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ABSTRACT ARTICLE HISTORY
Treatment selection based on patient characteristics has been widely recognised in modern Received 13 November 2019
medicine. In this paper, we propose a generalised partially linear single-index mixed-effects Revised 21 April 2020
modelling strategy for treatment selection and heterogeneous treatment effect estimation in Accepted 25 April 2020
longitudinal clinical and observational studies. We model the treatment effect as an unknown ¢ evworps
functional curve of a weighted linear combination of time-dependent covariates. This method personalized medicine;
enables us to investigate covariate-specific treatment effects and make personalised treatment treatment selection;
selection in a flexible fashion. We develop a method that combines local linear regression and semiparametric model;
penalised quasi-likelihood to estimate the weight for each covariate, the unknown treatment longitudinal data
effect curve and the parameters for mixed-effects. Based on pointwise confidence intervals for

the treatment effect curve, we can make individualised treatment decisions from the information

of patient characteristics. A simulation study is conducted to evaluate finite sample performance

of the proposed method. We also illustrate the method via analysis of a real data example.

1. Introduction In the literature, some other works apply non-
parametric and semiparametric modelling methods to
study HTE. These methods impose no or very relaxed
assumptions on the model structure, and thus can
explore HTE in a flexible fashion. For continuous
response, Foster et al. (2015) proposed a two-stage
procedure. They obtain nonparametric estimates of
treatment effects for each subject in stage 1, and these
estimates are used to identify optimal subset for a treat-
ment, thus determine a treatment regime in stage 2.
However, this method only applies to situations that the
optimal subset is contiguous. For time-to-event data,
Ma and Zhou (2014) defined a covariate-specific treat-
ment effect (CSTE) curve, which is used to represent
clinical utility of a continuous biomarker. They derived
estimate of CSTE curve, and constructed pointwise
confidence interval to select the optimal treatment for
individual patient, as well as simultaneous confidence
band to identify subpopulation who respond well to a
treatment. Han et al. (2017) extended the method of Ma
and Zhou (2014) to the case of binary response. Both
of them only considered a single biomarker. In order
to incorporate multivariate or even high-dimensional
covariates, Guo et al. (2018) proposed a sparse logis-
tic single-index coefficient model for optimal treatment
selection using the CSTE curve. This method offers
a flexible way for studying the CSTE curve without
a restrictive assumption on the structure of the curve

Personalized or precision medicine, which aims to pro-
vide treatment strategies according to the characteris-
tics of individuals or subgroups of the population, has
gained much attention from biomedical researchers.
The main goal of personalised medicine is to investi-
gate covariate-specific (heterogeneous) effects of treat-
ment, based on which individualised clinical decision
can be better made to patients. In recent years, there
has been an increasing amount of literature on het-
erogeneous treatment effect (HTE) estimation. A typ-
ical way of exploring heterogeneous treatment effects
is to examine patient outcomes in mutually exclusive
subgroups defined by observable patient characteris-
tics, see Berger et al. (2014), Ciampi et al. (1995),
Negassa et al. (2005), Foster et al. (2011), Su et al. (2008)
and Wang et al. (2007). Bonetti and Gelber (2004)
introduced a subpopulation treatment effect pattern
plot (STEPP), which characterises treatment effects
across potentially overlapping intervals of a continu-
ous covariate. Bonetti et al. (2009) indicated that this
method is effective only for large sample sizes, and pro-
posed a permutation-based method for inference and
achieved better performance for smaller sample sizes.
The major limitation of such subgroup approach is that
dichotomisation of continuous covariates can be artifi-
cial, and thus it may lose important information from
the data.
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while achieving great dimension reduction of the high-
dimensional covariates.

