky choice as well.

4 Automata models of complexity have also been used in applied strategic contexts ranging from
bargaining (e.g. Chatterjee and Sabourian, 2000) and industrial organization (e.g. Fershtman and Kalai,
1993; Sherstyuk, 2011) to general equilibrium (e.g. Sabourian, 2004; Gale and Sabourian, 2005).

5See Bossaerts and Murawski (2017) for a discussion of computational complexity and human be-
havior, emphasizing that even basic decision problems in economics can be intractably computationally
complex. Echenique, Golovin and Wierman (2011) make the useful point that although optimization
can be complex, simply satisfying rationality in the revealed preferences sense needn’t be. Finally, it is
worth emphasizing that some decision problems are “difficult” not because they require computationally
intensive procedures but instead because the most attractive and immediate models of the problem or
procedures for solving them are simply wrong. For instance, in the famous Monty Hall problem or the
Wason selection task, the computations required to choose optimally are trivial but most people make
fundamental mistakes because the intuitively appealing rule is faulty.
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— usually time (“time complexity”) or working memory (“space complexity”).
By focusing on the subjective costs of rules (“cost complexity”), we also follow
growing literatures in both cognitive psychology (e.g. Wouter Kool and Matthew
Botvinick, 2018; Amitai Shenhav, Sebastian Musslick, Falk Lieder, Wouter Kool,
Thomas L. Griffiths, Jonathan D. Cohen and Matthew M. Botvinick, 2017). and
economics® that interpret behavior in terms of cognitive costs. A related interdis-
ciplinary psychology literature studying the complexity of (e.g. workplace) tasks
(e.g. Donald J. Campbell, 1988; Peng Liu and Zhizhong Li, 2012), makes a useful
distinction between “objective complexity” (defined purely by characteristics of
a task) and “experienced complexity” (determined also by the abilities, tastes
and circumstances of the agent). With this distinction in mind, our experiment
is designed to articulate an empirical mapping between “objective complexity”
characteristics (e.g. “state complexity”) and “experienced complexity” responses
like costs. We will sometimes refer to our cost measures directly as “complexity”
(evoking experienced complexity) and sometimes as “the cost of complexity” or
“complexity costs” (emphasizing cost as a response to the objective complexity
characteristics of the rule).

I. Automata and Complexity

Consider a decision maker (DM) who must make a series of responses (r; € R)
to a series of events (e; € F) at a sequence of dates ¢t = 1...T. We can think of
events as true historical events (e.g. others’ actions in a game as in Rubinstein
(1986)) or as pieces of information considered one at a time in some order (as
in e.g. Wilson (2014)). Likewise, we can think of responses as either actions
made at each date (e.g. actions in a game) or as beliefs developed cumulatively
or decisions made provisionally as facts are progressively considered (as in e.g.
Salant (2011)).

The DM follows a rule that, at each date, maps the history of events so far into
a current response. In applications, this could be a rule the DM chose on her own
(e.g. which strategy to use in a game or what procedure to use to guide choice)
or a rule provided by her environment (e.g. a series of steps and contingencies
required to properly file taxes).

The “automata literature” builds on the insight that a rule can be described
algorithmically as a finite state machine (or finite automaton), a basic formaliza-
tion of algorithms used in computer science (e.g. Hopcroft and Ullman (1979)).7
Formally, a finite state machine is a four-tuple (S,s", f,7) where S is a set of

SThere is a recent theoretical literature in economics studying the cost of using complex reasoning
procedures (e.g. Haluk Ergin and Todd Sarver, 2010; Pietro Ortoleva, 2013; Larbi Alaoui and Antonio
Penta, 2018) as well as a large and growing literature on the costs of attending to information (e.g.
Sims, 2003; Caplin, 2016; Dean and Neligh, 2019). Experimental work has been broadly supportive of
this latter line of research, producing evidence in favor of the general modeling strategy (Mark Dean
and Nathaniel Neligh, 2019) and methods for measuring these attentional costs directly (Andrew Caplin,
Déniel Csaba, John Leahy and Oded Nov, 2019; Ambuj Dewam and Nathaniel Neligh, 2020).

7Automata can be used to describe a broad range of rules. For instance Kalai and Stanford (1988)
show that finite automata can be used to formally describe any finite strategy in a repeated game.
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states, sV is the initial state, f : S — R is an output function, specifying a re-
sponse in each state, and 7: S X E — § is a transition function that specifies a
next state as a function of the current state and the current event. The number
of states, s; € Sy, in state machine m is |S,,|, the number of total transitions
from state s; is N(s;) and the number of total transitions in machine m, summed
over states, is N(m) =3, . N(s;). Figure 1 represents two automata visually
in the standard way, as directed graphs with (i) circles representing states, (ii)
arcs representing total transitions, (iii) letters inside of the circles representing
responses from a set R = {C, D} and (iv) letters next to transitions representing
events from a set £ = {C,D}. A free standing arrow pointing at the left-hand
state indicates the initial state, sV.

The automata literature poses several hypotheses about what characteristics
(e.g. states, transitions etc.) of automata generate complexity where “complex-
ity” is interpreted as the cost of implementing a rule — a way of ranking the DM’s
preferences over implementing different rules. Thus, rule A is more complex than
rule B for a DM if the DM would prefer to implement rule B, ceteris paribus.
We will follow suit by focusing attention throughout the paper on the cost of
complexity or “cost complexity.”®? However, we will also consider other natural
metrics of complexity such as implementation time (“rules are more complex if
they take longer to implement”) or mistakes rates (“rules are more complex if
they are harder to correctly implement”).

A.  Structural Hypotheses: States, Transitions and Absorption

We begin with a set of hypotheses that relate to the structure of the finite state
machine (FSM) representation of the rule. These hypotheses are listed in Table
1 which includes an illustrative example of a relatively simple (on the left) and
relatively complex (on the right) rule under each theory.

The earliest (and by far most popular) hypothesis in the automata literature is
state complezity (or s-complexity) (e.g. Rubinstein, 1986; Abreu and Rubinstein,
1988). States describe the distinct ways that a rule requires the decision maker
to (i) act (choose a response) and (ii) process information (react to events) and

8There is a growing literature in cognitive science developing the idea that using mental resources in
complex tasks generates direct costs (e.g. Wouter Kool and Matthew Botvinick, 2018; Amitai Shenhav,
Sebastian Musslick, Falk Lieder, Wouter Kool, Thomas L. Griffiths, Jonathan D. Cohen and Matthew M.
Botvinick, 2017). A common interpretation in this literature is that complex problems are costly because
they require the decision maker to exert “cognitive control” over mental resources that are otherwise
deployed reflexively in “automatic” default mental processes. Shutting down these automatic processes
(and keeping them at bay) in order to focus cognitive resources on a complex problem that requires
dedicated and sustained monopolization of computational resources is costly. Some evidence suggests
that this is a top-down function of the executive network in the brain (related especially to the dorsal
anterior cingulate cortex). Under this lens, a natural interpretation of our finding that complexity costs
fall with learning (Section III.D) is that familiarity allows subjects to follow rules more automatically,
requiring them to exert less cognitive control.

9 Although cost is a natural operationalization of complexity in settings like ours where it is relatively
clear that the main thing varying is mental effort, it may raise some conceptual difficulties in other
contexts. For instance costs of behavior in some settings may be driven by fear or aesthetic distaste and
it may make less sense to refer to this as “complexity.”
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Table 1—: Hypotheses on the structure of rules.
Hypothesis Simple Complex
B B
lexit A
s-complexi
P y A,B

# of states to

track and 1 1

remember.

(Hypothesis 1) 25.0T 3527

t-complexity

# of events to
monator,
respond to.

(Hypothesis 2)

absorption

Do tracking

4S-4T

and
monitoring
requirements
end?

(Hypothesis 3)

48-8Ta

48-3T

Note: On the left we include an example of a simple rule and on the right a complex rule under the

Hypothesis listed on the far left.

Table 2—:

Hypotheses on the representation of rules.

Given Form

Reduced Form

Hypothesis
State A B
Reduction B
Can the rule be —
represented as a
A

finite state
machine with
fewer states?

(Hypothesis 4)

reducible
(Finite State Machine)

reduced
(Finite State Machine)

B, B —¢ B

Stack
Representation

Can state-tracking
be replaced with a
stmpler working
memory stack?

(Hypothesis 5)

countable
(Finite State Machine)

sequenceable
(Finite State Machine)

£ —BB

countable
(Pushdown Automoton)

sequenceable
(Pushdown Automoton)

Note: Notes: On the left we include an example of the finite state machine that most closesly resembles
the statement of the rule. On the right we include the simpler way it can be represented under the

Hypothesis on the far left.
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s-complexity is the claim that partitioning behavior in this way is costly: the DM
prefers rules requiring fewer states to those requiring more.

HYPOTHESIS 1: (s-complexity) A rule A is more complex than a rule B if A
has more states than B (|Sa| > |Sg]).

Table 1 provides an example of s-complexity: the right hand rule (3S-2T) is
more s-complex than the left hand rule (2S-2T) (it has an additional circle in its
graph and thus an additional state).

Banks and Sundaram (1990) hypothesize that another central feature of a rule
— transitions — drive complexity. Adding a transition to a state (adding additional
arcs in the graph of a rule) requires the DM to more precisely monitor and differ-
entiate between events at that state in order to successfully implement the rule.
Transition complexity (or t-complexity) hypothesizes that this increase in monitor-
ing demands is costly. In order to focus on monitoring and to avoid confounding
our transitions measure with s-complexity we operationalize t-complexity using
“net transitions” (the number of transitions in excess of the number of states) as
described in Banks and Sundaram (1990), and we will refer to these simply as
“transitions” throughout the paper:'®

HYPOTHESIS 2: (t-complexity) A rule A is more complex than a rule B if A
has more transitions in excess of states than B (N(A) — |Sa| > N(B) — |SB|).

The t-complexity row of Table 1 provides an example: the right hand rule (4S-
4T) is no more s-complex than the left hand rule (4S-3T) but is more t-complex
because it has one additional arc in its the graph.

