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Abstract: Unconformities in foreland basins may be generated by tectonic processes that operate in the basin, the adjacent
fold—thrust belt or the broader convergent margin. Foreland basin unconformities represent shifts from high accommodation to
non-depositional or erosional conditions in which the interruption of subsidence precludes the net accumulation of sediment.
This study explores the genesis of long-duration unconformities (>1-20 myr) and condensed stratigraphic sections by
considering modern and ancient examples from the Andes of western South America. These case studies highlight the potential
geodynamic mechanisms of accommodation reduction and hiatus development in Andean-type retroarc foreland settings,
including: (1) shortening-induced uplift in the frontal thrust belt and proximal foreland; (2) the growth and advance of a broad,
low-relief flexural forebulge; (3) the uplift of intraforeland basement blocks; (4) tectonic quiescence with regional isostatic
rebound; (5) the end of thrust loading and flexural subsidence during oblique convergence; (6) diminished accommodation or
sediment supply due to changes in sea-level, climate, erosion or transport; (7) basinwide uplift during flat-slab subduction; and
(8) dynamic uplift associated with slab window formation, slab break-off, elevated intraplate (in-plane) stress, or related mantle
process. These contrasting mechanisms can be distinguished on the basis of the spatial distribution, structural context,
stratigraphic position, palacoenvironmental conditions, and duration of unconformities and condensed sections.
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Unconformities in foreland basins can be attributed to tectonic,
climatic, eustatic and internally driven (autogenic) processes. These
forcing mechanisms determine zones of erosion, deposition,
sediment bypass, sediment starvation and stratigraphic condensa-
tion in the fold—thrust belt, foreland basin and adjacent craton
(Fig. 1). This paper considers long-duration (>1-20 myr)
unconformities and condensed stratigraphic intervals in foreland
settings, explores potential modes of hiatus development and
evaluates the geodynamic processes affiliated with modern and
ancient examples from the Andes and its retroarc foreland basin
system.

For the purpose of this study, an unconformity is defined as a 3D
(planar or non-planar) surface representative of a substantial
temporal hiatus resulting from non-deposition or erosion. A
condensed section (or zone of stratigraphic condensation) is
defined as a concordant stratigraphic interval of limited thickness
(generally <5-100 m) produced by slow sediment accumulation
with possible intermittent non-deposition and/or minor erosion.
Unconformities and condensed sections may form stratigraphic
discontinuities between diverse facies in marine or non-marine
depositional systems, and may be confined to proximal or distal
basin margins or may occur as basinwide features (e.g. Blackwelder
1909; Barrell 1917; Wheeler 1958; Vail et al. 1984; Loutit et al.
1988; Shanmugam 1988; Clari et al. 1995; Miall 2016).

The foreland unconformities and condensed intervals discussed
here span >1-20 myr and may be diachronous (time-transgressive).
In other systems, the terms paraconformity or diastem may be
suitable for a disconformity (non-angular unconformity) or
condensed section of shorter duration. To avoid the confusion that
may accompany the interpretation of unconformities — such as the
debate over the genesis of the first unconformity identified by James

Hutton (e.g. Tomkeieff 1962; Young and Caldwell 2009; Jutras
et al. 2011) — this study attempts to delineate the specific temporal
and spatial framework for the reported stratigraphic discontinuities.
For simplicity, the term hiatus (rather than lacuna or vacuity;
Wheeler 1958) is used to refer to the period of time demarcated by a
particular unconformity or condensed interval.

Foreland basins develop in contractional orogenic systems along
convergent plate boundaries, in peripheral and pro-wedge/retro-
wedge settings within continental collision zones and in retroarc
settings associated with Andean-type subduction margins. Foreland
basins record long-term (>10-100 myr) rapid sediment accommo-
dation, principally in response to regional isostatic (flexural)
subsidence due to thrust loading and crustal thickening in the
adjacent orogenic wedges (Price 1973; Dickinson 1974; Beaumont
1981; Jordan 1981). Foreland basins are also affected by far-field
dynamic processes resulting from mantle flow and mechanical
coupling between the subducting/underthrusting slab and the
overriding plate (Royden 1993; DeCelles and Giles 1996; Liu
et al. 2011). Most foreland basins can be categorized into two end-
member geometries (Jordan 1995; Sinclair 1997; DeCelles 2012):
(1) an ‘overfilled’ basin commonly composed of aggradational
wedge-top, foredeep, forebulge and backbulge depozones (Fig. 1a);
or (2) an ‘underfilled’ basin defined by a single aggradational
foredeep depozone bordered distally by a degradational forebulge
and craton (Fig. 1b).

Foreland basin unconformities are most readily formed near the
erosive basin margins, along both the distal cratonic margin and the
structurally disrupted proximal basin margin adjacent to the
bounding fold—thrust belt (Fig. 1). Given the long-term cratonward
advance of orogenic wedges and genetically linked foreland basins
(Bally et al. 1966; Dewey and Bird 1970; Coney 1973), these basin
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Fig. 1. Schematic block diagrams showing
the principal zones of deposition and
erosion within (a) a complete (overfilled)
four-component foreland basin system

Foreland basin with
a single depozone

margin unconformities are preferentially concentrated in the lower
and upper stratigraphic levels of foreland basin successions (Fig. 2).
In lowermost stratigraphic levels, a basal foreland unconformity
may denote a basinwide stratigraphic boundary between pre-
orogenic deposits below and synorogenic deposits above. The
progressive advance of the thrust-induced flexural load and
corresponding foreland subsidence profile (i.e. the flexural wave)
generates a diachronous (time-transgressive) hiatus marked by this
regional basal contact in which the overlying synorogenic deposits
onlap the exposed distal basin margin and become progressively
younger toward the craton (Fig. 2) (Cant and Stockmal 1989;
Sinclair ez al. 1991; Crampton and Allen 1995; DeCelles and Giles
1996; Gupta and Allen 2000). An additional basinward younging
pattern is recorded in overfilled foreland basins, where a diachronous
condensed interval or disconformity symbolizes the cratonward
advance of the forebulge (Fig. 2a). In upper stratigraphic levels, local
unconformities expressed in the proximal foreland basin register
shortening and erosion in the frontal sector of the orogenic wedge.
Such wedge-top deposits are distinguished by angular unconfor-
mities and growth stratal geometries produced during coarse
sediment accumulation in proximity to active fold—thrust structures
(e.g. Riba 1976; Anadon et al. 1986; Suppe et al. 1992; Jordan et al.
1993; Horton and DeCelles 1997; Ghiglione et al. 2010).
Idealized chronostratigraphic cross-sections or Wheeler diagrams
(Wheeler 1958; Miall 2016) highlight the long-term diachronous
record of foreland depozones, unconformities and condensed
stratigraphic intervals (Fig. 2). In overfilled basin systems (Figs
la and 2a), a fully developed vertical stratigraphic succession (as per
Walther’s law) consists of a basal foreland unconformity overlain
successively by distal backbulge deposits, a condensed interval
(zone of stratigraphic condensation) or a disconformity marking the
forebulge, a thick upward-coarsening foredeep section and capping
wedge-top deposits with growth strata and structurally controlled
discordances. By contrast, underfilled basins (Figs 1b and 2b) are
characterized by a basal angular or non-angular unconformity,

consisting of wedge-top, foredeep,
forebulge and backbulge depozones and
(b) an underfilled foreland basin with a
single foredeep depozone. Erosion is
focused in the flanking thrust belt and
craton regions, with potential erosion,
sediment bypass or severely limited
sediment accumulation across the
forebulge region. The relative magnitude
of sediment accommodation is denoted by
spatial variations in basin-fill thickness
(stippled pattern) and flexural subsidence
(vertical arrows).

which represents protracted erosion across the distal forebulge and
craton, overlain by a thick continuous foredeep succession.

Although these end-member cases provide useful templates, they
fail to capture the complexity of foreland basins with unconfor-
mities that are not confined to the proximal and distal basin margins.
This paper explores possible mechanisms for the regional
generation of long-duration stratigraphic discontinuities within
retroarc foreland basins, with implications for the geodynamics of
Andean-type convergent plate boundaries. The motivation is to
describe these possibilities and critically assess ancient and modern
examples from the Andean foreland basin of western South
America. Whereas others have focused on the stratigraphic
records of hinterland deformation (e.g. Steinmann 1929; Mégard
etal 1984; Noblet et al. 1996; Horton 2012), the neotectonics of the
modern foreland (e.g. Proyecto Multinacional Andino 2009; Veloza
et al. 2012; Folguera et al. 2015a; Costa et al. 2020) or the long-
term evolution of the foreland basin system (e.g. Jordan and Alonso
1987; Cooper et al. 1995; Jordan et al. 2001a; DeCelles and Horton
2003; Gomez et al. 2005; Bayona ez al. 2008, 2020; Horton et al.
2010, 2020; Roddaz et al. 2010; Horton 2018a, b), this study
highlights the Andean-type geodynamic processes capable of
producing foreland stratigraphic hiatuses of considerable duration
and spatial extent.