All the above methods were proposed for cross-
sectional data with responses measured at one time
point. In practice, the patient outcomes are often col-
lected at multiple follow-up times in order to better
evaluate the effectiveness of treatments. In this paper,
we extend the model considered in Guo et al. (2018)
to the longitudinal clinical and observational stud-
ies, and consider a generalised partially linear single-
index coefficient mixed-effects model (GPLSIMM) for
our longitudinal setting. Similar as Guo et al. (2018),
we treat the treatment effect as an unknown func-
tional curve of a weighted linear combination of time-
varying covariates. The weights for covariates account
for their different contributions to the treatment effect,
and they are estimated from the data. In longitudinal
studies, the repeated measures are correlated within
subjects, and thus the estimating method considered
in Guo et al. (2018) is not applicable to our proposed
GPLSIMM. In our model, we need to estimate the
unknown functional curve, the weight of each covari-
ate and the parameters for the mixed-effects. Esti-
mation of generalised semiparametric mixed-effects
models has been considered in some existing works.
Liang (2009) proposed a local linear regression and
penalised quasi-likelihood method for estimation of a
generalised partially linear mixed-effects model. Pang
and Xue (2012) considered alocal linear regression with
GEE method for a single-index mixed effects model.
Xu and Zhu (2012) and Chen et al. (2014) developed
a kernel and a P-spline estimation method, respec-
tively, together with quasi-lilikelhood for longitudinal
generalised single-index models.

Based on the methods considered in these works,
we see that penalised quasi-likelihood is a commonly
used method for estimation of generalised mixed-
effects models. It circumvents the calculation of high-
dimensional integral in likelihood function (Breslow
& Clayton, 1993). In our proposed GPLSIMM, we
approximate the unknown treatment effect curve by the
local linear method and estimate the parameters for the
parametric and nonparametric parts through alterna-
tively optimising the local and global penalised quasi-
likelihood functions. We then select optimal treatment
for a future patient based on pointwise confidence
intervals for the CSTE curve.

The rest of the paper is organised as follows. In
Section 2, we introduce the proposed model, the CSTE
curve and the estimation method. Section 3 gives
asymptotic properties of parametric and nonparamet-
ric estimates. Section 4 provides the algorithm for
model estimation. In Section 5 we evaluate the finite
sample properties of the proposed method via simula-
tion studies, while Section 6 illustrates the application
of the proposed method in a real data set. All technical
proofs are relegated to Appendix.

2. Model and estimation
2.1. Model

Suppose our data are obtained from n indepen-
dent subjects, and observations of the ith subject is
{(Yij, Xij, Zij, Aij, Dij), j = 1,...,mi}. Yy is the response,
Xij, Zij and Ajj are covariates of dimension p, q and s,
and D;; € {0, 1} isan indicator of exposure to treatment.
We assume the relationship of response and covariates
is specified by the following GPLSIMM:

E(Yi|Xij, Zij, Aij, Dij» ¥ ;)
= ¢ "' X+ f(B" ZpDy + Ay ),
var(Y;i|Xij, Zij, Aij, Dij» ¥ ;)
=wi ¢V, i=1,..

where w;; = E(Y;|Xjj, Zij, Aij, Dij, ¥ ), §(-) and V(-) are
known functions, ¢ is a scale parameter and wj; is a
pre-determined weight for the jth observation of the ith
subject. f(-) is an unknown function, and & and B are
unknown parameter vectors. For model identifiability,
we assume that ||8]| = 1 and B; > 0. We incorporate
random effect A;]r-yi to account for the within-subject
correlation, where y;, i =1,...,n are s-dimensional
random effect vectors. We assume that y; ~ N(0, G).

In this model, we characterise the treatment effect
with a single-index term f (,BTZ,-j), and the relationship
of response and covariates for control group with a gen-
eralised linear mixed effect model. When response Y is
binary, we can easily see that

(1)

Snj=1,...,n;

f(B Z) = logit{E(Y|X,Z,A,y,D = 1)}
— logit{E(Y|X,Z,A,¥,D=0)}. (2)

When Y is a count variable and follows Poisson distri-
bution,

f(B"Z) =1oglE(Y|X,Z,A,y,D = 1)}
—log{E(Y|X,Z,A,y,D=0)}. (3)

