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ABSTRACT
Uncovering the heterogeneity in the disease progression of
Alzheimer’s is a key factor to disease understanding and treatment
development, so that interventions can be tailored to target the
subgroups that will benefit most from the treatment, which is an
important goal of precision medicine. However, in practice, one top
methodological challengehindering theheterogeneity investigation
is that the true subgroup membership of each individual is often
unknown. In this article, we aim to identify latent subgroups of indi-
viduals who share a common disorder progress over time, to predict
latent subgroupmemberships, and to estimate and infer the hetero-
geneous trajectories among the subgroups. To achieve these goals,
we apply a concave fusion learning method to conduct subgroup
analysis for longitudinal trajectories of the Alzheimer’s disease data.
The heterogeneous trajectories are represented by subject-specific
unknown functions which are approximated by B-splines. The con-
cave fusion method can simultaneously estimate the spline coeffi-
cients and merge them together for the subjects belonging to the
same subgroup to automatically identify subgroups and recover the
heterogeneous trajectories. The resulting estimator of the disease
trajectory of each subgroup is supported by an asymptotic distri-
bution. It provides a sound theoretical basis for further conducting
statistical inference in subgroup analysis.
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1. Introduction

Alzheimer’s disease (AD) is the leading cause of dementia for adults. It is a progressive
disease that worsens over time. Patients with AD show symptoms of memory loss, men-
tal decline, delusion and so forth as the disease progresses. The progression of AD varies
from person to person, and patients with AD have experienced it in different ways. The
lack of a good understanding of the heterogeneity in the disease progression through the
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population is a key reason for the failures of disease-modifying treatments for AD. As a
result, very little progress has been made for AD treatment development since 2003 [41].
To overcome this difficulty, one has to first understand the heterogeneity in the disease
trajectories, so that interventions can be tailored to target the subgroups that will benefit
most from the treatment, which is an important goal of precision medicine. The progres-
sion of AD is often measured by cognitive scores at multiple time points, resulting in a
collection of longitudinal data. One major methodological challenge hindering the het-
erogeneity investigation is that the true subgroup membership of each individual is often
unknown.

The growth mixture modeling (GMM) method [6,13,27,33] has been popularly used
for the identification and prediction of latent subpopulations for longitudinal data. This
method requires to specifying the underlying distribution of the data, which is often
hard to obtain for longitudinal data, because of their complex structure. The k-means
algorithm [9] is another popular clustering method. It divides the data into subgroups
based on the distances betweenmeasurement vectors of subjects. It is difficult to apply this
method to cluster functional curves, especially arising from longitudinal data with miss-
ing measurements. Moreover, both GMM and k-means methods need to pre-specify the
number of subgroups, which is often unknown in practice, and thus introduces additional
complications in the estimation procedure.

To overcome these challenges, we apply the concave fusion learning method proposed
in [22,23] to conduct subgroup analysis for longitudinal trajectories of the AD data. This
semi-supervised machine learning method applies concave penalty functions to pairwise
differences of clinical outcomes or unknown treatment coefficients in a regression model.
It can automatically identify memberships from latent subgroups and estimate the number
of subgroups simultaneously without specifying the underlying distribution. Although the
fusion learning method was originally considered in [22,23] for the cross-sectional data
setting with independent observations, it also has a great potential for subgroup analy-
sis of other data settings such as longitudinal data and survival data. In this article, we
extend this method to the longitudinal AD data, and investigate its numerical perfor-
mance through extensive simulation studies with both balanced and unbalanced correlated
repeatedmeasures designs.Moreover, we propose twodifferent data-drivenmethods based
on themodified Bayes InformationCriterion (BIC) and theCalinski-Harabasz (CH) index,
respectively, for selecting the optimal tuning parameter involved in the concave fusion
penalization method, while the CH method was not considered in [22,23]. We also thor-
oughly investigate the performance of these two data-driven methods through numerical
studies.

To cluster the AD patients based on their cognitive scores observed over time, we con-
sider a subject-specific nonparametric regression model, in which the heterogeneity can
be driven by observed or unobserved latent covariates. More specifically, we model each
patient’s cognitive scores through an unknown functional curve of time. We approximate
each curve by B-splines [4,18,20,40], and then apply pairwise fusion penalties to the spline
coefficients, so that patients with similar disease trajectories can be automatically clustered
into the same homogeneous subgroup. As a result, patients in the same identified sub-
group share the same disease progressive curve. We use an alternating direction method
of multipliers (ADMM) algorithm [1] that has a good convergence property to solve the
optimization problem. Different from the GMM method, our method does not require
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to pre-specify the number of subgroup, nor does it need to provide the underlying distri-
bution of the data. Instead, our estimation procedure only involves a working correlation
matrix [16,19,25,37] for the repeated measures of each subject. We show that the resulting
estimator of the functional curve for each subgroup is robust to the specification of the cor-
relation matrix, i.e. it is still a consistent estimator even if the working correlation matrix
is mis-specified. Moreover, we establish point-wise asymptotic normality of the functional
curve estimator for each subgroup, so that statistical inference can be further conducted
based on our clustering and estimation results.

The rest of this article is organized as follows. Section 2 describes the proposed model.
Section 3 introduces themodel estimation procedure using the concave fusion penalization
method. In Section 4, we establish the theoretical properties of the proposed estima-
tors. Simulation studies are presented in Section 5. Section 6 illustrates the application
of the proposed method to Alzheimer’s disease data. Discussions are provided in the
last section. The related computation procedure and technical proofs are included in the
Supplementary Material.

2. Model

In a longitudinal study, subjects are usually measured repeatedly over a time period. Sup-
pose the data consist of (Yi(tij), tij), i = 1, . . . , n, j = 1, . . . ,mi, where {tij, j = 1, . . . ,mi}
are the distinct time points that the measurements of the ith subject are taken, and Yi(tij)
is the observed response for the ith subject at time tij. Our goal in this paper is to under-
stand how the change of trajectories may differ across individual subjects. To study the
longitudinal trajectories of the ith subject, we consider the subject-specific nonparametric
regression model:

Yi(tij) = βi(tij) + εi(tij), (1)

where βi(t)’s are the unknown smooth functions of t, and the errors εi(t)’s satisfy
E(εi(t)) = 0 and Cov(εi(t), εi′(t′)) = δ(t, t′)I{i = i′}with I{·} being an indicator function.
For simplicity, we denote Yij = Yi(tij) and εij = εi(tij). Model (1) can be rewritten as

Yij = βi(tij) + εij. (2)

In this model, the trajectory of the ith subject over time is represented by the subject-
specific unknown function βi(t). Due to the heterogeneity of the trajectories, we assume
βi(t)’s arise from K different groups with K ≥ 1. To be specific, we have βi(t) = αk(t)
for all i ∈ Gk, where G = (G1, . . . ,GK) is a mutually exclusive partition of {1, . . . , n} and
αk(t) is the common function for all the βi(t)’s from group Gk. In practice, the number of
subgroups K can be much smaller than the sample size n, and it is often unknown.