Finally, rules can differ in broader “architectural” characteristics, such as whether
they contain absorbing states — states with no transitions leading away from them.
Absorbing rules are potentially less costly and difficult to implement than tran-
sient rules (those with no absorbing states) because in the former the DM eventu-
ally reaches a position in which she no longer has to track states (s-complexity ef-
fectively goes to zero) or monitor the environment (t-complexity goes to zero). Al-
though it is intuitive that “architectural” features of rules such as transience and
absorption might influence complexity, the literature does not explicitly model
absorbing rules as less complex.

HYPOTHESIS 3: (transience and absorption) Ceteris paribus, rule A is more
complex than rule B if B contains an absorbing state while A does not.

The absorption row of Table 1 gives an example: the rule on the left (4S-3Ta)
has identical states and transitions to the rule on the right (4S-3T), but while

10Each time a reachable state is added to an automaton, at least one additional transition must
be mechanically added. Because the goal of the experiment is to differentiate between the effects of
elements like states and transitions it is important to use a measure of transitions that does not include
this redundancy with our measurement of state-complexity. To do this we use Measure 3 from Banks
and Sundaram (1990).
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the rule on the left has an absorbing state (the rightmost state of the graph), the
rule on the right does not. Under the hypothesis that rules are less complex if
absorbing, the rule on the right is more complex.

Two other related ideas from the literature bear mentioning. First, Lipman
and Srivastava (1990) point out that automata differ in their robustness — in the
degree to which mistakes in perceiving events lead to serious mistakes in following
the rule’s prescription. We consider this and its bearing on complexity costs in
the context of the data in section IIL.LE. Second, Chatterjee and Sabourian (2000)
discuss a refinement of s-complexity that they call response complexity or “r-
complexity,” which applies to settings that differ somewhat from ours (settings in
which extensive form games must be played in each state). A rough translation to
our setting is that a rule is more r-complex if it requires more changes in behavior
(in “responses”) when states change. This is connected to issues discussed in
Section 1.B below.

B. Representational Hypotheses: Redundancy and Memory

A rule is a way of representing a plan of action and, in general, there will be
many ways a decision maker can algorithmically represent any plan of action to
herself as a rule. Any account of procedural complexity therefore must include
an account of how decision makers represent rules to themselves — in particular
an account of how efficiently they represent rules to themselves. The automata
literature has developed under two assumptions about representation that we will
use to articulate two representational hypotheses in the next two subsections.

ELIMINATING REDUNDANT STATES

First, the automata literature generally assumes that decision makers use rep-
resentations of rules that economize on states. A rule’s complexity is therefore
governed not by the algorithmic features of the rule itself but by the lowest-state
equivalent rule that delivers an identical sequence of actions over all possible se-
quences of events. This is an efficiency notion for complexity, postulating that a
DM will not waste cognitive effort in following the representation of a rule given
to her (or conceived by her) if there is an available equivalent representation that
has fewer states. Behaviorally, this is equivalent to a hypothesis that a DM will
find a heuristically simpler representation if it is available, re-representing a rule
to herself in a less structurally complex way whenever possible.

HYPOTHESIS 4: (State Reduction) Suppose rule B can be represented as a fi-
nite state machine with (i) no more states and transitions and (ii) either strictly
fewer states or strictly fewer transitions than rule A. Then rule A is more complex
than rule B.

The State Reduction row of Table 2 provides an example. The rule on the
left shows the rule reducible which is (under Hypotheses 1-3) identical to the
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rule 45-4T from Table 1. But 4S-4T cannot be reduced to a simpler rule —
there is no automaton with fewer states or transitions that delivers the same
sequence of actions in response to all histories. By contrast, the rule reducible
can be replaced with (reduced to) the rule we call reduced (shown to the right
of reducible) — the rule reduced produces exactly the same set of actions after
all sequences of events as reducible, but has half as many states and transitions.
Thus, to the degree that states or transitions drive complexity, 45-47 is more
complex in the sense of State Reduction than machine reducible even though
the two are superficially almost identical. Moreover, to the degree that decision
makers represent rules efficiently, we would expect them to treat a rule described
as reducible as equivalently complex as a rule described as reduced.'

REPLACING STATES WITH WORKING MEMORY

More fundamentally, the automata literature implicitly assumes that decision
makers represent rules as finite state machines (FSMs) — an assumption that limits
the way decision makers can economize on complexity in some cases. For example,
the FSM of the rule countable (left side of Table 2) has the same number of states,
transitions etc. as the FSM of 4S5-4T (Table 1), but states serve a much more
primitive role in the former rule than in the latter. While states in 45-4T provide
four unique sets of instructions for what to do and how to interpret events, three
of the states in countable are identical: these states exist purely to keep track
of the number of ‘B’ events that have occurred so far. Although states serve a
much simpler (largely mnemonic) function for countable than /S-4T, under the
descriptive lens of FSMs the two rules are identical.

To represent the intuitive difference between the way the two rules make use
of states, we must allow the DM to represent rules with algorithmic structures
nuanced enough to separate out the memory function of a state from its more
complicated functions. This requires only a minimal iteration beyond an FSM
called a “pushdown automaton” (PDA). In addition to states and transitions, a
PDA maintains a “stack” — a string of symbols — in working memory and can
(i) “read” the top element of the stack to determine when to transition, and (ii)
can either add (“push”) a new top element to the stack or can remove (“pop”)
the top element during any transition. The right side of Table 2, shows a PDA
representation of countable. Here the transition notation h, i — j says “Make
this transition if event h has occurred and the top element in the stack is i.
Replace the top element in the stack with j.” Under this notation, replacing an
element with € removes the element and the element ¢ is read by the rule only if
the stack is empty. The PDA for countable begins with an initial transition that

H1n the experiment, following the structure of the algorithm, we describe reducible as “Choose x until
you see b, after which switch to y. Then, choose y until you see a, after which point switch to x. Then,
after you see b, switch to y. Then, start over after you see a” while we describe reduced as “Choose x
until you see b, after which switch to y. Then, start over after you see a.” Hypothesis 4 argues that
subjects should internally replace the former description with the latter.
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pushes a string of symbols,“BB,” onto the empty stack (¢ — BB). The stack
is now of length two, ordered from left (“top of the stack”) to right (“bottom of
the stack”). In the initial (left hand) state, when a ‘B’ occurs: (i) if the stack is
non-empty, the top ‘B’ in the stack is ‘replaced’ with € and thus removed (B — ¢)
and (ii) once the stack is empty (i.e. once there are no ‘B’ symbols left, meaning
the top of the stack contains ) the automaton transitions to the right.

Representing countable as a PDA-like rather than FSM-like rule economizes on
s-complexity: it removes two states without adding any transitions, and it does
so by instructing the DM to count events rather than track many states.'?'3 Our
final hypothesis is that rules that can be simplified in this way, using working
memory to replace states, are less complex.

HYPOTHESIS 5: (Stack Representation) Suppose rule B can be represented as
a pushdown automaton with (i) no more states and transitions and (ii) either
strictly fewer states or strictly fewer transitions than rule A. Then rule A is
more complex than rule B.

In order to test the hypothesis, we describe the rule countable to subjects in the
natural way using a PDA-like description: “Choose x until you’ve seen b three
times so far (not necessarily in a row), after which switch to y. Then, start over
after you see a.” Our hypothesis is that this is less complex than “45-4T” which
can be described in no simpler way than the FSM-like “Choose x until you see a,
after which switch to y. Then, after you see b switch to x. Then, after you see
another b switch to y. Then, start over after you see a.” % Counting can be repre-
sented in this particularly simple way in part because it uses an especially simple
kind of memory that we call an “event stack”: the rule adds a string of antici-
pated future events upon entering the initial state, removes elements iteratively
as the corresponding events occur and transitions once the stack is empty.!® In-
deed, counting can be thought of as a simple instance of sequencing: remembering
and eliminating a series of (possibly irregular) events before triggering a change

12 A natural interpretation is that by separating states from working memory, PDAs distinguish be-
tween the (i) “information processing” and “behavioral” functions of a state and (ii) the plausibly less
burdensome “memory” function of a state, and thus allow us to attribute different complexity contri-
butions to these functions. In an FSM representation these functions are all constrained to be treated
identically.

13By contrast, as we show in Online Appendix C, no such “free lunch” is available for rules like 45-4 7"
in order to remove states using a PDA representation, the rule must, in exchange, add a great many
additional transitions to handle the information processing required by states in that rule.

14 An alternative way to test the hypothesis would have been to describe countable to subjects with
a much less natural FSM-like description: “Choose x until you see b. Then choose x until you see b.
Then choose x until you see b at which point switch to y. Then, start over after you see a.” We strongly
suspect subjects would immediately reduce this to PDA form (and wonder why we chose to describe the
rule in such an unnatural way).

15pPushdown automata are more general than finite state automata: any rule that can be represented
by the latter can be represented by the former. Indeed, all of the rules we study in our experiment can
be represented as 2-state PDAs, generally by adding a great many transitions. However, for most rules
this cannot be done with an event stack, and require a far more elaborate coding system on the stack
than an event stack allows. In Online Appendix C, we translate all of the rules studied in the paper into
two state PDAs and discuss these representational issues in more detail.
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in behavior. The rule sequenceable at the bottom of Table 2 gives an example.
The FSM representation on the left is almost identical to the rule countable and
like countable uses states mostly for memory and therefore can be reduced to a
PDA with an event stack (in this case, initalized with “AB”). However, because
sequenceable requires a richer (irregular) stack, the reduced version of sequence-
able requires three additional (net) transitions in exchange for the removal of two
states, and thus (unlike countable) doesn’t strictly fit Hypothesis 5. Nonetheless,
depending on the relative complexity costs of states versus transitions, we might
expect a net complexity reduction for sequenceable as well (though a smaller one
than for countable).