Mechanisms of unconformity development

Summarized here are potential unconformity generation mechan-
isms for retroarc foreland basins (Fig. 3). Each is distinct, but they
are not mutually exclusive; several different processes may affect a
single region and may operate in synchroneity or in temporal
succession. The separate options are unified in that each serves to
interrupt an otherwise continuous process of rapid sedimentation
and accommodation generation (Figs 1 and 2). Of the eight
mechanisms discussed, the first three (Fig. 3a—c) create unconfor-
mities or condensed stratigraphic intervals in relationship to specific
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Fig. 2. Idealized diagrams for (a) a complete (overfilled) foreland basin system (Fig. 1a) and (b) an underfilled foreland basin (Fig. 1b) showing (1) the
erosion/deposition profile along (2) a regional cross-section (with foreland basin subsidence profile) spanning the thrust belt to craton, with the long-term
basin evolution represented by (3) an idealized time—stratigraphic cross-section (Wheeler diagram) and (4) the corresponding schematic stratigraphic
succession. Progressive cratonward advance of the orogenic belt and foreland basin (i.e. the flexural wave) results in time—stratigraphic charts showing
diachronous (time-transgressive) stratigraphic boundaries (between the deposits of adjacent depozones) and depositional onlap toward the craton (with an
increase in hiatus duration toward the craton). Hiatuses (vertical ruled pattern) in the time—stratigraphic charts represent disconformities (non-angular
unconformities) and condensed intervals in the stratigraphic record. The upward-coarsening foreland stratigraphic succession reflects successive vertical
stacking of laterally adjacent, distal to proximal depozones (per Walther’s law) during orogenic advance.

structures or broad structural highs, whereas the others (Fig. 3d-h)
involve regional geodynamic processes that may affect large
expanses of the foreland basin and its margins. The proposed
mechanisms have been identified in previous syntheses and some
may apply to non-foreland settings (e.g. Vail ef al. 1984; Weimer
1984; Loutit er al. 1988; Shanmugam 1988; Ettensohn 1994;
Crampton and Allen 1995; DeCelles 2012; Miall 2016; George
et al. 2020).

Unconformities and condensed sections may occur throughout a
foreland basin succession and need not be restricted to specific
stratigraphic levels. This paper considers long-duration discontinu-
ities that span >1-20 myr. In practice, insufficient age control
will pose challenges to the precise quantification of hiatuses. In
particular, condensed intervals — where several metres of section
represent long periods of time — may contain a series of internal
surfaces formed by multiple phases of abandonment or erosion,
with the common presence of non-marine pedogenic facies or gravel
lag deposits. The following mechanisms (Fig. 3) are regarded as
viable explanations for lengthy hiatuses that may be embodied in the
stratigraphic record as: (1) an unconformity defined by a single
erosive or non-erosive surface; (2) an unconformity capped by
thin regolith or gravel lag deposits; or (3) a condensed section
potentially rich in palaeosols or other facies indicative of reduced
accommodation.

Shortening in the frontal thrust belt and proximal foreland

Uplift in the frontal fold—thrust belt can produce unconformities in
the proximal, wedge-top sector of a foreland basin (Fig. 3a).
Progressive syndepositional tilting of basin fill results in growth
strata recognized by an up-section decrease in dip, abrupt lateral
thickness variations (thinning onto the synchronous fold—thrust
structure) and internal angular unconformities (Birot 1937; Riba
1976; Anadon et al. 1986; Suppe et al. 1992). The spatial extent of a
wedge-top unconformity and growth stratal package is governed by
the wavelength of the adjacent structure and is therefore limited to a
short horizontal distance (typically <5—10 km) from the syndeposi-
tional thrust fault and related fold (e.g. DeCelles 1994; Ghiglione
et al. 2002; Perez and Horton 2014). This constraint on the thrust
front position through time provides crucial insights for the
reconstruction of thrust belt development (e.g. Jordan et al. 1993,
2001a; DeCelles and Giles 1996; DeCelles and Horton 2003;
Ghiglione and Ramos 2005; DeCelles et al. 2011).

The proximity to active structures ensures that wedge-top
unconformities and associated growth strata in clastic systems are
confined to coarse facies near the mountain front (Figs 1 and 2a).
Given this restricted spatial extent, any proximal stratigraphic
discordances are expected to pass rapidly into -correlative
conformable sections in the laterally adjacent foredeep (Fig. 3a).
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Fig. 3. Schematic cross-sections showing

potential geodynamic mechanisms for the
generation of unconformities and
condensed stratigraphic intervals in a

foreland basin, including: (a) localized
shortening-related uplift in the frontal
thrust belt and proximal foreland; (b)
growth and advance of a broad, low-relief

flexural forebulge in the distal foreland;

(¢) uplift of intraforeland basement blocks
along crustal-scale reverse faults; (d)

tectonic quiescence with regional isostatic
rebound; (e) cessation of thrust loading
and flexural subsidence during oblique
convergence; (f) diminished
accommodation or sediment supply due to

Growth and advance of a broad, low-relief flexural
forebulge

An advancing orogenic wedge may yield a widespread unconform-
ity that denotes a diachronous hiatus induced by the cratonward
migration of the flexural wave during progressive topographic
loading (Figs 2 and 3b). This long-term process may be manifest not
only as a basal foreland unconformity separating pre-orogenic from

changes in sea-level, climate, erosion or
sediment transport; (g) basinwide uplift
caused by increased interplate coupling

during flat-slab subduction; and (h)
dynamic uplift associated with slab
window formation, slab break-off,
elevated intraplate (in-plane) stress or
related mantle processes.

synorogenic deposits (e.g. Sinclair ef al. 1991; Crampton and Allen
1995; Caballero et al. 2020), but also as a discrete condensed
interval or disconformity indicative of an advancing broad-
wavelength, low-amplitude forebulge (Fig. 2a) (Plint et al. 1993;
DeCelles and Horton 2003; Fuentes et al. 2009; DeCelles 2012).
The continuous advance of a flexural forebulge at a fixed rate
is considered unlikely. Unsteady processes involving irregular
advances or punctuated ‘jumps’ in forebulge location are deemed
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more probable due to the preferential reactivation of pre-existing
structures, stratigraphic anisotropies or inherited basement fabrics
(Waschbusch and Royden 19924; Bayona and Thomas 2003, 2006;
DeCelles 2012; Chapman and DeCelles 2015). Moreover, spatial
variations in plate strength will influence forebulge migration, with
a stronger plate (i.e. higher flexural rigidity and effective elastic
thickness) toward the craton fostering a greater flexural wavelength
and broader forebulge through time (e.g. Stockmal ef al. 1986;
Waschbusch and Royden 1992b; Fosdick ef al. 2014).

The regional basin architecture in terms of underfilled/overfilled
geometry (Jordan 1995) and the site-specific geomorphic and
palacoenvironmental conditions — most crucially, the local ratio of
accommodation to sediment supply (Horton 2018a) — will determine
whether the broad, low-relief forebulge will involve (1) erosion, (2)
sediment bypass or (3) modest sediment accumulation and, in turn,
result in, respectively, (1) an unconformity defined by a single
erosional surface, (2) an unconformity potentially marked by relict
detritus in the form of a thin gravel lag or (3) a condensed depositional
interval routinely demarcated in non-marine clastic systems by
pedogenic facies. Preservation of the predicted forebulge stratigraphic
record within an overfilled four-component basin system (Figs 1a, 2a
and 3b) requires considerable lateral mobility of the fold—thrust belt
and therefore will be limited to orogenic systems with large-
magnitude shortening and crustal thickening (e.g. DeCelles and
DeCelles 2001; Christophoul et al. 2003; DeCelles 2012).

