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Summary

In this paper we are interested in capturing heterogeneity in clustered or longitudinal data.

Traditionally such heterogeneity is modeled by either fixed effects or random effects. In fixed

effects models, the degree of freedom for the heterogeneity equals the number of clusters/subjects

minus 1, which could result in less efficiency. In random effects models, the heterogeneity across

different clusters/subjects is described by e.g., a random intercept with 1 parameter (for the

variance of the random intercept), which could lead to oversimplification and biases (for the

estimates of subject-specific effects). Our “fused effects” model stands in between these two

approaches: we assume that there are unknown number of distinct levels of heterogeneity, and use

the fusion penalty approach for estimation and inference. We evaluate and compare the

performance of our method to the fixed and random effects models by simulation studies. We

apply our method to the Ocular Hypertension Treatment Study (OHTS) to capture the

heterogeneity in the progression rate of primary open-angle glaucoma of left and right eyes of

different subjects.
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1 | INTRODUCTION

Longitudinal or clustered data are commonly encountered in biomedical studies. For

example, biomarkers are measured over time in longitudinal studies. The repeated measures

of a biomarker on the same subject tend to be correlated. In clustered studies, health
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outcomes of subjects within the same cluster (e.g., twins, families, or communities) are more

alike due to shared genetic and/or environmental characteristics. In this paper, for ease of

illustration, we will use the term “repeated measures” in a general sense to denote either the

measures from multiple units within a cluster (repeated over space, e.g., left and right eyes

of the same person), or those on the same marker across time (repeated over time, e.g.,

longitudinal measures of blood pressure of the same subject). The correlation of repeated

measures from the same subject or cluster needs to be accounted for to yield more accurate

and efficient estimates.

Two statistical models - fixed effects models and random effects models - are widely utilized

to model repeated measures data1,2. However, both methods have their limitations. In fixed

effects models, each subject has its own intercept, which leads to a large degree of freedom

(df) for estimation, resulting in low efficiency in parameter estimates. On the other hand,

random effects models use e.g., a random intercept, to capture the heterogeneity across

different subjects to improve efficiency. However, it leads to shrinkage in the estimates of

the heterogeneity, i.e., the values of random effects. Furthermore, the distributional

assumption (e.g., normal) for the random intercept may be oversimplified in the presence of

e.g., outliers, which might affect the bias and efficiency of the regression coefficient

estimates.

To achieve an appropriate balance between accuracy and efficiency, we propose a new

approach in between the fixed effects and random effects models. In our model, we assume

that the heterogeneity for each subject belongs to different groups. By penalizing the fused

effect (the difference between two subject-specific effects), we automatically group the

subject-specific effects without knowing the group membership of the subjects in advance.

We thus term our method as the “fused effects” model. Our model is along the lines of Ma

and Huang3, adapting their method to the repeated measures data. Computationally, we use

an alternating direction method of multipliers algorithm (ADMM4,5) to implement the

estimating procedure, which has been used for solving a large class of convex optimization

problems. We use concave penalties on the pairwise differences of the parameters. Such

penalties include the smoothly clipped absolute deviations penalty (SCAD6) and the

minimax concave penalty (MCP7), which enjoy the consistency property.

Of note, related models have been considered in Wang and Zhu8 and Wang et al.9 in spatial

areal data. Zhu and Qu10adapted the Ma and Huang’s method to the cluster analysis of

longitudinal profiles. However, our work originates more naturally from the ordinary

clustered data. We also investigate the performance of our method vs. the traditional random

effects and fixed effects models, in particular when there exist outliers in data.

Our motivating example is the Ocular Hypertension Treatment Study (OHTS11,12,13). Ocular

Hypertension (OH) is a common condition occurring in 3 to 8% of US population over age

40. People with OH have a higher risk of developing glaucoma, with the most common form

being Primary Open Angle Glaucoma (POAG). In the first and second phases of OHTS,

1,636 participants were followed from 1994 to 2009. We would investigate the risk factors

for the slope of Visual Field Measure (sVFM) - an indicator of POAG, among subjects

having developed the POAG endpoint in at least one eye. The onset date of POAG is
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determined by the first abnormal test (on the “first suspicious date”) that is confirmed by at

least 2 subsequent, consecutive abnormal tests. In this dataset, 67 subjects had both eyes,

and 178 subjects had only one eye, reach the POAG endpoint. Our dataset includes a total of

312 eyes from these 245 subjects. The sVFMs of the clustered (paired) eyes are correlated

within the same subject. We will apply our method to capture the heterogeneity between

eyes across different subjects while investigating the risk factors of sVFM.

The rest of the paper is organized as follows. In Section 2, we describe our method. In

Section 3 we assess the performance of our method via the Monte Carlo simulation studies.

Section 4 illustrates the proposed method through the OHTS study. We summarize our

method and present some future directions in Section 5.

2 | MODEL AND ESTIMATION

2.1 | Model

Let yij denote the jth response for subject i, and xij denote a p × 1 vector of predictors, where

i = 1, …,m and j = 1, …,ni. We consider the linear model:

yij = ai + xijT β + ϵij, i = 1, ⋯, m, j = 1, ⋯, ni, (2.1)

where ai’s are unknown subject-specific intercepts; β = (β1⋯, βp)T is the vector of unknown

covariate coefficients; ϵij
i . i . dN 0, σ2  is the random error independent of xij and ai.

We assume that ai’s have K distinct values, i.e., they belong to K groups G1, ⋯, GK which

are mutually exclusive partitions of subjects {1,⋯, m}. However, the number of the groups

K and the groups Gk‘s are unknown in advance. Thus, we aim to estimate K, identify the

groups, and estimate the unknown parameters.

