

Towards balancing the oceanic Ni budget

S.H. Little^{1,2}, C. Archer³, J. McManus⁴, J. Najorka⁵, A. V. Wegorzewski⁶, D. Vance³

1. Department of Earth Sciences, University College London, Gower Place, London WC1E 6BS, UK.
2. Department of Earth Science and Engineering, Royal School of Mines, Imperial College London, London, SW7 2BP, UK.
3. Institute of Geochemistry and Petrology, Department of Earth Sciences, ETH Zürich, Clausiusstrasse 25, 8092 Zürich, Switzerland.
4. Bigelow Laboratory for Ocean Sciences, 60 Bigelow Drive, P.O. Box 380, East Boothbay, Maine 04544, USA.
5. Core Research Laboratories, The Natural History Museum, Cromwell Road, London SW7 5BD, UK.
6. Federal Institute for Geosciences and Natural Resources (BGR), Stilleweg 2, D-30655 Hannover, Germany.

Corresponding author: susan.little@ucl.ac.uk

For resubmission to: EPSL

3 June 2020

1 **Abstract**

2

3 Nickel isotopes are a novel and promising tracer of the chemistry of past ocean
4 environments, but realisation of this tracer's potential requires a comprehensive
5 understanding of the controls on Ni burial in the marine sedimentary archive. An
6 outstanding puzzle in the marine budget of Ni, first recognised in the 1970s, is a major
7 imbalance in the known inputs and outputs to and from the ocean: the sedimentary
8 outputs of Ni are much larger than the inputs (rivers, dust). Much more recently, it has
9 also been recognised that the outputs are also considerably isotopically heavier than the
10 inputs. In this study, we find light Ni isotope compositions ($\delta^{60}\text{Ni}_{\text{NIST SRM986}} = -0.2$ to $-0.8\text{\textperthousand}$) for Mn-rich sediments from the eastern Pacific compared to Fe-Mn crusts (at
11 about $+1.6\text{\textperthousand}$). These data suggest that diagenetic remobilisation of isotopically heavy
12 Ni leads to a significant benthic Ni flux (estimated at $0.6 - 2.3 \times 10^8 \text{ mol/yr}$), similar in
13 magnitude to the riverine flux, to the ocean. Diagenetic remobilisation of Ni may occur
14 either via cycles of Mn-oxide dissolution and precipitation, with associated Ni sorption
15 and release, or during mineralogical transformation of birnessite to todorokite. A minor
16 role for retention of isotopically light Ni by Fe oxides or Fe-rich authigenic clays is also
17 proposed. Overall, a benthic flux of isotopically heavy Ni (at about $+3\text{\textperthousand}$) can balance
18 the marine Ni budget, pinpointing diagenesis as a key missing piece of the Ni puzzle.

19

20

21

22

23 **1. Introduction**

24

25 Nickel is a cofactor in several enzyme systems central to the production of gases (CO₂,
26 CO, methane, ammonia, O₂, H₂) that are important to the carbon, nitrogen and oxygen
27 cycles (reviewed by Ragsdale, 2009). Nickel is utilised by marine phytoplankton as the
28 metal centre in urease, which catalyses the breakdown of urea to NH₃ and CO₂ (e.g.,
29 Price and Morel, 1991). A Ni-containing superoxide dismutase (Ni-SOD) enzyme is
30 also present in some marine plankton groups, used to detoxify reactive oxygen species
31 (e.g., Palenik et al., 2003). All methanogens have an obligate Ni requirement due to the
32 presence of several Ni containing enzymes, including methyl-coenzyme M reductase
33 (e.g., Jaun and Thauer, 2007). Methane may have played a key role in maintaining a
34 warm climate on the early Earth, leading to interest in the development of Ni and its
35 isotopes as a biomarker for methanogenesis (e.g., Cameron et al., 2009; Wang et al.,
36 2019).

37

38 The stable isotopes of Ni (reported as $\delta^{60/58}\text{Ni} = ({}^{60}\text{Ni} / {}^{58}\text{Ni}_{\text{sample}} / {}^{60}\text{Ni} / {}^{58}\text{Ni}_{\text{SRM986}} - 1) \times 1000$) could help to quantify and understand these issues in the past. However, the
39 development of a new isotope system as a tracer requires characterization of its modern
40 biogeochemical cycling. Indeed, stable isotope ratios provide useful constraints on
41 elemental global mass balances; that is, the input and output fluxes of an element to and
42 from the ocean. If we assume steady state, the Ni input and output fluxes should balance
43 (equation 1), as should their flux-weighted isotopic compositions (equation 2):

45 (1) $F_{\text{input}} = F_{\text{output}}$

46 (2) $F_{\text{input}}\delta_{\text{input}} = F_{\text{output}}\delta_{\text{output}}$

47

48 where F_{input} and F_{output} are the respective input and output flux magnitudes, and δ_{input} and
49 δ_{output} their isotopic compositions. For our discussion here we assume that Ni is at steady
50 state over the past 10 – 20 kyr, i.e., on the timescale of the oceanic residence time of Ni
51 (Ciscato et al., 2018 this study).