C.  What Else Influences Procedural Complexity?

Other features of rule-following that have little to do with the structure or repre-
sentation of a rule seem also likely to influence experienced complexity. Perhaps,
most important among these is learning and resulting familiarity with a rule. We
hypothesize that experience with a rule may allow a decision maker to build up
skill that reduces experienced complexity via a process that cognitive scientists
call procedural learning. Another potentially important factor that may influence
complexity, is the context in which the rule is implemented. For instance, some
procedures are followed by taking an explicit series of steps (for instance taking a
series of actions in a repeated game), while others are followed to form beliefs or
to forecast the behavior of others (predicting the consequences of another’s strate-
gies, calculating the consequences of an asset allocation, analyzing a sequence of
pieces of information to form a belief etc.). Following a procedure “in one’s head”
seems more difficult and therefore plausibly more costly, even if the algorithmic
structure of the procedures required in each case are identical.

In the experiment described below we consider both of these potential “non-
algorithmic” drivers of complexity. However, we note that there are many other
factors, both algorithmic and non-algorithmic, that plausibly influence complex-
ity and that our design does not explore. For instance, it seems plausible that
features of the underlying decision problem like the number of potential events or
the number of potential responses to events influence complexity. Because none
of the hypotheses above concern these features of the decision environment, our
experimental design will hold both constant (at two events and two responses).
Likewise, none of the hypotheses in the extant literature explicitly concern is-
sues of the architecture of rules (e.g. complex branching structures), beyond
those summarized by states and transitions. We stated a hypothesis concerning
absorption (Hypothesis 3) which has to do with whether the architecture of au-
tomata are “linear” or “circular.” But clearly many, more complicated branching
structures could be explored and their influence on complexity characterized. We
believe these issues are important topics for future research.'6

161 ikewise, our design hardly exhausts the set of possible influences of context on complexity. For
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Figure 2. : Screenshots from the experimental software.

II. Experimental Design

The experimental design consists of five Stages (summarized in Figure 3), run
in sequence in each session. In Stages 1, 3 and 5 we ask subjects to complete a
series of Implementation Tasks:

Implementation Task: In each Implementation Task, we assign subjects a
verbal rule and show them a sequence of twenty ‘Events’ (randomly selected
letters), one at a time.'"18 The subject’s task is to “implement the rule” by typing
the sequence of letters (“Choices”) prescribed by the rule, given the random events
that have occurred. Given the sequence of events, there is a unique sequence of
twenty Choices that complies with the rule. If the subject perfectly types this
sequence, she earns a monetary reward (otherwise she earns nothing ). Subjects
are not told whether they’ve made a mistake until the end of the Task and are
then shown the correct sequence.

Example: Figure 2 (a) shows an example of an Implementation Task. The sub-
ject was shown a rule at the top of the screen (“Choose ¢ until you see g, after

instance meaning may influence complexity directly. A canonical example is the empirical literature on
the Wason selection task (a card task testing deductive reasoning): when the task is framed abstractly
subjects do extremely poorly, but they often solve the task correctly when it is framed more meaningfully,
for instance as a social exchange or cheater detection problem (e.g. Cosmides, 1987). It is possible that
rules implemented in non-abstract, meaningful contexts have lower complexity costs and examining
whether this is the case seems a promising direction for future work.

17For example the rule we call 2S-1T (the Grim rule from Figure 1) has a verbal description “Choose
X until you see B, then switch to Y forever,” while the rule 4S-4T (shown in Table 1) has a description
“Choose X until you see A, then switch to Y. Afterwards, if you see B switch to X and then to Y if
you see B again. Start over if you see A.”

18These Events are randomly selected by the computer from a set of two possible Events following
each Choice, and subjects are informed that Events are randomly selected. At the beginning of each
Implementation task, we randomly select the set of two letters used to represent Events and the two
possible Choices (responses). That is, we replace the letters in the event set {A, B} and response set
{X,Y} each with a randomly selected letter in forming the rule.
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which...”) and typed a first letter (‘c’) which was displayed in the first position
on the “Choice” line. The computer responded by randomly selecting an FEvent
‘g’ (drawn equiprobably from a set of 2 possible letters) and displayed it in red in
the first position on the “Fvent” line. The subject, following the rule, next typed
17 and a new random Event 4’ immediately appeared in the next position on the
Event line, etc. In the example, the subject has made 5 (out of 20 total) Choices
i the Task so far.

In Stage 1, we assign subjects 14 Implementation Tasks in sequence, each with
a different assigned rule (and each consisting of 20 Choices). The rules are drawn
from a fixed set of 14 (described in Section II.A) and are assigned to subjects
across Tasks in a random order. At the end of the experiment, the computer
draws one Stage 1 Implementation Task at random and the subject earns $4 if
she implemented that Task correctly. The purpose of this Stage is to study how
markers of complexity like implementation time (how long it takes the subject
to implement the rule) and mistake-making (how likely the subject is to make a
mistake) vary with characteristics of the rule.

In Stages 2 and 4 of the experiment we ask subjects to complete several Elici-
tation Tasks:

Elicitation Task: In each Elicitation Task we show subjects a maximally simple
“red rule” (directing subjects simply to type the same letter repeatedly) and a
more elaborate “blue rule.” The subject knows that one of these two rules will be
assigned to her in a future Implementation Task. In that future Task, the red rule
will pay $2 while the blue rule (if correctly implemented) will pay some unknown
random amount x drawn uniformly from [$2,$6]. The subject’s task is to use a
slider to give the minimum amount m for which she would be willing to be assigned
the blue rule rather than the simpler red rule in that future Implementation Task.
If x > m the subject will be assigned the complex blue rule, otherwise she will be
assigned the simple red rule.'”

Example: Figure 2 (b) shows an example of an Elicitation task. The subject was
shown the red rule (“Chose r...”) on the left side of the screen and a blue rule
(“Choose y until you see w...”) on the right. The subject submits m (the “min-
imum blue payment required”) by moving the slider and sees the results (“must
pay you at least..”) above the blue rule. In this example, the subject has set the
slider to $2.90, meaning she would prefer to be assigned the red rule unless the
blue rule pays at least $2.90.

19This task is formally equivalent to a Becker-Degroot-Marschak (BDM) elicitation. Cason and Plott
(2014) document that in BDMs framed as auctions, some proportion of subjects confuse the second price
auction incentives of the mechanism with first price auction incentives (e.g. they believe they will earn
their bid). We designed our mechanism with these results in mind, by (i) explicitly asking subjects to
submit an indifference points (rather than presenting an auction), (ii) explicitly highlighting the incentive
compatibility of submitting one’s true indifference point and (iii) explicitly warning subjects against the
specific mistake Cason and Plott (2014) document in their data (i.e. emphasizing to subjects that they
are paid the random value z if assigned the complex rule, not their indifference point m).
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Table 3—: Rules implemented in the design.

2 State 3 State 4 State
1 Transition 2S-1Ta 3S-1Ta  4S-1Ta
2S-2T

2 Transition 3S-2T 4S-2T
reduced
4S-3T

3 Transition 3S-3T 4S-3Ta,

4S-4T
reducible
countable
sequenceable

4 Transition

The choice, m, gives us a measure of the subject’s subjective cost of imple-
menting the blue rule — the amount the subject is willing to “leave on the table”
to avoid implementing the rule in the future. Since the simple red rule pays $2,
our cost measure — the money the subject is willing to sacrifice to avoid the more
complex blue rule — is ¢ = m — 2 and we measure this cost for each rule assigned
in an Elicitation Task. In the example, the subject has submitted $2.90, meaning
her elicited cost, ¢, of implementing the blue rule is $0.90.

In Stage 2, we assign subjects 14 Elicitation Tasks, each eliciting willingness-
to-pay to avoid a different (blue) rule. These rules are drawn (and assigned in a
random order) from the same set of 14 rules we assign for Implementation Tasks
in Stage 1, meaning subjects have implemented each of these rules prior to being
asked to value them.?® In order to incentivize the elicitations, we inform subjects
that at the end of the Stage, one Elicitation will be randomly drawn and used
to determine which rule the subject will be assigned to implement repeatedly (in
ten separate, sequenced Implementation Tasks) in Stage 3. The purpose of Stage
2 is to measure the complexity cost of each of our rules and study how this cost
varies with characteristics of the rules.

A. Rules Studied in the Design

We designed our 14 rules to evaluate the hypotheses in Section 1. Table 3
lists all 14 rules, with columns designating the number of states in the finite
state machine representation of the rule and rows the number of net transitions
(transitions in excess of the number of states). We divide these rules into three

types:

e Most cells of Table 3 include a rule with a name of the form “xS-yT” where
x designates number of states and y number of (net) transitions. These

20 After completing the 14 Elicitation Tasks one-at-a-time, subjects are shown their choices for all of
the elicitations and given a last chance to fine tune them.
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are our core rules, designed to test the effects of states and transitions on
complexity (Hypotheses 1 and 2).

e Some cells include a rule with a name of the form “xS-yTa,” where ‘a’
designates rules containing an absorbing state. These absorbing rules are
used to test the effects of transience and absorption (Hypothesis 3).

e Some cells include one or more rule with names that aren’t of the “xS-yT”
form. These are our representation rules, designed to be compared to
a core (“xS-yT”) rule in the same cell to test Hypotheses 4 and 5. For
instance the rules reducible and countable are designed to be compared to
4S5-4T, with which they share a cell.

Our empirical strategy is to compare behavior across rules in order to measure
the average effects of rule characteristics (e.g. states, transitions) on complex-
ity measures gathered in Stage 1 (implementation time, mistakes) and especially
Stage 2 (complexity costs). This, in turn, allows us to evaluate our hypothe-
ses. For instance 25-2T, 35-2T and 4S5-2T vary states while holding transitions
constant at two. Comparing elicited costs (or implementation time or mistakes)
across these rules lets us test s-complexity (Hypothesis 1). Likewise, 45-2T, /5-
3T and 4S-4T vary transitions while holding states constant at four, letting us
evalute t-complexity (Hypothesis 2) by comparing their costs. 4S-3T and 4S-3Ta
share identical states and transitions but only the latter contains an absorbing
state, enabling a test of Hypothesis 3. Comparing reducible and countable each
to 45-4T give us tests of Hypotheses 4 and 5 respectively. The other rules are
used in the analysis to support and clarify these hypothesis tests.