Uplift of intraforeland basement blocks

Intraforeland basement block uplifts disconnected from the thin-
skinned fold—thrust belt can produce unconformities and condensed
intervals over large swaths of a foreland basin (Fig. 3¢). Because many
intraforeland uplifts are formed by independent structures deeply
rooted in the lower crust, the spatial scale of associated stratigraphic
discontinuities can be large (i.e. several tens of kilometres) (e.g. Tweto
1980; McQueen and Beaumont 1989; Erslev 2005; Rudolph et al.
2015; Folguera et al. 2015c¢). The interplay between the relative rates of
rock uplift, regional flexural subsidence and sediment supply will
dictate whether an individual block will be emergent and build positive
topography or will remain buried beneath foreland basin fill (e.g.
Dickinson et al. 1988; Ramos et al. 2002; Yonkee and Weil 2015;
Lawton 2019). Specifically, an isolated non-emergent block would be
represented by a buried structural high that recorded diminished
subsidence relative to the adjacent proximal and distal sectors of the
foreland basin (Fig. 3¢). By contrast, an emergent block that was later
buried would prompt an erosional unconformity with a spatial
distribution matching the dimensions of the block uplift. However, a
block that remained a positive topographic feature for an extended
period and never returned to a net accumulation situation would leave
no preserved basin-fill record.

Sufficient subsurface control can enable the identification of both
emergent and non-emergent basement block uplifts within a single
foreland basin (e.g. Balkwill er al. 1995; Lalami et al. 2020).
Although a basement block uplift in the distal foreland may be
difficult to distinguish from a flexural forebulge (e.g. Ziegler ef al.
2002), most intraforeland block uplifts exhibit a lower wavelength
(width), a higher structural relief and can be geometrically linked to
crustal-scale structures of moderate to large displacement (several to
tens of kilometres) (Fig. 3¢) (e.g. Bayona and Thomas 2003, 20006).

Tectonic quiescence with regional isostatic rebound

A prolonged pause in crustal shortening and flexural loading may
promote isostatic rebound and the development of an unconformity
across the foreland basin (Fig. 3d). During a period of tectonic
quiescence, continued erosion would decrease the orogenic
topography, causing flexural unloading and minor isostatic uplift

that would diminish in magnitude toward the craton. This process
would yield an unconformity characterized by erosion in the
proximal foreland and sediment bypass or severely reduced
accommodation in the medial to distal foreland (e.g. Heller ef al.
1988; Cant and Stockmal 1989; Legarreta and Uliana 1991; Ross
et al. 2005; Morin et al. 2019).

Alternating short-term phases of thrust fault activity and
quiescence have been invoked to explain foreland hiatuses
(Flemings and Jordan 1990; Miall 1996; Catuneanu et al. 1997;
Houston et al. 2000; Londono et al. 2012). Such episodic thrusting
appears intuitively appealing because the seismogenic records of
individual faults define cyclical patterns over periods <10 kyr
(Avouac 2003; Allmendinger et al. 2009). However, over longer
time frames (>1 myr), thrust faults and kinematically linked fold-
thrust systems show sustained shortening without evidence of
orogen-wide episodicity (Jordan ef al. 1993, 2001a; Beaumont
et al. 2000; Allmendinger and Judge 2014; Mouthereau et al. 2014;
Anderson et al. 2018). Therefore, long pauses in regional shortening
are not an intrinsic or autogenic component of contractional
orogenic belts and require specific mechanisms of sufficient
duration.

Rather than autogenic behaviour, long-term (>1 myr) cessation
of shortening in a fold—thrust belt may be the expression of
persistent tectonic quiescence due to lowered convergence rates
and/or a shift to a neutral or modestly tensile stress regime (Fig. 3d).
Commonly, these drivers may be genetically related to slab rollback
(retrograde slab motion) during steepening of the subducting/
underthrusting slab, potentially within a retreating plate boundary
involving reduced mechanical interplate coupling between the
converging plates (e.g. Dewey 1980; Royden 1993; Barberon et al.
2018; Horton 2018b; Fernandez Paz et al. 2019).

Cessation of thrust loading and flexural subsidence during
oblique convergence

A foreland basin unconformity may be generated by the termination of
flexural subsidence during a shift from a contractional to largely strike-
slip tectonic regime (Fig. 3e). The obliquity of plate convergence is an
important control on the amount of strike-slip and contractional
deformation in the overriding plate. Strain partitioning along a
convergent margin during non-orthogonal plate motion (Fitch 1972;
Jarrard 1986) is likely to regulate the relative proportions of strike-slip
displacement and crustal thickening within the orogenic system,
including structures in the forearc, magmatic arc and retroarc fold—
thrust belt. A shift to highly oblique convergence has been recognized
as a trigger for the termination of orogenic thickening, crustal loading
and flexural subsidence in an adjacent foreland (e.g. Price 1994;
Jaillard and Soler 1996; Simony and Carr 2011).

Although similar to the preceding option of a regional stratigraphic
hiatus related to erosional unloading and minor flexural rebound
(Fig. 3d), the distinction in this case (Fig. 3e) is that the convergent
margin experiences not only a lessening in the rates of orthogonal
(trench-normal) convergence, but also an increase in strike-slip
deformation. Ultimately, the consequences within the foreland basin
are similar, with the establishment of an extensive erosional
unconformity that diminishes in magnitude toward the craton. A
potential alternative is that an inboard jump in strike-slip deformation
may compartmentalize the foreland basin into a series of smaller
strike-slip basins (e.g. de Vicente ez al. 2011).

Diminished accommodation or sediment supply due to
changes in sea-level, climate, erosion or transport

A large decline in either accommodation or sediment supply may
induce an unconformity across a foreland basin (Fig. 3f). Under
appropriate conditions, a fall in relative sea-level could effectively
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eliminate sediment accommodation across the basin. Basinwide
erosion will only occur if the magnitude of the drop in regional base
level is sufficiently large to exceed accommodation generation by
flexural and dynamic mechanisms (Vail ef al. 1984; Shanmugam
1988; Jordan and Flemings 1991; Dickinson et al. 1994; Clevis
et al. 2004). In such situations, given the low topographic gradients
across most foreland basins, the magnitude of erosion should be
relatively uniform across the width of the basin (Fig. 3f). The
resulting stratigraphic record is apt to be distinguished by
widespread incision, with cutting of incised valleys several tens to
possibly 100-200 m deep (e.g. Weimer 1984; Van Wagoner 1995;
Plint et al. 2012).

Alternatively, in the absence of a base level change, the same
effects could be accomplished by modifications in climate or
erosional intensity that affect sediment supply, transport capacity
and stream power. As examples, long phases of non-deposition,
sediment bypass or erosion may be the respective outcomes of:
(1) a sharply reduced sediment supply due to aridification or
minimized weathering; (2) a shift to highly efficient sediment
transport across the basin; or (3) intensified erosion that leads to the
evacuation of foreland basin fill (e.g. Blisniuk et a/. 2005; Clift
2010; Clift and Van Laningham 2010; Allen et al. 2013).

For orogenic wedges governed by critical taper mechanics
(Dahlen and Suppe 1988), changes in climate and erosion can
further regulate mass influx and outflux for the orogen and adjacent
foreland, with potential shifts in the loci of crustal shortening and
exhumation. Such orogenic self-organization would interact with
internal (autogenic) and external agents affecting erosional/deposi-
tional mass budgets and basin sedimentation (Flemings and Jordan
1989; DeCelles and Mitra 1995; Horton 1999; Sobel et al. 2003;
Sinclair and Naylor 2012; Ghiglione et al. 2019).

Basinwide uplift during flat-slab subduction

Basinwide uplift in retroarc regions may arise from the mechanical
effects of a shift from normal or steep-angle subduction to flat-slab
subduction (Fig. 3g). With greater compression, end-loading and/or
basal traction in the overriding plate (Bird 1984; Axen et al. 2018), an
accompanying reversal from subsidence to uplift in the foreland basin
would eliminate accommodation and instigate pervasive erosion. This
shift would be manifest as a regional erosional unconformity spanning
the interval of flat-slab conditions, with a potentially younging trend
toward the craton (reflecting the inboard advance of the subducted slab
at depth). However, the geodynamic responses to subduction shallowing
are complex and it is recognized that the precise effects of flat-slab
subduction are varied and often unclear, with some studies proposing
increased subsidence rather than uplift (e.g. Mitrovica er al. 1989; Liu
et al. 2011; Flament et al. 2015; Gianni ef al. 2018; Carrapa et al. 2019;
Davila et al. 2019; Saylor et al. 2020).

In the simplified model shown here (Fig. 3g), flat-slab subduction
is considered to be responsible for increased mechanical coupling
between the converging plates and the enhanced inboard transmis-
sion of compressional stress. However, similar effects across the
foreland basin could be activated by long-distance material transport
via crustal underthrusting, lower crustal flow, ductile injection or
crustal translation above a deep décollement (e.g. Oldow et al.
1989; McQuarrie and Chase 2000; Erslev 2005). The broad
wavelength of these processes suggests that they would not cause
sharp angular discordances, but would lead to widespread
exhumation of foreland basin fill.