52

53 Current best estimates of the inputs and outputs of Ni to and from the oceanic dissolved
54 pool are not in balance (Krishnaswami, 1976; Gall et al., 2013; Cameron and Vance,
55 2014; Gueguen et al., 2016; Ciscato et al., 2018; Spivak-Birndorf et al., 2018). The
56 estimated total input of Ni to the ocean is approximately half of the total sedimentary
57 output fluxes. In addition, the known inputs are isotopically light (at about +0.8‰;
58 Cameron and Vance, 2014) compared to seawater (at about +1.4‰; Archer et al., 2020;
59 Cameron and Vance, 2014; Takano et al., 2017; Wang et al., 2018), while most of the
60 sedimentary outputs are isotopically similar to or heavier than seawater (Gall et al.,
61 2013; Gueguen et al., 2016; Ciscato et al., 2018). Balancing the steady-state Ni budget
62 either requires an isotopically heavy Ni input or an isotopically light output flux, or both
63 of these.

64

65 One key oceanic output flux of Ni is sorption to dispersed Fe-Mn oxide phases found
66 throughout oxygenated deep sea sediments, for which the isotopic composition of Fe-
67 Mn crusts has been used as a proxy (Cameron and Vance, 2014; Ciscato et al., 2018).
68 The Ni isotope composition of Fe-Mn crusts is variable, but generally similar to or
69 heavier than seawater, with average $\delta^{60}\text{Ni}_{\text{Fe-Mn crust}} = +1.62 \pm 0.37\text{‰}$ ($n = 28$; 1 SD, Gall
70 et al., 2013; Gueguen et al., 2016). Nickel is sorbed to the Mn oxide phase in Fe-Mn
71 crusts: specifically, to a poorly crystalline phyllosilicate of the birnessite family

72 (termed vernadite/δ-MnO₂) (e.g., Koschinsky and Halbach, 1995; Koschinsky and Hein,
73 2003; Peacock and Sherman, 2007a). However, sediments and Mn nodules contain a
74 mixture of vernadite and more crystalline 7Å and 10Å birnessite phases, which
75 transform to the tectomanganate phase todorokite during diagenesis (e.g., Burns and
76 Burns, 1979; Atkins et al., 2014). Recent experiments and the study of todorokite-rich
77 buried Mn nodules have shown that ~50% of sorbed Ni is released to the aqueous phase
78 during this mineralogical transformation (Atkins et al., 2016; Heller et al., 2018). In
79 addition, remobilization of Ni is observed in the Mn oxide reduction zone in sub-oxic
80 sediment porewaters (e.g., Klinkhammer, 1980; Heggie et al., 1986), where ‘sub-oxic’
81 denotes low concentrations of both oxygen and sulphide. Either transformation to
82 todorokite or the reduction of Mn oxides may lead to a decreased Ni trapping efficiency
83 in sediments and a benthic return flux of Ni to seawater.

84

85 As yet, the potential for isotope fractionation during diagenetic Ni remobilization has
86 not been evaluated. We show that diagenesis significantly modifies the output flux of
87 Ni from the oceans, and infer a benthic return flux of isotopically heavy Ni. We explore
88 the extent to which this benthic flux can balance the oceanic Ni budget.

89

90 **2. Sites and Samples**

91

92 Metalliferous sediment samples were selected from two of the five MANOP
93 (Manganese nodule project) sites, M and H, both in the Guatemala Basin (Fig. 1). Both
94 sites are oxygenated at the sediment-water interface and sub-oxic below (Klinkhammer,
95 1980). A surface nitrate maximum overlies a zone of Mn cycling, with detectable
96 porewater Mn at depths > 6 cm at Site M, and > 12 cm at Site H. Porewater Fe is

97 observed at depths > 13 cm at site M only (Fig. 3; Klinkhammer, 1980; Heggie et al.,
98 1986). Samples were collected using a 50 cm x 50 cm box corer and later sub-sampled
99 with a plastic core liner, using a piston to avoid core shortening. Five-six sub-samples
100 from the upper 20 cm of each core were included in this study.