3. Estimation

In order to identify the subgroups of the heterogeneous trajectories, we first approxi-
mate the nonparametric functions βi(·)’s in (2) using B-splines. Referring to [21], let
a0 = ζ0 < ζ1 < · · · < ζJ < ζJ+1 = b0 be a partition of [a0, b0] into J + 1 subintervals Il =
[ζl, ζl+1), l = 0, . . . , J − 1 and IJ = [ζJ , b0], where {ζl}Jl=1 is a sequence of interior knots.
Denote the rth order normalized B-spline basis as {B1(t), . . . ,BS(t)}T (see [4]), in which
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S = J + r is the number of basis functions. Then, βi(tij) in (2) can be approximated by a
linear combination of the B-spline functions,

βi(tij) ≈
∑S

d=1
γidBd(tij) = B(tij)Tγ i, i = 1, . . . , n, j = 1, . . . ,mi, (3)

where B(tij) = (B1(tij), . . . ,BS(tij))T and γ i = (γi1, . . . , γiS)T . In this case, the trajectory
heterogeneity represented by βi(t) is reflected on the B-spline coefficient γ i. Our goal can
be transformed into identifying the subgroups based on the γ i’s.

Let Y i = (Yi1, . . . ,Yimi)
T , εi = (εi1, . . . , εimi)

T and Xi = (Bi1, . . . ,Bimi)
T , where Bij =

B(tij). Given (3), model (2) can be written in matrix notation as

Y i ≈ Xiγ i + εi, i = 1, . . . , n. (4)

As in [16,25,37], we let �i and V i be the true and assumed working covariance of Y i,
where �i = Var(Y i) and V i = A1/2

i RiA
1/2
i , Ai represents a mi × mi diagonal matrix con-

taining the marginal variances of Yij, and Ri is an invertible working correlation matrix.
The true covariance �i is often unknown in practice, so we use a working covariance V i
to replace �i in the estimation procedure. The structure of the working correlation Ri is
pre-specified. Throughout, we assume that V i depends on a nuisance finite dimensional
parameter vector η.

Following [23], we utilize a fusion learning approach with concave penalty to estimate
model (4). For any vector a, define itsL2 normas ‖a‖2 = (

∑
a2i )

1/2. The objective function
is constructed as

Qn (γ ; λ) = 1
2

∑n

i=1
(Y i − Xiγ i)

TV−1
i (Y i − Xiγ i) +

∑
1≤i<j≤n

p
(∥∥∥γ i − γ j

∥∥∥
2
, λ

)
,

(5)

where γ = (γ T
1 , . . . , γ

T
n )T and p(·, λ) is a concave penalty function with a tuning param-

eter λ ≥ 0. For a given λ > 0, define

γ̂ (λ) = argmin
γ

Qn(γ ; λ). (6)

When λ is large enough, the penalty shrinks some pairs of ‖γ i − γ j‖2 to zero. For two
subjects with ‖γ̂ i(λ) − γ̂ j(λ)‖2 = 0, they are clustered into the same group. Based on this
fact, we can partition the heterogeneous trajectories into subgroups. For convenience, we
write γ̂ (λ) ≡ γ̂ . Let {θ̂1, . . . , θ̂ K̂} be the unique values of γ̂ , where K̂ is the number of
these distinct values. In the kth subgroup, we denote the set of the corresponding indices
by Ĝk = {i : γ̂ i = θ̂k, 1 ≤ i ≤ n} with 1 ≤ k ≤ K̂. To select the optimal tuning parameter
λ, a data-driven procedure such as BIC or the Calinski-Harabasz index is considered. It
is noteworthy that our method can also be applied to the case that the true number of
subgroups K is known. In this scenario, we will choose a λ value that corresponds to the
estimated number of subgroups K̂ which is equal to or the closest one to the true number of
subgroupsK. If two K̂ values are equally distant fromK, we use the larger one to determine
the λ value.

An appropriate selection of the penalty is very critical to the model estimation. Instead
of choosing lasso penalty pτ (t, λ) = λ|t| [35], which results in biased estimates due to the
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over-shrinkage of large coefficients, we use the minimax concave penalty (MCP) [42] by
inducing nearly unbiased estimators with the form

pτ (t, λ) = λ

∫ |t|

0
(1 − x/(τλ))+ dx, τ > 1,

where τ is a parameter controlling the concavity of the penalty function, and (a)+ = a, if
a>0 and (a)+ = 0, otherwise. Moreover, it is more aggressive in enforcing a sparser solu-
tion. Consequently, MCP is a more desirable choice. The computational procedure using
ADMM algorithm for a given value of λ is provided in Section A.2 of the Supplementary
Material.

Another problem is how to choose the working covariance matrix V i. Here we con-
sider an unequally spaced AR(1) structure for the working covariance matrixV i, such that
Vi(t, s) = σ 2ρκ|t−s|, where κ = 1

|t(1)−t(2)| with t(1), t(2) being the first two time points. Note
that our estimator of the functional curve for each subgroup is consistent even if the work-
ing covariance matrix is mis-specified, i.e. V i 
= �i. First, we estimate σ 2 by taking the
mean of the estimated variance σ̂ 2

i , i = 1, . . . , n, where σ̂ 2
i is calculated within subject by

using ordinary least squares (OLS) residuals. Due to the fact that these residuals may be
small and thus underestimate the true errors, we modify these residuals by replacing ε̂ij
with ε̂∗

ij = ε̂ij/(1 − hij), where hij is the jth diagonal element of the projectionmatrixHi for
subject i. This modification is suggested by [26]. Given (4), we haveHi = Xi(XT

i Xi)
−1XT

i .
Next, we estimate correlation ρ by taking the average of the estimated correlation between
the two adjacent time points, in which we only consider the adjacent time points having
the scaled distance equalling 1, i.e. κ|t − s| = 1. Accordingly, V i can be obtained.

Figure 1 illustrates the solution path for the estimates of B-spline coefficients
(γ̂31(λ), . . . , γ̂3n(λ)) against λ, which is computed on a grid of λ values in interval
[λmin, λmax]. More details about the solution path are presented in the Supplementary
Material. From Figure 1, we observe that when λ is very small, too many subgroups are
identified. With λ value increasing, the estimated number of subgroups decreases, then
becomes to 1 for a large λ value. If the actual number of subgroups is given (K = 3), based
on the solution path, we can select a λ between 0.6 and 0.8 as the tuning parameter, where
K̂ equals the true number of subgroups; otherwise, BIC or the Calinski-Harabasz index is
used to decide the optimal tuning parameter λ.