Dynamic uplift associated with slab window formation,
slab break-off or elevated intraplate stress

Dynamic uplift unrelated to thrust belt shortening and flexural
loading may involve several potential geodynamic mechanisms for
the origination of regional unconformities spanning foreland basins.

The formation of a slab window during the subduction of an actively
spreading oceanic ridge can drive uplift of continental lithosphere
above an expanding gap in the subducted slab (Fig. 3h) (Thorkelson
1996). Similarly, the tearing or break-off of a subducted slab may
catalyse surface rebound and pronounced basinwide uplift (Davies
and von Blanckenburg 1995; Andeweg and Cloetingh 1998; Gianni
et al. 2018, 2019). Slab window formation, slab tearing and slab
break-off promote uplift by way of heating and/or asthenospheric
upwelling (Fig. 3h). These have a profound effect on magmatism,
provoking a switch from subduction-related continental arc
magmatism to anomalous intraplate (within-plate) magmatism
with strong mantle/asthenospheric signatures.

At similar scales, the possible far-field transmission of
intraplate (in-plane) compressional stress from a plate boundary
may induce large-wavelength lithospheric folding or buckling
(Ziegler et al. 2002; Kley and Voigt 2008; Cloetingh and Burov
2011; Lacombe and Bellahsen 2016). Alternatively, vertical
motion associated with plume activity or mantle flow may yield
broadly similar uplift patterns in the absence of elevated horizontal
compressional stress (Burov and Cloetingh 2009; Faccenna and
Becker 2020).

The aforementioned geodynamic mechanisms mostly reflect
dynamic processes linked to subduction, plate interactions,
mechanical coupling and/or mantle flow that result in large-scale
basin abandonment and the creation of stratigraphic hiatuses. These
factors could arrest foreland subsidence, prompt erosion across the
basin and generate a regional disconformity.

Case studies from the Andean foreland basin

Geodynamic mechanisms of unconformity development are
assessed for six examples from the Andean retroarc foreland basin
(Fig. 4): three examples involving lower to mid-Cenozoic foreland
basin fill, now uplifted in the Andean fold—thrust belt, and three
examples from the Pliocene—Quaternary record of the modern
foreland basin. These separate cases are unified by stratigraphic
records with long-duration hiatuses (Fig. 5) that demonstrate the
interruption of otherwise continuous accommodation generation.
The six situations span different time frames, deformation
scenarios, climatic settings and geodynamic configurations. These
include: (1) regions with the greatest shortening, thickest crust and
highest mean elevation (in the central Andes of southern Peru,
Bolivia and northern Argentina); (2) zones of low shortening,
normal crustal thickness and subdued orogenic topography (the
southern Andes, including Patagonia); and (3) areas involving the
accretion of oceanic materials during transpressional reactivation of
older extensional systems (the northern Andes of northern Peru,
Ecuador and Colombia) (Kley et al. 1999; Aleman and Ramos
2000; Mora et al. 2010; Horton 20185). The climatic conditions are
markedly varied due to the zonal atmospheric circulation and rain
shadow effects, which yield high-magnitude precipitation in
retroarc sectors of the northern and central Andes, but sharply
lower precipitation in the southern Andean foreland (Montgomery
et al. 2001). Spatially irregular glaciation has disproportionately
affected higher elevation Andean districts and large parts of the
southern Andes (e.g. Bourgois et al. 2000; Ghiglione et al. 2019).
Andean plate tectonic configurations vary latitudinally (Fig. 4),
as expressed in (1) restricted provinces of flat-slab subduction (e.g.
the Colombian/Bucaramanga (2-8° N), Peruvian (5-15° S) and
Chilean/Pampean (27-33° S) flat-slab segments), (2) the subduc-
tion of aseismic ridges (e.g. the Sandra (5-6° N), Carnegie (0-2° S),
Nazca (14-16° S) and Juan Fernandez (32-34° S) Ridges); and (3)
the subduction of active oceanic spreading ridges and opening of
asthenospheric slab windows (e.g. the Patagonian slab window
adjacent to the Chile Ridge (45-48° S) along the Nazca—Antarctic
plate boundary) (Jordan ef al. 1983; Ramos 1999, 2005; Gutscher
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Fig. 5. Chronostratigraphic columns for the six localities within the Andean foreland basin showing Cretaceous—Cenozoic rock units, ages, thicknesses and
simplified lithologies. The stratigraphic discontinuities, representing temporal hiatuses (vertical ruled pattern), are expressed in the rock record as
unconformities, condensed sections or abandonment surfaces with gravel lags. Site locations are shown in Figure 4.

et al. 2000; Lagabrielle et al. 2004; Lonsdale 2005; Ramos and
Folguera 2009; Wagner et al. 2017). Despite these spatial variations,
modern earthquake focal mechanisms and global stress datasets
show that shortening dominates most of the Andean retroarc fold—
thrust belt, with low-magnitude extension restricted to elevated
plateau regions and strike-slip deformation focused along the
northern and southern extremities of the orogenic belt (Assumpcao
et al. 2016; Heidbach er al. 2018). Within the modern Andean
foreland, a flexural forebulge is roughly parallel to the thrust front,
consistent with a regional isostatic (flexural) response to the Andean
topographic load (Horton and DeCelles 1997; Chase ef al. 2009).
Current plate motions (DeMets et al. 2010) define nearly
orthogonal Nazca—South America convergence along most of the
western margin of the South American plate, excluding the northern
and southern terminuses where oblique convergence and transform

motion occur at lower rates with the adjacent Caribbean, Antarctic
and Scotia plates (Fig. 4). Past studies have recognized temporal
variations in the relative convergence rate, absolute overriding plate
velocity and convergence direction (e.g. Pilger 1984; Pardo-Casas
and Molnar 1987; Somoza and Ghidella 2012). Whereas many
studies have linked Andean orogenesis to Nazca—South America
convergence and/or the absolute westward motion of South
America (e.g. Coney and Evenchick 1994; Silver er al. 1998;
Mpodozis and Cornejo 2012; Maloney et al. 2013; Horton 20185),
others suggest that more-oblique convergence, particularly in the
early Cenozoic, may correlate with phases of diminished Andean
shortening or tectonic quiescence (e.g. Jaillard and Soler 1996;
Aleman and Ramos 2000; Carlotto 2013).

Six case studies from the Andean foreland basin (examples a—f)
are presented individually in chronological and geographical order,
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with ancient examples (examples a—c) presented from north to south
(Figs 4 and 5a—c) and modern examples (examples d—f) presented
from south to north (Figs 4 and 5d—). For each locality, an overview
of the chronostratigraphic relationships and description of the
unconformities or condensed sections is followed by a discussion of
the potential geodynamic mechanisms responsible for accommo-
dation reduction and unconformity development.

Paleogene condensed section with palaeosols, Eastern
Cordillera, southern Bolivia and northern Argentina

A widespread condensed section marked by distinctive palaeosols
distinguishes the Paleogene foreland basin succession in the central
Andes of Bolivia and northern Argentina (Fig. 4). The condensed
stratigraphic zone (Fig. 5a) consists of a <20—100 m thick interval of
stacked hypermature palaeosol horizons (or ‘supersols’) within the
Impora Formation of Bolivia and the Maiz Gordo and Lumbrera
Formations of northern Argentina (Horton and DeCelles 2001;
DeCelles and Horton 2003; DeCelles et al. 2011; DeCelles 2012;
Horton 2018a). These fine-grained pedogenic facies divide, with no
angular discordance or erosional relief, an underlying c¢. 100-300 m
thick Maastrichtian—Paleocene marine to distal non-marine section
from an overlying Oligocene-Miocene, 2—6 km thick, upward-
coarsening succession attributed to fluvial deposition in a foredeep
setting. In some locations the condensed interval is instead expressed
as a single disconformity with no presence of palacosols. Although
direct age control is hindered by thorough pedogenic alteration and a
lack of primary volcanic layers, age constraints from the underlying
and overlying units broadly limit the condensed zone to an early/
middle Eocene to early Oligocene age (DeCelles and Horton 2003;
Horton 2005; DeCelles et al. 2011; Siks and Horton 2011).

