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A B S T R A C T   

Cerium suboxide clusters are a recent catalyst class that has received interest for the generation of H2 from water. 
Using density functional theory calculations, this work examines the reaction of Ce2O− clusters with H2O. It is 
shown that the reaction can proceed along both doublet and quartet pathways. In both cases, hydrogen formation 
is facilitated by intermediate structures featuring bridging hydride and hydroxide ligands. Interestingly, it is 
shown that metal d electrons facilitate the reduction of water. This work provides new understanding of this 
reaction and provides new insight into the reactivity of small lanthanide-based clusters with water.   

1. Introduction 

Water, being one of the most abundant substances in nature, has 
been the subject of intense interest for scientists to study its physical and 
chemical properties.[1–11] In addition to the roles water plays in 
myriad chemical reactions and biological systems, H2O has been a key 
focus in energy related research. Of particular interest are catalysts 
facilitating the four-electron 2H2O →2H2 + O2 reaction.[12–17] Cerium 
oxides attracted special interest recently due to their ability to efficiently 
catalyze a wide range of oxidation and reduction reactions, including 
water–gas shift reactions. [18–22] Several studies have also shown that 
cerium oxide-supported metal surfaces exhibit increased catalytic ac
tivity relative to their non-cerium oxide supported analogues.[23–35]. 

Surface defects due to metal or oxide deficiencies possess unique 
electronic properties and facilitate increased reactivity. Such defect sites 
exhibit incomplete valencies and localized electronic structures.[36] As 
with other metal oxides, the catalytic activity of lanthanide oxide sur
faces is most active at surface defect sites. However, studying extended 
surfaces is complicated by the low concentration of surface defects and 
the continuous structural changes along the surfaces. Alternatively, 
small gas-phase lanthanide oxide clusters can serve as representative 
model systems for studying reactivity of defect sites on extended 
surfaces. 

Several experimental and computational studies have been per
formed on cerium oxide clusters in order to better understand the 
electronic structure features that pave the way to a thorough 

understanding of their reactivity and catalytic activity. In addition, 
various experimental and theoretical studies have explored the reac
tivity of classes of cerium-based clusters with various gas-phase small 
molecules. [37,38,19,39–49,17,50,51] Of particular interest here are 
computational studies conducted by Zhou and co-workers on the reac
tivity of Cen (n  = 1–3) with up to six water molecules. [37,38] Their 
results indicate high reactivity of these cerium clusters and their effi
ciency in decomposing multiple water molecules. Recently, Jarrold and 
co-workers reported mass spectra of CexOy

− systems (x  = 2,3,y  = 1–4) 
and their products from reactions of the clusters with water.[17] Their 
results indicate that cerium oxide clusters undergo three types of re
actions: hydrogen gas production, water abstraction, and hydroxide 
abstraction. The relative selectivity of one reaction type over the others 
is highly dependent on the stoichiometry of the cluster. For example, 
Ce2O−, Ce3

−, Ce3O2
−, and Ce3O2

− preferentially produce H2 gas, while 
clusters with equal stoichiometric ratios of Ce and O undergo OH 
abstraction, and clusters bearing more oxide than cerium ions undergo 
water abstraction. 

In this work, we consider the simplest stoichiometric cluster of 
cerium oxide capable of efficient H2 gas production, Ce2O−. Previously 
reported experimental results include data from mass-spectrometry and 
photoelectron spectroscopy, which provide valuable information on the 
geometric and electronic structures of the studied molecules.[17,48] We 
note that this particular cluster is explored here to specifically examine 
these gas phase experimental results and is not a direct model for the 
extended surface system. Below, we first examine the geometric and 
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electronic structure of different clusters potentially involved in the re
action. We then explore the potential energy surfaces corresponding to 
various states and identify a likely pathway for H2 formation from water 
at Ce2O− clusters. 

2. Computational Methods 

Calculations were performed using a development version of the 
GAUSSIAN suite of electronic structure programs.[52] The B3PW91 den
sity functional was employed.[53–57] The unrestricted formalism was 
used for all calculations.[58,59] The stability of all calculated Kohn–
Sham determinants was verified.[60–62] The Stuttgart relativistic small 
core atomic natural orbital basis set and corresponding effective core 
potential (ANO/ECP) basis set with 28 core electrons and a contracted 
valence basis set (14s13p10d8f6g)[6s6p5d4f3g] was used for cerium 
center.[63] The Dunning style correlation-consistent basis set aug-cc- 
pVTZ was used for oxygen and hydrogen centers.[64,65]. 