4. Theoretical properties

In this section, we establish the theoretical properties of the proposed estimators. We first
introduce some notations. Let β(t) = (β1(t), . . . ,βn(t))T with βi(t) being the function of
the ith subject, and α(t) = (α1(t), . . . ,αK(t))T with αk(t) being the common function for
the kth subgroup. For any square integrable function g(t) on the compact supportT, denote
its L2 norm by ‖g‖2 = {∫

T
g(t)2dt}1/2 and squared L2 norm by ‖g‖22 = ∫

T
g(t)2dt. Then,

for a vector valued function g(t) = (g1(t), . . . , gL(t))T , its squared L2 norm is defined
as ‖g‖22 = ∑L

l=1 ‖gl‖22. Let b = mink
=k′ ‖αk − αk′‖2 be the minimum distance between
smoothing functions αk and αk′ from any two clusters.

We also give the definitions for notations O(·) and Op(·) as follows. If {xn}∞1 is any
real sequence, {bn}∞1 is a sequence of positive real numbers, and there exists a constant
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Figure 1. Solution path for (γ̂31(λ), . . . , γ̂3n(λ)) against λ with n = 100, T = 20 for balanced data of
Middle case from Three Subgroup Example in Section 5.

C∗ < ∞ such that |xn|/bn ≤ C∗ for all n, we say that xn is at most of the order of mag-
nitude of bn, and write xn = O(bn). If, for any ε > 0, there exists Cε < ∞ such that the
stochastic sequence {Xn}∞1 satisfies supn P(|Xn| > Cε) < ε, wewriteXn = Op(1). If {Yn}∞1
is another sequence, either stochastic or nonstochastic, and Xn/Yn = Op(1), we say that
Xn = Op(Yn), or in words, Xn is at most of order Yn in probability. Let {an}∞1 be another
sequence of positive real numbers. Denote an � bn, if an = O(bn) and bn = O(an).

Definition 4.1: A random sequence {ξk, k ≥ 1} is said to be α-mixing if the α-mixing
coefficient

α(s)
def= sup

k≥1
sup{|P(A ∩ B) − P(A)P(B)| : A ∈ F∞

s+k,B ∈ Fk
1 }

converges to 0 as s → ∞, where Fb
a is the σ algebra generated by ξa, ξa+1, . . . , ξb.

Among various mixing conditions used in the literature, the α-mixing is reasonably
weak and is known to be fulfilled by many stochastic processes including many time series
models. For instance, Gorodetskii [7] derived the conditions under which a linear process
is α-mixing. The linear autoregressive and the bilinear time seriesmodels are stronglymix-
ingwithmixing coefficients decaying exponentially under verymild assumptions, see page
99 of [5] for more details. We refer to [2,15] and references therein for more discussions
on the α-mixing condition.

We denote by C(r) = {φ|φ(r) ∈ C(T)} the space of the rth order smooth functions on
the compact support T such that their rth order derivatives belong to C(T), which is the
class of all continuous functions on T.
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Regularity conditions:

(C1) The observation time points tij, i = 1, . . . , n, j = 1, . . . ,mi, are chosen indepen-
dently from a distribution F(·) with the density f (·). Moreover, the density function
f (t) is uniformly bounded away from 0 and infinity on its compact support T.
Without loss of generality, we assume T = [a0, b0].

(C2) There exists a positive constantM such that E(ε(t)4) ≤ M for all t ∈ T. In addition,
the random sequence {εij} for each i satisfies α-mixing condition with the α-mixing
coefficient satisfying α(s) ≤ C∗s−α for α > 2+κ0

1−κ0
, where 0 < κ0 < 1, and C∗ is a

positive constant with 0 < C∗ < ∞.
(C3) The functions βi(·) ∈ C(r), for i = 1, . . . , n.
(C4) The spline knot sequences {ζl}J+1

l=0 have bounded mesh ratio. That is, for some
positive constant C01, max0≤l≤J |ζl+1 − ζl|/min0≤l≤J |ζl+1 − ζl| ≤ C01.

(C5) There are positive constants 0 < C1 < C2 < ∞ such that the eigenvalues of � =
diag(�1, . . . ,�n) and V= diag(V1, . . . ,Vn) lie between C1 and C2.

Condition (C1) is identical to condition (C1) in [11] and assumption (A1) in [29]. This
condition ensures that the observation time points are randomly scattered and they can
be modified or weakened according to Remarks 3.1 and 3.2 in [11]. Condition (C2) is a
standard requirement for moments and the mixing coefficient for an α-mixing process as
assumed in [15] and [2]. This condition allows the errors to be weakly dependent. Many
linear and nonlinear time series models like the linear autoregressive and the bilinear time
series models are strongly mixing with the mixing coefficients decaying exponentially, see
[5] (page 99) for more details. Conditions (C3)–(C4) are frequently assumed in the spline
approximation literature; see for example [20,39,43]. The smoothness condition on βi(·)
given by Condition (C3) determines the rate of the approximation error of the spline esti-
mator β̂i(·). Condition (C4) ensures that the knot sequence has a boundedmesh ratio; that
is, the knots are quasi-uniform. Condition (C5) is commonly used in the literature related
to longitudinal data, such as in [12,25] and the references therein.

Let the nonparametric function subspace Mβ

G corresponding to the group partition,
defined asMβ

G = {β(·) : βi(·) = αk(·), βi(·) ∈ C(r), for any i ∈ Gk, 1 ≤ k ≤ K}, while the
subspace Mγ

G of the B-spline coefficients corresponding to the group partition is denoted
by Mγ

G = {γ : γ i = θk, γ i ∈ RS, for any i ∈ Gk, 1 ≤ k ≤ K}, where θk is the common
B-spline coefficients in the kth subgroup. By using the proposed method, we have γ̂ =
(γ̂

T
1 , . . . , γ̂

T
n )T , where γ̂ i is the estimated B-spline coefficient for subject iwith γ̂ i = θ̂k for

all i ∈ Ĝk. Then, the estimated function for each i is

β̂i(t) = B(t)T γ̂ i, (7)

for any t ∈ T. Let α̂
or

(t) = (α̂or
1 (t), . . . , α̂or

K (t)), where α̂or
k (t) is the estimated common

function for group Gk by assuming that the true memberships are known.

