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Predictive models of thermodynamic properties of mixtures are paramount in chemical engineering and

chemistry. Classical thermodynamic models are successful in generalizing over (continuous) conditions

like temperature and concentration. On the other hand, matrix completion methods (MCMs) from

machine learning successfully generalize over (discrete) binary systems; these MCMs can make

predictions without any data for a given binary system by implicitly learning commonalities across

systems. In the present work, we combine the strengths from both worlds in a hybrid approach. The

underlying idea is to predict the pair-interaction energies, as they are used in basically all physical

models of liquid mixtures, by an MCM. As an example, we embed an MCM into UNIQUAC, a widely-used

physical model for the Gibbs excess energy. We train the resulting hybrid model in a Bayesian machine-

learning framework on experimental data for activity coefficients in binary systems of 1146 components

from the Dortmund Data Bank. We thereby obtain, for the first time, a complete set of UNIQUAC

parameters for all binary systems of these components, which allows us to predict, in principle, activity

coefficients at arbitrary temperature and composition for any combination of these components, not

only for binary but also for multicomponent systems. The hybrid model even outperforms the best

available physical model for predicting activity coefficients, the modified UNIFAC (Dortmund) model.

Introduction

Information on thermodynamic properties of mixtures is of

crucial importance in chemical engineering and chemistry.

However, providing this information is hampered by a combi-

natorial problem: the number N of known components is

increasing rapidly (it is presently in the order of N ¼ 108,

counted by entries in the CAS Registry1); if only binary mixtures

are considered, the number of mixtures that can be formed

from these components already goes with N2. Even if only

technically relevant components and their mixtures are

considered, the numbers are still extremely high. Consequently,

experimental data on thermodynamic properties are available

only for a small fraction of the relevant mixtures, especially as

the corresponding experimental investigations are tedious.

Therefore, methods for the prediction of thermodynamic

properties of mixtures are essential in practice.

The present work is focused on thermodynamic properties of

uid mixtures. Physical models for describing these properties

are generally based on the concept of pair interactions, which are

commonly described by pair-interaction energies. All types of pair

interactions in a multicomponent mixture can be investigated

by studying the pure components (for the like interactions) and

the binary subsystems (for the unlike interactions). Therefore,

physical models for thermodynamic properties of uidmixtures

are generally developed using data on pure components and

binary mixtures; based on this, they can also be used to predict

properties of multicomponent mixtures. In the application of

models of thermodynamic properties, their predictive capabil-

ities are of prime importance. To assess them, the relation of

the data used in the model development (the training data) to

the data to be predicted is important. Regarding thermody-

namic properties of mixtures, we distinguish two categories of

predictions here:
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(i) Those, in which for a given system (a xed set of

components) only the conditions are changed compared to the

training data (e.g., temperature, pressure, or concentration of

the components); we refer to this as generalization over

conditions.

(ii) Those, in which the system itself is changed, i.e., was not

included in the training data; we refer to this as generalization

over systems.

While (i) involves continuous variables, (ii) is discrete. In the

nomenclature of the present paper, we follow the common

usage, which says that ‘mixture’ can have two meanings: in the

rst, it simply designates the combination of specic compo-

nents (regardless of their concentrations, e.g., ‘water + ethanol’),

in the second, also the concentrations are included in the term

(e.g., ‘water + ethanol with xwater ¼ 0.1 mol/mol’). In cases where

this ambiguity can lead to misunderstandings, we use the term

‘system’ instead of ‘mixture’ when we refer to the rst case.

The most common types of thermodynamic models of

mixtures are models of the Gibbs excess energy GE, such as

UNIQUAC2,3 or NRTL,4 and equations of state (EoS).5 These

models excel in generalizing over conditions. By virtue of the

underlying thermodynamic theory, they can also be used for

generalizing over properties, i.e., if trained on data for a specic

property, they can be used to predict a different but related

property; this is an important issue, which, however, is not in

the focus of the present work.