101
102 **Figure 1.** Map of the Guatemala Basin showing the two MANOP site locations. Site M
103 is close to the East Pacific Rise, Site H is located on the flat plain of the Guatemala
104 Basin. Tectonic plate boundaries in black; surface ocean currents as white arrows
105 (NECC, North Equatorial Counter Current; NEC, North Equatorial Current; SEC, South
106 Equatorial Current) from Kessler (2006). Insert shows the location of the grid.
107

108 MANOP site M, chosen by MANOP to represent hydrothermal sedimentation, is located
109 25 km east of the spreading axis of the East Pacific Rise, at 8.8°N 104.0° W, ~3.1 km
110 water depth (Fig. 1). The site is just 1,000 km away from the Central American coast
111 and within the source region of the westward flowing North Equatorial Current (NEC).
112 As a result, site M has a sedimentation rate of about 1 cm/1000 year (Kadko, 1981),
113 with a combination of continental, hydrothermally-derived, and biogenic sediment (at
114 ~130 µg C_{org}/cm²yr; Lyle et al., 1984). Surface sediments at site M contain 10–40%
115 calcium carbonate, 5–9% opal, and 1–2% organic carbon (Lyle et al., 1984).
116

117 MANOP site H, the hemipelagic MANOP site, is located approximately 1,000 km east
118 of the East Pacific Rise on a relatively flat plain in the Guatemala Basin, at 6.5°N
119 92.8°W, ~3.6 km water depth. It lies at the northern edge of the eastward flowing North
120 Equatorial Counter-Current (NECC) and at the southwestern edge of the productive
121 Costa Rica Dome. The organic C flux at this site is similar to that at site M, at ~110 µg
122 C_{org}/cm²yr (Lyle et al., 1984). The site is currently at or just below the calcite
123 compensation depth, and the sedimentation rate, at ~0.65 cm/1000 yr, is about half of
124 that of site M due to greater dissolution of biogenic debris (carbonate) and the lower
125 quantity of continent-derived material (Kadko, 1981; Lyle et al., 1984).

126

127 Bulk samples of six well-characterized Mn nodule samples were also analysed for their
128 Ni isotope compositions in this study (Table 1). These include the two USGS reference
129 materials Nod P1 and Nod A1, one surface and two buried Fe-Mn nodules from the
130 Clarion-Clipperton Zone (CCZ) of the equatorial North Pacific (sites 21KG, 22KL; full
131 details in: Heller et al., 2018; Wegorzewski et al., 2020) and one shallow buried nodule
132 from the Peru Basin (site 77BC). The selected surface and buried nodules have evolved
133 under differing redox regimes and are therefore compositionally diverse, allowing
134 comparisons to be made between phyllosilicate-rich and todorokite-rich nodules
135 (Table 1; Wegorzewski et al., 2020).

136

137 **Table 1.** Mn nodule samples studied, with predominant mineralogy as determined by
138 XRD analysis (Wegorzewski et al., 2020)

Mn Nodule	Location	Water depth/ Depth in sediment	Mineralogy
Nod A1	Atlantic 31°02'N 78°22'W	788 m / Surface	Phyllosilicates
Nod P1	Pacific 14°50'N 124°28'W	4300 m / Surface	Phyllosilicates

21KG-1n	CCZ, Pacific 13°10.529'N 118°08.187'W	4288 m/ Surface	Diagenetic growth structures: 7 and 10 Å phyllosilicates and hydrogenetic growth structures: vernadite (δ -MnO ₂) that is epitaxially intergrown with an amorphous FeOOH phase
77BC11-6	Peru Basin, Pacific 7°04.575' S 88°31.577' W	4130.5 m/ Shallowly buried	Mainly Todorokite
22KL-530cm	CCZ, Pacific 13°10.527'N 118°08.184'W	4302 m/ Deeply buried 530 cm	Mainly Todorokite, minor phyllosilicates
22KL-801cm	CCZ, Pacific 13°10.527'N 118°08.184'W	4302 m/ Deeply buried 801 cm	Mainly Todorokite, minor phyllosilicates

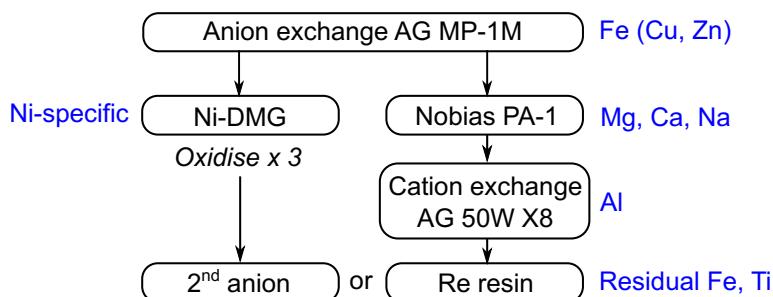
139

140 **3. Analytical Methods**

141

142 **3.1 MANOP mineralogy by XRD**

143 Selected samples from MANOP sites H and M (Table 2) were analysed by X-ray
144 diffractometry for their bulk mineralogy using a PANalytical X’Pert PRO instrument at
145 the Natural History Museum, London. Phase quantification was subsequently attempted
146 via a Rietveld refinement analysis of the 10 – 90° 2 θ region. Note that the detection limit
147 for the XRD analyses corresponds to about 1 – 5 wt%, depending on the crystallinity
148 and crystal symmetry of the phase (where a higher crystallinity and crystal symmetry of
149 a phase corresponds to a lower detection limit). For full details of the XRD analyses,
150 see the Supplementary Information.