Theorem 4.1: Suppose conditions (C1)–(C5) hold, and for any fixed K, if J = O(Nς
0 ) with

0 < ς < 1, the oracle estimator α̂
or satisfies ‖α̂or − α‖22 = Op(J/N0 + J−2r), where N0 =

min1≤k≤K Nk and Nk = ∑
i∈Gk

mi.
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It is worth noting that the convergence rate given in Theorem 4.1 consists of two parts,
which are the approximation error of order J−2r and the estimation error of order J/N0.
We can see that the increase of J leads to smaller approximation error but larger estimation
error, whereas the decrease of J leads to larger approximation error but smaller estima-
tion error, i.e. there is a trade-off between the bias and variance. By letting J/N0 � J−2r,
we can obtain the optimal order of J which is N1/(2r+1)

0 . Plugging it into the convergence
rate, it follows that ‖α̂or − α‖22 = Op(J/N0 + J−2r) = Op(N

−2r/(2r+1)
0 ), which reaches the

minimax convergence rate for spline regression.
The following theorem gives the convergence rate of the estimated function β̂i(t) in (7)

for each i.

Theorem 4.2: Suppose conditions (C1)–(C5) hold, if there exists a constant C>0 such that
Cb ≥ τλ and J = O(mς

(n)) with 0 < ς < 1, then, for each i, ‖β̂i − βi‖22 = Op(J/m(n) +
J−2r), where m(n) = min1≤i≤n mi.

Theorem 4.3: Assume Ĝ and G0 respectively be the estimated and true subgroup mem-
bership. Under the same conditions in Theorem 4.2, we have P(Ĝ = G0) → 1 as m(n) →
∞.

Theorem 4.3 gives the model selection consistency result for the penalized method.
Thus, given the estimated subgroupmembership, wemaywrite α̂(t) = (α̂1(t), . . . , α̂K(t))T
for any given t ∈ T, and the following theorem holds.

Theorem 4.4: Under the same conditions in Theorem 4.3, if J/m1/(2r+1)
(n) → ∞, we

have Var(α̂(t))−1/2(α̂(t) − α(t))→d N(0, IK), where IK is a K-dimensional identity
matrix and Var(α̂(t)) is given in (A.22) of the Supplementary Material. In partic-
ular, Var(α̂k(t))−1/2(α̂k(t) − αk(t))→d N(0, 1) for k = 1, . . . ,K, where Var(α̂k(t)) =
eTk Var(Oα(t))ek, and ek is the K-dimensional vector with the kth element taken to be 1 and
0 elsewhere.

We can use the asymptotic distribution established in Theorem 4.4 to construct point-
wise confidence intervals of the functional curve for each subgroup.

5. Simulation studies

In this section, we investigate the performance of our proposed approach by conducting
simulation studies. Balanced and unbalanced data are both considered.

Two different criteria are used to select the optimal tuning parameter. One is the
modified Bayes Information Criterion (BIC) [38] for high-dimensional data settings by
minimizing

BIC(λ) = log
[∑n

i=1
(Y i − Xiγ̂ i(λ))TR−1

i (Y i − Xiγ̂ i(λ))/N
]

+ Cn
logN
N

(K̂(λ)S), (8)

where Cn is a positive number which can depend on n and N = ∑n
i=1mi. Following

[22], we let Cn = c log(log(nS)), where c is a positive constant. The other criterion is the
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Calinski-Harabasz index [3] by maximizing

CH(λ) =
BK̂(λ)/(K̂(λ) − 1)

WK̂(λ)/(n − K̂(λ))
, (9)

where BK̂(λ) andWK̂(λ) are the between and within group sum of square errors of the esti-
mated subgroups given a λ value. We apply this index to the initial value γ 0

i ’s given in
Section A.2.1 of the Supplementary Material, which are the ordinary least squares esti-
mates of (4) within each subject. Note that CH(λ) is not defined for K̂(λ) = 1. Based on
these criteria, we can select the optimalλ and obtain the corresponding groupmembership.
Here we use fixed values for ϑ and τ in ADMM algorithm: ϑ = 1 and τ = 3.

To evaluate the accuracy of the clustering results, we use three measures: Rand Index
(RI) [31],NormalizedMutual Information (NMI) [36] and accuracy percentage (%), where
the % is defined as the proportion of subjects that are correctly identified. These three
values are between 0 and 1, with higher values indicating better performance.

5.1. Two subgroups example

We simulate data from the heterogeneous model with two subgroups

Yij = βi(tij) + εij, i = 1, . . . , n, j = 1, . . . ,mi,

where βi(t) = α1(t) if i ∈ G1 and βi(t) = α2(t) if i ∈ G2.
We first consider balanced data. In this case, we havemi = T for all i’s. The time points

tij’s are chosen equally spaced on [0, 1.2]. The error term εi = (εi1, . . . , εiT)T is generated
from N(0,�E), in which �E has AR(1) covariance structure with ρ = 0.3 and σ = 0.5.
We consider 4 setups of {n, T}: {n = 100, T = 20}, {n = 100, T = 50}, {n = 150, T =
20}and{n = 150, T = 50}. Moreover, to choose {α1(t), α2(t)}, we also consider three dif-
ferent cases by increasing the distance between the two functions from close to middle,
then to far, which are shown below:

Close
{
α1(t) = −0.5t2 + 1.25t,
α2(t) = −t2 + 2.5t, Middle

{
α1(t) = −0.5t2 + 1.25t,
α2(t) = −1.3t2 + 3.25t,

Far
{
α1(t) = −0.5t2 + 1.25t,
α2(t) = −2.5t2 + 6.25t.

Figure 2 shows the true functions (black line) and simulated trajectories (blue line and
red line) of the three distance cases, respectively, based on one sample with n = 100, T =
20 for balanced data. We can see that there are a lot of overlaps in Close and Middle cases;
especially in the Close case, the trajectories seem to be in one group.

For the unbalanced data, we randomly allow 50% of the subjects to miss either 30%
or 40% or 50% of time points, and use the same model described above to generate the
responses. Next, we conduct simulations to illustrate the performance of our proposed
method. The numerical results are based on 100 simulation replications. Because the dis-
ease progression curves are usually smooth but not exactly linear [34], we use quadratic
splines (B-splines with order 3) with one interior knot to approximate the nonparametric
functions in ourmodel.When the functions are more complicated, we can use data-driven
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Figure 2. The black lines represent the true functions, while the red and blue lines represent the sim-
ulated trajectories of the corresponding subgroups based on one replication with n = 100, T = 20 for
balanced data in Two Subgroups Example. The distance between the true functions increases from close,
to middle, to far.

methods, such as AIC, BIC or cross-validation, to select the number of knots; see, e.g.
[10]. Ma and Racine [24] provided theoretical justifications for a cross-validation method
for choosing both the number of knots and spline degree, and [20] proposed a plug-in
method to select the number of interior knots. The aforementioned papers considered
homogeneous nonparametric functions for all subjects without repeated measurements.
Investigating the selection of the number of knots for our more complicated design is
beyond the scope of our paper, but it can be an interesting research topic to pursue in
the future. For the modified BIC method given in (8), to select the value of c, we try dif-
ferent values in our simulation studies, and find that when the value of c is around 1, we
get similar clustering results. When c = 0.6, our method performs very well for all cases,
so we suggest to use c = 0.6 in practice.