In their basic form, GE models and EoS are only partially

useful for generalizing over systems: for the reasons given

above, they are usually trained on data for binary systems, but

can then be used for modeling those binary systems only for

which data were available during the training. In contrast,

predictions of properties of unstudiedmulticomponent systems

with GE models and EoS oen turn out to be sufficiently accu-

rate, under the condition that the model was trained on data for

all constituent binary subsystems.6

To overcome the lack of generalization over (binary) systems,

group-contribution (GC) approaches like UNIFAC,7–9 modied

UNIFAC (Dortmund),10,11 and the Predictive Soave–Redlich–

Kwong (PSRK) EoS12,13 have been developed. They are based on

the idea that components can be split into structural groups

and, instead of considering pair interactions between compo-

nents, pair interactions between these groups are modeled. As

the number of relevant structural groups is comparatively small

(in the order of 100), the combinatorial problem described

above thereby becomes tractable. GC methods contain group-

interaction parameters that are usually trained on data for

binary systems containing the pertinent groups. They can then

be used for predicting the properties of systems for which no

data are available.

Unfortunately, the applicability of these GC methods is still

hampered by incomplete group-interaction parameter tables.

This is due to both the elaborate procedure of tting new group-

interaction parameters, and the fact that oen not enough

pertinent experimental data are available for a meaningful t.

The problems resulting from an inadequate database also lead

to poor performances of GC methods when applied to systems

with components that contain groups for which only a few

training data points are available. The most prominent alter-

natives to GC methods are quantum-chemical approaches,

namely COSMO-RS.14,15 In principle, COSMO-RS enables

predictions for any system based on quantum-chemical calcu-

lations, which are, however, computationally costly and not

trivial for complex components. Furthermore, also these

methods are tuned on experimental data, but the number of

parameters is typically low and common users do not change

them.16 Compared to GCmethods, quantum-chemical methods

are oen found to be somewhat less accurate in the prediction

of thermodynamic properties.17

We have recently introduced a completely new approach for

predicting thermodynamic properties of unstudied binary

systems.18–21 This approach is based on employing matrix

completion methods (MCMs) from machine learning (ML),

where the MCMs are prominently associated with recom-

mender systems.22,23 E.g., for movie recommendations, these

methods can implicitly learn and quantify similarities among

users and similarities among movies by observing interaction

patterns (ratings or clicks) between them, allowing to predict

preference scores for unseen pairs of users and movies. In

a similar spirit, our previous work18,19 employed MCMs for

predicting activity coefficients gNij of solutes i in pure solvents j

at innite dilution and constant temperature, where the MCM

learns similarities among the solutes and among the solvents.

Applying the MCM approach for predicting thermodynamic

properties is based on the fact that properties of binary mixtures

at constant conditions, such as isothermal gNij , can be stored in

matrices, where the rows and columns represent the compo-

nents i and j that make up the mixtures. As these matrices are

only sparsely occupied by experimental data, the prediction of

the unobserved entries constitutes a matrix completion

problem. In our previous work,18,19 we employed a matrix

factorization following eqn (1):

g
N

ij ¼ f(qi$bj) (1)

The value of gNij is thereby modeled by the dot product of two

vectors qi and bj, which contain the so-called latent features and

capture properties of the solute i and the solvent j, respectively,

and which are inferred from the sparse available data on the

mixture property g
N

ij . The function f was chosen to be the

exponential function, taking into account that the g
N

ij are by

denition non-negative and span a wide range of values.

Moreover, this choice is also a physical one since the excess

chemical potential mE,Nij of the solute i at innite dilution in the

solvent j depends linearly on ln g
N

ij .