Geometry optimizations were carried out using standard methods 
and the nature of each located potential energy surface stationary point 
was confirmed by vibrational frequency analysis.[66] Intrinsic reaction 
coordinate (IRC) calculations were performed to ensure that optimized 
transition structures connect appropriate potential energy surface 
minima.[67,68] Reported enthalpies of reactions were calculated at 
298K. Relative energies including zero-point corrections at 0K are re
ported in the supporting information. 

We note that systems featuring multiple metal centers and open-shell 
electronic structure, such as those studied here, can potentially exhibit 
multi-reference character. In particular, these systems might exhibit 
close-lying electronic states with relatively small energy gaps. For this 
reason, the results from DFT calculations must be interpreted with some 
caution and detailed analysis. As such, all calculations reported involved 
evaluation of Kohn–Sham determinant stability, analysis of spin 
contamination, and manual inspection of the occupied one-electron 
molecular orbitals. This approach follows from our previous experi
ence working with such systems as well as studies reported by other 
groups in which DFT calculations for similar systems have yielded en
ergies and observables that are in good agreement with experimental 
results.[69,70,47,71,72,46,73,74,51,75]. 

3. Results 

In the discussion that follows, structures are labeled as X-n, where X 
¼ A,B,C… represents a particular molecular structure and the value of n 
indicates the multiplicity of the cluster. For example, A-4 refers to the 
quartet spin state of structure A. Transition structures are labeled as 
TS1-n and TS2-n. Again, n denotes the spin multiplicity of the transition 
structure. A thorough search for numerous isomers and electronic states 
was performed to identify candidate reactants, intermediates, products, 
and transition structures. 

As discussed in greater detail below, this investigation ultimately 
identified two viable pathways for the reaction Ce2O− + H2O →Ce2O2

−

+ H2. Specifically, it was found that reactions along doublet and quartet 
pathways are both likely. In both cases, the reaction begins water 
addition to a Ce2O anion cluster, followed by formation of hydride and 
then hydroxide bridges, and finally yields evolution of molecular 
hydrogen (Scheme 1). 

3.1. Reactant and Product Cerium Oxide Clusters 

Prior to exploring the mechanism of Ce2O− + H2O →Ce2O2
− + H2, 

we considered possible structures of the initial Ce2O− cluster species and 
the final oxidized cluster Ce2O2

−. Various molecular structures and 
electronic configurations were considered. For the Ce2O− molecular 
cluster, two general structural motifs are possible: (1) the oxygen atom 
can bridge the two cerium atoms (Compound A, Fig. 1); or (2) the ox
ygen can be in a terminal position and bound to only one cerium site as 
only (Compound B, Fig. 1). In addition to the molecular structure, we 
examined multiple spin-states. Specifically, calculations were carried 
out on the doublet, (ground-state) quartet, and sextet multiplicities. 

Our calculations showed that several different structures of Ce2O−

species exist. Fig. 1 shows the energetically competitive Ce2O− species. 
The ground state of Ce2O−, A-4, is a quartet state featuring a bridging 
oxide. In this structure, the two Ce–O bonds are equivalent with a bond 
length of 2.06 Å and a Ce–O–Ce angle of 120.8◦. The sextet A-6 lies 3.92 
kcal/mol higher than A-4 and the doublet state A-2 is only 2.1 kcal/mol 
higher in energy than the ground state. These results are in agreement 
with the anion photoelectron spectroscopy results published by Kafader 
et al.[47]. 

Another located structure, B-6, features a terminal oxide and has a 
sextet spin ground state. This structure is much higher in energy than the 
others, at 48.40 kcal/mol higher than A-4. Quartet and doublet states 
were not found for structure B. Despite its absence in the previously 
reported photoelectron spectrum of Ce2O− [47] and its higher energy 
relative to the ground-state A-2, we still considered the possibility of the 
role of B-6 in the reaction with water and consequent H2 production. 
Nevertheless, we were unable to locate a reaction pathway starting with 
B-6 and leading to the evolution of H2. 

We next considered candidates for the product Ce2O2
− clusters. As 

for the initial cluster species A and B, each oxide in the product cluster 
can either be at terminal or bridging positions. We found four different 
general geometric structures; considering doublet, quartet, and sextet 
spin states resulting in 11 distinct candidate final product clusters, 
which are shown with their relative energies in Fig. 2. 