Most (nine) of the rules from Table 3 are shown in automaton form in Tables 1
and 2 and Figure 1. The remaining rules are shown in Online Appendix A, which
also provides the verbal descriptions we gave to subjects.

B. Further Stages

In Stage 3, we assign subjects a single rule to implement repeatedly over ten
consecutive Implementation Tasks (each with 20 Events and Choices as in Stage
1). The primary purpose of Stage 3 is to incentivize the elicitations in Stage 2
by assigning subjects rules based on the preferences they submitted. However, a
second purpose is to study how learning and familiarity impact complexity. In
order to accomplish both goals, we randomly assign half of our subjects as “En-
dogenous Assignment” types and half as “Exogenous Assignment” types (subjects
were never told which type they were). For Endogenous Assignment types, the
computer randomly selects one Stage 2 elicitation and a random payment x, and
uses these to determine which rule to assign the subject in Stage 3. Exoge-
nous Assignment subjects are instead assigned a rule without reference to their
willingness-to-pay, and in the main portion of our dataset, are simply assigned
either the rule “4S-4T” or “reducible.” While Endogenous Assignment subjects
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Figure 3. : Summary of the Stages in the experimental design

self-select into their Stage 3 rule via their submitted preferences, Exogenous As-
signment subjects do not and their learning data is therefore easier to interpret.
Regardless, subjects are paid based on their performance in one of these Imple-
mentation Tasks, randomly selected at the end of the experiment.

In Stage 4, we re-elicit subjects’ willingness to pay to avoid being assigned (in
Stage 5) the same rule they Implemented repeatedly in Stage 3. Our goal with
this Elicitation Task is to study whether familiarity with a rule reduces subjects’
costs of implementing the rule. By comparing willingness-to-pay before and after
learning in Stage 3, we are able to measure the effects of learning on complexity
costs for the Stage 3-assigned rule. In order to understand learning effects better,
we assign two different Elicitation Tasks in this Stage: one is for the Original
version of the rule (the exact same rule implemented in Stage 3) and the other is
for a superficially Perturbed version of the same rule. Specifically the Perturbed
version is representable by the same underlying automaton as the Original version,
but we randomly change all of the letters designating Events and Choices.

In Stage 5, we “pay off” the Stage 4 elicitation by having subjects once again
play a rule ten times (ten Implementation Tasks). As in Stage 3, Endogenous
Types are assigned based on one of the two Stage 4 Elicitations (randomly se-
lected) and a randomly drawn x, while Exogenous Types are randomly assigned
either the Original or Perturbed version of the Stage 3 rule. Subjects are paid
based on their performance in one of these Implementation Tasks, randomly se-
lected at the end of the experiment.

C. Details

We ran the experiment using 275 subjects (mostly undergraduates) in March,
April, July and August of 2019 at UC Santa Barbara. We recruited subjects using
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ORSEE (Greiner (2015)), allowed subjects to participate in only one session each
and used custom Javascript software programmed by the author and deployed
using Qualtrics. Sessions lasted roughly 90-120 minutes and subjects, on average,
earned about $20.

We ran sessions using three contextual variations on the Implementation task
(varied between subjects) which we pool for most of the analysis.?! In the Base
version (110 subjects) subjects follow the Implementation task described above.
In the Recall version (111 subjects), the task is identical but subjects can only
see the latest Event and Choice on their screen at any one time. Finally, in the
Reasoning version (54 subjects) subjects see all 20 events at the very beginning
and are asked to forecast what a perfect rule-follower would choose in the very last
(of 20) choices, forcing them to implement the rule entirely “in their heads.” By
comparing the Base version to the Reasoning version we can study the difference
between (i) actually enacting a rule (e.g. implementing a strategy) and (ii) using
a rule mentally to make an inference or forecast an event (e.g. reasoning through
a decision tree, forecasting another’s choices in a game). On the other hand,
while Base mirrors a context in which decision makers have easy access to the
history of events (for instance in which ‘events’ are options in a list or pieces
of information being procedurally considered in some order), Recall mirrors a
condition in which the decision maker must work to remember events (plausibly
the case in implementing strategies in some repeated games contexts).

Fach session began with detailed instructions on the Implementation task which
we read aloud to subjects, and which focused especially on explaining the mean-
ing of terms used in the rules. We encouraged subjects to ask questions during
these and during five unpaid practice Implementation Tasks.?? We paused the
experiment to verbally deliver instructions prior to Stage 2, and subjects after-
wards moved along at their own pace, reading computerized instructions before
each Stage. At the end of the experiment subjects participated in a battery of
incentivized cognitive tests.?? Additional details and instructions to subjects are
reproduced in Online Appendix D.

We collected data in two “runs” of the experiment: Run 1 (57 subjects under
Base, 59 under Recall) and Run 2 (53 in Base, 54 in Reasoning and 52 in Recall).
The main difference between the Runs is that we allowed subjects to leave the lab
as soon as they finished the experiment in Run 1 but forced subjects to wait until

21'We pool these variations because, as we discuss in Section II11.D, behavior is very similar (except for
level shifts easily measured in regressions), across variations.

22In Reasoning sessions, we gave subjects initial instructions and practice periods from the Base
condition in order to help them understand how to read and interpret the rules. We afterwards told
them they would be required to forecast final choices rather than fully implement the rules in the actual
experiment.

23We paid subjects $0.25 for each question they got right. Cognitive tests include a truncated (3-
question) version of Raven’s Progressive Matrices (used to test abstract reasoning, fluid intelligence and
generalized intelligence), three Belief Bias questions (used to test for logical over intuitive reasoning),
three Cognitive Reflection questions (used to measure ability to overcome instinctive responses), the
Wason selection task (used to measure deductive reasoning abilities) and five rounds of the Operation
Span task (used to measure working memory capacity).
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Figure 4. : Average cost and implementation time for all subjects

Source: Subjects are binned according to the number of mistakes they made (out of 14) in Stage 1,
and organized from lowest to highest cost within bin. In the top panel the subject’s mean cost is shown
as a dot and her range of costs across rules as a vertical line. Mean implementation time and range
of implementation times is shown in the bottom panel at corresponding horizontal locations for each
subject.

everyone was finished in Run 2 (to eliminate the possibility that subjects submit
preferences for simpler rules because these rules take less time to implement,
allowing them to leave the lab sooner). We also made slight clarifying changes
to the wording of a few rules in Run 2 and changed the set of rules we assigned
to Exogenous Assignment subjects in Stage 3: in Run 1 we randomly assigned
from the full set of rules while in Run 2 we randomly assigned only from the two
most measured-complex rules, 45-47T and reducible.?* The data across the two
runs are not statistically different and we pool them in the main analysis below
(our results do not change if we instead drop Run 1 from the dataset).

24We made this change to Stage 3 rule assignment in Run 2 in order to better study learning. Run
1 data produced too few observations on any given rule to be statistically useful and rules featured
obvious variation in baseline complexity. By assigning subjects only two very complex rules in Run 2 we
gather significant data on learning under each rule and are able to focus on a setting in which learning
is especially valuable.
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ITII. Results

Figure 4 provides a broad overview of the data at the subject level. The upper
panel plots the average elicited complexity cost (over all 14 rules) for each subject
in the dataset as a circle. Subjects are organized horizontally by the number of
mistakes they made (out of 14) and are ordered from lowest to highest average
cost within each of these mistake-count bins. Vertical lines plot the range of
costs (from lowest to highest) for each subject. The bottom panel plots the
corresponding average implementation time and range of implementation times
across rules for each of these subjects (arranged horizontally according to the
mistakes/cost ordering from the upper panel). The figure highlights several facts
about the data.

First, most subjects make relatively few mistakes: the modal subject makes 0
and the median subject makes 1 mistake over the 14 rules. Second, most subjects
— including subjects that rarely make mistakes — are willing to pay a considerable
fraction of their expected earnings to avoid implementing the average rule. Just
under 10% of subjects are willing to pay nothing to avoid complexity.?> Third,
there is a great deal of variation in costs across rules, within subject, indicating
that subjects make strong distinctions across rules when evaluating cost: the
median least costly rule costs $0.20 while the median most costly rule costs an
order of magnitude more at $2.35. Fourth, average complexity costs are quite
heterogeneous across subjects (the standard deviation of subject-wise means is
$0.91), as are average implementation times (standard deviation 18 seconds).
However, at the subject level, there is little relationship between the two: the
cross-subject correlation between mean cost and mean implementation time is
0.084 (p = 0.17). Finally, regressing costs, implementation time and mistakes
rates on a composite statistic of our battery of cognitive tests reveals that all three
of these measures are significantly influenced by measures of cognitive ability
(see Table 5, described below). That is, for all three measures of experienced
complexity, subjects that perform worse in cognitive tasks find rules, on average,
more complex.

RESULT 0: Most subjects make few mistakes but nonetheless find the average
rule costly to implement and make strong distinctions in cost across rules. Vari-
ation in complexity measures including cost, implementation time and mistakes
rates are significantly linked to independent measures of cognitive ability.

A. Findings on Automata Structure: States, Transitions and Absorption

We now turn to evaluating our hypotheses concerning the determinants of com-
plexity across rules (Results 1-5 below numerically correspond to the numbering
of hypotheses in Section I). Figure 5 summarizes the data at the rule level by

25Given our elicitation methods, we cannot rule out the possibility that these subjects experience
negative costs and actually prefer complexity.
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Table 4—: Rule-level summary statistics.