The basic idea behind this MCM approach is that information

on the pure components (as quantied by qi and bj) is implicitly

contained in the mixture data, i.e., in the way the components

interact with each other, which manifests itself in the observable

mixture property g
N

ij . This information is captured by the MCM

and stored in the latent features qi and bj of the components i and

j. Using eqn (1) in the trained model, the inferred latent features

allow predicting gNij also for previously unstudied combinations i–

j. As demonstrated in our previous work,18,19 this approach even

outperforms the present state-of-the-art method for predicting

© 2022 The Author(s). Published by the Royal Society of Chemistry Chem. Sci., 2022, 13, 4854–4862 | 4855
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activity coefficients, namely the modied UNIFAC (Dortmund)

model,10,11 if gNij at 298 K are considered. We have also extended

the approach to modeling the dependence of gNij on the temper-

ature T, by simply exploiting the fact that this dependence can be

well described by g
N

ij (T) ¼ Aij + Bij/T with system-specic but

temperature-independent parameters Aij and Bij in many cases.20

In the present work, we further expand the MCM approach

by combining it with the physical modeling of thermodynamic

properties of mixtures. We thereby exploit the fact that all

physical models of mixtures are based on the idea of pair

interactions, described by pair-interaction energies as critical

parameters. We propose to predict these pair-interaction ener-

gies by an MCM to obtain a new hybrid concept for the predic-

tion of properties of mixtures. The feasibility and the merits of

this widely applicable approach are demonstrated by using the

well-known GE lattice model UNIQUAC2,3 as an example.

En passant, we come back to the derivation of the UNIQUAC

equation, in which two asymmetric pair-interaction parameters

DUij s DUji were introduced instead of using one symmetric

pair-interaction energy Uij ¼ Uji as it follows from the lattice

theory. The two adjustable parameters DUij and DUji were

introduced as a workaround to get more exibility for tting

binary phase equilibrium data. We show that this workaround

is not necessary and base our considerations on the physical

symmetric interaction energies Uij ¼ Uji, explicitly including

those for the like interactions Uii.

The resulting new model, which we call ‘MCM-UNIQUAC’ in

the following, combines the capabilities of the MCM regarding

the generalization over binary systems with those of the physical

model UNIQUAC regarding the generalization over conditions. It

is a hybrid method that takes advantage of the strengths of both

worlds; in particular, it also enables predictions of properties of

multicomponent systems by virtue of the physics behind UNI-

QUAC, a feature a data-driven MCM cannot provide.

Development of MCM-UNIQUAC

The idea behind our approach is shown in Fig. 1. At its heart, an

MCM is used to predict pair-interaction energies Uij of

a physical model of mixtures, which is UNIQUAC in the present

work. The physical model relates the pair-interaction energies

to temperature- and concentration-dependent properties of the

binary mixtures of the components i and j. This could, in

principle, be any property of interest. In the present work, we

have chosen a fundamental thermodynamic property, the

activity coefficient gij of component i in a binary mixture with

component j normalized according to Raoult's law. The activity

coefficients, in turn, are directly related to observable mixture

properties (e.g., vapor–liquid equilibria (VLE),24 liquid–liquid

equilibria (LLE),25 and solid–liquid equilibria (SLE)26) by ther-

modynamic laws. This enables training the approach on the

corresponding thermodynamic data of different types so that

many data sources are accessible. The model can be written as:

ln gij(T,xi) ¼ fUNIQUAC(T,xi,Pi,Pj,Uii,Ujj,Uij) (2)

where the function fUNIQUAC contains the UNIQUAC equation,

which is dened in eqn (S.1)–(S.7) of the ESI.† Here, T is the

temperature and xi is the mole fraction of component i in the

binary mixture. Eqn (2) contains two types of parameters: rst,

the geometric pure-component parameters Pi and Pj, which are

reported for many components (e.g., in the Dortmund Data

Bank (DDB)27) or can be readily estimated (e.g., with the

approach described in connection with the development of the

UNIFAC method7); and second, the pair-interaction energies,

where we distinguish the like interactions Uii and Ujj, which are

also pure-component parameters, and the unlike interactions

Uij (i s j), which are binary parameters. It follows from the

physical interpretation of Uij as pair-interaction energies that Uij

¼ Uji.

Furthermore, it follows from the derivation of UNIQUAC that

all model parameters are independent of temperature and

concentration. We use this assumption throughout the present

work but note that some authors work with temperature-

dependent parameters. Further, as already mentioned in the

introduction, it is common in the literature not to use the

symmetric pair-interaction energies Uij ¼ Uji as parameters, but

rather the two parameters DUijs DUji, which are calculated by:

Fig. 1 Illustration of embedding an MCM into a physical model of mixtures (here: the lattice model UNIQUAC). Blue part: application of an MCM

to pair-interaction energies Uij. Red part: the physical model relates Uij to temperature- and concentration-dependent activity coefficients ln gij.