The ground state produce cluster, C-4, is a quartet planar compound 
with both oxygens bridging the two cerium ions. Another closely lying 
state is doublet C-2, which has a geometry similar to the ground-state. C- 
2 lies only 0.63 kcal/mol higher than C-4, and the geometries of the two 
structures are quite similar. 

Compounds C-6 and F-2 lie approximately 25 kcal/mol higher in 
energy than C-2 and C-4. Sextet C-6 is 24.94 kcal/mol higher in energy 
than C-4. Although the structure of C-6 is similar to C-4 and C-2, C-6 is 
not a planar structure. Specifically, the Ce–O–Ce–O torsion angle is 
20.3◦, unlike C-4 and C-2 that are planar. 

An additional set of higher energy Ce2O2
− isomers (D, E, and F) were 

also located. The geometry of F-2, which is close in energy to C-6 at 
27.14 kcal/mol relative to the lowest-energy C-4 cluster, is quite 
different. Specifically, one oxide is terminal while the other one is 
bridging. Given that D-2, D-4, D-6, E-2, E-4, E-6, and F-6 are all much 
higher in energy (58.73–162.47 kcal/mol) we presume that they do not 
contribute to the mechanistic study presented in this paper and do not 
consider them further. 

In previous work, Kafader et al. reported the anion photoelectron 
spectra of Ce2O− and Ce2O2

− together with a computational analysis to 

Scheme 1. Overview of the proposed mechanism for the reaction Ce2O− + H2O →Ce2O2
− + H2.  
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fully characterize the observed structures.[47] DFT calculations and 
Franck–Condon simulations were used to determine that the ground- 
state configuration of Ce2O− is a 4A2 state with the Ce–O–Ce bridge 
bonding being the favored structural motif, resulting in C2v symmetry. 
They found another close-lying 2A2 state with a bonding motif resem
bling the ground-state quartet species. These two structures correspond 
to A-2 and A-4 structures reported in this work (Fig. 1). Using the same 
approach, Kafader et al. determined the ground-state configuration for 
Ce2O2

− to be a 4Ag state with the 2Ag state being slightly higher in en
ergy. Both structures exhibit D2h symmetry and Franck–condon simu
lations confirmed their contributions to the photoelectron spectrum. 
These two structures resemble C-4 and C-2 shown in Fig. 2, respectively. 
As far as the starting materials and the final products are concerned, our 
computational results are in good agreement with the results reported 
by Kafader and coworkers. Thus, the two (non-relativistic) potential 
energy surfaces to be explored are the 4A2 and 2A2 routes that start with 
compounds A-4 and A-2 and lead to 4Ag and 2Ag clusters C-4 and C-2. 

Fig. 3 shows the frontier molecular orbitals (MOs) of A-2 and A-4. 
The MO diagram of A-4 is comprised of three general manifolds: 4f, 
σ/σ*, and 5d orbitals. The first frontier orbital group includes two singly 
occupied 4f orbitals localized on the cerium centers. The σ and σ* or
bitals are doubly occupied and are predominantly Ce 6s-based. Finally, 
the highest occupied MO (HOMO) of quartet Ce2O− A-4, is a 5d-based 
singly occupied orbital with the electron delocalized across the two 
cerium centers. Similar to A-4, the frontier MOs for A-2 feature doubly- 
occupied 6sσ and 6s*

σ, and singly-occupied 5dσ β orbital and 4f orbitals. 
The difference between the MO diagrams of A-4 and A-1 is the spin of 
the occupied 5dσ orbital. 

MO diagrams for C-2 and C-4 (shown in Fig. 4) exhibit more simi
larity to each other than A-2 and A-4. Both spin states of structure C 
include the two singly occupied 4f orbitals present in their respective 
starting A clusters. In addition, both doublet and quartet spin states have 
a doubly occupied 6s-based σ orbital and a singly occupied σ* orbital. 
The only difference is the spin of the electron occupying the σ* orbital. 