Mean Median Low Mistake Mean  Mistakes

Rule States  Trans.  Absorbing? Cost Cost Cost Time Rate
2S-1Ta 2 1 Y 0.69 0.30 0.48 15 0.01
3S-1Ta 3 1 Y 0.78 0.50 0.59 20 0.01
4S-1Ta 4 1 Y 0.89 0.65 0.64 31 0.04
reduced 2 2 N 1.00 1 0.71 57 0.08
2S-2T 2 2 N 1.00 0.90 0.70 60 0.17

countable 4 4 N 1.23 1 0.87 49 0.07

3S-2T 3 2 N 1.29 1.05 0.93 67 0.15
3S-3T 3 3 N 1.33 1 0.91 63 0.24
45-3Ta 4 3 Y 1.38 1.10 0.99 35 0.04
4S-2T 4 2 N 1.47 1.35 1.02 74 0.21
45-3T 4 3 N 1.59 1.50 1.15 76 0.19

sequenceable 4 4 N 1.60 1.55 1.12 69 0.29

4S-4T 4 4 N 1.73 1.80 1.28 74 0.16

reducible 4 4 N 1.79 1.85 1.33 73 0.09

Note: Rules are ordered by the mean cost of the rule. The table lists the number of states in the rule,
the number of transitions (net of states) and whether the rule contains an absorbing state. The table
also provides mean and median cost, mean time spent implementing the rule and the mistakes rate under
the rule. “Low Mistake Cost” is the mean cost for the subset of subjects who made no more than one
mistake in Stage 1.

showing average cost, implementation time and mistakes rate as a function of to-
tal transitions (transitions + states) across rules. Table 4, shows similar statistics
numerically, ordering rules instead by mean cost.

The experimental design allows us to test our main hypotheses about the drivers
of complexity by comparing average measured costs (and implementation time
and mistakes rates) across rules. For instance, the rules 25-2T and 3S-2T (shown
in the s-complexity row of Table 1) have the same number of transitions but
the latter has one additional state and is therefore more s-complex. As Table
4 shows, the average cost for 25-27 is 1.00 and for 3S-27 is 1.29 indicating a
1.29-1.00=0.29 increase in costs (a 29% increase) from adding a single state to a
rule. Averaging across all such controlled comparisons gives us an average effect
of adding a state of 0.236 (a 20% increase), supporting the hypothesis that states
generate complexity costs (our Hypothesis 1).

Formally, we test our hypotheses using a set of regressions, summarized in
Table 5. Each specification corresponds to a different complexity metric (cost,
implementation time and mistakes rate) and includes right-hand variables for the
number of states, the number of transitions and an indicator variable for whether
the rule is absorbing (interacted with both state and transition counts). The
regressions also include indicators for the rules reducible, countable and sequence-
able which we will examine in the next subsection, indicators for the Run of the
experiment and for the context (Reasoning, Recall) in which the rule was imple-
mented, and some basic demographic variables. Standard errors are clustered at
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Figure 5. : Average complexity measures for all rules.

Source: Each circle in each panel represents a different rule. Horizontal location of each rule is “Total
Transitions” (states plus transitions) and the number of states are shown inside each rule’s circle. Lines
connect all of the non-representation rules that contain the same number of states; dotted lines mark tran-
sitions that cause the rule to become transient (non-absorbing). Panels show mean cost, implementation
time and mistakes rates respectively.

the subject level.?6 Estimates from these regressions are visualized in Figure 8.27

We begin by examining the non-absorbing “core rules” (25-2T, 35-2T, 3S-3T,
4S-2T, 4S-3T and 4S-4T), which were designed to be compared directly with
one another to study state and transition effects (s-complexity and t-complexity).
The ordering in Table 4 (which, recall, is by mean cost), clearly shows that these
rules are ordered first by state (every 4 state rule is more costly than every 3
state rule in this set, etc.) and secondarily by transitions. Moreover, the six
most complex rules in the dataset are those with the maximal number of states
used in the design. Table 5 confirms that, on average, adding a state has a large,
significant impact on cost (equal to almost 20% of the average cost and a 26%
increase over the intercept). States also significantly impact implementation time

26 A caution in interpreting the standard errors from these estimates is that some effects (e.g. states,
transitions, absorption) are estimated using multiple rules and therefore multiple decisions by each sub-
ject, while others (e.g. countability, reducibility) are estimated using only a single per-subject choice.

27In Online Appendix B we include several robustness checks on our main cost specification including
a Tobit and a specification that includes the word count of the rule as a dependent variable. In neither
case do the results of our main Hypotheses tests change. For the Tobit, estimates are similar though
we lose precision and significance on the sequenceable indicator. For the word count specification, the
word count variable is not significant but other variables are attenuated due to its inclusion; the main
qualitative change is that the sequenceable indicator, again, ceases to be significantly different from zero
at conventional levels.
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Table 5—: Estimates of drivers of complexity metrics.

Cost Time Mistakes
o @ 3)
States (H1, # of states in rule -2) 0.239 8.788 0.027
(0.021)  (1.083)  (0.012)
Transitions (H2, # of transitions in rule -1) 0.116 -0.752 -0.003
(0.019)  (1.357)  (0.013)
Absorbing? (H3, indicator absorbing state in rule) -0.203 -44.098  -0.142
(0.039)  (1.959)  (0.020)
Reducible? (H4,indicator for rule ‘reducible’) 0.072 -0.621
(0.034)  (2.527)  (0.025)
Countable? (H5, indicator for rule ‘countable’) -0.490 -24.491

(0.048)  (2.254)  (0.024)
Sequenceable? (H5, indicator for rule ‘sequenceable’)  -0.117 -5.128
(0.041) (2.371)  (0.030)

Recall? (indicator for Recall sessions) 0.020 0.359 0.005
(0.114)  (1.548)  (0.017)
Reasoning? (indicator for Reasoning sessions) 0.301 17.473  0.015
(0.150)  (4.147)  (0.020)
Run 17 (indicator for Run 1 of the experiment) 0.047 -3.062 0.006
(0.112)  (1.582)  (0.018)
Female? (indicator for gender, 1 = Female) -0.021 -1.047 -0.016
(0.105)  (2.035)  (0.016)
STEM? (indicator for STEM major) -0.157 0.334 -0.006
(0.106)  (2.340)  (0.015)
Cog Score (cognitive battery score) -1.801 -11.445  -0.287
(0.337)  (6.897)  (0.048)
Absorbing X State -0.140 -1.037 -0.010
(0.023)  (1.276)  (0.014)
Absorbing X Transition 0.131 3.435 0.003
(0.027)  (1.456)  (0.014)
Constant 0.903 56.560 0.151
(0.123)  (2.973)  (0.027)
Observations 3,850 3,850 3,850
R? 0.182 0.337 0.081

Note: The dependent variables include cost (specification 1), implementation time (specification 2) and
an indicator taking a value of 1 if the subject made a mistake (specification 3). Each specification clusters
standard errors at the subject level. Right hand variables include number of states and transitions and a
dummy for whether the rule includes an absorbing state. We subtract 2 from states and 1 from transitions
(i.e. the minimal number of states and transitions in the design) in order to make the intercept easier
to interpret. Reducible?, Countable? and Sequenceable? are dummy variables corresponding to the
representation rules of the same name. Recall and Reasoning are dummies for the versions of the
Implementation Task of the same name. Run 1 is a dummy variable for the first run of the experiment
and Female and Stem are gender and college major dummies. Cognitive Battery is an index of scores
from a battery of cognitive tests, ranging in value from a minimum of 0 to a maximum of 1 and demeaned.

and mistakes rates.

RESULT 1: Adding a state to a rule has a large and significant positive effect
on the cost of implementing it.
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By comparison, Table 5 shows that adding a transition, though statistically
significant, adds half as much cost as adding a state.?® Transitions have no
significant effect on implementation time or mistakes.

RESULT 2: Adding a transition to a rule has a significant positive effect on its
cost, but the effect is half as large as that of adding a state.

The Absorbing indicator in Table 5 is large and statistically significant: chang-
ing a rule from absorbing to non-absorbing adds as much cost as adding a state.
Indeed, as Table 4 and Figure 5 show, the three least costly rules are all ab-
sorbing rules. Absorption also blunts the impact of states on complexity costs:
adding states to absorbing rules has a much smaller impact on complexity costs
than does adding states to non-absorbing rules (Absorbing x State is significantly
negative). Finally, because all transitions added to absorbing rules simultane-
ously remove the absorbing state in our design, the large significant effect of the
interaction Absorbing x Transition tells us that adding a transition that simulta-
neously causes an absorbing state to become non-absorbing, has double the effect
of adding a conventional transition. Absorption has a similarly sizable impact on
our other complexity measures.

RESULT 3: Absorbing rules are significantly less costly than non-absorbing rules,
equivalent to removing a state. Adding a state to an absorbing rule generates sub-
stantially less cost than adding one to a non-absorbing rule.

To summarize, structural automoton characteristics collectively have strong ef-
fects on complexity costs: at the median, the most complex rule (according to
Hypotheses 1-3) is six times more costly than the least complex rule. States and
absorption (but not transitions) have qualitatively similar effects on implementa-
tion time and mistakes rates, our other two complexity measures.

B. Findings on Representation

We next examine the hypothesis (Hypothesis 4) that decision makers efficiently
remove unnecessary states from rules by representing them in their least state-
complex form. Recall that the rule reducible has identical states, transitions and
transience to rule 4S-4T but can be represented as (reduced to) the much sim-
pler (2 state, 2 transition) rule reduced. We find no evidence that subjects do
this: Figure 5 shows that the elicited cost of implementing rule reducible is in
fact slightly higher than its state/transition equivalent 45-4T (and the reducible

28There is some evidence of diminishing marginal costs in states but not in transitions. The difference
between 2S-2T and 3S-2T is larger than the difference between 35-2T and 4S-2T (p < 0.01, paired
Wilcoxon test), but the difference between 45-2T and 4S-3T is nearly identical to the difference between
48-8T and 4S-4T (p = 0.947).
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dummy is statistically significant and positive in our cost specification).?? Fur-
thermore, as is clear from Figure 5 and Table 4, reducible is far more costly than
the rule it can be reduced to, reduced.

RESULT 4: Subjects do not economize on state complexity by reducing rules to
simpler isomorphic finite state machine representations.

Finally, we test the hypothesis that decision makers are constrained to remem-
ber events by tracking states, representing rules exclusively as finite state ma-
chines (FSMs). Our alternative hypothesis (Hypothesis 5) is that when it is
possible to replace states with simple sequences of events in working memory,
subjects do so and that this reduces complexity. Our key rule for examining this
hypothesis is countable which is identical to the rule 45-4T when represented as
an FSM, but can be represented as a 2-state, 4-transition rule if represented as a
pushdown automaton (PDA) that can track elapsed events in working memory.