Yellow part: ln gij are directly related to observable mixture properties (e.g., vapor–liquid equilibria (VLE),24 liquid–liquid equilibria (LLE),25 solid–

liquid equilibria (SLE)26) by thermodynamic laws.

4856 | Chem. Sci., 2022, 13, 4854–4862 © 2022 The Author(s). Published by the Royal Society of Chemistry
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DUij ¼ Uij � Ujj; DUji ¼ Uij � Uii (3)

The correlations between DUij and DUji dened by eqn (3) are

usually ignored and the two parameters are tted independently

for each binary system i–j under consideration, simply to

increase the exibility of the model.§ Fitting DUij and DUji

independently to data for binary systems of N $ 3 components

will, in general, lead to results that cannot be reconciled with

eqn (3), as demonstrated in detail in the ESI.† For MCM-

UNIQUAC, we only consider the truly physical pair-interaction

energies Uij.

UNIQUAC allows generalizing (i.e., interpolating and

extrapolating) over temperatures and concentrations, but not

over mixture components. Applying UNIQUAC to a mixture for

which no parameters are available requires at least some

mixture data points for determining the pair-interaction

parameters. This is a severe restriction, as experimental data

are oen unavailable, especially for mixtures. To overcome this

limitation, we introduce MCM-UNIQUAC to extend UNIQUAC

so that it can generalize over temperatures and concentrations

and over binary systems.

The proposed generalization over binary systems is achieved

by an MCM and illustrated in the central (blue) panel in Fig. 1.

We thereby model the unlike pair-interaction energies Uij as

a sum of dot products:

Uij ¼ qibj + qjbi, is j (4)

where qi and bi as well as qj and bj are the feature vectors for the

components i and j, respectively, and the right-hand side of eqn

(4) is constructed in such a way that the physical constraint Uij ¼

Ujici,j is enforced, resulting in a symmetric matrix U of the pair-

interaction energies. Besides the feature vectors, the like pair-

interaction energies Uii and Ujj are considered as parameters of

MCM-UNIQUAC. Note that all parameters of MCM-UNIQUAC are

component-specic (Pi, Pj, qi, bi, Uii, Ujj), but they are, except for Pi
and Pj, inferred from mixture data. Aer tting these parameters,

a complete set of pair-interaction energies for all conceivable

binary combinations i–j of all considered components is obtained

from eqn (4).

MCM-UNIQUAC was trained end-to-end on a set of measured

logarithmic temperature- and concentration-dependent activity

coefficients in binary mixtures ln gij (red panel of Fig. 1). We

used data from the DDB27 here; in specic, we used ln gij

derived from binary vapor–liquid equilibrium (VLE) data using

the extended Raoult's law, cf. eqn (S.14) in the ESI,† which we

augmented with temperature-dependent data on binary activity

coefficients at innite dilution ln g
N

ij . In total, we obtained a set

of 363 181 experimental data points for ln gij for 12 199

different binary systems i–j involving 1146 distinct components

i, j at varying concentrations and temperatures ranging from

183 K to 638 K. The considered N ¼ 1146 components result in

N(N � 1)/2 ¼ 656 085 possible different binary systems. Exper-

imental data are only available for 12 199 of these systems, i.e.,

data are available for less than 2% of all systems and, conse-

quently, only less than 2% of these systems can be modeled

with UNIQUAC in the conventional way. More details on the

data set are given in the ESI.†

The systems for which data are available were divided into

three sets: 80% were used for training the model (training set),

10% were used for setting the model's hyperparameters (vali-

dation set), and 10% were used for testing the predictions (test

set). We trained our model using the probabilistic program-

ming language Stan28 and resorted to Variational Inference29–31

for performing approximate Bayesian inference. Details on the

random data split, the model training (including the source

code to run the model in Stan), and the hyperparameter selec-

tion are given in the ESI.†

Aer the training, MCM-UNIQUAC can predict temperature-

and concentration-dependent activity coefficients in any binary

and multicomponent mixture of the considered 1146 compo-

nents. The activity coefficients can, in turn, be used for pre-

dicting observable mixture properties, such as VLE or other

phase equilibria (yellow panel in Fig. 1). We demonstrate the

predictive capacity of MCM-UNIQUAC by considering the data

from the test set in the following section.