We further assume that the number of groups is much smaller than the number of subjects,

i.e., K ≪ m. Consider the following criterion

1
2 ∑

i = 1

m
∑
j = 1

ni
yij − ai − xijT β 2 + ∑

1 ≤ i < k ≤ m
pϑ ai − ak , λ , (2.2)

where pϑ(t, λ) is a given penalty function with the penalty parameter λ and a built-in

constant ϑ. Note that the penalty is taken on all the pairwise differences in the subject-

specific effects, i.e., |ai − ak|, the so-called “fusion penalty”14,15. Such a penalty promotes

both similarity between elements and sparsity of the elements. Following Ma and Huang3,

since it is well known that the Lasso penalty leads to biased parameter estimates6 and tends

to produce too many groups, we consider some concave penalties including the SCAD

penalty and the MCP penalty. Specifically, the SCAD penalty is defined as

pϑ(t, λ) = λ∫
0

t
min 1, (ϑ − x/λ)+/(ϑ − 1) dx,
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and the MCP penalty is expressed as

pϑ(t, λ) = λ∫
0

t
( − x/(ϑλ))+dx,

where (x)+ = x if x > 0 and = 0 otherwise, and ϑ is a parameter that controls the concavity of

the penalty function.

2.2 | Estimation procedure

Many machine learning and statistical problems can be formulated as linearly constrained

convex programs, which can be efficiently solved by the alternating direction method of

multipliers (ADMM). It takes the form of a decomposition-coordination procedure, in which

the solutions to small local subproblems are coordinated to find a solution to a large global

problem. ADMM blends the benefits of dual decomposition and augmented Lagrangian

methods for constrained optimization.

The penalty function pϑ(|ai − ak|, λ) is not separable between ai and ak, i.e., it cannot be

written in the form of addition of separate terms of pϑ(|ai|, λ) and pϑ(|ak|, λ) as in LASSO.

As a result, it is difficult to compute the estimates directly by minimizing objective function

(2.2) through the commonly used coordinate descent algorithm. A new parameter θik = ai −

ak is introduced and an ADMM algorithm is used to identify the groups in objective function

(2.2). Thus, the minimization problem in (2.2) becomes the constraint optimization problem,

L0(a, β, θ) = 1
2 ∑

i = 1

m
∑

j = 1

ni
yij − ai − xijT β 2 + ∑

i < k
pϑ θik , λ subject to ai − ak − θik = 0,

where θ = {θik, i < k}T and a = (a1,⋯, am)T. The estimators of the parameters are yielded by

the augmented Lagrangian

L(a, β, θ, υ) = L0(a, β, θ) + ∑
i < k

vik θik − ai + ak + η
2 ∑

i < k
θik − ai + ak

2,

where υ = {υik, i < k}T are Lagrange multipliers, η is the penalty parameter. We use the

ADMM to iteratively compute the estimators of (a, β, θ, υ). For given θ(l), υ(l) at step l, we

use the following algorithm

a(l + 1), β(l + 1) = argmin
a, β

L a, β, θ(l), υ(l) , (2.3)

θ(l + 1) = argmin
θ

L a(l + 1), β(l + 1), θ, υ(l) , (2.4)
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vik
(l + 1) = vik

(l) + η ai
(l + 1) − ak

(l + 1) − θik
(l + 1) . (2.5)

To update a, minimization problem (2.3) is equivalent to minimizing

F (a, β) = 1
2 ∑

i = 1

m
∑
j = 1

ni
yij − ai − xijT β 2 + η

2 ∑
i < k

ai − ak − θik
(l) + η−1vik

(l) 2 + C, (2.6)

where C is a constant independent of a and β. Let y = y1
T , ⋯, ymT

T
 with yi = yi1, ⋯, yini

T ,

and Xi = xi1, ⋯, xini
T , some algebra shows that Equation (2.6) can be rewritten as

F (a, β) = 1
2 y − Za − Xβ

2
+ η

2 Δa − θ(l) + η−1υ(l) 2 + C .

where Z =
1n1
⋱

1nm N × m

 with 1ni = (1, ⋯, 1)T  being the vector with ni ones, X = X1
T , ⋯, Xm

T T
,

and Δ = {(ei − ej), i < j)}T with ei being the ith unit m × 1 vector whose ith element is 1 and

the remaining elements are 0.

For given θ(l), υ(l) at the lth step, we set the derivatives ∂F(a, β)/∂a = 0 and ∂F(a, β)/∂β = 0

to obtain the following updates a(l+1) and β(l+1):

a(l + 1) = ZTQxZ + ηΔTΔ −1 ZTQxy + ηΔT θ(l) − η−1υ(l) , (2.7)

where Qx = IN − X(XTX)−1XT with N = ∑i = 1
m ni, and

β(l + 1) = XTX −1XT y − Za(l + 1) . (2.8)

To update θ, we need to minimize the function

η
2 θik − πik

(l) 2
+ ∑

i < k
pϑ θik , λ ,

where πik
(l) = ai

(l) − ak
(l) + η−1vik

(l). It is worth noting that by using the concave penalties, the

objective function L(a, β, θ, υ) is not a convex function, but it is convex with respect to each

θik when ϑ > 1/η + 1 for the SCAD penalty and ϑ > 1/η for the MCP penalty. Moreover, for

given (a, β, υ), the minimizer of L(a, β, θ, υ) with respect to θik is unique with a closed-

form expression. Thus, for the MCP penalty with ϑ > 1/η, the update θik
(l + 1) is
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θik
(l + 1) =

S πik
(l), λ/η

1 − 1/(ϑη) πik
(l) ≤ λϑ,

πik
(l) πik

(l) > λϑ .
(2.9)

For the SCAD penalty with ϑ > 1/η + 1, the solution is

θik
(l + 1) =

S πik
(l), λ/η πik

(l) ≤ λ + λ/η,

S πik
(l), ϑλ/((ϑ − 1)η)

1 − 1/((ϑ − 1)η) λ + λ/η < πik
(l) ≤ λϑ,

πik
(l) πik

(l) > λϑ,

(2.10)

where S(x, t) = (1 − t/|x|)+x is a groupwise soft thresholding operator.