151

152 **3.2 Element concentrations and Ni isotope ratios**

153 Bulk sample digestion was carried out in clean laboratories at ETH Zürich or Imperial
154 College London, following previously published methods (Cameron and Vance, 2014;
155 Vance et al., 2016; Ciscato et al., 2018; Archer et al., 2020). Between 20 and 100 mg of

156 each sample was pre-digested by treatment with concentrated HNO_3 to attack
157 carbonates, then completely digested in a 3:1 mixture of concentrated HF and HNO_3 on
158 a hotplate for 48 hours. Residual fluorides were removed by triplicate treatment with
159 concentrated HNO_3 , before final dissolution in 6 mL 7M HCl. Aliquots of these digest
160 solutions were taken for multi-element analysis on a Thermo Element XR at ETH
161 Zürich. Sub-samples were then spiked with a ^{61}Ni - ^{62}Ni double spike to achieve a
162 sample-spike ratio of approximately 1 prior to column chromatography. Two different
163 column chromatography procedures were utilised in this study, detailed in Figure 2 and
164 modified following Cameron and Vance (2014), Ciscato et al. (2018) and Archer et al.
165 (2020). For full details, see the Supplementary Information.

166

167

168 **Figure 2.** Flowchart illustrating the two alternative Ni column chromatography
169 procedures utilised in this study. Full details given in the Supplementary Information.

170

171 Nickel isotope compositions were analysed on a Neptune Plus multi-collector ICP-MS
172 at ETH Zürich (Vance et al., 2016; Ciscato et al., 2018) and are reported relative to the
173 NIST SRM986 Ni standard, as:

174

175 (2)
$$\delta^{60/58}\text{Ni} = \left(\frac{(^{60}\text{Ni}/^{58}\text{Ni})_{\text{sample}}}{(^{60}\text{Ni}/^{58}\text{Ni})_{\text{SRM 986}}} - 1 \right) \times 1000$$

176

177 Accuracy and precision of the Ni isotope ratio measurements were monitored by
178 repeated analysis of the primary NIST solution standard at a range of sample:spike ratios
179 (0.2 to 5), and the repeated digestion and analysis of two reference materials, USGS
180 standards Nod P1 ($+0.34 \pm 0.05\text{\textperthousand}$, 2SD, n = 5) and Nod A1 ($+1.06 \pm 0.02\text{\textperthousand}$, 2SD, n =
181 5). The long-term reproducibility ($\pm 0.07\text{\textperthousand}$) was assessed by repeat measurements of
182 primary standards and one of the secondary standards, Nod A1 (digested and passed
183 through the Ni column chemistry), the latter giving $\delta^{60}\text{Ni} = +1.04 \pm 0.07\text{\textperthousand}$ (2 SD, n=175
184 over 4 years), in agreement with previously published results (Gueguen et al., 2016).