Table 1 reports the summary statistics of the estimated number of subgroups K̂ (sam-
ple mean, median, per, where per is the percentage of K̂ equaling to the true number of
subgroups), and the summary statistics of measuring clustering accuracy (average val-
ues of RI, NMI, %) by using different model selection criteria (BIC, CH) under different
setups of {n, T} when the distance between functions increases (Close, Middle, Far). Bal-
anced and unbalanced data are both included. Note that when calculating RI, NMI and
%, we only include the replications with K̂ equaling to the true number of subgroup
(K̂ = 2).

From Table 1, we can see that both BIC and CH criteria perform well and give simi-
lar results for most cases. As T increases, the mean of K̂ gets closer to 2, the median of K̂
becomes to 2, where 2 is the true number of subgroups, and per approaches 1; the accu-
racy measurements (RI, NMI, %) are all close to 1 or even become 1 for both balanced
and unbalanced data, which indicates good clustering results. Moreover, with the distance
between the true functions getting larger, it is easier to correctly identify the subgroups.
Accordingly, we observe that the mean and median of K̂ become 2, while the RI, NMI and
%become 1when the distance is sufficiently large (Far case). On the contrary, in Close case,
since the trajectories of the two subgroups in Figure 2 show a lot of overlaps, it is more dif-
ficult to identify the subgroups. As a result, we have obtained a low percentage (per) of
correctly selecting the number of subgroups when T = 20. For this case, if we can cluster
the subjects into two subgroups, the BICmethod results in a higher accuracy of identifying
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Table 1. The samplemean andmedian of K̂ , the percentage (per) of K̂ equaling to the true number of subgroups, the Rand Index (RI), Normalizedmutual information
(NMI), and accuracy percentage (%) equaling the proportion of subjects that are identified correctly under BIC and CH criteria based on 100 realizations in Two
Subgroups Example. Balanced and unbalanced data are both included under different {n, T} setups and function distances.

Balanced Unbalanced

Functions setting criterion mean median per RI NMI % mean median per RI NMI %

Close n=100, T=20 BIC 1.34 1.00 0.20 0.9089 0.7459 0.9515 1.43 1.00 0.08 0.9015 0.7289 0.9475
CH 1.55 1.00 0.35 0.8729 0.6818 0.9223 1.73 1.50 0.28 0.7652 0.4861 0.8304

n=100, T=50 BIC 1.98 2.00 0.98 0.9953 0.9836 0.9977 1.97 2.00 0.97 0.9855 0.9510 0.9927
CH 1.98 2.00 0.98 0.9953 0.9834 0.9977 1.97 2.00 0.97 0.9855 0.9510 0.9927

n=150, T=20 BIC 1.45 1.00 0.23 0.9271 0.7820 0.9620 1.50 1.00 0.08 0.8868 0.6855 0.9400
CH 1.57 1.00 0.31 0.8746 0.6876 0.9178 1.72 1.00 0.24 0.6563 0.2940 0.7131

n=150, T=50 BIC 2.00 2.00 1.00 0.9923 0.9719 0.9961 2.00 2.00 1.00 0.9855 0.9484 0.9927
CH 2.00 2.00 1.00 0.9922 0.9717 0.9961 1.98 2.00 0.98 0.9852 0.9472 0.9925

Middle n=100, T=20 BIC 2.00 2.00 1.00 0.9960 0.9859 0.9980 2.00 2.00 1.00 0.9903 0.9664 0.9951
CH 2.00 2.00 1.00 0.9952 0.9830 0.9976 2.00 2.00 1.00 0.9901 0.9655 0.9950

n=100, T=50 BIC 2.00 2.00 1.00 0.9998 0.9993 0.9999 2.00 2.00 1.00 0.9996 0.9985 0.9998
CH 2.00 2.00 1.00 0.9998 0.9993 0.9999 2.00 2.00 1.00 0.9996 0.9985 0.9998

n=150, T=20 BIC 2.00 2.00 1.00 0.9967 0.9870 0.9983 2.00 2.00 1.00 0.9874 0.9535 0.9937
CH 2.00 2.00 1.00 0.9967 0.9870 0.9983 2.00 2.00 1.00 0.9865 0.9503 0.9932

n=150, T=50 BIC 2.00 2.00 1.00 1.0000 1.0000 1.0000 2.00 2.00 1.00 0.9999 0.9995 0.9999
CH 2.00 2.00 1.00 0.9999 0.9995 0.9999 2.00 2.00 1.00 0.9997 0.9990 0.9999

Far n=100, T=20 BIC 2.00 2.00 1.00 1.0000 1.0000 1.0000 2.00 2.00 1.00 1.0000 1.0000 1.0000
CH 2.00 2.00 1.00 1.0000 1.0000 1.0000 2.00 2.00 1.00 1.0000 1.0000 1.0000

n=100, T=50 BIC 2.00 2.00 1.00 1.0000 1.0000 1.0000 2.00 2.00 1.00 1.0000 1.0000 1.0000
CH 2.00 2.00 1.00 1.0000 1.0000 1.0000 2.00 2.00 1.00 1.0000 1.0000 1.0000

n=150, T=20 BIC 2.00 2.00 1.00 1.0000 1.0000 1.0000 2.00 2.00 1.00 1.0000 1.0000 1.0000
CH 2.00 2.00 1.00 1.0000 1.0000 1.0000 2.00 2.00 1.00 1.0000 1.0000 1.0000

n=150, T=50 BIC 2.00 2.00 1.00 1.0000 1.0000 1.0000 2.00 2.00 1.00 1.0000 1.0000 1.0000
CH 2.00 2.00 1.00 1.0000 1.0000 1.0000 2.00 2.00 1.00 1.0000 1.0000 1.0000
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group memberships than CH. However, when T increases to 50, the accuracy of clustering
is significantly improved. Compared with unbalanced data, balanced data shows slightly
better results.