Following Ma and Huang3, we fix ϑ = 3 and η = 1 for both MCP and SCAD penalties in the

simulation and application studies, which satisfies the conditions of (2.9) and (2.10).

Finally, the Lagrange multiplier υik is updated by (2.5). It is worth noting that subjects i and

k are classified into the same group if θ ik = 0. After the group Gk is identified, we obtain the

estimated number of groups K, the estimated groups G1, ⋯, GK, and the estimated common

value for ai‘s from group Gk:αk = Gk
−1∑i ∈ Gkai, where Gk  is the cardinality of Gk.

We apply the modified Bayesian Information Criterion (BIC)16 to select the tuning

parameter λ, which is defined as the value that minimizes

BIC(λ) = log ∑
i = 1

m
∑

j = 1

ni
yij − ai − xijT β 2/N + CN(K(λ) + p) log N

N ,

where CN is a positive number depending on the total number of observations N = ∑i = 1
m ni.

When CN = 1, it corresponds to the traditional BIC. K(λ) is the estimated number of groups

based on the tuning parameter λ, and p is the dimension of the parameter β. Following

Wang et al17 and Ma and Huang3, it is chosen as CN = c log(log(N + p)) with c = 5. The

tuning parameter λ is selected by minimizing the modified BIC with a grid search.

When there exists true group structure and K ≪ m, we can calculate the standard errors of

both α and β in a traditional regression model setting after we identify the group structure.

However, when there is no group structure, e.g., in Simulation Setting 3 when the random

effects model is correct, this approach yields less reliable results. Therefore, we rely on the

bootstrap estimates of the standard errors.18. By our previous experiences, Bootstrap

sampling can yield reasonable coverage probabilities in variable selection of sophisticated

random effects models, e.g., Han et al19,20. Efron and Tibshirani18 showed that 50–100

bootstrap replications are generally sufficient for standard error estimation. In this paper, we

will take 100 samples of cluster bootstrap data for each dataset21, and estimate the standard
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errors of α and β by the empirical standard deviations of the bootstrap replications. Our

simulation studies show that such estimation is satisfactory.

2.3 | Algorithm

It is important to find appropriate initial values for the ADMM algorithm. In this paper, the

initial values a(0) are obtained from the best linear unbiased predictors (BLUPs) of the

random effects model. We can then set θik
(0) = ai

(0) − ak
(0) and υ(0) = 0. The convergence of the

ADMM algorithm is evaluated based on the primal residual r(l+1) = Δa(l+1)−θ(l+1). The

algorithm terminates when r(l+1) is close to zero, i.e., ‖r(l+1)‖ < ϵ for some small value ϵ. If

θ ik = 0 for some λ, then ai and aj belong to the same group. As a result, we obtain K
estimated groups G1, ⋯, Gk. The subject-specific intercept for the kth group is estimated as

αk = Gk
−1∑i ∈ Gkai, where Gk  is the cardinality of Gk.

The algorithm consists of the following steps:

Algorithm 1

ADMM for concave penalty

Require: Initialize θ(0) and υ(0)

 for l = 0, 1, 2, ···do

  Compute a(l+1) using (2.7)

  Compute β(l+1) using (2.8)

  Compute θ(l+1) using (2.9) or (2.10)

  Compute υ(l+1) using (2.5)

  if the convergence criterion is met, then

   Stop and denote the last iteration by a
  else

   l = l + 1

  end if

 end for

Ensure: Output

3 | SIMULATION

In this section, we will examine the finite sample behavior of our method by simulation

studies. Traditionally, in Model (2.1), the intercept ai is either taken as a random effect (RE),

often assumed to be independent and identically distributed as N(0, σ2); or ai is treated as a

fixed effect (FE), which is a fixed non-random quantity for each i. We use the best linear

unbiased predictor (BLUP) of random effects implemented in the function lme of the R

package nlme. We compare the performance of our estimators and the RE and FE

approaches. Three different sample sizes m = 50, 100 and 200 are considered, and all the

simulation results are obtained via 100 replicates.

Liu et al. Page 7

Stat Med. Author manuscript; available in PMC 2022 April 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Setting 1.

We generate data from the following linear model:

yij = ai + xijβ + ϵij, i = 1, ⋯, m, j = 1, ⋯, ni, (3.1)

where the covariates xij’s are sampled from the normal distribution N(0, 1); the error terms

ϵij’s are independent and identically distributed as N(0, 0.42). Let β = 2. We randomly assign

ai to one of the three groups G1, G2, G3 with equal probabilities 1/3, so that ai = −1.5 for

i ∈ G1, ai = 0 for i ∈ G2, ai = 1.5 for i ∈ G3. We consider unbalanced data, where for each i

there may be some y-values missing. The number of observation of each subject ni is

generated from the distribution: P(ni = 1) = 0.5, P(ni = 2) = 0.5. Thus the number of

observations in yi varies for different subjects.

To compare the estimated partitions to the true partitions, we use the Rand Index22 to

evaluate the accuracy of the clustering results. Each pair of observations ai and aj can be fit

to one of four categories: a true positive (TP): ai and aj from the same group are assigned to

the same cluster; true negative (TN): ai and aj from different groups are assigned to different

clusters; false negative (FN): ai and aj from different groups are assigned to the same cluster;

false positive (FP): ai and aj from the same group are assigned to different clusters. Thus, the

Rand Index is given by

RI = TP+TN
TP+FP + TN + FN = TP+TN

N
2

.