185

186 **4. Results**

187

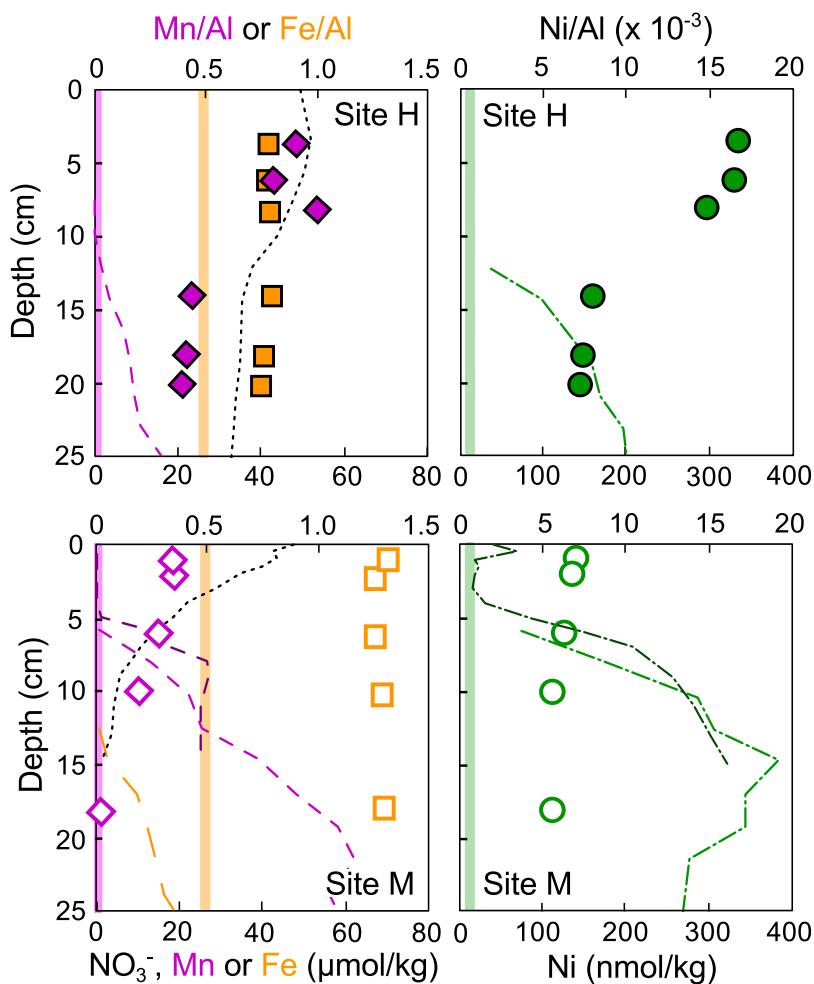
188 **4.1 Mineralogy and geochemistry**

189 The bulk mineral assemblages of the four MANOP samples analysed by XRD are
190 similar (Table S1, Figs S1-S4). The major mineral phase in all samples is smectite (49
191 – 60 wt%). Other minerals present in all samples include calcite (0.1 – 22 wt%),
192 plagioclase (13 – 20 wt%), quartz (4 – 6 wt%), halite (4 – 5 wt%), kaolinite (4 – 6 wt%)
193 and barite (1 – 3 wt%). A Mn oxide phase, tentatively identified as birnessite, is present
194 at levels close to the detection limit of the XRD analysis (0.3 – 2 wt%). Muscovite (4
195 wt%) is identified in the sample from site M (8967, 1–3 cm depth) only, representing
196 the only notable difference between this sample and the deepest sample at site H (5313,
197 19–21 cm), which are otherwise similar in their phase quantification (Table S1).

198

199 Elemental concentrations of the MANOP samples (Table 2, Table S2) are consistent
200 with the mineralogical information. Aluminium and Ti, expected to be present largely
201 in the silicate (i.e. clay mineral) fraction, are somewhat higher at site H (~5 and ~0.3

202 wt%, respectively) than site M (~4.2 and ~0.2 wt%), reflected in a higher proportion of
203 smectite at site H (Table S1). However, Fe concentrations are elevated at site M (~5.5
204 wt%) compared to site H (~4 wt%), and Fe/Al ratios at site M are significantly higher
205 than lithogenic values (e.g., upper continental crust, UCC; Fig. 3). Manganese
206 concentrations are high, particularly in the upper 10 cm at site H (at ~5 wt%), dropping
207 to ~2 wt% below this. The deepest sample at site M has a considerably lower Mn content
208 than the other samples, at 0.1 wt%.

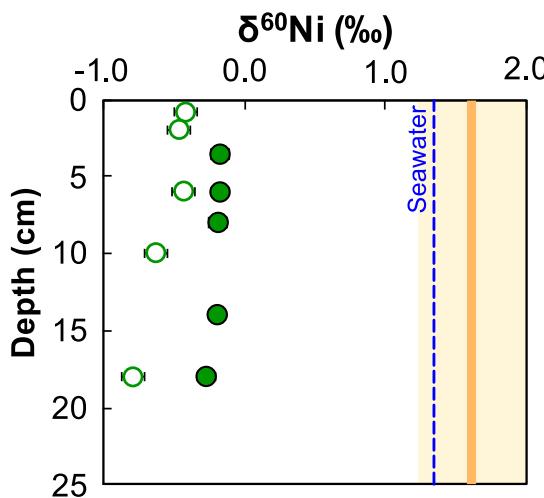

209

210 Trace metal concentrations (e.g., Ni, Cu, Zn, Mo, Cd), are significantly enriched at both
211 sites H and M relative to expected detrital abundances, e.g., as found in UCC (Table 2,
212 Table S2, Fig. 3), with enrichments typically greater at site H than at site M. There is a
213 coupling between Mn enrichment and those of Ni, Cu and Zn, particularly clear at Site
214 H, where the three shallowest samples (<10 cm depth) are considerably more enriched
215 than the three deeper samples (at 10 – 20 cm) (Fig. 3).