Furthermore, to study the estimation accuracy, we calculate the square root of the mean
squared error (RMSE) of the estimated function in each subgroup when K̂ equals the true
number of subgroups K. In the kth subgroup, we use the formula below to calculate the
corresponding RMSE of the estimated function α̂k(t) (RMSEk):

RMSEk =
√

1
H

∑H

h=1
[α̂k(th) − αk(th)]2 =

√
1
H

∑H

h=1
[B(k)(th)T γ̂ (k) − αk(th)]2,

where B(k)(t) is the B-spline basis vector of the kth subgroup, γ̂ (k) is the corresponding
estimated B-spline coefficient after refitting model (4) and {t1, . . . , tH} is a grid of equally
spaced points spanning the original time range [0, 1.2] with H = 50. For oracle (Oracle)
method, we use the true group memberships to calculate RMSE. As shown in Table 2, the
RMSE values under different model selection criteria (BIC, CH) and {n, T} setups are
comparable to those of the oracle ones for almost all cases.

Lastly, we plot the estimated nonparametric curves α̂k(t) (blue, red lines) and the true
curves αk(t) (black lines) of the two subgroups for balanced data based on the 100 replica-
tions in Figure 3. Note that we only include the replications when the estimated number of
subgroups equals the true number of subgroups. On each row, from left to right, it repre-
sents the Close, Middle, and Far cases with the same setting of {n, T}, respectively. From
each column, we can clearly observe that the bands formed by the red or blue lines become
narrower as T or n increases. In general, the estimated curves are close to the true curves
for all three cases and different setups of {n, T}.

To further illustrate the performance of our proposed method in unbalanced data,
we generate data with mi ∼ Uniform{5, 6, . . . , 20}, i = 1, . . . , n, n = 100, 1000, and keep
other simulation settings the same as before. We focus on the Middle and Far cases, as the
curves from different subgroups in the Close case are too close to be separated based on
the previous simulation results; see Table 1. Figure 4 displays the simulated trajectories and
the true functions for each case. We can observe that there are more overlaps among the
trajectories from the two different subgroups in the Middle case than those in the Far case.
We report the numerical results for Middle and Far cases in Table 3 and 4. Table 3 shows
that the median value of K̂ equals to the true number of subgroups, which is 2. As the
mean functions of different subgroups become more separated (fromMiddle to Far case),
the mean value of K̂ gets closer to 2, and the average values of RI, NMI and the accuracy
percentage (%) approach 1.Moreover, Table 4 shows that the RMSE values of the estimated
functions by our method are comparable to those of the oracle ones obtained by assum-
ing that the true memberships are known. We also plot the estimated curves and the true
curves in Figure 5 for Middle and Far cases. We can see that as n or the distance between
the true functions becomes larger, the bands formed by the fitted curves become narrower.
Moreover, the estimated curves center around the true curve for each subgroup, indicating
that our proposed method performs well for clustering heterogeneous trajectories from
unbalanced data.
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Table 2. The mean of square root of the MSE (RMSE) for the estimated functions α̂1(t), α̂2(t) under BIC, CH and Oracle methods in Two Subgroups Example.

Close Middle Far

Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced

n=100, T=20 α̂1(t) α̂2(t) α̂1(t) α̂2(t) α̂1(t) α̂2(t) α̂1(t) α̂2(t) α̂1(t) α̂2(t) α̂1(t) α̂2(t)

Oracle 0.0363 0.0369 0.0385 0.0400 0.0363 0.0369 0.0385 0.0400 0.0363 0.0369 0.0385 0.0400
BIC 0.0512 0.0467 0.0570 0.0461 0.0365 0.0377 0.0394 0.0408 0.0363 0.0369 0.0385 0.0400
CH 0.0626 0.0610 0.1075 0.1128 0.0364 0.0375 0.0395 0.0407 0.0363 0.0369 0.0385 0.0400

n=100, T=50 α̂1(t) α̂2(t) α̂1(t) α̂2(t) α̂1(t) α̂2(t) α̂1(t) α̂2(t) α̂1(t) α̂2(t) α̂1(t) α̂2(t)
Oracle 0.0247 0.0235 0.0261 0.0243 0.0247 0.0235 0.0261 0.0243 0.0247 0.0235 0.0261 0.0243
BIC 0.0253 0.0236 0.0276 0.0252 0.0248 0.0234 0.0262 0.0243 0.0247 0.0235 0.0261 0.0243
CH 0.0253 0.0237 0.0276 0.0253 0.0248 0.0234 0.0262 0.0243 0.0247 0.0235 0.0261 0.0243

n=150, T=20 α̂1(t) α̂2(t) α̂1(t) α̂2(t) α̂1(t) α̂2(t) α̂1(t) α̂2(t) α̂1(t) α̂2(t) α̂1(t) α̂2(t)
Oracle 0.0314 0.0281 0.0337 0.0302 0.0314 0.0281 0.0337 0.0302 0.0314 0.0281 0.0337 0.0302
BIC 0.0387 0.0403 0.0432 0.0435 0.0317 0.0282 0.0344 0.0302 0.0314 0.0281 0.0337 0.0302
CH 0.0602 0.0606 0.1762 0.1698 0.0317 0.0281 0.0347 0.0303 0.0314 0.0281 0.0337 0.0302

n=150, T=50 α̂1(t) α̂2(t) α̂1(t) α̂2(t) α̂1(t) α̂2(t) α̂1(t) α̂2(t) α̂1(t) α̂2(t) α̂1(t) α̂2(t)
Oracle 0.0199 0.0212 0.0214 0.0221 0.0199 0.0212 0.0214 0.0221 0.0199 0.0212 0.0214 0.0221
BIC 0.0204 0.0217 0.0221 0.0228 0.0199 0.0212 0.0214 0.0221 0.0199 0.0212 0.0214 0.0221
CH 0.0204 0.0217 0.0220 0.0227 0.0199 0.0213 0.0214 0.0221 0.0199 0.0212 0.0214 0.0221
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Figure 3. Theblack lines represent the true functions,while the red andblue lines are the corresponding
fitted curves for the two estimated subgroups by using BIC among the 100 replications for the balanced
data in Two Subgroups Example. On each row, from left to right, it corresponds to Close, Middle, and Far
cases with the same setting of {n, T}.