Results and discussion

The results that were obtained with MCM-UNIQUAC are shown

as bars in Fig. 2 (le), where the mean absolute error (MAE) is

reported both for the systems from the training set and those

from the test set; in Fig. S2 in the ESI,† we show the respective

results for the mean squared error (MSE). As expected, the error

metrics for the test set are larger (worse) than those for the

training set, but in both cases the overall agreement between

the results of MCM-UNIQUAC and the experimental data is

remarkable. We demonstrate this in Fig. 2 (right) by compar-

ison with the best available physical method for the prediction

of activity coefficients, the group-contribution model modied

UNIFAC (Dortmund),10,11 which is called ‘UNIFAC’ in the

following for brevity. Unfortunately, in contrast to MCM-

UNIQUAC, UNIFAC cannot be applied to all systems for which

data are available (denoted as ‘complete horizon’ in Fig. 2 (le))

because multiple group-interaction parameters are missing.

Hence, for a fair comparison of both methods, only those

subsets of the training set and of the test set for which UNIFAC

could be applied were used; this ‘UNIFAC horizon’ covers 7578

of 9759 systems from the training set and 961 of 1220 systems

from the test set.

Furthermore, as baselines, the scores obtained for the

different sets by directly tting UNIQUAC parameters to all

available data points are marked as lines in Fig. 2. We thereby

considered two variants: rst, UNIQUAC was used in the usual

manner by tting the two binary parameters DUij and DUji

individually to the data for each system i–j; this procedure is

denoted as ‘UNIQUAC (DU)’ in the following and the respective

results are shown as dotted lines in Fig. 2. Second, we tted the

symmetric pair-interaction energies Uij ¼ Uji to all data points;

this procedure is denoted as ‘UNIQUAC (U)’ in the following and

the respective results are shown as dashed lines in Fig. 2. Note

that considering the full set of 12 199 binary systems for which

experimental data are available, there are 24 398 parameters in

© 2022 The Author(s). Published by the Royal Society of Chemistry Chem. Sci., 2022, 13, 4854–4862 | 4857
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UNIQUAC (DU), whereas there are only 13 345 parameters in

UNIQUAC (U), of which 1146 are pure-component parameters

Uii.

Let us consider the scores of the baselines UNIQUAC (DU)

and UNIQUAC (U) rst. They simply indicate how well the data

can, in principle, be described with the physical model, i.e.,

UNIQUAC here. The rst astonishing message is that UNIQUAC

(U) works almost as well as UNIQUAC (DU), even though the

latter has almost twice as many parameters, cf. above. We have

therefore based our hybrid model MCM-UNIQUAC on the more

physical UNIQUAC (U).

Second, we observe in Fig. 2 that MCM-UNIQUAC is in

general exible enough for describing the data well, cf. the

relatively small differences between the scores of MCM-

UNIQUAC on the training set (blue bars) and the baseline

scores (lines).