Assume that D = 0and D = 1 represents standard care
and treatment respectively, X and Z are patient charac-
teristics, Y indicates outcome of the study, and the bet-
ter outcome corresponds to larger value of Y. From (2)
and (3), f (ﬁTZ) could be regarded as a measure of
treatment effect. We define f(-) as covariate-specific
treatment effect (CSTE) curve under this model.
Given the estimate and confidence interval of f(-),
we could suggest the optimal treatment for a future
patient based on his or her personal characteristics.
Taking binary response as an example, we assume that
Y = 1 represent a disease being cured, while Y =0
indicate uncured. Let ug be the estimated value of 6TZ
calculated from personal characteristics of a patient.
If the lower bound of confidence interval for f(u) is
greater than 0, the treatment is more effective than stan-
dard care for the patient. On the other hand, if the upper



bound of confidence interval is smaller than 0, stan-
dard care is more effective. In this case, we could not
recommend the treatment to the patient. If neither of
the above cases happen, that is, 0 is contained in the
confidence interval, we would draw the conclusion that
there’s no significant difference between treatment and
standard care.

2.2. Estimation

Denote ' = (le,...,yf)T. Let ﬂ(l) = (ﬂz,...,ﬂq)T
be the vector after deleting the first element from .

Then B = (/1 — [IBL)2,BPT)T, and we define the

Jacobian matrix
ﬂ(l)T
_oo_ B T
T=Jpo=gam = | J1-18"12
I; 4

Our primary interest is to estimate f(-), &, B and G.
Suppose that G is known. Given & and B8, we com-
bine penalised quasi-likelihood with local linear tech-
nique to obtain estimates of f(-) and f'(-). If u is in a
neighbourhood of B TZij, g(uij) can be approximated by

g(ity) = o' X + {f () + ' ) (B" Zj — w)}D;
Let  d(pw) =-2["((y—w/Vw)du, Ku()=
h~'K(-/h), where h is bandwidth, K(-) is a zero-mean

symmetric density function. We maximise the follow-
ing local penalised quasi-likelihood

1 n nj
=521 2 Kn(B Zj — wwip ™' d(vy g X
i=1 j=1

+{a+b(B"Zj — wID; + Ajy,]) +viG 'y,

(4)

with respect to a, b and T, and obtain estimates}\(u) =
aandf’(u) = b. Taking derivative on (4) with respect to
(a,b) and T yields the following estimating equations:

O Kn(B 2z — w{g (@) wid TV (1)

i=1 j=1

X (Y,-j —g! [aTX,-j +{a+ b(,BTZ,-j — u)}Dj

1
+ALy ) Dy (ﬂTZ,-j - u) —0, (5)

and for each i,

> Kn(B"Zij — wA{g (i} wi ™' V(1)
j=1
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x (Yz-j — ¢ "X + la + b(BTZj — Dy
+ALy]) -G ly; =o. ©)

When f(-) is known, we obtain estimate of &, B and
I' by maximising the global penalised quasi-likelihood

1 n n; - B
— 32 o wie Vg e X + £ (BT Z)D;

i=1 \ j=1
+ Ay +viG v |, 7)

with respect to &, B and T'. The corresponding esti-
mating equations are as follows:

SOl (a’ﬂ(l)’rl)
=D Xlg i) wis T VT )
i=1 j=1
x [Yy— g e Xy + FB" 2Dy + Afy |
=0, 8)
So2 (e, 8,T)
=22 T ZiDif B Zilg ()} wyp ™!
i=1 j=1
+ V7 ) | Yy — &M@ Xef BTZi)Dy + Ay |
=0, )

and foreachi=1,...,n,

Sia, BV, y))

= Aylg (i)} wip T VT ()

j=1
x [Y,-j — ¢ Yo" X, + f(B"Z;) Dy + A;gyi}]
-Gy,

—0. (10)

We obtain the parametric and nonparametric esti-
mates by iteratively maximising quasi-likelihoods (4)
and (7). The corresponding algorithm is summarised
in Section 4 for practical implementation.

3. Asymptotic properties

Denote gx(t, y) = —%(8kd{y,g_1(t)}/8tk),andpk(t) =
{dg7t(t/dfv—Hg l )}, k=1, 2, 3. Let «j=
[ WKW du,pj = [WK*(wdu for j=1, 2, N=
Yo niand Ny = )i, nij(n; — 1). We assume 7 tends
to infinity and #;’s are bounded. Denote 7;; = aTX,-j +
fB"ZyDjj + Ajyandn = «"X + f(BTZ)D + ATy.
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In order to obtain asymptotic behaviours of the
proposed parametric and nonparametric estimates, we
assume the following regularity conditions:

(C1) The marginal density of Z is positive and
uniformly continuous with a compact sup-
port Z C R1. fi4(-), density function of U =
BTZ, is twice continuously differentiable for
U e U, whereld = [by,b,] = {BT2,Z € Z}isa
compact interval.