The roughly 15-20 myr condensed section (Fig. 5a) contains
extremely mature palacosols with soil horizonation (zones of
leaching and accumulation, mottling, gleying and oxidation) and
well-developed calcareous nodules, glaebules, peds, root traces and
trace fossils, which overprint and mostly destroy the original
sedimentary structures. These prominent pedogenic facies or
‘supersols’ are identified for up to 1000 km along strike, from 17
to 26° S (Fig. 4). The geological relationships require extremely low
time-averaged rates of Paleogene sediment accumulation (<5 m/
myr) over a large portion of the central Andean foreland basin,
without syndepositional shortening, tilting or extensive erosion.

Potential explanations for the Paleogene condensed interval or
equivalent disconformity in the central Andes at 17-26° S include:
(1) climate change; (2) reduced accommodation during tectonic
quiescence or oblique deformation; (3) regional uplift during
flat-slab subduction; (4) intraforeland basement uplifts; and, the
preferred interpretation, (5) forebulge growth and advance.

Climate change (Fig. 3f)

Elevated air temperatures and a humid climate during the Paleogene
may have boosted weathering intensity and rainfall in the foreland
basin (Sempere et al. 1997; Starck 2011), enhancing soil genesis
and yielding the stacked palacosols of the condensed section.
However, such a change in climate would also have increased the
supply of sediment, which is contradicted by a sharp decline in
sediment accumulation during Paleogene basin evolution.

Reduced accommodation during tectonic quiescence or
oblique deformation (Fig. 3d, e)

A potential Paleogene shutdown of shortening and/or transition to
strike-slip deformation could explain a protracted pause in crustal
loading and flexural subsidence. Although oblique Eocene
deformation has been identified farther north in the hinterland
districts of Peru (Carlotto 2013), a shift to strike-slip deformation is

not supported for the entire central Andean region, where
subduction-related arc magmatism and retroarc shortening persisted
(Mamani et al. 2010; Perez and Horton 2014; Horton et al. 2015;
Garzione et al. 2017). For Bolivia and northern Argentina,
thermochronological data indicate middle to late Eocene cooling
in the hinterland, which points to erosional exhumation during
sustained crustal shortening (Barnes et al. 2006; Gillis et al. 2006;
Carrapa and DeCelles 2008; Rak et al. 2017).

Regional uplift during flat-slab subduction (Fig. 3g)

A roughly Eocene transition to shallow subduction may have
promoted dynamic uplift that counteracted the effects of shortening-
induced flexural subsidence. Evidence for slab shallowing derives
from the time—space record of igneous activity, such that an inboard
advance of arc magmatism can be attributed to the migration of the
leading hinge of a shallow segment of the subducted slab (e.g.
Sandeman et al. 1995; James and Sacks 1999; Ramos and Folguera
2011). The principal objection to this option is that dynamic uplift
associated with flat-slab subduction would be unlikely to exceed the
subsidence expected for thrust-generated topographic loads (see
flexural models of Perez and Levine 2020).

Intraforeland basement block uplift (Fig. 3¢c)

Proposals for a Paleogene broken foreland basin in northern
Argentina are based on local reports of minor dip discordances that
are not connected to major fold—thrust structures (e.g. Montero-
Lopez et al. 2018; Payrola et al. 2020). The lack of a substantial up-
section decrease in dip, the dominance of relatively fine-grained
facies and the regional depositional continuity of Paleogene units
(Boll and Hernandez 1986; Jordan and Alonso 1987; Siks and
Horton 2011; Starck 2011) preclude the large topographic barriers
expected for a basin comparable with classic Laramide or Sierras
Pampeanas broken foreland basins (e.g. Jordan 1995; Ramos 2009;
Lawton 2019). Intraforeland uplifts also would be of insufficient
scale to account for the spatial extent of the Paleogene condensed
section for up to 1000 km along strike.

Forebulge growth and advance (Fig. 3b)

The favoured explanation is that diminished Paleogene sediment
accumulation is the result of the growth and cratonward migration
of a flexural forebulge. The accumulation of a palaeosol-rich
condensed section can be ascribed to low-accommodation and low-
erosion conditions across a broad-wavelength forebulge with
limited relief. The large magnitude of trench-perpendicular short-
ening (>200-300 km), commensurate with the advance of fold—
thrust deformation, and attendant crustal thickening (DeCelles and
Horton 2003; McQuarrie e al. 2005; Uba et al. 2009) suggest a high
lateral mobility of the foreland basin (as outlined in Fig. 2a).

The interpretation of an eastward advancing forebulge is
consistent with topographic loading driven by shortening in a
fold—thrust belt above a mid-crustal décollement (McQuarrie 2002).
Further, the estimated 15-20 myr duration of the condensed section
(Fig. 5a) is compatible with the timescales of forebulge migration
expected for the reported values of Andean shortening, flexural
rigidity and regional sedimentary thicknesses (e.g. Horton and
DeCelles 1997; DeCelles and Horton 2003; Echavarria et al. 2003;
McQuarrie et al. 2005; Anderson et al. 2018; Calle et al. 2018; Rahl
et al. 2018).

Mid-Cenozoic hiatus, abandonment surface and gravel lag,
Neuquén Basin, central Argentina

A disconformity marked by an abandonment surface and capping
gravel lag demarcates a mid-Cenozoic (c. 40-20 Ma) hiatus in the
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Neuquén Basin of west-central Argentina (Fig. 4). The base of the
Agua de la Piedra Formation is composed of a 2-20 m thick
ultrastable conglomerate referred to as the ‘Rodados Lustrosos’
(Fig. 5b), which contains distinctive shiny (‘lustrous’) pebble and
cobble clasts that are extremely smooth, well-rounded and have been
polished by large-distance transport and high degrees of weathering,
oxidation, recrystallization and rock varnish development (Horton
et al. 2016). This diagnostic unit occurs in the middle of an Upper
Cretaceous—Cenozoic foreland basin succession up to 4-5 km thick
(Fig. 6). In most localities, the conglomeratic facies define a
disconformable, non-angular contact with limited incision into
underlying the Upper Cretaceous to middle Eocene clastic facies of
the Neuquén Group and finer grained Malargiie Group (Fig. 6).

In contrast with the preceding example in the central Andes, there
is no evidence of lengthy pedogenesis in the Neuquén Basin; rather,
a geomorphic abandonment surface (or multiple closely spaced
surfaces) is capped by a thin (<20 m) veneer of gravel. A reduction
in long-term sediment accumulation and the paucity of pedogenic
facies suggest that intrabasinal sediment transport from the middle
Eocene to earliest Miocene resulted in bypass to distal regions to the
east. A further indication of sediment bypass — as opposed to
sediment starvation — includes local erosion represented by
palaeovalleys in which the ‘Rodados Lustrosos’ unit disconform-
ably overlies uppermost Cretaceous strata (Garrido ez al. 2012). This
pervasive conglomeratic unit has been identified over a >400 km
distance along strike, from 33 to 37° S (Gorroilo et al. 1979;
Yrigoyen 1993; Sempere et al. 1994). An absolute age of c¢. 40—
20 Ma is assigned to the hiatus (Figs 5b and 6) on the basis of
maximum depositional age constraints provided by detrital zircon
U-Pb geochronological results for sandstones with considerable

volcanogenic material (Horton et al. 2016; Horton and Fuentes
2016; Horton 2018a; Fuentes and Horton 2020).

Several possible options could explain the c¢. 20 myr mid-
Cenozoic depositional hiatus in the Neuquén Basin at 33-37° S,
including: (1) intraforeland basement uplifts; (2) forebulge growth
and advance; (3) a change in climate or sea-level; and, the favoured
interpretation, (4) reduced accommodation during tectonic
quiescence.

Intraforeland basement block uplift (Fig. 3¢)

The present foreland region is broken by the San Rafael uplift, a
basement-involved contractional structure ¢. 100 km east of the
modern Andean topographic front. The timing of this structure is
much younger than the 40-20 Ma hiatus, with most rock uplift
accomplished in the late Miocene (Ramos and Kay 2006; Ramos
and Folguera 2009, 2011). No comparable mid-Cenozoic basement-
involved structures of sufficient scale have been recognized at depth
within the foreland basin (Boll ez al. 2014).