Figure 5 strongly supports Hypothesis 5: subjects treat the rule countable as
substantially less complex than 4S-4T. The countable variable in the cost spec-
ification of Table 5 is highly significant and quantiatively large. Indeed, the
magnitude of this reduction is highly consistent with what we would expect if
subjects represented the rule as a PDA rather than an FSM: removing 2 states
and 0 transition from the rule (as reduction from a 4-state, 4-transition FSM
to a 2-state, 4-transition PDA would dictate) should lead to a 0.472 reduction
in cost (based on estimates from Table 5), which is nearly identical to our -0.49
estimate. Thus the cost reduction we observe for countable is exactly what we
would expect if subjects used a PDA-like representation rather than an FSM-like
representation. (Implementation time and mistakes rates are also significantly
smaller for countable than for 45-4T.)

RESULT 5:  Rules that can be represented with fewer states (and no more tran-
sitions) by using working memory to track events are significantly less complex.

A similar but (as expected) weaker pattern occurs with the rule sequenceable
which can also be state-reduced using a PDA-like representation, though only by
adding transitions in exchange for the removed states. Again, Figure 5 shows
(and the sequenceable dummy in Table 5 confirms) that complexity costs and
implementation time are smaller for this rule than for the reference rule 45-4T.
The cost drop is much smaller than the drop for countable (0.11 vs. 0.49) but as we
argue in Section I.B, we expect the effect to be much smaller here because the PDA

29This is true, despite the fact that subjects make half as many mistakes in reducible as in 4S-4T.
This low mistake rate is likely a consequence of the fact that the pattern of actions required by reducible
is relatively robust to errors in correctly perceiving and responding to events (Lipman and Srivastava,
1990), a characteristic that is orthogonal to the fact that the rule is reducible. See Section IIL.E below
for a discussion of this.
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representation requires several more transitions than the PDA representation of
countable.?°

In Online Appendix C, we consider the merits of describing rules as pushdown
automata rather than finite state machines in more depth. Our findings suggest
that further study of what classes of algorithms (e.g. finite state machines, push-
down automata, Turing machines etc.) best describe and predict complexity is
an important direction for future research.

C. Heterogeneity and Prevalence

We next consider heterogeneity of these effects across subjects. First, recall
(Figure 4), that a cluster of subjects (about 17%) submit identical WTP numbers
across all of the rules. Most of these are subjects who never adjusted their sliders
at all, causing them to submit a default cost of 0 perhaps because they suffer no
complexity costs (or are complexity seeking). For the remainder of subjects, we
individually fit our main estimating equation from Table 5 for the determinants
of cost and implementation time, and plot our key coefficients as scatter plots
(one for each dependent variable) in Figure 6. We highlight several points.

First, as kernel density plots of the marginal distributions, plotted on the edges
of these graphs, show, some of the cost effects we’ve documented occur for al-
most all of these subjects (almost 90% for s-complexity and countability), some
occur for most of them (2/3 for transitions and absorption) and some for only
half of them (reducibility and sequenceability). Second, as the scatter plots show,
the effects of rule characteristics on complexity costs and implementation time
are generally uncorrelated within-subject or only very weakly correlated: in none
of these cases is there a correlation coefficient greater than 0.16 and all but ab-
sorption are statistically insignificant. Thus knowing the size of the effect of e.g.
states on implementation time for a subject provides little information on the size
of its effect on the subject’s complexity cost.

Finally, there is significant heterogeneity in the magnitude of each effect across
subjects, meaning there is considerable unexplained subject-to-subject variation
in quantitative effects on costs and implementation times in the data. We can
quantify the heterogeneity of these effects by studying partial correlations be-
tween our main independent variables and our complexity metrics (cost and
time).3! The results of this analysis show, for example, that although states

30The estimated cost reduction for sequenceable is, again, exactly what we would expect, given our
estimates, from removing 2 states and adding 3 transitions from the rule (as would occur by transitioning
to a PDA representation). At estimated costs of states for transitions, we should expect sequenceable to
be about one transition less costly than a rule represented as a 4 state, 4 transition FSM and that is
exactly the size of the sequenceable estimate.

31The partial correlation of y and z is calculated by regressing each on a vector of other relevant
variables z and then calculating the correlation coefficient between the residuals. It describes how much
of the variation in y is explained by z after controlling for the explanatory contribution of other relevant
variables. We calculate partial correlations on subject-wise demeaned costs and include variables for all
of our hypotheses by including state and transition counts, an absorption indicator and indicators for the
countable, sequenceable and reducible rules. Since states and transitions in particular have very different
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Figure 6. : Individual regression effects.

Note: Each panel shows a scatter plot (with implementation time on the x-axis and cost on the y-
axis) of estimates from individual subject-level regressions using specifications (1) and (2) from Table
5. Labels give the name of the variable reported in the panel (matching variable names in Table 5) and
H1,...H5 labels give the corresponding hypothesis numbers. On the edges of the graphs are plotted kernel
density estimates of the marginal distributions of estimates for implementation time (top edge) and cost
(right edge) Numbers on each side of zero on these density plots report the percentage of subjects with
negative vs. positive estimated coefficients for the variable. We cut out 2.5% outliers from either side
for scatterplot visibility.
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increase complexity costs for the great majority of subjects, the magnitude of the
effect is heterogeneous enough that they predict only about 25% of residual vari-
ation in costs even after demeaning cost at the subject level. Smaller fractions of
the variance are explained by countability (22%), absorption (14%), transitions
(11%) and reducibility (3%). Corresponding numbers for implementation time
include absorption (47%), countability (21%), states (18%), transitions (1%) and
reducibility (< 1%). Thus, although many of these characteristics impact com-
plexity in a consistent direction for most subjects and have quantitatively large
effects on average, the magnitude of their effects on individual responses are quite
varied.

D. Learning, Familiarity and Context

Stages 3-5 from Run 2 of the experiment allow us to study the influence of
familiarity on complexity directly by allowing subjects to procedurally learn rules
via repetition. In Stage 3 we randomized half of our subjects into one of two
maximally complex rules: 45-4T and reducible (the two most cost-complex rules
in our data). These subjects then implemented their assigned rule 10 times (each
time in response to 20 events). Panel (a) of Figure 7 shows the evolution of mean
implementation time over the 10 tasks of Stage 3. Implementation time falls
substantially with experience, eventually falling to 66% of initial levels (Wilcoxon
test, p < 0.001, N = 84).

Familiarity also reduces the complexity costs of implementing a rule. In Stage
4, we elicited subjects’ willingness to pay to avoid implementing the same rule
they had previously implemented repeatedly in Stage 3 for a further 10 tasks (in
Stage 5). In order to focus on the effect of learning and familiarity on preferences
(rather than on the rate of mistakes), we restrict attention to subjects who made
almost no mistakes to begin with in Stage 1.3? The datapoint “Learn” in panel
(b) of Figure 7 presents the change in cost between initial elicitation for this rule
in Stage 2 and the re-elicitation in Stage 4. The effect is statistically significant
(paired Wilcoxon test, p < 0.001, N = 42) and quite large, equivalent to stripping
more than two states from the rule.33

These familiarity and procedural learning effects are strong but they are also
quite superficial and specific to details of the exact rule learned. In Stage 4, we
also elicited costs for a very slight perturbation of the rule implemented in Stage
3. In the perturbation, we replaced each possible choice and event in the rule

characteristics under transient than absorbing rules, we calculated these and other non-absorbing effects
using only data from transient rules.

32The results are similar but attenuated if we use the entire sample instead: using the entire sample,
the effect of learning on costs for the original rule (perturbed rule) is -0.371 (-0.169) instead of -0.479
(-0.25). Wilcoxon tests indicate an effect significantly different from zero in all cases.

33Subjects (in Stage 3) learn faster under the rule reducible than under rule 4S-4T, dropping 37
seconds rather than 22 seconds (p = 0.003, Wilcoxon test), but there is no difference in cost reduction
subjects achieve with experience across these two rules (p = 0.731). This may suggest that, at least
on one complexity dimension, some subjects learn to reduce rules (Hypothesis 4) to some degree with
experience.
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Figure 7. : Learning and familiarity effects.

Note: Panels for Stage 3 and Stage 5 present mistakes rates (dashed lines) and mean implementation
times (solid lines) over 10 Implementation Tasks (each task is a separate Implementation Task consisting
of 20 events). The panel for Stage 4 shows the mean difference (with standard error bars) between
Stage 2 cost elicitation and Stage 4 cost elicitation for the rule implemented in Stage 3 (Learn) and a
perturbation of this rule (Transfer).

(for example the letters ‘a’ and ‘x’) with a random set of letters (for example ‘a’
is replaced with ‘b’ and ‘x’ is replaced with ‘y’ throughout). Structurally (and
under the lens of our Hypotheses) this “perturbed rule” is identical but it has
been superficially — almost cosmetically — altered. The datapoint “Transfer” in
panel (b) of Figure 7 presents the change in cost (relative to the original elicitation
of the non-perturbed rule in Stage 2) using the exact same subjects shown for the
datapoint “Learn.” There is still a significant reduction in cost (paired Wilcoxon
test, p = 0.025, N = 42), but the size of the effect is half that observed for the
original rule (p < 0.001, N = 42).

In Stage 5, we similarly examined whether the effects of learning on completion
time transfer to superficial perturbations of the learned rule by randomly assign-
ing some subjects to implement the original rule and another set to implement
the perturbed rule for 10 tasks. In panel (c) of Figure 7 we plot a time series of
implementation times for both the original rule and its perturbation. While the
implementation time of the original rule continues its Stage 3 trajectory downward
with only a slight restart effect, nearly all of the implementation time reduction
achieved in Stage 3 disappears for the perturbed rule: subjects must start the
learning process almost entirely over again (see Cooper and Kagel (2010) for a
review of related findings on “learning transfer” in prior experiments).
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RESULT 6: Familiarity resulting from procedural learning substantially reduces
complexity — the effect is equivalent to removing two states from the rule. How-
ever, this effect is extremely rule-specific and the impact of familiarity on com-
plexity does not fully transfer to even slight perturbations of the learned rule.