Third, by comparing the scores for the test set (red bars), we

nd that MCM-UNIQUAC clearly outperforms UNIFAC in

accurately predicting ln gij in both MAE and MSE (cf. Fig. S.2 in

the ESI†). This is particularly remarkable since UNIFAC has

been tted to most of these data points, whereas no data point

from the test set was used for training or validation of MCM-

UNIQUAC. An alternative representation of the results for the

test set is shown in histogram plots in Fig. S.3 and S.4 in the

ESI,† which underpin the superior performance of MCM-

UNIQUAC compared to UNIFAC. Similar results are found by

considering COSMO-SAC-dsp32,33 as baseline, as shown in

Fig. S.5 in the ESI.† Additionally, we discuss the inuence of the

number of training data points on the performance of MCM-

UNIQUAC in Fig. S.6 and Table S.1 in the ESI.†

We note that also a version of MCM-UNIQUAC based on

UNIQUAC (DU), i.e., based on the asymmetric pair-interaction

parameters, can be trained if and only if an end-to-end

training on ln gij is performed; the resulting performance is,

however, slightly worse than that of the model discussed above

as we demonstrate in Fig. S.7 in the ESI.†

MCM-UNIQUAC can not only be used for predicting activity

coefficients, but also for predictions of phase equilibria and

many other thermodynamic properties of any mixture consist-

ing of the considered 1146 components. We demonstrate this in

Fig. 3, which shows the results of the prediction of isobaric

vapor–liquid equilibrium (VLE) phase diagrams for eight binary

systems based on the extended Raoult's law, cf. eqn (S.14) in the

ESI.† All eight systems were chosen randomly from the test set,

i.e., not a single data point for these systems was used for

training MCM-UNIQUAC or setting its hyperparameters.

However, the selection was carried out in such a way as to cover

a wide range of different phase behaviors, ranging from high-

boiling azeotrope (top le) to heteroazeotrope (bottom right).

For details on the selection of the systems and the prediction of

the VLE phase diagrams with MCM-UNIQUAC, we refer to the

ESI.†

For all eight binary systems, excellent agreement between

the predicted phase diagram and the experimental data is

found, both qualitatively and quantitatively. Similarly, liquid–

liquid and solid–liquid phase diagrams and other thermody-

namic properties like excess enthalpies can be predicted with

MCM-UNIQUAC. Moreover, the physical foundation on which

the hybrid approach MCM-UNIQUAC builds, namely learning

and predicting pair-interaction energies between components

on the hypothetical lattice from data for binary mixtures, even

allows extrapolations from binary to multicomponent mixtures;

MCM-UNIQUAC thereby does not require any data of multi-

component systems for training. As an example, isobaric VLE

phase diagrams for two ternary systems are shown in Fig. 4.

These systems were selected such that all constituent binary

subsystems were neither part of the training set nor of the

validation set.

Fig. 2 Mean absolute error (MAE) of MCM-UNIQUAC on the training and test set (left) and comparison to UNIFAC based only on those systems

that can also be modeled with UNIFAC (right). Bars indicate the results of MCM-UNIQUAC and UNIFAC, and lines denote the baselines obtained

by directly fitting UNIQUAC pair-interaction parameters (DUij, dotted) or pair-interaction energies (Uij, dashed) to all available data points. Error

bars denote standard errors of the means.
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Fig. 3 Prediction of isobaric vapor–liquid phase diagrams for binary systems from the test set with MCM-UNIQUAC (lines) and comparison to

experimental data from the DDB27 (symbols). No data on any of the depicted systems were used for training MCM-UNIQUAC or setting the

hyperparameters. Blue: dew point curves. Red: bubble point curves.
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For each data point, the pressure and the composition of the

liquid phase (blue symbols in Fig. 4) were specied. The asso-

ciated composition of the vapor phase in equilibrium was pre-

dicted with MCM-UNIQUAC (open red symbols) and compared

to the experimental composition of the vapor phase as reported

in the DDB27 (lled red symbols). We observe an excellent

agreement.

In the ESI,† we additionally provide a complete set of the

pair-interaction energies Uij, including the respective model

uncertainties in the form of standard deviations, for all 656 085

binary systems of the components considered here (the pair-

interaction parameters DUij of the commonly used version of

UNIQUAC can easily be calculated from these by applying eqn

(3)). This set of Uij was obtained from an end-to-end training of

MCM-UNIQUAC on the entire available data set of all 12 199

systems. If predictions for any system of the components

considered in this work are required, this parameter set should

be used.

Conclusions

In the present work, we describe a novel hybrid approach for

predicting thermodynamic properties of mixtures, which

combines methods from machine learning (ML) with physical

modeling. The basic idea is to predict the pair interactions

between components in mixtures using matrix completion

methods (MCMs). The approach is generic, it can be applied to

any mixture property, and any physical model based on pair

interactions can be used. As an example, we combined an MCM

with UNIQUAC, a well-known lattice model of the Gibbs excess

energy GE.