For all x, p2(x) > 0.

The second derivative of g(-), V(-) and f(-) are
bounded and continuous.

The kernel K(-) is a bounded and symmetric
probability density function with bounded sup-
port [—c¢o, ¢p], and satisfies f w?K(u)du # 0 and
f u?K(u)du < oo. K(-) satisfies the Lipschitz
condition of order 1.

E{p2(D*|B"Z = u}, E{p())DX|B"Z = u}and
E{pz(n)DzZ|ﬂTZ = u} are twice differentiable
onu. E{q1(m1, Y11)q1(n2, Y12)D? D3, |BT 211 =
u1,BTZ1, = up} is continuous on u; and u,.
Asn — o0, hsatisfies nh* — 0and nh?/log(1/h)
— 00.

(C2)
(C3)

(C4)

(C5)

(Ce)

Denote
o~ 2 T -1 T
X=X-— [E{pz(n)D B Z}] [E{pz(n)DXlﬁ Z}],
Z=f@"2J" (z ~ [E{pz(n)DzlﬂTz}]_l

x [Elox(nD*21B72) ).

Let @, B be the final estimator of & and B, respectively.
Theorem 3.1 gives the asymptotic distributions of &
and B.

Theorem 3.1: Under conditions (C1)-(C6),

VN (Q - “°> — N@©O,X),

B - By (1)

where

>=D (A‘l + %A‘ICA”) DT

T\ B2
A=E {pz(n) (31) } ,

X
C = cov { (Z B > q1(n11> Y11)s

<~)~(12
Z12D12

I
D=|[,*
<°qxz>

with

) q1(M12, le)} ,

0px(q-1)
Iﬂéw :

and

Theorem 3.1 indicates that in order to obtain
n—consistent estimates of @ and B, we need to
undersmooth the nonparametric function f(-). For any

z€e Z, we let 7(ETZ; a, B) be the estimate of f B 2)
given &, B and h; be the corresponding bandwidth.
Theorem 3.2 presents the asymptotic distribution of

o~ AT P
fB za,p).
Theorem 3.2: Under conditions (C1)-(C5),asn — o0,
h1 — 0 and Nh; — oo,
P 1
VN (B z@.B) — f(By2) — S hkaf "(By2))

— N(0, afz), (12)

where of = pofy; ' (Bo2) [E{p2()D*1B3 Z = oz}l ™.

4. Computation

Given @ and B, we solve estimating Equations (5)

and (6) by Fisher’s scoring algorithm (see Wu & Zhang,

2006, Section 10.4), and obtain estimates f (-) and f/ ().
When f (-) is given, we obtain estimates of e, B M and

I" by solving Equations (8), (9) and (10). Here we apply

the quasi-Fisher scoring algorithm to this problem.
Denote

0 — (aT ﬁT T ® = (oT FT)T
0(1) (a ﬁ(l)T)T @(1) (o(l)T FT)
$@©") = {87, (@, BV, T), Sg, (@, 81,T),
X S’-lr(aaﬁ(l);yI% ->S;£(aaﬁ(l)ay;1)}T'

Using the quasi-Fisher scoring algorithm, estimate of
@D is updated by

1
e, =el +s @ Hs®elh, 13
where
N Qi Qi Qi
ST©O)=0=1Q, Q» Qy
Q; Q5 Qs
with

Qu =) Xylg )~

i=1 j=1

Qi = Z ZXij{g/(Mij)}_zwij‘p_lV_l(”“"j)

i=1 j=1
x f' (ﬂTsz)ZgIﬂm,

Q2= > Ty ZiDlf B Zi e (ui) 2
im1 j=1

x wi~ VT (i ZiJ oo,



[1 1
Q; = < R [11;]) Qs = (Q£3]’-~-’ %l)
Q33 = dlag <Q:[$], .. Q[n]) >

andfori=1,...,n,

ny{gwy)}— i~V (i Aj,
j=1
M= Z s ZiDif (B"Zip g (i)™

x i~ VT (i Aj,

33—2Ay{g (i) Pwip ™ VT (i AF + G
j=1

Let
{g’(uu)}—1X5 { (i) 'f' B Zi) D Z T go

Pl = . - >
(g (uin))™ X0, & in)Y ' f (BT Zin) Din, Z3, J oo
{g' (win}y AL

A= : ,
g (win)) AT,

R; = diag (W' @V (i), Wi @V (in) )