Forebulge growth and advance (Fig. 3b)

Diminished accumulation may be the product of forebulge advance
(Giambiagi ef al. 2001). In this instance, however, the narrow width
of the fold—thrust belt (<100 km), the low magnitude of shortening
(1545 km) and the strong influence of pre-existing Mesozoic
normal faults (e.g. the Malargiie fold—thrust system; Manceda and
Figueroa 1995; Giambiagi et al. 2008, 2012; Turienzo 2010;
Fuentes et al. 2016) are insufficient to drive the required >100 km
lateral migration of the foreland subsidence profile (flexural wave).
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Climate change or sea-level fall (Fig. 3f)

A shift to a humid climate may have promoted heightened erosion
and highly efficient sediment transport across the foreland, to such
an extreme as to leave no deposits, but only an abandonment surface
and gravel lag. This mechanism would involve a major mismatch
between the sediment transport capacity and accommodation, and
would require large-magnitude exhumation in the thrust belt. To
date, the available fission track and U-Th/He thermochronological
results show no enhanced exhumation during the 40-20 Ma
window (Folguera ez al. 2015b; Bande et al. 2020).

Alternatively, an Oligocene drop in base level may partially
account for the negligible accumulation in the Argentina foreland
(Fuentes and Horton 2020). Although this lowstand would briefly
suppress accommodation at a regional scale, this mechanism alone
would be insufficient to account for the long duration and virtually
complete elimination of accommodation across the foreland from
the middle Eocene to earliest Miocene.

Reduced accommodation during tectonic quiescence or
oblique deformation (Fig. 3d, e)

The preferred interpretation for the ‘Rodados Lustrosos’ gravel lag
and associated 20 myr hiatus is a prolonged cessation of shortening
and flexural loading. The elimination of accommodation would
have led to abandonment of the foreland basin, with long-distance
sediment transport and/or long residence times for recycled coarse
material from the inactive thrust belt. Isolated palaeovalley
formation suggests local erosion, potential reflecting a drop in
base level or some degree of isostatic rebound. Of particular
importance is the absence of a structural or thermochronological
record of contemporaneous shortening. Instead, the 40-20 Ma time
frame coincided with a period of modest hinterland extension of the
Andean orogenic belt at these latitudes (Jordan ez al. 20015; Burns
et al. 2006; Charrier et al. 2007; Folguera et al. 2010; Rojas Vera
et al. 2014).

In summary, the mid-Cenozoic disconformity in the Neuquén
Basin of west-central Argentina (Fig. 5b) is thought to reflect a
sustained pause in flexural subsidence that resulted in no net
accumulation across an inactive foreland basin, which may be
attributable to the cessation of sediment transport or, more likely, to
basinwide sediment bypass (Legarreta and Uliana 1991; Horton and
Fuentes 2016). In this example, any viable geodynamic mechan-
isms for foreland quiescence must account for a coeval shift to a
neutral or extensional tectonic regime in the corresponding
hinterland regions. In the absence of high topography and a
thickened crust suitable for gravitational collapse (e.g. Giovanni
et al. 2010; Horton 2012), a favoured option is a reduction in
mechanical coupling stemming from slab steepening, trench
rollback or a decrease in the overriding plate velocity (Maloney
et al. 2013; Horton 2018b).

Paleogene erosional unconformity, Magallanes—Austral
Basin, southernmost Chile and Argentina

A Paleogene unconformity spanning 15-20 myr is marked by an
erosional surface within the Magallanes—Austral foreland basin
(Fig. 4). The unconformity (Fig. 5c, d) is situated within the
intermediate to upper levels of the 5—7 km thick Upper Cretaceous
through Cenozoic foreland succession. The erosional surface incises
upper Maastrichtian to lower Paleocene shelf-edge deltaic deposits
of the Dorotea and Cerro Dorotea formations and is capped by
middle Eocene shallow marine and estuarine deposits of the Man
Aike and Rio Turbio formations and the equivalent local units
(Fig. 5c¢, d).

The stratigraphic discontinuity can be traced in surface and
subsurface datasets over ¢. 700 km along strike, from 47 to 54° S. Over

much of its extent, the hiatus spans c¢. 15-20 myr, from the early
Paleocene through middle Eocene (Fig. 5c). However, the duration
varies significantly from north to south, with regional diachroneity
defined by a local maximum hiatus of ¢. 40—60 myr in the north (from
Lago Pueyrredon to Lago Viedma at 47-50° S; Fig. 5d) and a
continuous Paleocene—Eocene section in the south (within Tierra del
Fuego at 53-55° S) (Biddle ef al. 1986; Ramos 1989; Wilson 1991;
Malumian 2002; Ghiglione et al. 2014; Sickmann et al. 2018; Ronda
et al. 2019; Fosdick et al. 2020; George et al. 2020).

Although the Paleogene unconformity lacks an extensive angular
discordance, Fosdick ef al. (2011) interpreted ‘a subtle angular
unconformity’ in selected seismic data. The unconformity cuts
across different horizons in the underlying stratigraphic units,
suggesting erosional relief exceeding several tens of metres.
Although the eroded thickness of the former overburden has been
estimated at ¢. 5 km (Fosdick et al. 2015), vitrinite reflectance data
indicate limited erosion, with the removal of no more than ¢. 500 m
during the formation of the unconformity (George et al. 2020).

A range of possible geodynamic mechanisms may explain the
diachronous Paleogene unconformity in the Magallanes—Austral
Basin at 47-54° S. With no clear preference, the choices include:
(1) shortening in the proximal foreland; (2) forebulge growth and
advance; (3) isostatic rebound during tectonic quiescence;
(4) regional uplift during flat-slab subduction; and (5) uplift
associated with slab window formation or slab break-off.

Shortening in the proximal foreland (Fig. 3a)

The erosional unconformity may be part of a regional growth
structure linked to syndepositional shortening in the frontal zone of
the east-directed Patagonian fold—thrust belt (Fosdick ez al. 2014).
Although younger Neogene growth strata are preserved in units
above the unconformity (Malumidn et al. 2000; Ghiglione et al.
2016a), the absence of thickness variations or pronounced angular
discordance within the Paleogene succession, and the lack of a
candidate contractional structure, suggests that localized thrust belt
shortening was not responsible for the regional hiatus. The spatial
continuity of the preserved erosion surface over hundreds of
kilometres would also require a structure of exceptional strike
length, which is incompatible with mapped features.

Forebulge growth and advance (Fig. 3b)

A cratonward-advancing forebulge linked to the Patagonian fold—
thrust belt could produce an erosional unconformity of long
duration and large spatial extent (Wilson 1991). In this explanation,
the forebulge unconformity would overlie a thin accumulation of
distal backbulge deposits (Figs 1a and 2a), which conflicts with the
large (>4 km) thickness of the underlying Upper Cretaceous
foreland basin succession. In addition, the required magnitude of
lateral migration (>100 km) is inconsistent with the reported values
of crustal shortening, which are generally <30-40 km (Alvarez-
Marrén et al. 1993; Fosdick et al. 2011).

Isostatic rebound during tectonic quiescence (Fig. 3d, e)

A termination of shortening and crustal loading would be sufficient
to induce erosional unloading of the foreland basin and generate a
regional unconformity (George et al. 2020). Testing this hypothesis
is inhibited by the absence of direct age control on any candidate
structures that may have been active during Late Cretaceous to early
Eocene time. Reported shifts in Paleogene exhumation and
provenance (e.g. Fosdick e al. 2020) permit, but do not require,
synchronous deformation. Direct structural timing constraints are
necessary to better separate phases of non-deposition from the
regional effects of sea-level lowstands (Malumian 2002; Olivero
and Malumian 2008).
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Regional uplift during flat-slab subduction (Fig. 3g)

A potential decline or termination of arc magmatism at roughly
65—45 Ma may reflect a phase of Paleogene flat-slab subduction, as
proposed farther north for northern Patagonia at 40—46° S (Gianni
et al. 2018; Horton 2018b; Butler et al. 2020). George et al. (2020)
point to an apparent lull in arc magmatism at 60—45 Ma on the basis
of detrital zircon age distributions at 50-51° S, which would be
consistent with an extinguished arc during shallow subduction. If
sufficient geochronological and geochemical datasets for Patagonia
were available, then the history of subduction-related arc magma-
tism could be discriminated from intraplate magmatism to identify
any inboard progression of arc magmatism.

Uplift associated with slab window formation or slab
break-off (Fig. 3h)

Paleogene slab window development has been discussed for a
northern region (44-51° S), where diminished arc magmatism
coincided with a phase of intraplate magmatism fed by primitive
mantle sources (as represented by extrusive units such as the middle
Eocene Posadas basalt; Fig. 5d). In this region, collision of the
Aluk-Farallon spreading ridge led to progressive Eocene (roughly
57-40 Ma) opening of a slab window (Ramos 2005; Aragén et al.
2013; Gianni ef al. 2018). Although the Eocene time frame partially
overlaps with the hiatus in the Magallanes—Austral Basin at 47-54° S,
the predicted timing of slab window formation at more southern
latitudes would be substantially younger, by up to 10 myr. Therefore,
although the hypothesis would be consistent with the possible
60-45Ma lull in arc magmatism (George et al. 2020), this
diachroneity of slab window opening and incomplete records of
intraplate magmatism present challenges to this interpretation.