The context in which a rule is implemented also has effects on complexity. In
our design we varied the context of our Implementation Tasks (without changing
the algorithmic structure of the rules assigned to subjects) in such a way as to
vary whether subjects had to perform the rule mentally (the Reasoning variation)
or remember past events (Recall) to implement the rule. The estimates in Table 5
include indicator variables Recall and Reasoning to measure main effects of these
variations. The results reveal that subjects find implementing a rule mentally to
form a belief about the correct final choice prescribed by the rule (the Reasoning
variation) considerably more costly than implementing the full rule via a sequence
of actual actions (Base). The size of the effect is large, equivalent to adding
more than one state to the rule, on average. Reasoning through a rule is also
considerably slower but does not produce more mistakes. By contrast, having to
remember recent history to perform the rule (as subjects must do in the Recall
version) seems to have no significant effect on any measures of complexity.

RESULT 7: Reasoning through a rule is considerably more costly and time-
intensive than enacting a rule. The effect is equivalent to adding more than one
state to the rule, on average.

Interestingly, although the Reasoning variation produces an increase in aver-
age cost, it does not much alter the way automata characteristics influence these
costs. Indeed, interacting indicator varables for “Recall” or “Reasoning” with the
regressors in Table 5 produces no significant interactions and plotting (a’la Fig-
ure 5) costs separately for each variation shows essentially the same cost function
(with respect to e.g. states or transitions) across variations. (The only excep-
tion is absorption: costs across variations are similar for absorbing rules, but
non-absorbing rules are are much costlier under Reasoning than under the other
variations.) Our results thus suggest that the algorithmic drivers of complexity
costs we identify are remarkably robust to variations in context.

E.  Complexity Costs, Implementation Time and Mistakes

How does complexity cost relate to other metrics of complexity, particularly im-
plementation time (a common complexity metric in economics experiments, see
e.g. Gill and Prowse (2018))7 Figure 8 summarizes our findings by plotting the
effects (as a proportion of the average) of hypothesized drivers of complexity on
costs vs. time (most from estimates in Table 5). Clearly cost and implementation
time are shaped by similar forces: the drivers of each are strikingly similar in Fig-
ure 8, with proportional effects that are mostly linearly related on the 45-degree
line. However, as individual level data visualized in Figure 4 and 6 make clear,
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Note: Most estimates are taken from (and match in name) coefficient estimates from Table 5, and are
reported as a fraction of mean cost/implementation time. Learning and transfering measures are taken
from treatment effects reported in Section II1.D.

the two are actually only weakly related at the individual level: both individ-
ual averages and coeflicients are insignificantly correlated across these measures.
Indeed including time in specification (1) of Table 5 (see Online Appendix B)
reveals only very weak explanatory power of a rule’s implementation time on cost
at the subject level. We conclude that although complexity costs and implemen-
tation time are driven in the aggregate by very similar forces (both quantitatively
and qualitatively), these are relatively independent effects, underscoring the likely
importance of measuring complexity costs directly.?*

By contrast, even in the aggregate, the drivers of costs and mistakes are only
very weakly related, as Figure 5 and Table 4 show. For instance, the rule reducible
and its equivalent reduced have wildly different costs and implementation times
attached to them but they are almost identical in terms of mistakes. The reason
for this is that, as Lipman and Srivastava (1990) show, automata vary dramati-

34This finding is surprising because it is intuitive to think of complexity costs as arising from per-
second costs of time spent enacting a rule. One possibility is that there is a strong latent relationship
between time and cost that is attenuated by noisy measurement of each in our experiment. Another
possibility is that subjects are averse to complex rules in large part because of fixed cognitive costs (e.g.
the costs of absorbing and thinking through the structure of the rule) that have relatively little to do
with the length of time they will have to spend implementing the rule.
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cally in their robustness to mistakes in accurately tracking the sequence of events
and reducible and reduced are identically robust in this sense. By contrast, the
rules 25-2T and reduced have identical states and transitions and are treated as
equally costly by subjects, but the former is far more forgiving of mistakes in
tracking. As a result, subjects make mistakes twice as often in 25-2T as they
do in reduced (and in the equivalently robust rule reducible). Likewise, subjects
treat the rule sequenceable (which can be represented with fewer states using a
memory stack) as less costly than similar state/transition rules (e.g. 45-47) but
make mistakes twice as often. Subjects clearly do not take mistakes into account
in a sophisticated way when assessing cost (even after having experienced each
of these rules!), and so do not attach low costs to low-mistake rules like reduced
and reducible or high costs to high-mistake rules like sequenceable.

This lack of association between costs and mistakes holds more generally and
this is important for interpreting our cost estimates. Ex ante, WTP to avoid
complexity might have been driven either by (i) sheer subjective distaste for
complexity or (ii) fear of making future mistakes (and thereby sacrificing expected
earnings). In Online Appendix B we provide evidence that, in fact, the drivers
of complexity costs we have identified are overwhelmingly driven by the former
(distaste for complexity). Repeating our cost analysis on subjects who make very
few mistakes (and therefore are unlikely to pay to avoid mistakes in the elicitation)
or including mistakes explicitly as a dependent variable generates almost identical
parameter estimates to those reported in specification (1) of Table 5. This, in turn,
suggests that most of the cost-generating effects (e.g. s-complexity, t-complexity
etc.) measured in the experiment are driven by subjects’ distaste for implementing
complex features of rules.?®

Our design purposely minimizes the relationships among these complexity met-
rics, but in many realistic settings they are likely to be more entangled. For
instance our design minimizes the opportunity cost of implementation time, but
in many natural settings we expect such costs to contribute significantly to the
cost of complexity. Likewise, our subjects are not time constrained, but in many
realistic settings time constraints will surely produce a higher rate of mistakes for
complex rules. Finally, our incentives are strong enough to motivate subjects to
(mostly) properly implement rules, but in many settings this won’t be true (ei-
ther because of higher complexity costs or lower incentives), leading to a greater
incidence of apparent “mistakes.”

35 Mistakes rates are low enough in our experiment that it is relatively easy to separate the contribution
of distaste for complexity from fear of making mistakes. Extending this research strategy to more difficult
tasks may require iterations on these methods that separately elicit (i) beliefs about the likelihood of
mistakes and (ii) willingness to pay to avoid the task in the future, making it possible to separate distaste
for the task from fear of payoff consequences from making mistakes directly.
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IV. Applications

In the introduction we emphasized that procedural complexity has potential
applications across economics, and we close the paper by illustrating how evidence
like ours might be useful for interpreting and predicting behavior in applications.
To do this, we fit our complexity cost estimates to the automaton characteristics
(number of states, transitions etc.) of some important rules in economics (rational
choice procedures and repeated game strategies), and relate these calibrations to
observations from prior empirical work. These are, of course, ex post exercises
but our purpose in doing this is primarily to hint at the potential uses of our
methods for future, prospective research.

A. Rational Choice Procedures

Rational choice is a core assumption in economics, but there is a long tradi-
tion beginning with Simon (1955) arguing that rational choice is too procedurally
complex to be a realistic description of human behavior. When choosing between
options (e.g. in a list), it is much simpler to instead satisfice by setting a reserva-
tion value (“aspiration level”) and choosing the first option that meets or exceeds
it (instead of exhaustively considering all options as is required by rational choice).
Salant (2011) uses an automata model to show that even in very basic settings
rational choice is far more procedurally complex than satisficing: procedures that
select the optimal (most valuable) option from a list of N options are extremely
s-complex, requiring N — 1 states, while satisficing requires only 1 state regardless
of N. Satisficing and related simplified choice procedures are simple, but they
lead to suboptimal choices, producing classic behavioral phenomena like recency
and primacy effects, status quo bias and choice overload.

We calibrate the cost of rational choice using Salant’s characterization for lists
containing N =10, 20 and 40 options and plot the results in the left panel of Figure
9. Salant focuses on the consequences of assuming that states drive complexity:
following this and using our estimated cost of states (and including the penalty
from implementing a rule mentally reported in Result 7 and the intercept) we
get complexity cost estimates of using rational choice procedures that range from
just under $3 for 10 option lists to around $10 for 40 option lists. Moreover,
our results suggest this is probably an underestimate: if we add the cost of the
(N +41)N/2 transitions required to implement rational choice, the complexity cost
rises to as high as nearly $80 for a 40 option list!

How might we use complexity calibrations like these to predict and interpret
behavior? We illustrate using an experimental design reported in Caplin, Dean
and Martin (2011) in which subjects evaluate and compare options from a list
and make a choice after consideration. Their setting is useful for this exercise
because the options their subjects choose between have objective monetary values:
subjects are shown the monetary payoff attached to each object in an opaque
fashion (as a list of numbers to be added together) meaning some effort and
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memory is required to evaluate and compare. Caplin, Dean and Martin (2011)
vary the size of their option lists between 10, 20 and 40 in their design and we
can use the lists employed in the experiment to calculate, for comparison, the
opportunity cost of using a satisficing procedure (the expected money sacrificed
by satisficing instead of using rational choice) for a range of possible satisficing
reservation values (satisficing has one state and so a 0 cost in our framework).
We plot these expected satisficing costs for reservation values 5, 10, 15, 20 and
25, shown from left to right as a dotted line (for each list length) on the plot.

Even for the smallest lists, the complexity costs of rational choice dwarf the
expected payoffs sacrificed by satisficing and so we would expect satisficing to be
common (and rational choice rare) in all three cases based on procedural com-
plexity alone. Indeed, Caplin, Dean and Martin (2011) find strong evidence of
satisficing for all three list sizes, with subjects regularly choosing payoff dominated
options and, further, displaying distinctive order effects that indicate satisficing
(i.e. when the highest value item is lower in the list, subjects make more mis-
takes). Moreover, choice process data that tracks subjects’ provisional choices
show distinctive evidence of satisficing.