&= (Yii — pits - Yin, — Min,)T-

We further denote

T
P=<Pf,...,1>§) . A=diagA,...,Ap),

T
T T
e:(sl,...,sn) ,

R = diag(Ry,...,R,), G =diag(G,...,G).

Equation (13) can be rewritten as

oW

new

-1
T —_
— G(}é = (P oldRoldP old P oldRoldAold )
° AoldRoldP old AoldRoldAold +G
P; oldRolds old
ALGR S0 — G Tou

Note that P4, Aold, Rold and &oq on the right hand of
above equation are calculated from ® 4. For simplicity
we suppress their subscripts hereinafter. Denote H; =
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AGAT + R, H = diag(H,,...,.H
bra, we can obtain

n). By matrix alge-

o _—

Cow =000 + (PTH'P)"'PTH ! (6 + AT 1a),
Vinew = GAH; ! {si +AiY ol — PiOfy — 9(1d)}

i=1,...,n.
(14)
Based on || Bew |l = Land ||B4ll = 1, we can show that

I
enew _eold = <0 I (1)) (
old

Thus, we updateBOld by O pew = (anew,ﬂnew/llﬁnewll)T,
with 0%, = (@ , B )T, and

new

B — 05D + 05 (D).

new?

0* 0 I 0 P'TH'p)~!
new — old 0 I(l) ( )

old

x PTH (e + AT 19).
Our algorithm can be summarised as following:

Step 1. Obtain initial estimate ginit by solving general-
ised linear mixed effect model

E(Yij|X,'j,Z,'j, Dlj) = g_l(aTXij + ﬂTZIjD,'j
+AY)

Var(Yijlxij> ij> 1]) = W (PV(,LLIJ)

Given parametric estimate bi,ld, derive esti-
matesf(ﬁzleg) andf’ (BZMZ,']-) by solving esti-
mating Equations (5) and (6).
Obtain §new and fnew using Equation (14).
Iterate between Steps 2 and 3 until conver-
ence, and obtain the final estimate 8, T' ind
f(-). We further calculate the final estimate f(-)
by Step 2.

Step 2.

Step 3.
Step 4.

Note that matrix G is still unknown. To obtain esti-
mate of G, we apply the maximum likelihood method
under the normality assumption, and implement the
method by EM algorithm (see Laird & Ware, 1982). To
be specific, we set the initial value of G to be the identity
matrix. After obtaining the estimates of @, I" and f(-) by
Steps 1-4, we have an updated estimate of G. We repeat
this procedure until convergence, and obtain the final
estimate G. Given the estimate G, we derive the esti-
mates of @, T" and f(-) by substitution of GforGin Steps
2 and 3.

During the process of implementation, bandwidth
h in Step 2 also needs to be selected. Theorem 3.1
indicates that undersmoothing the nonparametric part
is necessary to guarantee /n consistency of paramet-
ric estimates. We adopt the ad hoc method in Carroll
et al. (1997) to select appropriate bandwidth for Step 2.
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Table 1. Simulation results for parametric estimates with binary data.