Late Cenozoic sediment bypass in the Patagonian foreland,
southern Argentina

The Patagonian fold—thrust belt at 43—53° S (Fig. 4) is flanked to the
east by a low-relief erosional plain that is no longer an actively
subsiding foreland basin (Fig. 5d). This retroarc landscape of
Argentina includes flat-lying Cretaceous—Cenozoic foreland basin
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strata that are now undergoing widespread erosion (Ramos 1989,
2005; Bouza and Bilmes 2020). The relict foreland contains an
anomalously high topography (roughly 500 m above sea-level), the
highest Andean retroarc region (Fig. 4) that is not directly linked to
upper crustal faulting. Modest regional uplift across this narrow
continental strip is registered by late Miocene—Quaternary fluvial
and marine terraces up to several hundred metres above sea-level
(Feruglio 1950; Guillaume et al. 2009; Pedoja et al. 2011).

The switch from foreland subsidence to regional erosion occurred
in the middle Miocene at c¢. 15 Ma (Fig. 5c, d; Ghiglione et al.
2016b; Davila et al. 2019; Fosdick et al. 2020). Although the
retroarc region ceased to accommodate and preserve sedimentary
deposits, this did not prohibit the production and transport of clastic
sediments across the abandoned foreland basin. Large-scale
exhumation of the fold—thrust belt through fluvial and aeolian
processes since ¢. 15 Ma and active glaciation since ¢. 6 Ma have
supplied considerable sediment to the eastern plains (Thomson et al.
2001; Guillaume et al. 2013; Ghiglione et al. 2019; Willett et al.
2020). This sediment has bypassed the relict foreland to be
deposited farther east in the offshore Argentine and Malvinas basins
of the Atlantic passive margin (Fig. 4; Ghiglione ez al. 2016b). The
onshore record of sediment bypass is represented by an abandon-
ment surface capped by a thin (<10-20 m thick), but extensive,
gravel lag, the ‘Rodados Patagoénicos’ (Feruglio 1950; Parras ef al.
2008; Ghiglione et al. 2016b; Barberon et al. 2019; Bouza and
Bilmes 2020), which Darwin (1842) referred to as the ‘Patagonian
Shingle Formation’ (Martinez et al. 2009).

Folguera et al. (2015a) outlined possible geodynamic controls on
the modern foreland configuration; most are encapsulated in the
unconformity generation mechanisms summarized previously
(Fig. 3). In the Patagonian foreland at 43—53° S, basin abandonment
corresponds with the opening of an active slab window (Fig. 3h).
Both the Patagonian Andes and adjacent foreland show an abrupt
topographic step that overlaps with the position of the Chile triple
junction at 46° S (Fig. 7). Ramos (2005) attributed the elevated
topography to enhanced dynamic uplift linked to northward
progression of the Nazca—Antarctic spreading ridge (the Chile
Ridge) to where it now intersects the trench at 46° S (Figs 4 and 7).
In this context, a slab window has opened over the past c. 16 myr
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Fig. 7. Topographic profiles of the Patagonian Andes (after Ramos 2005) and corresponding retroarc foreland basin showing the relatively higher mean
topography and topographic relief south of the Chile Ridge (the Nazca—Antarctic spreading ridge), which has advanced northward through time. Map-view
profile traces are shown in Figure 4; stratigraphic framework is shown in Figure 5c, d.
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Fig. 8. Profiles of the Fitzcarrald Arch (Figs 4 and Se) along the boundary between the Ucayali Basin and Madre de Dios Basin, Peru (after Espurt et al.
2007, 2010). (a) Regional topographic profile showing the ¢. 500 km wavelength of the uplifted Fitzcarrald Arch. (b) Seismic reflection profile showing the
broad warping of the basement and the overlying Phanerozoic strata, as well as the erosional removal of the Neogene strata.

and now underlies the Patagonian foreland from 46 to 55° S
(Lagabrielle ef al. 2004; Breitsprecher and Thorkelson 2008). This
geodynamic history contrasts with the rest of the Andes. Therefore,
rather than focused crustal thickening (e.g. Stevens Goddard and
Fosdick 2019), regional uplift and accommodation reduction along
this segment of the Andean margin can be attributed to dynamic
mantle processes (Fig. 3h) (Guillaume et al. 2009; Folguera et al.
2015a; Davila et al. 2019).

Late Cenozoic flat-slab subduction beneath the Ucayali
Basin, central Peru

The flat-slab province of Peru provides an opportunity to judge the
retroarc response to a rapid shift from steep to shallow subduction, a
potential mechanism for regional unconformity development in
foreland basins (Fig. 3g). The modern zone of flat-slab subduction
at 4-15° S is linked to subduction of the buoyant Nazca Ridge
(Fig. 4), an aseismic ridge that intersected the margin at ¢. 10 Ma in
northern Peru and swept progressively southward to its current
location in southern Peru (Hampel 2002; Rosenbaum ez al. 2005;
Ramos and Folguera 2009; Antonijevic et al. 2015).

The modern foreland basin of Peru consists of actively subsiding,
low-elevation (<100-150 m) plains flanked by the Andean fold—
thrust belt (Dumont 1996; Mora et al. 2010). The different
geographical designations within the Peruvian (Amazonian)
foreland — including the Marafion, Ucayali and Madre de Dios
basins — contain comparable stratigraphic records showing large-
volume sediment accumulation during the Miocene—Pliocene
(Fig. 5e) (Espurt et al. 2010, 2011; Roddaz et al. 2010; Antoine

NW
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TWTT (s)

et al. 2016; Iribarne et al. 2018; Zamora and Gil 2018). A critical
departure from this trend exists in the Ucayali Basin at roughly
8-12° S, where large-wavelength uplift of Miocene—Pliocene
foreland basin fill is expressed in topographic, stratigraphic and
structural data (Espurt et al. 2007, 2010). This anomalous region
constitutes the Fitzcarrald Arch, a 400 000 km? foreland zone
situated at c¢. 600 m above sea-level, considerably higher than the
subsiding plains of the flanking northern (Ucayali) and southern
(Madre de Dios) sectors of the modern basin (Fig. 4). Although this
elevated region in the proximal foreland could be argued to
represent an aggradational fluvial megafan similar to other Andean
settings (e.g. Résdnen er al. 1992; Horton and DeCelles 2001),
surface and subsurface geometries showing broad-wavelength
(300-600 km) warping of Miocene—Pliocene stratigraphic units
since ¢. 4 Ma (Fig. 8) demonstrate a structural origin for the
Fitzcarrald Arch (Espurt et al. 2007, 2010; Regard et al. 2009).
Moreover, the present drainage catchment geometries reveal an
increase in relief from fluvial incision (Regard ef al. 2009) rather
than the topographic levelling that would be expected for megafan
construction during aggradation in a subsiding foreland basin.

The temporal and spatial correspondence of the subducted Nazca
Ridge and the Fitzcarrald Arch (Fig. 4) indicate the vital role of flat-
slab subduction in driving a reversal from foreland aggradation to
degradation. Although uncertainty remains in gauging the exact
processes responsible, the increased buoyancy of the aseismic ridge
likely caused slab shallowing, which, in turn, led to increased
mechanical coupling along the contact between the subducting and
overriding plates (Gutscher er al. 2000; Martinod et al. 2010;
Bishop et al. 2018). The foreland response to Nazca Ridge

SE

Fig. 9. Line tracing of a seismic reflection
profile in the Llanos Basin, Colombia
showing an unconformity within the
upper Miocene—Pliocene Guayabo
Formation (after Delgado ef al. 2012).
The intra-Guayabo unconformity indicates
erosional truncation of the underlying
NW-dipping reflectors (dipping toward
the orogen) and progressive onlap by

Distance (km)

overlying reflectors toward the SE
(toward the craton), consistent with rapid
regional tilting.
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subduction has been regional dynamic uplift (i.e. wholesale uplift in
the absence of crustal thickening) that exceeds the coeval flexural
subsidence due to shortening in the Andean fold—thrust belt

(Fig. 3g).