We trained our hybrid approach, MCM-UNIQUAC, on

experimental data on activity coefficients in binary mixtures of

1146 components from the Dortmund Data Bank (DDB). Out of

the possible 656 085 binary systems that can be formed from

these components, suitable experimental data were only avail-

able for 12 119 systems, corresponding to only 2%. In its basic

form, UNIQUAC can only be applied to this subset, as pair-

interaction parameters need to be tted to data of the respec-

tive systems. In contrast, MCM-UNIQUAC yields, in principle,

predictions for all 656 085 binary systems; we demonstrate the

predictive capacity of the model based on the systems for which

experimental data are available by withholding the test data

points during the training of the model. Moreover, by virtue of

being a model based on pair interactions, MCM-UNIQUAC can

be applied not only to binary systems but also to any multi-

component system that can be formed from the considered

1146 components; and it also yields predictions for any

composition and temperature.

We compared the quality of these predictions to those from

the best available physical model for this purpose, the group-

contribution model modied UNIFAC (Dortmund). However,

due to missing group-interaction parameters, the public version

of UNIFAC can at present only be applied to 9502 of the 12 119

binary mixtures for which data were available. We show that

MCM-UNIQUAC outperforms UNIFAC, even on a test set whose

data were not used for training MCM-UNIQUAC, whereas most

of these data were probably used for training UNIFAC.

In its commonly used version, UNIQUAC has two binary

parameters DUij s DUji (with i s j). It is known that they are

highly correlated and hard to interpret physically. In this work,

we have discovered that going back to the basic idea of the

lattice model and working directly with symmetric pair-inter-

action energies Uij ¼ Uij, i.e., with only a single binary parameter

for each binary system, gives almost the same quality of the

description of the phase equilibria in the studied binary

systems as working with the common version of UNIQUAC with

Fig. 4 Prediction of the VLE in ternary systems at constant pressure

with MCM-UNIQUAC and comparison to experimental data (exp.)

from the DDB.27 The pressure and the composition of the liquid phase

were specified, the composition of the corresponding vapor phase

was predicted (pred.). Top: acrylic acid (AcrAc) + acetic acid (AceAc) +

tetrachloromethane (TCM) at 100 kPa. Bottom: toluene (Tol) + iso-

propylbenzene (IPB) + a-methyl styrene (a-MS) at 101 kPa. No data on

any of the systems and any of the binary subsystems were part of the

training set or the validation set of MCM-UNIQUAC.
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two binary parameters, which is highly remarkable. It can be

assumed that the pair-interaction energies Uij, which are now

available for 656 085 binary systems and 1146 pure compo-

nents, can be interpreted physically. As they are basically mean-

eld energies, this is probably only a rst step, and deeper

insights may be expected from applying the MCM in connection

with more sophisticated mixture models that account for

different types of interactions.

MCM-UNIQUAC combines the strengths of ML and physical

modeling – the MCM enables generalization over (discrete)

components, allowing predictions for unstudied binary

systems, whereas UNIQUAC generalizes over (continuous)

conditions and enables the extrapolation to multicomponent

mixtures. As demonstrated in examples, MCM-UNIQUAC allows

the direct prediction of phase diagrams as exemplied for

binary and ternary vapor–liquid phase diagrams. Furthermore,

our approach can be retrained easily whenever additional data

points become available; this is in contrast to established

group-contribution methods, which require extensive param-

eter tuning. Also, MCM-UNIQUAC does not rely on expensive

calculations as required by established quantum-chemical

prediction methods. Finally, by exploiting the fact that basi-

cally all established thermodynamic models for mixture prop-

erties rely on the description of pair interactions, our approach

can be further developed in many directions, e.g., by combining

MCMs with equations of state and even group-contribution

methods.

Data availability

All data used in the present work are available in the Dortmund

Data Bank.27 The source code to run the model in Stan as well as

the nal parameter set are available in the ESI.†
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