GPLSIMM GPLSIM
n Parameters True value Mean Sd MSE x 10 Mean Sd MSE x 10
100 o 0.500 0.438 0.124 0.192 0.442 0.123 0.184
o) 1.000 0.894 0.126 0.271 0.884 0.128 0.297
o3 —0.500 —0.439 0.119 0.178 —0.425 0.117 0.193
B 0.707 0.694 0.092 0.086 0.696 0.107 0.116
B 0.707 0.709 0.089 0.080 0.702 0.106 0.113
300 o 0.500 0.447 0.067 0.074 0.430 0.069 0.096
o) 1.000 0.892 0.076 0.175 0.859 0.075 0.255
o3 —0.500 —0.450 0.067 0.070 —0.430 0.066 0.093
B 0.707 0.702 0.051 0.027 0.701 0.055 0.031
B 0.707 0.708 0.051 0.026 0.709 0.054 0.029
500 o 0.500 0.447 0.055 0.058 0.429 0.050 0.076
o) 1.000 0.892 0.059 0.151 0.857 0.058 0.239
o3 —0.500 —0.446 0.052 0.056 —0.427 0.051 0.080
B 0.707 0.707 0.042 0.018 0.706 0.044 0.020
B2 0.707 0.705 0.042 0.018 0.706 0.045 0.020
Table 2. Simulation results for parametric estimates with count data.
GPLSIMM GPLSIM
n Parameters True value Mean Sd MSE x 102 Mean Sd MSE x 102
100 o 0.500 0.508 0.048 0.236 0.505 0.129 1.671
o) 1.000 1.020 0.047 0.262 1.004 0.138 1.908
o3 —0.500 —0.508 0.054 0.302 —0.511 0.134 1.800
B 0.707 0.703 0.063 0.395 0.706 0.082 0.666
B2 0.707 0.703 0.089 0.790 0.685 0.164 2.757
300 o 0.500 0.512 0.021 0.060 0.504 0.093 0.860
o) 1.000 1.023 0.024 0.108 1.016 0.096 0.954
o3 —0.500 —0.511 0.023 0.068 —0.505 0.090 0.815
B 0.707 0.708 0.017 0.030 0.706 0.048 0.234
B2 0.707 0.706 0.021 0.046 0.705 0.049 0.242
500 o 0.500 0.512 0.015 0.037 0.516 0.073 0.560
o) 1.000 1.028 0.018 0.108 1.015 0.079 0.642
B —0.500 —0.512 0.016 0.041 —0.515 0.076 0.596
B 0.707 0.706 0.011 0.013 0.708 0.039 0.156
B3 0.707 0.708 0.011 0.012 0.704 0.039 0.153

5. Simulation

In this section, we assess the finite sample performance
of the proposed method via two Monte Carlo simula-
tions with binary and count responses respectively.

In these simulations,

nij = aTX,-j +f(ﬂTZ,‘j)Dij + A;g)’i,

i=1...,nj=1,...,n;

wherea = (0.5,1,—0.5)T,8 = (1,1)T/+/2 and f (1) =

3sin{mw(u — c1)/(c; — c1)}, with ¢; = ‘/72 % and
0 = 4 + %. We assume the random effect be ran-

dom intercept, thatis, A = 1 and y is one-dimensional.
We let y follow N(0, 1). For the covariates, X is dis-
tributed as X = (X1, X2, X3)T, where X}, X, and X3 fol-
lows N(0,1), Z = (Zl,Zz)T, where Z;, Z, are uniform
U(0, 1) variables, and the exposure indicator D follows
Bernoulli(0.5). We assume #;, the number of obser-
vations for each subject, is 5, and set the number of
subjects n to be 100, 300 and 500. For the response
variable, we consider the following two cases:
Case 1 (Binary data):

Yjj ~ Bernoulli(uj), where logit(w;) = n;j

Case 2 (Count data):

Yjj ~ Poisson(uj), where log(uij) = njj.

All simulations are repeated for 500 times. For com-
parison, we ignore the random effects and apply gener-
alised  partially linear  single-index = model
(GPLSIM) to the simulated data. The correspond-
ing estimates are obtained using the method in Xu
and Zhu (2012). The parametric estimates for binary
and count data are summarised in Tables 1 and 2
respectively. We assess the performance of nonpara-
metric estimator f(-) by mean integrated squared error
(MISE) defined as

MISE(f) = E / {Fw) — f(w)}? du.

Tables 3 and 4 shows mean and standard deviation
of MISE for nonparametric function.

From Tables 1 and 2, MSE of the parametric esti-
mates under our model are generally smaller than
that of ignoring the random effects. As the sample
size increases, the performance of parametric estimates
improves. Similar results hold for nonparametric esti-
mates. The MISE of nonparametric estimates using our
method is smaller than those derived under GPLSIM.
MISE decreases as the sample size increases.