Fig. 1. Optimized structures and energies of located Ce2O− clusters. Energies are given in kcal/mol and are relative to that of A-4. Cerium atoms are shown in gold 
and oxygen atoms are shown in red. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 2. Optimized structures and energies of located Ce2O2
− clusters. Energies are given in kcal/mol and are relative to that of C-4. Cerium atoms are shown in gold 

and oxygen atoms are shown in red. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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The quartet has an α electron in the σ* orbital, while that same orbital is 
occupied by a β electron in the doublet C-2. In a manner similar to the 
reactants, the doublet and quartet Ce2O2

− differ in the spin of the singly- 
occupied 6s*

σ orbital. 
The combined oxidation state of the two cerium centers is (+I) in 

Ce2O− and (+III) in Ce2O2
−. Figs. 3 and 4 show that the frontier mo

lecular orbitals of both Ce2O− and Ce2O2
− exhibit delocalization of 

electrons over the two cerium metals. In addition, as discussed in the 
previous sections, all Ce–O bonds are equivalent within the same 
molecule in both the Ce2O− and Ce2O2

−. For these reasons, the oxidation 
states of the cerium centers should also be equal. Furthermore, given the 
delocalized nature of the frontier orbitals over the two cerium centers 
we take our computational results to suggest two resonance structures 
that have cerium centers with unequal oxidation states. For Ce2O−, the 
studied structure can be described by two resonance structures of 
Ce2O−, with each resonance form featuring one Ce(0) and one Ce(I) 
center. In a similar manner, the final Ce2O2

− structures C-4 and C-2 are 
described by two Ce(I)/Ce(II) resonance structures. 

3.2. Water Addition 

The reaction of Ce2O− with water begins with water addition. We 
have identified one unique mode for water addition to clusters A-2 and 
A-4. This mode is best described as an interaction between the water 
oxygen and a terminal cerium atom, while the second cerium atom does 
not directly engage in this step. Water addition to the Ce2O− clusters A-2 
and A-4 forms structures G-2 and G-4. A notable feature about both 
adduct structures is that a water hydrogen is oriented towards the 
distant cerium, suggesting the feasibility of hydrogen interaction with 
the remote cerium center. 

The relative heats of reactions of the water adducts are shown in 
Fig. 5. Formations of both adducts resulting from water addition to 
Ce2O− are exothermic, with ΔH values of −13.0 and −12.2 kcal/mol for 
the doublet and quartet states, respectively. For the formed in
termediates, the distance between the water oxygen center and the 
cerium atom is 2.56Å (G-4) and 2.49Å (G-2). Additionally, the bound 
water is oriented such that a hydrogen atom is oriented toward the other 
cerium center. 

Fig. 3. Valence molecular orbitals of quartet (left) and doublet (right) Ce2O−.  

Fig. 4. Valence molecular orbitals of quartet (left) and doublet (right) Ce2O2
−.  
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3.3. Hydride Bridge Formation 

Following water addition, the reaction undergoes Ce oxidation as a 
water O–H bond is cleaved and leads to formation of a bridging hydride. 
Structures H-2 and H-4 correspond to the resulting intermediates, 
Ce2HO(OH)−, that form from O–H bond cleavage in G-2 and G-4, 
respectively. Fig. 6 shows the structure and relative energies of two 
identified spin states that correspond to structure H. 

The structure of H-2 and H-4 is best described as a four-member 
planar ring consisting of two cerium atoms, an oxygen, and a 
hydrogen, with a bound hydroxide ligand. The oxygen and hydrogen 
centers in the ring are both in bridging positions relative to the two 
cerium atoms. The bridging hydride binds to the Ce centers with bond 
lengths of 2.29Å and 2.30Å for both the doublet and quartet species. 
The O–H bond cleavage in both the quartet and doublet states is 
exothermic with heats of reaction of −73.0 kcal/mol (quartet state, G-4 
→H-4) and −73.9 kcal/mol (doublet, G-2 →H-2) relative to their 
respective starting materials. Such exothermicity suggests the formation 
of H-2 and H-4 is highly thermodynamically favorable. 

Transition structures TS1 connect G to H (Fig. 7). The two transition 
structures (TS1–4 and TS1-2) are geometrically similar to their respec
tive reactants G-4 and G-2, with the water hydrogen oriented towards 
the two cerium centers. The Ce–H bond distances are 2.34Å and 2.80Å 

(TS1–4) and 2.38Å and 2.79Å (TS1-2), respectively. Both G →H reac
tion steps are essentially barrieless. The TS1–4 and TS1-2 energy bar
riers are only 0.6 kcal/mol (-11.6 kcal/mol relative to A-4 + H2O) and 
0.2 kcal/mol relative to G-4 and G-2 (-11.2 kcal/mol relative to A-4 +
H2O). 