Late Cenozoic regional tilting in the Llanos Basin,
Colombia

The Pliocene—Quaternary record of the Llanos foreland basin in
Colombia (Fig. 4) is linked to the geodynamic evolution of the
northern Andes. Using an extensive subsurface dataset, Delgado
et al. (2012) defined an intrabasinal unconformity that suggests a
major shift in foreland accommodation. The unconformity occurs in
proximal to medial segments of the Llanos Basin within
intermediate levels of the ¢. 3—4 km thick upper middle Miocene—
Pliocene Guayabo Formation (Fig. 5f). This intra-Guayabo
unconformity exhibits low-angle discordance over tens of kilo-
metres. Seismic images reveal initial erosional bevelling of older
strata that dip gently toward the orogen (northwestward) followed by
progressive cratonal (southeastward) onlap of the unconformity
surface by younger strata (Fig. 9). This geometry is consistent with
sharply asymmetrical subsidence, with rapid regional tilting
toward the Andean thrust front accompanied by erosion in more
distal parts of the basin, potentially including a broad forebulge or
cratonic margin. Multiple small-offset normal faults may have
helped facilitate regional tilting (Delgado et al. 2012).

Limited age control prevents a clear understanding of the duration
of the intraformational hiatus. Regional correlations and past
estimates suggest a late Miocene to mid-Pliocene age for the
Guayabo Formation (Cooper et al. 1995; Mora et al. 2008; Parra
etal 2009, 2010; Bande et al. 2012; Reyes-Harker et al. 2015). The
precise age of the discordance, although speculative, is inferred to
be within the 7.1-4.8 Ma range (Fig. 5f), the reported age of the
T-17 palynological biozone (Duarte et al. 2017; Jaramillo et al.
2017). The actual hiatus may be markedly shorter than this 2.3 myr
time frame.

Several possible interpretations warrant consideration. A latest
Miocene—early Pliocene age for the intra-Guayabo discordance
matches the proposed timing of initial flat-slab subduction beneath
the Colombian Andes (Wagner et al. 2017). Establishment of this
flat-slab configuration at 2—7° N (Fig. 4) may have prompted a pulse
of basement-involved shortening within the foreland. However,
unlike other proposals of wholesale regional uplift during
subduction shallowing, the unconformity geometry would require
spatially variable uplift that imparted a regional tilt to the basin prior
to erosional bevelling (Fig. 9).

Separately, the apparent time frame for unconformity generation
overlapped with reported increases in thrust belt shortening, mean
elevation, orographic rainfall and erosional exhumation (Mora et al.
2008, 2013). These factors may have led to heightened topographic
loading, greater subsidence and, with an increased sediment supply,
prospective overfilling of the Llanos foreland basin. Depending on
the distribution of tectonic and sedimentary loads, these processes
may also have induced a modest retreat of the forebulge or distal
basin margin toward the thrust belt, accentuating regional tilting and
further promoting unconformity growth in the proximal to medial
foreland.

Discussion

The examples presented here provide insights into the geodynamic
mechanisms of unconformity development in foreland basins.
Consideration of modern and ancient examples helps promote a
workflow that evaluates multiple possible explanations (Fig. 3),
recognizing the potential for separate mechanisms to operate
simultaneously. This paper emphasizes lengthy stratigraphic

discontinuities, which require a severe reduction or elimination of
accommodation over geological time frames. This involves (1) erosion,
(2) sediment bypass with the transport of materials to more distal regions
or (3) the extremely slow accumulation of a condensed stratigraphic
interval (Figs 1 and 2). A single locality may fluctuate among these three
modes.

This discussion emphasizes criteria pertaining to the interpret-
ation of unconformity generation mechanisms in Andean-type
retroarc settings. These mechanisms can be distinguished on the
basis of the spatial extent, structural situation, stratigraphic position,
palacoenvironmental conditions and duration of the unconformities
and condensed sections within the broader tectonic context of the
convergent margin.

Spatial extent and relationship with identified structures

The geographical distribution, along-strike continuity and geomet-
ric relationships with surface or subsurface structures are essential
observables. Is the spatial extent of the unconformity compatible
with known features, such as a frontal fold—thrust structure (Fig. 3a),
a broad flexural forebulge (Fig. 3b) or an intraforeland basement
block uplift (Fig. 3¢)? The magnitude of any angular discordance,
along with correlations of age-equivalent strata and assessments of
lateral thickness variations, will aid in the recognition of
synorogenic growth strata linked to individual structures. Using
this rationale, we can readily dismiss proposed structural controls in
circumstances where discernible structures are absent or identified
structures are of insufficient strike length, displacement magnitude
or time span to account for the location and extent of the
unconformity in question.

Age, duration and potential diachroneity of an
unconformity

Information on the age and duration of a stratigraphic discontinuity
will help to distinguish short-term eustatic, climatic or autogenic
fluctuations (Fig. 3f) from longer term forcings. Several mechan-
isms are time-transgressive, such as the cratonward migration of a
flexural forebulge during propagation of an orogenic wedge
(Fig. 3b), or the progressive inboard advance of a flat slab during
subduction shallowing (Fig. 3g). The unconformity or condensed
section created by such diachronous processes must be compatible
with the reconstructed topographic loads, mechanical properties of
the foreland lithosphere, and records of deformation and magma-
tism. Further, the duration of the hiatus may be highly variable, as in
episodes of isostatic rebound where greater erosional removal in the
proximal foreland yields a stratigraphic gap of diminishing age
toward the distal foreland (Fig. 3d, e).

Stratigraphic and palaeoenvironmental history before and
after unconformity development

Determining whether an unconformity or condensed interval is
positioned at the base or internally within the foreland basin
succession is necessary for proper interpretation (Fig. 2). This
distinction resolves whether a stratigraphic discontinuity may mark
the inception of orogenesis or some later synorogenic process. In
assessing unconformity genesis, the preserved rock records directly
above and below the unconformity (or the facies within a condensed
section) provide an unambiguous record of accommodation
variations immediately before, after and potentially during the
hiatus. The relative magnitude of accommodation interruption will
scale differently for the potential drivers. Changes in sea-level,
climate or erosion (Fig. 3f) will also produce recognizable shifts in
palacoenvironments and sediment transport parameters reflected in
the preserved facies.
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Tectonic regimes within the flanking orogenic belt

Plate reconstructions and deformational histories inform geological
analyses of foreland basin evolution. One challenge for contrac-
tional systems involves periods in which shortening may cease or be
greatly lessened. During a shutdown in shortening, the tectonic
regime of the orogen may shift to neutral conditions, a tensile mode
with hinterland extension (Fig. 3d) or margin-wide strike-slip
deformation (Fig. 3e), any of which would induce basin
abandonment. The time—space relationships between unconformity
development and magmatism are further valued because a pause in
subduction-related arc magmatism can reflect (1) a tectonic shift to
an oblique, translational or transpressional orogenic system
(Fig. 3e), (2) flat-slab subduction (Fig. 3g) or (3) slab window
formation (Fig. 3h).

Time—stratigraphic relationships

In evaluating different options, chronostratigraphic cross-sections
(Wheeler diagrams) prove effective in documenting lateral and
vertical relationships within the stratigraphic record (Fig. 2). These
constraints stimulate estimates of the potential relationships to
crustal structures or broader geodynamic elements of the orogenic
system. Even where the underlying mechanisms of unconformity
generation are not apparent, such time—space assessments are useful
in discriminating among viable explanations. In practice, this
regularly helps catalyse a discussion of alternative interpretations.
For example, the identification of contrasting stratigraphic intervals
of comparable age permits the isolation of key variables to better
understand why an unconformity or condensed section formed in
one region, but not in another.

Modern analogues

Interpretations of foreland basin unconformities and condensed
sections can be challenging, as demonstrated by ancient examples
from the Andes (Figs 4 and 5). For the cases described, there are
multiple possibilities (Fig. 3) and debate commonly focuses on
specific field relationships, stratigraphic correlations or age control
within the basin (Fig. 5). Some explanations are mutually exclusive,
but others are not.

Case studies from the modern Andean foreland provide greater
clarity regarding what may otherwise involve complex or non-
unique explanations. These observations address the current plate
configuration (Fig. 4) and active foreland basin processes in terms of
erosion, sediment bypass or subsidence, enabling interpretations
with higher confidence. For the late Cenozoic situations considered,
the effects of subduction-related parameters are clear, such that the
foreland responses can be observed directly in instances of flat-slab
subduction, ocean ridge subduction and slab window generation
(Figs 3g, h, 7 and 8). Enhanced exploration of the late Cenozoic to
present day foreland conditions will help to improve the ability to
accurately reconstruct the geodynamic evolution of ancient
convergent margins from the foreland basin stratigraphic record.
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