Intuitively, TP and TN indicate agreement between the true group and the estimated cluster,

while FP and FN indicate disagreement between the true group and the estimated cluster.

The Rand index has a range of [0,1]: higher values indicate better performance of the

clustering methods.

We minimize the modified BIC to select the tuning parameter λ. The top panel of Table 1

reports the mean, median, and standard deviation (sd) of the estimated number of groups K,

the percentage of K equal to the true number of groups (per), and the Rand Index (RI) for

measuring clustering accuracy. It can be seen that the medians of K are equal to 3 - the true

number of groups for all cases, indicating that our method can correctly identify the groups.

The Rand Index values and the percentages of correctly identifying the groups are close to 1,

implying the clustering accuracy. Moreover, as the subject size m increases, the standard

deviation becomes smaller and the mean becomes closer to the true value 3; the Rand Index

and the percentage of correctly selecting the number of subgroups get closer to 1.

To assess the estimators a = a1, ⋯, am
T , we calculate the square root of the mean squared

error (SRMSE) for the estimator a by using the formula a − a / m for each replicated

dataset. In the top panel of Table 2 we present the mean SRMSE for a. The Oracle estimator

is obtained with a priori knowledge of the true grouping information. For SCAD and MCP,

we can see that the SRMSEs of a are smaller than those from the random effects and fixed
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effects models. To graphically depict the numerical results of Table 2, the boxplots of the

SRMSEs for a with m = 200 are presented in Figure 1.

We also present the bias, the empirical standard error (SEE), the sampling mean of the

standard error estimate (SEM), and the coverage probability of the 95% confidence intervals

of the estimator β  in the right of Table 2. For the estimator β , we observe that the biases,

SEEs, and SEMs by our method are close to those of the Oracle. In contrast, the fixed effects

and random effects models yield larger SEEs and SEMs. All the performance measures

generally improve with increased subject sizes.

Let αk be the common value for the estimator ai‘s from group Gk with k = 1, 2, 3. Table 3

presents the mean, the empirical standard error (SEE), the sampling mean of the standard

error estimate (SEM), and the coverage probability of the 95% confidence intervals (CP) of

the estimators α1, α2, α3 by the SCAD and MCP methods, which are calculated based on

replicates with the estimated number of groups equal to three. The Oracle estimators are

calculated based on all 100 replicates. We observe that the SCAD and MCP methods

perform very close to the Oracle. Clearly, our estimators α1, α2, α3 agree well with the

corresponding true values on average for all cases. There is good agreement between SEE

and SEM values, and the coverage probabilities are acceptably close to the nominal level

0.95.

Setting 2.

In this setting, we generate data from a linear model given by:

yij = ai + xijTβ + ϵij, i = 1, ⋯, m, j = 1, ⋯, ni, (3.2)

where xij, β, ni, and ϵij are generated from the same distributions as given in Setting 1. m − 1

of all the intercept ai is divided into three groups as in the Setting 1. Mimicking the OHTS

data, we also add a fourth group with only one subject: an outlier at −10. Thus, the true

group number is 4.

From the second panel of Table 1, we can see that the medians of K over the 100 replicates

are 4, the true number of subgroups, and the mean values are very close to 4 for both the

MCP and SCAD methods. Moreover, the standard deviation becomes smaller and the mean

gets closer to the true value of 4, and the percentage of correctly selecting the number of

subgroups increases with the sample size m.

From the second panel of Table 2, we observe that the SRMSE values of a by SCAD and

MCP are smaller than those of the random effects and fixed effects models. Moreover, the

SRMSE decreases as m increases for both MCP and SCAD. For the estimators β , the MCP

and SCAD methods perform better than the random effects and fixed effects models in terms

of smaller biases and smaller SEEs. Also, our estimates of β have CPs close to the nominal

level. These results indicate that the proposed method can obtain relatively robust results

even with an outlier in the data. The boxplots of the SRMSEs of a with m = 200 are shown

in Figure 1.
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From Table 4, it can be seen that the means of α1, α2, α3 are close to the true values and the

Oracle estimators. We also observe that the SEMs of α1, α2, α3 are close to the

corresponding SEEs, leading to valid coverage probabilities. To ensure that α4 can be

estimated, we always include a single subject from the fourth group in all bootstrap samples.

For α4, the biases are small but the SEMs are substantially below the SEEs, leading to poor

coverage probabilities. Of note, this also happens for the Oracle model when we know the

group membership of each subject.

Setting 3.

In this setting, we generate data from a linear model given by:

yij = ai + xijTβ + ϵij, i = 1, ⋯, m, j = 1, ⋯, ni, (3.3)

where xij, β, ni, and ϵij are generated from the same distributions as given in Setting 1. To

show the robustness of our method, ai is simulated from the normal distribution N(0, 0.52),

therefore, the random effects model is the correct model.

The grouping results of ai by the MCP and SCAD methods are presented in the third panel

of Table 1. For SCAD and MCP, the median of the estimated number of groups K is 4 with

m = 50; 5 with m = 100; and 6 with m = 200. It can be seen that the fusion penalty tends to

select less groups for m = 50 and more groups for m = 100,200 in general. Since the number

of parameters grows with sample size m, the median and the standard deviation of K
increase as well.

From the third panel of Table 2, we observe that the SRMSE values of a by SCAD and MCP

perform just slightly worse than the random effects model. Moreover, the SRMSE value

decreases as m increases for both MCP and SCAD. The boxplots of the SRMSEs of a with

m = 200 are shown in Figure 1. For the estimators β , the standard deviations from MCP and

SCAD are smaller than the fixed effects model, and slightly larger than the random effects

models (as sample size increases). Also, our estimates of β have CPs close to the nominal

level.