3.4. Hydroxide Bridge Formation and H2 Production 

The relative positions of the two hydrogen centers is critical for the 
final H2 formation step. With this in mind, we explored a series of 
possible rearrangement steps. Our calculations identified I-2 and I-4, 
both of which feature molecular orientations that are reasonable struc
tural precursors to H2 formation (Fig. 8). Structures I-2 and I-4 include a 
new hydroxide bridge between the cerium centers, resulting in the two 
hydrogens being in close proximity to one another (H–H distance is 
∼3Å). These structures directly lead to subsequent release of H2 and 
formation of product clusters C-2 and C-4. By comparing the Ce–H bond 
lengths of structures H-2 and H-4 with I-2 and I-4, we observe a decrease 
in bond distance as the hydroxide binds to the second cerium atom. 
Thus, the bond formation between the hydroxide and cerium plays a role 
in decreasing the distance between one of the cerium atoms and the 
hydride. 

Our calculations identified transition structures connecting H-2 and 

Fig. 5. Quartet G-4 (left) and doublet G-2 (right) with intermolecular distances given in Angstroms. Energies are given in units of kcal/mol and are relative to A-4 +
H2O. Cerium atoms are shown in gold, oxygen atoms are shown in red, and hydrogen atoms are shown in white. 

Fig. 6. Structures of quartet H-4 and doublet H-2, Ce–O distances are shown in units of Angstroms. Energies are given in units of kcal/mol and are relative to A-4 +
H2O. Cerium atoms are shown in gold, oxygen atoms are shown in red, and hydrogen atoms are shown in white. 
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H-4 to I-2 and I-4, shown in Fig. 9. In both cases, the transition struc
tures present small reaction barriers (7.6 kcal/mol for the quartet and 
6.5 kcal/mol for the doublet). In support of experimental in
terpretations,[47,48] these transition structures feature an electron rich 
hydroxide attracted by the electron-poor cerium centers resulting in 
diffuse multi-centered bonds involving the hydroxide and both cerium 
ions. 

The final step of the mechanism involves H2 production and forma
tion of C-4 or C-2. In both quartet and doublet pathways, this final step is 
quite exothermic. The energies of the separated products are 24.7 kcal/ 

mol and 25.0 kcal/mol below the hydroxide/hydride bridge structures I- 
4 and I-2, respectively. Relative to the initial quartet Ce2O−/water 
aduct, the reaction enthalpy for hydrogen gas evolution is −91.3 kcal/ 
mol via the quartet pathway and −89.3 kcal/mol via the doublet 
pathway. 

4. Discussion 

Fig. 10 shows the full energy profile of the doublet (green) and 
quartet (orange) mechanistic routes. In both cases the overall reactions 

Fig. 7. Structure TS1–4 that connects G-4 and H-4 (left) and TS1-2 that connects G-2 and H-2 (right). Energies are given in units of kcal/mol and are relative to A-4 
+ H2O. Cerium atoms are shown in gold, oxygen atoms are shown in red, and hydrogen atoms are shown in white. 

Fig. 8. Front and side view of the geometry of structures quartet I-4 (left) and doublet I-2 (right). Energies are given in units of kcal/mol and are relative to A-4 +
H2O. Cerium atoms are shown in gold, oxygen atoms are shown in red, and hydrogen atoms are shown in white. 
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are barrierless, in agreement with the experimental data provided by 
Jarrold and coworkers.[48,47] The reaction can be summarized by four 
steps: (1) addition of water onto a cerium center of Ce2O−; (2) hydride 
transfer from water into a bridging position between the two cerium 
atoms; (3) bond formation between hydroxide and the far cerium atom; 
and (4) evolution of H2. Importantly, the reaction profiles in Fig. 10 are 
based on calculations that implicitly treat scalar relativistic effects and 
ignore spin–orbit effects. These calculations predict energy gaps be
tween 0.007 kcal/mol and 2.1 kcal/mol for the two lowest-energy 
pathways, which are related to one another by a single electron spin- 
flip. As such, both pathways are likely accessed due to the presence of 
the lanthanide centers that will provide spin–orbit coupling between 

these two low-energy pathways. 
The partially filled f-manifold in most lanthanide complexes lies 

close to the 5d and 6s orbitals of the lanthanide centers, yet it is non- 
bonding in nature and exhibits core-like behavior. Several studies 
have shown that the orbitals involved in chemical processes on lantha
nides and lanthanide-based clusters involve 6s and 5p orbitals, while the 
occupation number of 4f orbitals remains intact. 
[69,70,47,71,72,46,76]. While the cerium-based 6s orbitals have been 
previously determined to be the sites of electron detachments in various 
cerium and cerium suboxide clusters (including Ce2O− and Ce2O2