Table 3. MISE for nonparametric estimate with binary data.

GPLSIMM GPLSIM
n Mean Sd Mean Sd
100 0.287 0.182 0.291 0.186
300 0.155 0.085 0.163 0.085
500 0.106 0.052 0.112 0.052

Table 4. MISE for nonparametric estimate with count data.

GPLSIMM GPLSIM

n Mean Sd Mean Sd
100 0.191 0.135 0.243 0.172
300 0.169 0.090 0.193 0.111
500 0.168 0.062 0.191 0.082
Table 5. Estimated @ and .

Estimated o Estimate Sd
Intercept 6.450 2.754
Visit year 0.029 0.026
Age 0.029 0.019
EDUC —0.012 0.037
DIABETES 0.062 0.416
DEP 0.454 0.179
MMSE —0.384 0.095
Estimated B Estimate Sd
MMSE 0.842 0.115
Age —0.540 0.304

6. Real data analysis

We apply the proposed method to the US National
Alzhemer’s Coordinating Center Uniform Data Set
(https://www.alz.washington.edu). Our goal is to inves-
tigate the effect of heredity on development of Alz-
heimer’s disease (AD) among women. We take the diag-
nosis of AD in each observation of patients (yes/no) as
response. The covariates that may influence the occur-
rence of AD include age, visit year, years of educa-
tion (EDUC), indicator of first-degree family member
with cognitive impairment (yes/no, FAM), depression
(yes/no, DEP), diabetes (yes/no, DIABETES) and mini-
mental state exam (MMSE) score. To avoid large com-
putational burden including all the observations, we
randomly select 500 subjects with at least 2 follow-
up visits from the original data set. Our final sample
includes 2491 observations and the median follow-up
is 3. The visit year is between 2005 and 2019. The pro-
portion of occurence of AD is 28.3% among all obser-
vations, and the proportion of subjects whose family
member has cognitive impairment is 64.2%. Note that
we repeated the sample selection for several times, and
achieved consistent results.

Taking FAM as indicator of treatment, we apply
the proposed model and method to the final data set.
We include logarithm of age and MMSE score into Z,
and intercept, age, visit year, EDUC, DEP, DIABETES
and MMSE score into X. The estimate of treatment
effect reflects the influence of family heredity on devel-
opment of AD. Note that in this data set, FAM is
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Figure 1. Estimate of nonparametric function f(-) (real line)
and its 95% pointwise confidence interval (dashed line).

not a real treatment indicator, thus the correspond-
ing CSTE curve does not indicate a real treatment
effect. This data set is only used to for illustrative
purpose.

Table 5 shows the parametric estimates. The stan-
dard deviations of parameters are calculated from 500
bootstrap samples. Figure 1 presents estimate of non-
parametric function and the corresponding 95% point-
wise confidence interval. We construct the confidence
interval based on result of Theorem 3.2, and apply the
method of Zhang and Peng (2010) to estimate the bias
and variance. Figure 2 displays the curve of treatment
effect versus MMSE score with age fixed on its mean
value, as well as the curve of treatment effect versus age
with MMSE score fixed on the mean value.

Chen and Zhou (2011) used a generalised linear
model to investigate risk factors that influence the
occurrence of AD. From their results, age, DEP and
MMSE score are significant under four estimation
methods. They found that age and DEP have posi-
tive associations with the occurence of AD, and MMSE
score is negatively correlated with the development of
AD. From Table 5, our result of parametric estimates is
consistent with these findings. From Figure 1, we can
clearly see that if the estimated index of a patient is
between 0.03 and 0.57, family inheritance of congnitive
impairment increases the risk of getting AD. However,
ifthe estimated index is between —0.39 and —0.11, fam-
ily heredity decreases the risk of AD. Figure 2 shows that
the effect of family heredity on occurence of AD has a
bell shape association with MMSE score, that is, hered-
ity has lower or even negative influence on risk of AD
when the value of MMSE score is small or large. Also,
the effect has an increasing trend with age. The effect
of family heredity on occurrence of AD is stronger for
elderly people.


https://www.alz.washington.edu
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Figure 2. Relationship of treatment effect with MMSE score
and Age: the estimated curve represented by real line and the
corresponding 95% pointwise confidence interval by dashed
line.