Setting 4.

In this setting, we consider a linear model with relatively large number of repeated measures

as suggested from a reviewer:

yij = ai + xijTβ + ϵij, i = 1, ⋯, m, j = 1, ⋯, ni, (3.4)

where xij, β, ai and ϵij are generated from the same distributions as given in Setting 1. To

show the performance of our method with a relatively large number of repeated measures, ni

is set to 10.

From the bottom panel of Table 1, it can be seen that the mean and median of K are the same

as the true value 3 for all cases. Moreover, the Rand Index (RI) values and the percentages of
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correctly selecting the number of subgroups reach 1. Therefore, if the number of repeated

measures is relatively large, our method can recover the true group structure very well.

The bottom panel of Table 2 shows that, when the number of repeated measures is large

enough, the performance of our method is equal to that of Oracle model. Moreover, the

SRMSE values from our method are much smaller than those from the RE and FE methods.

In this setting, our method is superior to the competing models, and there is not much

difference between the FE model and RE model.

From Table 5, since SCAD and MCP can correctly recover the subgroup structure, the

means of α1, α2, α3 are close to the corresponding true values, and equal to the Oracle

estimators.

In summary, the fused effects approach performs well if the clusters are well separated and

enough observations are available. Nevertheless, even if the true individual-specific effects

are a sample from a Gaussian population (when the normal random effects model is true),

our method’s performance is still satisfactory.

4 | APPLICATIONS

In this section, we apply our method to investigate the risk factors for the slope of the visual

field measures (sVFM) after POAG conversion in the OHTS study. Out of 1,636

participants, we include 245 individuals who had developed POAG in at least one eye in this

analysis. Among these 245 subjects, 67 had both eyes develop POAG, and 178 subjects had

only one eye reach the POAG endpoint. We thus have clustered (paired) sVFM from both

eyes for 67 of these subjects. We will apply our method to capture heterogeneity across

different subjects while investigating the risk factors of sVFM.

We consider the following baseline risk factors in the model: x1: the patient’s randomization

assignment (RA, 1=Medication, 0=Observation); x2: vertical cup-to-disc ratio (VCD); x3:

gender; x4: stroke; x5: race; x6: age; x7: central corneal thickness (CCT); x8: intraocular

pressure (IOP); x9: visual field pattern standard deviation (PSD).

We use the sVFM as the response yij. The following linear model is considered:

yij = ai + xijT β + ϵij, i = 1, ⋯, 245, j = 1 or 2, (4.1)

where xij is a 9-dimensional covariate vector, and predictors are centered and standardized

except for the binary variables before applying the regularization method. β = (β1,⋯, β9)T is

the unknown parameter; j = 1, 2 indicates eye (we do not distinguish left and right eyes in

this study).

We note that some of the covariates considered, including the patient’s randomization

assignment, gender, stroke, race, age, are the same for both eyes. Therefore, they are

confounded with the fixed effects, making the fixed effects model not identifiable for this

dataset. We thus only compare the performance of our method to that of the random effects

model.
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We use the Akaike Information Criteria (AIC, smaller is better) to assess the performance of

each method:AIC = N log ∑i = 1
m ∑j = 1

ni yij − ai − xijT β 2/N + 2(k + p), where

N = ∑i = 1
m ni = 312 is the total number of eyes and p = 9 is the dimension of the parameter β.

If ai is treated as a random intercept to capture the correlation between the 2 eyes, we obtain

AIC=−670.86 with k = 1. If ai is estimated by our concave pairwise fused approach, the 245

subjects are classified into 12 groups by SCAD and 13 groups by MCP, respectively. For

SCAD, the AIC value is −799.63 with k = 12, and for MCP, the AIC value is −808.55 with k
= 13. We see that our method leads to a notable improvement of the model fitting.

Let αk be the common value for the estimator ai‘s from group Gk with k = 1,⋯, 13. Table 6

reports the estimators αk (Est.) and the number of elements (num.) in each subgroup of ai by

the SCAD and MCP methods. Both methods yield almost the same grouping results. The

estimator α1 deviates greatly from the other estimators, which is considered as an outlier. In

Table 7 we report the estimate (Est.), standard error (s.e.), and p-value of β  for testing the

significance of the coefficients by the MCP, SCAD, random effects model, and random

effects model without the outlier, respectively. The standard errors for the MCP and SCAD

methods are calculated by cluster bootstrap. We can see that Age and PSD have p-values less

than 0.05 by SCAD and MCP. When the dataset contains the large outlier, race, age, and

PSD have statistically significant effects by the random effects model. However, only age

and PSD are statistically significant by the random effects model when the outlier is

removed, which is consistent with the result of our methods.

Figure 2 displays the histograms of the estimator a = a1, ⋯, a245
T  and the kernel density

plots of the residuals yij − ai − xijT β by SCAD, MCP and the random effects model (RE),

respectively. We can see that the distribution of the estimator a by our method deviates from

the normal distribution, especially with a large outlier at the far left end. Even after

removing this outlier, the remaining plot is left skewed. This may be the reason to the poor

performance of the random effects model which assumes ai to follow a normal distribution.

For the kernel density plot of the residuals, it can be seen that the distributions by our

method appear to be normal and more smooth than that by the RE model.

5 | DISCUSSION

In this paper we proposed a “fused effects” model by applying fusion penalties to

heterogeneity in repeated measures. Our approach stands in between the traditional fixed

effects and random effects models. Compared to the fixed effects model, our method is more

efficient in using fewer parameters to capture the heterogeneity. Compared to the random

effects model, our method is more flexible, e.g., when the common normality assumption

does not hold for random effects as in the Application study. By extensive simulation

studies, we showed that our method has satisfactory results in a variety of settings.