−), we 
notice here that both σ and σ* orbitals retain all or most of their electron 
occupations as the reaction proceeds. This shows that σ and σ* electrons 
are not the source of metal facilitated reduction of water. Instead, the 
electron source in the studied reaction is the set of singly occupied 5d 
orbitals. This observation is consistent with the reported experimental 
result that reaction of Ce2O2

− with water yields H-radical rather than 
H2. The reaction of water with Ce2O− depletes the metal centers of their 
d electrons and prevents further H2 production.[17]. 

There are features of the Ce2O− catalyzed reaction that are different 
from reports published for transition metal oxide cluster analogues. 
Three such examples include tungsten oxide, molybdenum oxide, and 
mixed manganese-molybdenum oxides.[77–80] The overall reaction 
barriers for those cases is similar to the case reported in this work, but a 
key difference lies in the mode of addition of water to the clusters. 
Indeed, previous reports found that the initial steps of water addition 
occur via a concerted step involving simultaneous addition of hydroxide 
(from water) to the metal center and O–H formation at an oxo site. As 
discussed above, our calculations identified a different pathway for the 
reaction with cerium oxide that occurs via a two-step process: water 
adds to the cerium center to form structures G-2 and G-4 (Fig. 5), then 
the hydrogen transfers to a bridging position between the two cerium 
centers. 

Fig. 9. Structures of TS2-2 and TS2-4 that connect H-2 and H-4 to I-2 and I-4, 
respectively. Energies are given in units of kcal/mol and are relative to A-4 +
H2O. Cerium atoms are shown in gold, oxygen atoms are shown in red, and 
hydrogen atoms are shown in white. 

Fig. 10. Energy profile for the proposed Ce2O− + H2O →Ce2O2
− + H2 quartet (orange) and doublet (green) mechanisms. Relative energies are presented in units of 

kcal/mol and are relative to A-4 + H2O. Cerium atoms are shown in gold, oxygen atoms are shown in red, and hydrogen atoms are shown in white. 
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In the reaction of MnxMoOy anions with water, both Mn and Mo are 
involved in the initial cluster-water formation.[80] However, only the 
Mo center undergoes oxidation. In fact, the reactivity of the MnxMoOy 
anion clusters with water depends on the oxidation state only of the 
molybdenum center. Once the Mo center reaches its highest oxidation 
state (VI), reaction with additional water molecules ends. 

5. Conclusions 

This work studied the reaction of water with Ce2O− clusters to pro
duce Ce2O2

− and H2. Density functional theory calculations have been 
used to map out the full reaction pathway for hydrogen production. A 
thorough search for candidate intermediates and transition structures 
has shown that a key point in the progression of the reaction is the 
formation of successive bridging bonds that place the two hydrogen 
atoms in close proximity and eventually facilitates the production of H2. 
We have also shown that it is energetically possible for both experi
mentally identified electronic states of Ce2O− to react with water and 
eliminate molecular hydrogen with low energy barriers relative to the 
starting materials. Finally, while the valence molecular orbitals of the 
studied cerium oxide clusters consist of 4f, 5d, and 6s metal-centered 
orbitals, an examination of the molecular orbitals of initial and final 
cerium oxide clusters clearly indicates that the metal 5d electrons pro
vide the means for water reduction. This work provides new insight to 
the reactivity of small lanthanide-based clusters with water. 

The reaction studied in this work provides insight to key driving 
features of an important reaction catalyzed by lanthanide suboxide 
clusters. Interestingly, experimental results have shown that variations 
in the lanthanide to oxide ratios in CexOy anion clusters is a dictating 
factor in the mode of reactivity of these clusters with water.[17] While 
the effect of this ratio on the reactivity with water is still not fully un
derstood, our analysis using a molecular orbital approach shows that the 
reaction of Ce2O− clusters is driven by delocalized 5d electrons. A 
similar feature has been observed in a recent study[69] in which we 
showed the significant role that lanthanide-based 5d orbitals play in the 
structure and bonding across the lanthanide hydroxide series. Studying 
cluster reactivity with varying ratios of lanthanides to oxides provides 
further understanding of the reactivity motifs of these clusters and 
insight for designing catalysts that can efficiently carry out efficient 
hydrogen gas production. 
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