216

217 Manganese contents of Nod P1 and the CCZ surface and buried nodules are similar
218 (Table 2), at 31 to 32 wt%, while Fe contents are somewhat lower in buried nodules (at
219 ~3 wt%) than surface nodules (at 4 – 5 wt%). The Peru Basin nodule has an even higher
220 Mn content (at ~48 wt%). Nickel concentrations are highest in the Pacific surface
221 nodules (at ~1.1 wt%) and lower in the deeply buried nodules (at ~0.7–0.8 wt%). As a
222 result, Ni/Mn ratios are lower in buried (~0.025) than surface (~0.038) nodules. For a
223 full discussion of the elemental distribution patterns in the CCZ nodules, see Heller et
224 al. (2018). Atlantic Nod A1, which was collected from a much shallower water depth
225 (776 m; Table 1) than the Pacific nodules, has a lower Mn content (20 wt%), a higher

226 Fe content (10 wt%) and lower trace element concentrations (e.g., 0.6 wt% Ni, 0.1 wt%
 227 Cu), and an intermediate Ni/Mn ratio (0.029).
 228


229
 230 **Figure 3.** Solid-phase Mn/Al (purple diamonds), Fe/Al (orange squares), and Ni/Al
 231 (green circles) ratios in the sediment at the two MANOP sites. Filled symbols – site H,
 232 open symbols – site M. Solid coloured bars illustrate upper continental crust Me/Al
 233 ratios, from Rudnick and Gao (2003). Porewater concentrations of NO_3^- (black dotted lines),
 234 Mn (purple dashed lines), Fe (site M only, orange long dashed line) and Ni (green
 235 dot-dashed lines) from Klinkhammer (1980: Site H and M) and Heggie et al. (1986; Site
 236 M only: darker coloured lines for Mn, Ni) are overlain on secondary x-axes.
 237
 238

239 **4.2 Ni isotope compositions**

240

241 The Ni isotope compositions of samples from both MANOP sites are light relative to
 242 seawater, ranging from -0.79 to $-0.17\text{\textperthousand}$ (Table 2; Fig. 4). $\delta^{60}\text{Ni}$ values for site H are
 243 approximately homogeneous with depth, with mean $\delta^{60}\text{Ni}_{\text{H}} = -0.21 \pm 0.09\text{\textperthousand}$ (2 SD).
 244 Site M $\delta^{60}\text{Ni}$ values are more negative than those of site H, and become isotopically
 245 lighter with depth, with $\delta^{60}\text{Ni}_{\text{M}}$ from -0.42 to $-0.79\text{\textperthousand}$. MANOP $\delta^{60}\text{Ni}$ values are much
 246 more negative than deep seawater, with $\delta^{60}\text{Ni}_{\text{seawater}} = +1.34 \pm 0.07\text{\textperthousand}$ (1 SD, seawater
 247 samples $>200\text{m}$; Cameron and Vance, 2014; Takano et al., 2017; Wang et al., 2018;
 248 Archer et al., 2020), and than Fe-Mn crusts, with $\delta^{60}\text{Ni}_{\text{FeMnCrust}} = +1.62 \pm 0.37\text{\textperthousand}$ (1 SD,
 249 Gall et al., 2013; Gueguen et al., 2016).

250

251

252 **Figure 4.** Ni isotope compositions for samples from MANOP site H (filled symbols)
 253 and site M (open symbols) with depth in the sediment. Error bars (similar to symbol
 254 size) are the long-term reproducibility of the secondary standard ($\pm 0.07\text{\textperthousand}$). Blue dashed
 255 line: deep seawater $\delta^{60}\text{Ni}$ (Cameron and Vance, 2014; Takano et al., 2017; Wang et al.,
 256 2018; Archer et al., 2020). Orange solid bar and shaded region: Fe-Mn crust $\delta^{60}\text{Ni}$, mean
 257 and 1SD (Gall et al., 2013; Gueguen et al., 2016).

258

259 The Pacific Mn nodules from the ocean floor (Nod P1, 21KG-1n), which are
 260 predominantly phyllosilicates, have $\delta^{60}\text{Ni}$ values of $+0.34$ and $+0.28\text{\textperthousand}$ (Table 2).
 261 The two deeply buried nodules (22KL 530cm and 801cm), comprised mostly of
 262 todorokite, have lower $\delta^{60}\text{Ni}$ values, at $-0.08\text{\textperthousand}$ and $+0.01\text{\textperthousand}$. The Peru Basin nodule

263 (77BC11-6) is also predominantly todorokite and is isotopically the lightest of the six
264 nodules, at $-0.22\text{\textperthousand}$. Nod A1 from the Atlantic has a heavier Ni isotope composition, at
265 $\delta^{60}\text{Ni} = +1.06\text{\textperthousand}$ (Table 2).