7. Discussion

This paper focuses on a generalised partially linear
single-index mixed effects model for personalised treat-
ment effect estimation and treatment selection in lon-
gitudinal studies. In our model, the treatment effect
is described as a function of a linear combination of
covariates. We develop a method combininglocal linear
regression and penalised quasi-likelihood to estimate
the coefficients for each covariate, the treatment effect
curve and the parameters for mixed effects. Based on
the pointwise confidence intervals for treatment effect
curve, we can make individualised treatment decisions
from the information of patient characteristics. Our
simulation study and real data analysis illustrate effec-
tiveness of the proposed method.

Nonparametric and semiparametric methods pro-
vide a flexible way to explore HTE. The previous
research in this area mostly focus on cross-sectional

data. Our work fills in the gap of semiparametric mod-
elling of HTE with longitudinal data. On the other
hand, we develop a new estimation method com-
bining local linear technique and penalised quasi-
likelihood, for generalised partially linear single-index
model. Pointwise confidence interval can be directly
constructed for the estimated treatment effect curve
based on its asymptotic normality. The theory of simul-
taneous confidence band for treatment effect curve can
also be established accordingly, and we leave this for
future work.

There are still some limitations in our work. We
directly apply the method of Zhang and Peng (2010)
to estimate bias and variance for the treatment effect
curve. It would be more rigorous that the performance
of this method in our context be validated via simula-
tion studies. We will include this in our future research.
Another limitation of our work is that, based on the
pointwise confidence interval of treatment effect curve,
we could only make treatment decision for a future
patient. To identify subgroup of patients that benefit
from each treatment, it is necessary to construct simul-
taneous confidence band for treatment effect curve.
Some possible extensions of our work could also be
considered in future research. Our model could be
extended to high-dimensional covariates to cope with
longitudinal studies in which large number of patient
characteristics are recorded. It is also of interest to con-
sider robust regression to limit the impact of outlying
observations. An even further extension is a survival
model for time-to-event response.
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Denote C = cov{s11q1 (111, Y11)> 51291 (012> Y12)}»

N
var(v/NB,) = A+ WIC.
Therefore, when n — oo,
o—a N
VN (E(l) O(l)) — N, A + WIA*CA*I).
—Po

Iy Opx(g-1)

Denote D = | 0, Ty ) An application of multivari-
0

ate delta-method yields

a—
N N, X
Y </3 ﬂo> — NO.
where ¥ = DA™ + %A_1CA_1)DT. [ |

Proof of Theorem 3.2: From Theorem 3.1, /N (38’[";’(1))
0
= Op(1). We write

7B'za,B) — f(BL2)
—7B'z@.B) -1 B2 +1BL2)

of (B za, B)
- afmT,ﬁ(W)|(ao,ﬂé“> (ﬂ“) ﬁ(1)> {1+ 0p(1)}

+ {7852 - 1612
=F(B32) — f(BL2) + 0p(n~112).

—f(BL2)

Hence the asymptotic distribution of?(ETz; @, B) is the same
as that of f (B¢ z). Based on the result of Step 1, we now derive
the asymptotic variance of f (ﬂOTz). Denote rjj = Kj, (ﬂgZ,j -

B4 2)a1 (nij» Yij) Dy, we have

Z Xl: rijp = Z X’: var(rij)

i=1 j:l i=1 j=1

n nj n;

+ Z Z Z cov(Tij, Tik)s

zl]ll]cgél
il

where
var(rjj) = EK}zl(ﬂOTZ,-j - ﬁgz)q%(n,-j, Yij)ij
= b ofu(Bo 2 Elp2(ND? |5 Z = By 2),
cov(rij, i) = f5(BoDE {q1(m1, Yi1)q1 (12, Y12) DY
DLIBYZ1 = Biz By Z1n = ﬂoTZ} .
Therefore, we have

T ~ 1 17"
VNLFB' %@, B) — f(BL2) — SHiaf " (B}2) = N©.ap),

where a {2D*BsZ =Bz}~ W

= pofy; (B3 2)[E
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