5.2. Three subgroups example

We simulate data from the heterogeneous model with three subgroups

Yij = βi(tij) + εij, i = 1, . . . , n, j = 1, . . . ,mi,



JOURNAL OF APPLIED STATISTICS 15

Figure 4. The black lines represent the true functions, while the red and blue lines represent the sim-
ulated trajectories of the corresponding subgroups based on one replication when n = 100, 1000 with
mi ∼ Uniform{5, 6, . . . , 20} for Middle and Far cases in Two Subgroups Example.

where βi(t) = α1(t) if i ∈ G1, βi(t) = α2(t) if i ∈ G2 and βi(t) = α3(t) if i ∈ G3.We gener-
ate data in the same way as that in Two Subgroups Example. The three functions for Close,
Middle and Far cases are chosen as:

Close

⎧⎨
⎩

α1(t) = −0.6t2 + 1.5t,
α2(t) = −1.3t2 + 3.25t + 0.2,
α3(t) = −2.2t2 + 5.5t + 0.1,

Middle

⎧⎨
⎩

α1(t) = −0.4t2 + t,
α2(t) = −1.3t2 + 3.25t + 0.2,
α3(t) = −2.4t2 + 6t + 0.1,

Far

⎧⎨
⎩

α1(t) = −0.3t2 + 0.75t,
α2(t) = −4t2 + 10t + 0.2,
α3(t) = −8.5t2 + 21.25t + 0.3.

Figure 6 displays the true functions and the corresponding trajectories of the three sub-
groups based on one simulated sample with n = 100, T = 20 for balanced data. From left
to right, the distance between true functions gets larger. We next conduct simulations to
perform subgroup analysis using our method. Table A.1, Table A.2 and Figure A.1 given in
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Table 3. The sample mean and median of K̂ , the percentage (per) of K̂ equaling to the true number
of subgroups, the Rand Index (RI), Normalized mutual information (NMI), and accuracy percentage (%)
equaling the proportion of subjects that are identified correctly under BIC and CH criteria based on
100 realizations when n = 100, 1000 with mi ∼ Uniform{5, 6, . . . , 20} for Middle and Far cases in Two
Subgroups Example.

Functions setting criterion mean median per RI NMI %

Middle n=100 BIC 2.11 2.00 0.91 0.9526 0.8526 0.9756
CH 2.07 2.00 0.94 0.9542 0.8563 0.9765

n=1000 BIC 2.02 2.00 0.98 0.9483 0.8293 0.9734
CH 2.01 2.00 0.99 0.9491 0.8318 0.9738

Far n=100 BIC 2.00 2.00 1.00 0.9962 0.9865 0.9981
CH 2.00 2.00 1.00 0.9960 0.9857 0.9980

n=1000 BIC 2.00 2.00 1.00 0.9963 0.9830 0.9982
CH 2.00 2.00 1.00 0.9962 0.9828 0.9981

Table 4. Themean of square root of the MSE (RMSE) for the estimated functions α̂1(t), α̂2(t) under BIC,
CH and Oracle methods when n = 100, 1000 withmi ∼ Uniform{5, 6, . . . , 20} for Middle and Far cases
in Two Subgroups Example.

Middle Far

n=100 n=1000 n=100 n=1000

α̂1(t) α̂2(t) α̂1(t) α̂2(t) α̂1(t) α̂2(t) α̂1(t) α̂2(t)

Oracle 0.0427 0.0399 0.0127 0.0131 0.0427 0.0399 0.0127 0.0131
BIC 0.0449 0.0434 0.0165 0.0154 0.0424 0.0401 0.0131 0.0131
CH 0.0446 0.0443 0.0163 0.0155 0.0424 0.0401 0.0131 0.0132

Section A.1 of the Supplementary Material show the numerical results. Table A.1 presents
the mean, median, per of K̂ and the average values of RI, NMI, % for all setups using BIC
and CH criteria based on 100 realizations. In Table A.1, we observe that the performance
for balanced data is better than that for unbalanced data. BIC and CH criteria have similar
numerical results. When T or the distance between the true functions increases, the val-
ues of RI, NMI, and % become larger. Moreover, to demonstrate the estimation accuracy,
Table A.2 lists the average values of RMSE for the estimated functions α̂k(t) (k = 1, 2, 3)
when K̂ equals 3, while Figure A.1 shows the estimated nonparametric curves (grey, red,
blue lines) and the true curves (black lines). From Table A.2, we can see that the RMSE
values of α̂k(t)’s are close to those of the oracle estimators. In Figure A.1, we also observe
that the estimated curves are very close to the true curves. Moreover, the bands formed by
the estimated curves become narrower as n or T increases.

6. Real data application

In this section, we apply our method to Alzheimer’s disease (AD) data, which can
be obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(adni.loni.usc.edu). The ADNI was launched in 2003 as a public-private partnership, led
by Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI is to test
whether serial magnetic resonance imaging (MRI), positron emission tomography (PET),
other biologicalmarkers, and clinical and neuropsychological assessment can be combined

http://adni.loni.usc.edu
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Figure 5. Theblack lines represent the true functions,while the red andblue lines are the corresponding
fitted curves for the two estimated subgroups by using BIC among the 100 replications when n = 100,
1000 withmi ∼ Uniform{5, 6, . . . , 20} for Middle and Far cases in Two Subgroups Example.

Figure 6. The black lines represent the true functions, while the grey, red and blue lines represent the
simulated trajectories of the corresponding subgroups based on one replication with n = 100, T = 20
for balanced data. The distance between the true functions increases from close, to middle, to far.
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to measure the progression of mild cognitive impairment (MCI) and early Alzheimer’s
disease (AD). For up-to-date information, see www.adni-info.org.

We consider two steps in our analytic procedure. The first step is to use the proposed
method to identify the latent subgroups and recover the group memberships using the
observed data. The second step is to use the information from the identified subgroups
and the baseline covariates to classify future patients into the identified subgroups.

In the first step, to conduct latent subgroup analysis, we use the longitudinal data of
ADASCOG13 (Alzheimer’sDiseaseAssessment Scale-Cognitive Subscale) for each patient
from ADNI1, ADNIGO and ADNI2 at different time points (0, 6, 12, 18, 24, 36, 48, 60, 72,
84, 96, 108, 120 months). The data are unbalanced due to the fact that patients may have
missingmeasurements at some time points. Hence, the number of observedmeasurements
for all patients ranges from 1 to 13. ADASCOG13 is widely used as a test of cognitive
functions, consisting of thirteen tests, with the values ranging from 0 to 85 to assess the
severity of the dementia. Higher values indicate more severe of the dementia due to more
cognitive errors. To apply our subgroup analysis method, we delete patients with less than
4 measurements. Thus, there are 1253 patients used.