In principle, our approach is similar to a latent class (finite mixture) model with an unknown

number of classes for the “fused effects”. However, that method usually needs to fit models

with different numbers of latent groups for ai, and then choose the best one by comparing
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these models through e.g., BIC. Our own simulation experience shows that the estimation of

such latent class models with a large number of groups (e.g., > 5) is often subject to

convergence issues. Our method avoids such issues and it is straightforward in

implementation and interpretation.

Our method can be applied to many different research areas, e.g., provider profiling of health

care facilities23. It can be used when there exist heterogeneities for different factors, e.g.,

treatment, that is, the same treatment can have different effects on different

patients24,25,26,27,28.

Our method can be extended in several directions. First, we can used other loss function in

Equation (2.2), for example, weighted least square loss when the outcome (e.g., the slope of

VFM in the Application Study) has unequal variance. Second, it is natural to extend this

method to other types of repeated measures outcomes, e.g., binary outcomes (usually fitted

by generalized linear mixed models) and survival outcomes (usually fitted by frailty Cox

proportional hazards models). Finally, extensions to more sophisticated hierarchical data

(e.g., longitudinal biomarkers of subjects clustered within families) form another topic for

future research.
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FIGURE 1.
The boxplots of square root of the mean squared error for a by SCAD, MCP, fixed effects,

and random effects with m = 200 in Settings 1–4, respectively.
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FIGURE 2.
The histograms of a (a,b,c) and the kernel density plots of the residuals (d,e,f) by SCAD,

MCP and random effects model (RE), respectively, in the Application.
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TABLE 1

The sample mean, median, and standard deviation (s.d.) of K, the percentage (per) of K equal to the true

number of subgroups, and the Rand Index (RI) value by MCP and SCAD with m = 50, 100, 200 in Settings 1–

4, respectively

m Method mean median sd per RI

Setting 1 50 SCAD 3.07 3.00 0.2932 0.94 0.9083

MCP 3.07 3.00 0.2564 0.93 0.9085

100 SCAD 3.05 3.00 0.2190 0.95 0.9292

MCP 3.06 3.00 0.2387 0.94 0.9305

200 SCAD 3.04 3.00 0.1969 0.96 0.9328

MCP 3.05 3.00 0.2190 0.95 0.9325

Setting 2 50 SCAD 4.01 4.00 0.1969 0.96 0.9171

MCP 4.25 4.00 0.2778 0.95 0.9178

100 SCAD 4.02 4.00 0.1407 0.98 0.9261

MCP 4.02 4.00 0.1407 0.98 0.9250

200 SCAD 4.01 4.00 0.1000 0.99 0.9346

MCP 4.01 4.00 0.1000 0.99 0.9350

Setting 3 50 SCAD 3.63 4.00 1.1160

MCP 3.65 4.00 1.1044

100 SCAD 4.36 5.00 1.1238

MCP 4.41 5.00 1.1290

200 SCAD 5.75 6.00 1.4451

MCP 5.77 6.00 1.5032

Setting 4 50 SCAD 3.00 3.00 0.0000 1.00 1.0000

MCP 3.00 3.00 0.0000 1.00 1.0000

100 SCAD 3.00 3.00 0.0000 1.00 1.0000

MCP 3.00 3.00 0.0000 1.00 1.0000

200 SCAD 3.00 3.00 0.0000 1.00 1.0000

MCP 3.00 3.00 0.0000 1.00 1.0000
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TABLE 2

The mean SRMSEs for a; and the bias, the empirical standard error (SEE), the sampling mean of the standard

error estimate (SEM), and the coverage probability of the 95% confidence intervals of β  in Settings 1–4,

respectively

a β

m Methods SRMSE bias SEE SEM CP

Setting 1 50 SCAD 0.2512 0.0021 0.0532 0.0652 95.0

MCP 0.2519 0.0011 0.0539 0.0654 95.0

FE 0.3547 0.0095 0.0739 0.0809 98.0

RE 0.3383 0.0077 0.0663 0.0751 98.0

Oracle 0.0784 0.0047 0.0498 0.0471 94.0

100 SCAD 0.2241 0.0003 0.0383 0.0407 96.0

MCP 0.2245 0.0007 0.0383 0.0407 96.0

FE 0.3448 0.0094 0.0565 0.0563 95.0

RE 0.3312 0.0092 0.0525 0.0523 95.0

Oracle 0.0505 0.0025 0.0336 0.0320 96.0

200 SCAD 0.2227 0.0012 0.0265 0.0274 96.0

MCP 0.2201 0.0012 0.0266 0.0275 96.0

FE 0.3468 0.0024 0.0424 0.0402 95.0

RE 0.3335 0.0045 0.0389 0.0375 91.0

Oracle 0.0389 0.0016 0.0220 0.0213 95.0

Setting 2 50 SCAD 0.2385 0.0006 0.0535 0.0584 97.0

MCP 0.2375 0.0009 0.0533 0.0581 96.0

FE 0.3523 0.0015 0.0867 0.0869 96.0

RE 0.3506 0.0022 0.0826 0.0837 94.0

Oracle 0.0946 0.0038 0.0470 0.0483 95.0

100 SCAD 0.2302 0.0075 0.0388 0.0406 97.0

MCP 0.2317 0.0069 0.0389 0.0407 97.0

FE 0.3486 0.0084 0.0647 0.0572 94.0

RE 0.3412 0.0095 0.0609 0.0548 93.0

Oracle 0.0627 0.0059 0.0314 0.0324 98.0

200 SCAD 0.2229 0.0023 0.0252 0.0268 97.0

MCP 0.2221 0.0022 0.0253 0.0269 97.0

FE 0.3425 0.0031 0.0366 0.0397 98.0

RE 0.3346 0.0026 0.0363 0.0378 97.0

Oracle 0.0468 0.0017 0.0238 0.0245 96.0

Setting 3 50 SCAD 0.3829 0.0106 0.0695 0.0712 96.0

MCP 0.3813 0.0134 0.0672 0.0694 97.0

FE 0.3525 0.0149 0.0827 0.0824 96.0

RE 0.2919 0.0083 0.0616 0.0629 94.0
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a β