266

267 **5. Discussion**

268

269 The sediment samples from the two MANOP sites have the lightest Ni isotope
270 composition yet measured for modern marine sediments (at -0.2 to $-0.8\text{\textperthousand}$),
271 considerably lighter than Fe-Mn crusts (about $+1.6\text{\textperthousand}$; Gall et al., 2013; Gueguen et al.,
272 2016), organic-rich sediments (about $+1.1\text{\textperthousand}$; Ciscato et al., 2018), euxinic sediments
273 from the Black Sea (about $+0.2\text{\textperthousand}$; Vance et al., 2016), and the lithogenic Ni isotope
274 composition (about $+0.1\text{\textperthousand}$; Cameron et al., 2009). All MANOP samples are also at least
275 20-fold enriched in Ni compared to the UCC (Fig. 3; Table 2); hence, the lithogenic Ni
276 component in these sediments is minor. We consider two possible origins for
277 isotopically light authigenic Ni: (1) an isotopically light source of Ni or (2) isotope
278 fractionation during diagenesis.

279

280 **5.1 An isotopically light source of Ni to the MANOP sites?**

281

282 One possible source of Ni to sediments is from the dissolved pool in seawater; a
283 diffusive flux of Ni was recently suggested to contribute to Ni accumulation in oxygen-
284 deficient continental margin sediments (Ciscato et al., 2018). However, a diffusive flux
285 requires higher Ni concentrations in bottom waters compared to porewaters. Dissolved
286 Ni concentrations measured in core-top porewaters at the MANOP sites are similar to
287 or, at site M, higher than bottom waters (Fig. 3; Klinkhammer, 1980; Heggie et al.,

288 1986), suggesting, if anything, a small benthic flux of Ni *out* of porewaters.
289 Alternatively, Ni in seawater may be scavenged by particulate material in the water
290 column, providing a ‘hydrogenetic’ source of Ni to sediments. Models of hydrogenetic
291 Fe-Mn crust formation have emphasized the importance of inorganic sorption processes
292 of this type (e.g., Koschinsky and Hein, 2003). If Fe-Mn crusts represent the
293 hydrogenetic Ni source to sediments, Ni that is isotopically similar to or heavier than
294 seawater, at $+1.62 \pm 0.37\text{\textperthousand}$ (1 SD, Gall et al., 2013; Gueguen et al., 2016) would be
295 expected in the MANOP sediments.

296

297 Nickel displays a typical nutrient-type profile in seawater (e.g., Bruland, 1980).
298 Furthermore, a strong correlation with organic carbon is observed in sediments
299 underlying upwelling zones, suggesting organic matter is an important supply route of
300 Ni to sediments (e.g., Fig S7; Ciscato et al., 2018). Cellular Ni/P ratios from the mixed
301 layer of the equatorial Pacific range from 0.25 – 1.15 mmol/mol (measured by
302 synchrotron XRF; Twining et al., 2012), similar to ratios for plankton tows from nearby
303 MANOP sites (0.51 to 0.96 mmol/mol; Collier and Edmond, 1984). Both MANOP sites
304 receive high fluxes of biogenic particulate material, with C_{org} rain rates of 110 – 130 μg
305 C_{org}/cm²/yr (Lyle et al., 1984). Given these values, we calculate that approximately 5 –
306 10% of the Ni budget in the MANOP sediments is supplied by organic matter (see Table
307 S3 for details). However, higher particulate Ni/P ratios of about 5 – 15 mmol/mol are
308 observed below the mixed layer in the eastern Pacific (Fig. S5; Ohnemus et al., 2017),
309 suggesting that preferential P remineralisation occurs as organic-rich particles settle
310 through the water column (recently suggested in the context of Cd/P; Bourne et al.,
311 2018). The links between export production and sedimentary metal concentrations is an

312 area of active research, but we note that a particulate Ni/P ratio of ~15 mmol/mol could
313 account for ~100% of the Ni in the MANOP sediments (Table S3).