We take ADASCOG13 as the response to fit the heterogeneous model (2). The val-
ues of ADASCOG13 are standardized to apply the fusion penalized method. Following
the guidance from our simulation studies, we use quadratic splines with one interior knot
to approximate the nonparametric functions. As a result, we identify two subgroups, one
subgroup with 892 patients and the other one with 361 patients. Figure 7 displays the tra-
jectories of individual patients within each subgroup and the estimated mean curve for
each subgroup. Clearly, the subgroup depicted in red can be viewed as a non-progression
group as the values of the estimated mean curve for this subgroup remain constant over
time. In contrast, the subgroup shown in blue can be viewed as a progression group, as we
can observe a clear increasing trend of the estimated mean curve for this subgroup over
time.Note that the increasing value ofADASCOG13 indicates cognitive decline. Therefore,
the progression group is potentially of interest to be recruited in clinical trials when testing
whether a drug can slow down the cognitive decline. By using our proposed fusion learning
method, we can successfully identify two subgroups with their memberships recovered.

In the second step, we are interested in classifying future patients into the two iden-
tified subgroups using information from baseline covariates. We collect information of
several baseline covariates, includingADASCOG13,mmseTOT (Mini-Mental State Exam-
ination total score), FAQTOTAL (functional activities questionnaires total score), cdrSB
(clinical dementia rating sum of boxes), ApoE4 (Apolipoprotein E4) status and Education.
Among them,ADASCOG13,mmseTOT, FAQTOTAL and cdrSB are the baselinemeasure-
ments of cognition or functional activities. We exclude the 8 patients whose covariates are
not observed at the baseline in the classification step. Thus, there are 889 patients in the
non-progression group and 356 patients in the progression group. To understand which
covariates contribute to the group difference, we conduct a two-sample test to compare
the means between the two subgroups for each covariate. The P-values are reported in
Table 5, and they are very small for all covariates. Compared with the non-progression
group, patients in the progression group clearly have more severe dementia symptoms
given that they have higher ADASCOG13, FAQTOTAL and cdrSB and lower mmseTOT
at baseline, as well as more AopE4 carriers. Moreover, they also have less education. These
findings corroborate the results given in the literature. In general, the cognition tends to

http://www.adni-info.org
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Figure 7. The trajectories of individual patients within each identified subgroup (blue, red solid lines)
and the estimated mean curve (dashed lines) for each subgroup based on ADASCOG13. The blue group
is the progression group, with higher values of ADASCOG13, indicating faster cognition decline.

Table 5. Mean and standard deviation (SD) for each baseline covariate; P-value shows the significant
difference existing in the two subgroups. ApoE4 is tested by twoproportion z-test, while other covariates
are tested by two sample t-test.

Non-progression group Progression group

Baseline Covariates Mean (SD) Mean (SD) P-value

ADASCOG13 11.61 (5.15) 24.91 (6.42) < 0.001
mmseTOT 28.46 (1.62) 25.31 (2.41) < 0.001
FAQTOTAL 1.46 (3.05) 7.67 (6.71) < 0.001
cdrSB 0.81 (0.96) 2.70 (1.66) < 0.001
ApoE4 carrier (%) 35% (0.02) 69% (0.02) < 0.001
Education 16.21 (2.71) 15.36 (3.05) < 0.001

decline more quickly if the disease of a patient is more severe at baseline. ApoE4 is known
as one important risk factor for AD onset, and ApoE4 carriers tend to show earlier cogni-
tive decline onset than the non-carriers [32]. Additionally, some studies have shown that
patients with lower education are more likely to develop AD [14]. Based on the results in
Table 5, we include all baseline covariates in the classification step.

Next, we use the two identified subgroups obtained from our fusion learning method,
and the six baseline covariates given in Table 5 to perform classification. Binary variables
created from thememberships of the progression group and the non-progression group are
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Table 6. Accuracy, specificity, precision, recall, F1 score and AUC obtained from the test data. The
progression group is defined as the positive class.

Performance

Predictive model accuracy specificity precision recall F1 score AUC

logistic 0.924 0.944 0.859 0.871 0.865 0.908
random forest 0.920 0.939 0.847 0.871 0.859 0.905
boosting 0.944 0.955 0.889 0.914 0.901 0.935
SVM 0.932 0.950 0.873 0.886 0.879 0.918

used as the responses, and the six baseline covariates are used as the predictors in the clas-
sification task.We randomly split the dataset into 80% training data and 20% test data. The
training data is used to fit a predictivemodel, while the test data is used to examine the pre-
diction performance. We apply four popular supervised methods (predictive models) for
classification, including the logistic regression, random forest, boosting (gradient boosting
machines) and support vector machine (SVM) with linear kernel. The four methods are
implemented using the R packages ‘stats’ [30], ‘randomForest’ [17], ‘gbm’ [8] and ‘e1071’
[28], respectively. For the methods involving hyper parameters, we apply 5-fold cross val-
idation (CV) based on a grid search to select the optimal hyper parameters that maximize
the accuracy. Table 6 reports the accuracy, specificity, precision, recall, F1 score and AUC
(area under the ROC curve) obtained from the test data for the four predictive models.
They are commonly used metrics to evaluate the classification performance. Accuracy is
the percentage of correct predictions. Specificity is the proportion of true negatives out of
the total actual negatives, and it measures how well a method can identify the true nega-
tives. Precision is the ratio of true positives to all positives, while recall refers to the ratio
of true positives to the size of the actual positive class. Precision measures the ability of a
classification (predictive) model to identify the true positives, and recall assesses its ability
to find all the positive cases. F1 score is the weighted average between precision and recall.
AUC measures the ability of a classifier to distinguish between classes. From Table 6, we
observe that the values of accuracy, specificity and AUC are all above 0.9 for the four clas-
sification methods (predictive models). The values of recall and F1 score for the boosting
method also exceed 0.9. In general, boosting outperforms the other threemethods based on
all metrics, and therefore it is recommended for the classification task. In conclusion, our
two-step procedure is useful for identifying latent subgroups and then further classifying
future patients into the identified subgroups based on their baseline characteristics.

7. Conclusions and discussions

In this paper, we consider the subgroup analysis for longitudinal trajectories of the ADdata
based on a heterogeneous nonparametric regression model. We use B-splines to approx-
imate the nonparametric functional curves, and cluster the subjects into subgroups by
applying concave pairwise fusion penalties on the spline coefficients. Our method can
automatically identify the latent memberships, and recover the disease trajectory curves
of subgroups simultaneously without a prior knowledge of the number of the subgroups.
Different from the GMM method that requires to specify an underlying distribution of
the data, our method only needs a working correlation matrix of the repeated measures
within each subject. Moreover, the resulting estimators of the functional curves are robust
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to the specification of the working correlation matrix. Simulation studies indicate promis-
ing performance of our proposed method. It has been demonstrated as an effective tool
for subgroup analysis of the AD data considered in this paper. As a future work, we plan
to extend the proposed method to the joint modeling of survival and longitudinal data,
which commonly occur in clinical studies. However, further investigations are needed to
develop the computational algorithm and theoretical properties.
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