m Methods SRMSE bias SEE SEM CP

100 SCAD 0.3708 0.0058 0.0460 0.0485 97.0

MCP 0.3715 0.0051 0.0457 0.0472 98.0

FE 0.3516 0.0033 0.0568 0.0566 95.0

RE 0.2902 0.0008 0.0410 0.0434 96.0

200 SCAD 0.3594 0.0042 0.0323 0.0338 98.0

MCP 0.3580 0.0052 0.0315 0.0332 97.0

FE 0.3504 0.0038 0.0381 0.0398 94.0

RE 0.2833 0.0040 0.0294 0.0313 98.0

Setting 4 50 SCAD 0.0272 0.0025 0.0185 0.0175 91.0

MCP 0.0272 0.0025 0.0185 0.0175 91.0

FE 0.1267 0.0024 0.0217 0.0189 92.0

RE 0.1262 0.0025 0.0217 0.0189 91.0

Oracle 0.0272 0.0025 0.0185 0.0175 91.0

100 SCAD 0.0200 0.0003 0.0131 0.0125 94.0

MCP 0.0200 0.0003 0.0131 0.0125 94.0

FE 0.1255 0.0009 0.0136 0.0133 94.0

RE 0.1245 0.0009 0.0136 0.0133 94.0

Oracle 0.0200 0.0003 0.0131 0.0125 94.0

200 SCAD 0.0137 0.0017 0.0082 0.0088 97.0

MCP 0.0137 0.0017 0.0082 0.0088 97.0

FE 0.1254 0.0017 0.0087 0.0095 98.0

RE 0.1247 0.0017 0.0087 0.0095 98.0

Oracle 0.0137 0.0017 0.0082 0.0088 97.0

Stat Med. Author manuscript; available in PMC 2022 April 15.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Liu et al. Page 20

TABLE 3

The mean, the empirical standard error (SEE), the sampling mean of the standard error estimate (SEM), and

the coverage probability of the 95% confidence intervals (CP) of the estimators of the fused effects by MCP

and SCAD and Oracle estimator (Oracle) in Setting 1

m Method mean SEE SEM CP(%)

50 α1 SCAD −1.4974 0.0911 0.0955 96.8

MCP −1.5029 0.0923 0.0960 97.8

Oracle −1.4974 0.0838 0.0839 94.0

α2 SCAD 0.0128 0.0934 0.1010 94.7

MCP 0.0094 0.0925 0.1001 94.6

Oracle −0.0014 0.0851 0.0804 92.0

α3 SCAD 1.5328 0.0996 0.0905 90.4

MCP 1.5322 0.1001 0.0901 90.2

Oracle 1.5166 0.0889 0.0828 90.0

100 α1 SCAD −1.5098 0.0590 0.0617 94.8

MCP −1.5109 0.0591 0.0619 94.7

Oracle −1.5052 0.0559 0.0587 96.0

α2 SCAD 0.0025 0.0566 0.0651 97.9

MCP 0.0015 0.0559 0.0653 97.9

Oracle 0.0044 0.0519 0.0548 97.0

α3 SCAD 1.5099 0.0617 0.0607 92.7

MCP 1.5094 0.0615 0.0610 93.6

Oracle 1.5036 0.0591 0.0562 93.0

200 α1 SCAD −1.5043 0.0465 0.0483 93.8

MCP −1.5039 0.0466 0.0488 94.2

Oracle −1.5027 0.0406 0.0427 96.0

α2 SCAD 0.0012 0.0492 0.0511 94.2

MCP 0.0022 0.0484 0.0515 94.5

Oracle −0.0012 0.0453 0.0476 96.0

α3 SCAD 1.5016 0.0418 0.0406 92.8

MCP 1.5012 0.0416 0.0402 93.3

Oracle 1.4963 0.0399 0.0387 93.0
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TABLE 4

The mean, the empirical standard error (SEE), the sampling mean of the standard error estimate (SEM), and

the coverage probability of the 95% confidence intervals (CP) of the estimators of the fused effects by MCP

and SCAD and Oracle estimator (Oracle) in Setting 2

m Method mean SEE SEM CP(%)

50 α1 SCAD −1.5084 0.0833 0.0917 91.9

MCP −1.5089 0.0829 0.0923 92.9

Oracle −1.5091 0.0800 0.0796 92.0

α2 SCAD −0.0018 0.0919 0.1044 94.9

MCP 0.0003 0.0914 0.1035 93.1

Oracle 0.0071 0.0866 0.0816 94.0

α3 SCAD 1.4896 0.0979 0.0928 92.9

MCP 1.4896 0.0991 0.0925 92.9

Oracle 1.4923 0.0857 0.0803 90.0

α4 SCAD −9.8853 0.4167 0.0573 23.2

MCP −9.8862 0.4157 0.0570 21.1

Oracle −9.9941 0.4192 0.0395 18.0

100 α1 SCAD −1.4970 0.0613 0.0608 92.8

MCP −1.4970 0.0615 0.0612 92.8

Oracle −1.5015 0.0558 0.0552 91.0

α2 SCAD 0.0050 0.0546 0.0710 95.9

MCP 0.0045 0.0551 0.0716 95.9

Oracle 0.0052 0.0524 0.0585 97.0

α3 SCAD 1.4878 0.0574 0.0627 92.8

MCP 1.4875 0.0577 0.0630 94.9

Oracle 1.4932 0.0525 0.0565 94.0

α4 SCAD −9.9176 0.3980 0.0472 14.3

MCP −9.9179 0.3974 0.0475 14.3

Oracle −10.0329 0.3976 0.0291 8.0

200 α1 SCAD −1.4877 0.0465 0.0492 93.9

MCP −1.4879 0.0468 0.0497 93.9

Oracle −1.5015 0.0436 0.0459 94.0

α2 SCAD −0.0015 0.0472 0.0513 95.9

MCP −0.0009 0.0474 0.0516 95.9

Oracle 0.0044 0.0439 0.0468 95.0
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m Method mean SEE SEM CP(%)