Our calibration suggests that rational choice may be procedurally complex
enough to induce high rates of satisficing, but we emphasize that careful prospec-
tive experiments are required to convincingly identify procedural complexity as
an explanation and especially to separate its role from that of other candidate
explanations (such as e.g. optimal search behavior).?® For example, experiments
that correlate individual procedural complexity costs with satisficing or that sys-
tematically vary the opportunity cost of satisficing relative to the complexity costs
of rational choice would provide much stronger evidence. Developing synthetic
choice environments that vary procedural complexity costs without altering the
predictions of alternative models like rational search would be particularly valu-
able (see Footnote 40, below, for an example). More generally, using these re-
search strategies to study the capacity of procedural complexity to explain and tie
together other key regularities from behavioral economics such as random choice
(Kalai and Solan, 2003), non-Bayesian inference (Chauvin, 2020), biases in in-
formation processing (Wilson, 2014), failures of backwards induction (Neyman,
1985) and perhaps others such as myopia in intertemporal choice, failures to con-
tingently reason through decision trees, status quo bias etc. is an important next
step in this research.

This exercise also illustrates some of the subtleties involved in deploying au-
tomata models in practice and points towards potentially important extensions
of these models. One important finding from Caplin, Dean and Martin (2011)

36Caplin, Dean and Martin (2011) find that comparative statics from search models incompletely
organize differences in behavior between their treatments, concluding “our subjects may be satisficing
for the reasons that Simon (1955) originally proposed, as a rule of thumb that performs adequately
across a broad range of environments, rather than finely honing their search strategy to each choice
environment they face.” This procedural interpretation may suggest that procedural complexity might
have an important role in producing satisficing behavior.
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Rational Choice vs. Satisficing Strategies in Repeated Games
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Figure 9. : Two examples of calibrated complexity costs.

Note: The left panel calibrates complexity costs (gray bars) of rationally choosing the highest value
item from lists of options of size 10, 20 and 40. For reference, in each case, we plot (dotted lines) the
opportunity cost of satisficing (from Caplin, Dean and Martin (2011)) with a range of reservation values
(5, 10, 15, 20 and 25). The right hand panel calibrates complexity costs for a set of strategies for repeated
prisoner’s dilemmas.

is that the effort required to evaluate individual items (in their experiment the
number of numbers that must be summed to discern an item’s value) has an in-
fluence on mistakes and rates of satisficing. A natural way of understanding this
in the context of automata models, is that in some settings evaluating events can
be costly: each time subjects in Caplin, Dean and Martin (2011) evaluate a new
item (each time they make a transition, in the language of Salant (2011)), they
must perform a computation and as these computations grow costly, the costs of
implementing elaborate procedures (like rational choice) must grow. Such costs
are set extremely low in our experiment, where subjects immediately (with low re-
quired cognitive effort) know what event has occurred and thus how to transition
behavior in response. If our rules had required subjects to add 3 or 7 numbers to
determine which letter-event had occurred, our cost estimates would have been
more comparable to those faced by subjects in Caplin, Dean and Martin (2011),
and we would expect subjects to be more strongly averse to rules that tend to
require more event-processing and transitions. From this perspective our cost cal-
ibrations probably understate the procedural costs faced by subjects in Caplin,
Dean and Martin (2011). As Salant (2011) emphasizes, understanding how the
“marginal” complexity costs of evaluating each option interacts with the “fixed”
costs of the decision procedure itself (for instance the number of states in the
procedure) is an important task for future work.
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B. Repeated Games Strategies

Repeated games arise across economics, but the theory suffers from a funda-
mental indeterminacy, described by the folk theorem: with low enough discount
rates, a wide variety of outcomes can generally be supported if players are will-
ing to use sufficiently complex punishment strategies. The automata literature
began as an attempt to study how aversion to complex strategies might reduce
this indeterminacy, making game theory more predictive.

In the right panel of Figure 9 we calibrate the costs of a number of strategies
from repeated prisoner’s dilemmas.?” Specifically, we calibrate complexity costs
using our estimates of the costs of states, transitions and absorption for most
(18) of the strategies discussed and estimated in Fudenberg, Rand and Dreber
(2012).3%  The results reveal a wide range of complexity costs, with the least
complex non-trivial strategy (Grim) costing 1/3 as much as the most complex
(DT13T).

Based on these cost estimates alone (i.e. without taking account of the benefits
of strategies or important issues of equilibrium and strategic risk), several pre-
dictions about the use of these strategies naturally arise. For one thing, ceteris
paribus, we would expect the “cheapest” strategies — AC (always cooperate), AD
(always defect), Grim (the grim trigger strategy), TfT (tit for tat) and D-TfT
(tit for tat beginning with defection) — to be particularly common and for our
most “expensive” strategies (e.g. DGrim3, DTf3T, 2Tf2T) to be relatively rare.
For another, because there are significant costs attached to implementing strate-
gies more complex than the extremely simple (one-shot Nash) strategy, AD, we
should expect to see subjects abandoning this simplest strategy exactly when the
parameters of the game increase the potential payoffs from avoiding a mutual
defection outcome (a moderate payoff outcome that subjects can guarantee for
themselves using a maximally simple rule).

Indeed, both of these patterns are typical in the experimental literature. For
instance Dal B6 and Fréchette (2018) review the literature and calculate that our
estimated five ‘cheapest” strategies (AC, AD, Grim, TfT and D-TFT) account
for the majority of strategies in almost all papers that estimate strategies, and
that they account for more than 3/4 of strategies in the majority of studies (in
fact AD, Grim and TfT alone account for more than 70% of strategies in the

3THere AD and AC are “always defect” and “always cooperate,” Grim-N is the Grim rule from the
introduction with N periods of counterpart defection preceding own defection. Tit-for-tat specifies co-
operating and then defecting after counterpart defection and returning to cooperation the next round if
the counterpart does not defect again. (M)Tf(N)T is tit-for-tat that moves from cooperation only after
(N) rounds of counterpart defection and then remains in defection for (M) rounds before returning if
counterpart is cooperative. Rules that begin with a ‘D’ add an initial period of defection to the beginning
of the rule. T2 is a strategy that defects twice in response to a defection.

38For instance, the rule “Grim 3” — cooperate until your counterpart defects three times, then defect
forever — has four states, three transitions and an absorbing state. Using estimates from specification
(1) in Table 5, we estimate a cost by adding our intercept 0.903 (which estimates the baseline cost of
a 2-state, 1 transition, transient rule), 2x(0.239-0.14) (the cost of states plus the interaction with an
absorbing state) and 2x(0.1164-0.131) (transitions plus the interaction with an absorbing state) and
subtracting 0.203 (because of the absorbing state) we get a cost of $1.40.
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majority of papers/treatments). Dal B6 and Fréchette (2011) and Dal B6 and
Fréchette (2019) systematically vary the cooperation payoffs and the discount rate
(which together determine the potential benefits of using more complex strategies
than AD) and find subjects are, indeed, much more likely to abandon AD for
richer strategies when either of these parameters rise. In some settings (e.g.
prisoner’s dilemmas with randomly perturbed actions) the benefits of cooperation
are difficult to achieve in any other way than to use relatively complex strategies
and it is only in these settings that the literature documents any significant use
of moderately complex, costly strategies like Grim-3 and Tf3T (rather than their
simpler cousins Grim and TfT)(Fudenberg, Rand and Dreber, 2012).3° Under
the lens of our findings, it seems that subjects actively avoid complex rules when
possible, deploying them only when the gains to doing so are sufficiently high.

Again, we emphasize that further research is needed before we can draw firm
conclusions on the role of procedural complexity in strategy selection. This is
particularly important in rich settings like repeated games where equilibrium
and strategic uncertainty considerations cross with complexity costs in surely
complicated ways. New experiments that correlate individual complexity cost
measures with strategy choice and especially novel designs built on environments
capable of separating the role of procedural complexity from that of other key
forces will be important for this task.40

V. Conclusion

We use a new type of experiment to identify the algorithmic characteristics
of rules that make them complex and therefore costly to implement. We find
evidence of significant structure in the determinants of complexity, with a rule’s
algorithmic characteristics (particularly the number of states required to imple-
ment it) significantly influencing its complexity costs. We also find evidence that
the way a rule can be represented (for instance whether it can be simplified us-
ing counting), familiarity with a rule acquired via learning, and the context in
which a rule must be implemented (e.g. physically vs. mentally) have additional
influence on complexity costs.

Our methods and iterations on them may allow us to use procedural complexity
as a way of explaining, modeling and predicting departures from standard eco-

39Fudenberg, Rand and Dreber (2012) report experimental prisoner’s dilemmas run both with and
without noisy implementation of actions (i.e. with and without a small probability the computer alters
the subject’s actions), under identical payoff parameters. They too find relatively low usage of complex
strategies without noisy implementation, but find that with noisy implementation a majority of subjects
use strategies more complex than TfT. Simpler strategies in this setting can produce costly punishment
cycles (based purely on random events) that more complex strategies allow the subject to avoid.

40 An example of the type of design that might be expanded upon for this task is Jones (2014)
who artificially alters prisoner’s dilemmas in such a way as to increase the state complexity of any
cooperative strategy. Mirroring our findings in support of state complexity, Jones (2014) finds that
increasing the state complexity of cooperative strategies reduces the rate of cooperation observed in
prisoner’s dilemmas. Taking a similar approach in other games and choice problems and relating the
results to the direct measurement techniques we introduce here seems like a promising template for future
procedural complexity research.
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nomics predictions documented in behavioral and institutional economics. Test-
ing the ability of these types of measurements to explain behavioral anomalies,
equilibrium selection and policy failures — both through new diagnostic experi-
mental designs and correlational studies — is an important next step in developing
this research. Furthermore, careful work examining to what degree richer algo-
rithmic descriptions of rules (e.g. pushdown automata, Turing machines) might
improve our ability to predict and explain complexity and its costs seems particu-
larly important. Finally, although we have applied our methods to the complexity
costs of rules, in principle they may be useful for measuring the costs of other
types of behavior and thus may have a much broader scope of application.
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