α3 SCAD 1.4817 0.0446 0.0434 92.9

MCP 1.4820 0.0445 0.0429 92.9

Oracle 1.4987 0.0392 0.0376 94.0

α4 SCAD −9.7332 0.4088 0.0338 13.3

MCP −9.7347 0.4048 0.0366 14.2

Oracle −9.9543 0.4091 0.0189 7.0

Stat Med. Author manuscript; available in PMC 2022 April 15.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Liu et al. Page 23

TABLE 5

The mean, the empirical standard error (SEE), the sampling mean of the standard error estimate (SEM), and

the coverage probability of the 95% confidence interval (CP) of the estimators of the fused effects by MCP

and SCAD and Oracle estimator (Oracle) in Setting 4

m Method mean SEE SEM CP(%)

50 α1 SCAD −1.4952 0.0323 0.0313 94.0

MCP −1.4952 0.0323 0.0313 94.0

Oracle −1.4952 0.0323 0.0313 94.0

α2 SCAD 0.0003 0.0319 0.0302 91.0

MCP 0.0003 0.0319 0.0302 91.0

Oracle 0.0003 0.0319 0.0302 91.0

α3 SCAD 1.5011 0.0276 0.0314 96.0

MCP 1.5011 0.0276 0.0314 96.0

Oracle 1.5011 0.0276 0.0314 96.0

100 α1 SCAD −1.4993 0.0201 0.0212 97.0

MCP −1.4993 0.0201 0.0212 97.0

Oracle −1.4993 0.0201 0.0212 97.0

α2 SCAD 0.0052 0.0223 0.0215 92.0

MCP 0.0052 0.0223 0.0215 92.0

Oracle 0.0052 0.0223 0.0215 92.0

α3 SCAD 1.4992 0.0231 0.0213 92.0

MCP 1.4992 0.0231 0.0213 92.0

Oracle 1.4992 0.0231 0.0213 92.0

200 α1 SCAD −1.5000 0.0167 0.0159 93.0

MCP −1.5000 0.0167 0.0159 93.0

Oracle −1.5000 0.0167 0.0159 93.0

α2 SCAD −0.0020 0.0158 0.0151 96.0

MCP −0.0020 0.0158 0.0151 96.0

Oracle −0.0020 0.0158 0.0151 96.0

α3 SCAD 1.5009 0.0129 0.0136 97.0

MCP 1.5009 0.0129 0.0136 97.0

Oracle 1.5009 0.0129 0.0136 97.0

Stat Med. Author manuscript; available in PMC 2022 April 15.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Liu et al. Page 24

TABLE 6

Results of αi on the sVFM in the OHTS study

Methods α1 α2 α3 α4 α5 α6 α7 α8 α9 α10 α11 α12 α13

SCAD Est −9.507 −3.486 −2.538 −2.424 −1.762 −1.159 −0.621 −0.153 0.303 0.926 1.160 1.463

num 1 3 2 1 3 23 35 115 56 4 1 1

MCP Est −9.522 −3.498 −2.587 −2.367 −1.773 −1.171 −0.631 −0.163 0.265 0.649 1.002 1.104 1.450

num 1 3 2 1 3 23 35 115 51 6 3 1 1
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TABLE 7

Results of β  on the sVFM by SCAD, MCP, random effects with the outlier (RE1) and random effects without

the outlier (RE2), respectively

Methods RA VCD gender stroke race age CCT IOP PSD

SCAD Est −0.1152 −0.0400 0.0073 −0.0500 −0.2559 −0.1225 0.0601 0.0234 −0.1300

s.e 0.1256 0.0462 0.1139 0.1697 0.1316 0.0567 0.0467 0.0402 0.0500

p-value 0.3589 0.3858 0.9488 0.7683 0.0519 0.0307 0.1980 0.5606 0.0093

MCP Est −0.1122 −0.0419 0.0143 −0.0601 −0.2544 −0.1206 0.0575 0.0265 −0.1284

s.e 0.1281 0.0475 0.1165 0.1635 0.1345 0.0577 0.0434 0.0363 0.0524

p-value 0.3813 0.3779 0.9026 0.7133 0.0585 0.0366 0.1852 0.4655 0.0142

RE1 ESt −0.1592 −0.0450 0.0119 −0.0408 −0.2619 −0.1480 0.0208 0.0215 −0.1321

s.e 0.1184 0.0538 0.1191 0.2226 0.1257 0.0584 0.0581 0.0525 0.0484

p-value 0.1799 0.4064 0.9203 0.8549 0.0383 0.0119 0.7220 0.6835 0.0082

RE2 ESt −0.0734 −0.0344 0.0968 −0.0779 −0.1572 −0.1096 0.0507 0.0195 −0.1159

s.e 0.0886 0.0420 0.0890 0.1650 0.0940 0.0440 0.0439 0.0414 0.0399

p-value 0.4085 0.4160 0.2780 0.6372 0.0959 0.0133 0.2529 0.6397 0.0051
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