314

315 Organic matter is therefore a significant source of Ni to the MANOP sediments, but is
316 it isotopically light? The limited dataset for upper water column $\delta^{60}\text{Ni}$ (Takano et al.,
317 2017; Wang et al., 2018; Archer et al., 2020) suggest that phytoplankton do
318 preferentially take up isotopically light Ni. However, the maximum fractionation factor
319 implied by water column data for biological uptake is rather small, at about $-0.3\text{\textperthousand}$
320 (Archer et al., 2020). Consistent with this inference, Takano et al. (2020) estimate the
321 $\delta^{60}\text{Ni}$ of biogenic particles in the South China Sea to be $+0.6$ to $+1\text{\textperthousand}$. Hence, Ni in
322 organic matter exported from the photic zone is not expected to be nearly light enough
323 to explain the MANOP $\delta^{60}\text{Ni}$ values (at -0.2 to $-0.8\text{\textperthousand}$). Furthermore, modern organic-
324 rich sediments from the Peru margin have bulk Ni isotope compositions of $+1.12 \pm$
325 $0.08\text{\textperthousand}$ (1SD, $n = 25$; Ciscato et al., 2018), consistent with the water column data and
326 suggesting that particle cycling on transit from the photic zone to sediment is not
327 associated with significant isotopic fractionation. Organic matter cannot explain the
328 light Ni isotope compositions observed at the MANOP sites.

329

330 A third possible source of Ni, particularly site M, which is 25 km east of the East Pacific
331 Rise, is hydrothermal sedimentation. To our knowledge, $\delta^{60}\text{Ni}$ values have not been
332 measured in hydrothermal fluids, but may be expected to be isotopically light, similar
333 to lithogenic Ni, at about $+0.1\text{\textperthousand}$ (Cameron et al., 2009). However, a direct Ni source
334 from hydrothermal fluids is unlikely; recent GEOTRACES sections suggest that
335 hydrothermal plumes may instead be sites of Ni removal from seawater via scavenging
336 (discussed by Ciscato et al., 2018). Using an endmember mixing model, Fischer (1983)

337 estimates that ~10% of the Ni (but ~50% of the Fe) at site M (compared to <1% of the
338 Ni at site H) is hydrothermally sourced. We consider a possible role for hydrothermally
339 sourced Fe to sedimentary Ni cycling at site M in section 5.3.

340

341 **5.2 Nickel isotope fractionation during diagenesis: coupling of Ni-Mn**

342

343 Having ruled out an isotopically light source of Ni to the sediment, we suggest that post-
344 depositional processes are responsible for the MANOP Ni isotope compositions. First,
345 we consider two processes coupled to Mn diagenesis: (1) cycles of Mn oxide dissolution
346 and reprecipitation ('Mn cycling') and (2) transformation of birnessite to todorokite
347 ('todorokite transformation').

348

349 *Manganese cycling*

350 Porewater data from the MANOP sites (Klinkhammer, 1980; Heggie et al., 1986)
351 illustrate the clear coupling between Mn and Ni cycling – via cycles of Mn-oxide
352 dissolution and precipitation (Fig. 3). Sorbed Ni is released to porewaters upon Mn
353 oxide dissolution, and resorbed on newly precipitating Mn oxide phases within the
354 shallower oxygenated zone. Manganese oxides are strong sorbents for divalent trace
355 metals like Ni due to their negative surface layer charge at the pH of natural waters (e.g.,
356 Burns and Burns, 1979; Koschinsky and Halbach, 1995). In particular,
357 phyllosilicates like birnessite, which has a layered structure of edge-sharing MnO_6
358 octahedra, are ubiquitous in the natural environment and are the main Mn-bearing and
359 trace metal-sorbing phases in oxic marine sediments (e.g., Peacock and Sherman, 2007a;
360 Little et al., 2014). Experimental estimates of the magnitude of Ni isotope fractionation

361 on sorption to birnessite suggest a large light isotope effect, with a recent study reporting
362 $\Delta^{60}\text{Ni}_{\text{MnO}_2\text{-aqueous}} = -2.8$ to $-3.4\text{\textperthousand}$ (Sorensen et al., 2020).

363

364 The pattern of variation in Ni concentration and isotopic composition across the Black
365 Sea redoxcline (Vance et al., 2016) is qualitatively and quantitatively consistent with
366 these experimental data, with sorption to particulate Mn oxides above the redoxcline
367 preferring the light Ni isotopes by about 4\textperthousand . We hypothesize that a similar process
368 takes place in sediment porewaters, explaining (at least in part) the light isotopic
369 compositions of the MANOP sediments. The smaller $\Delta^{60}\text{Ni}_{\text{MANOP-seawater}}$ offset of about
370 -1.6 to $-2.4\text{\textperthousand}$ compared to experiments and the Black Sea likely reflects the fact that
371 the porewater-sediment system is not completely open.

372

373 In the context of the experimental data, the observations in the Black Sea, and the new
374 data here, the published data for hydrogenetic Fe-Mn crusts stand out as different. Most
375 Fe-Mn crusts analysed to date are isotopically similar to or heavier than seawater (Fig.
376 5A). Sorensen et al. (2020) suggest three possible explanations for this observation. The
377 first involves differences in the mechanism of incorporation into the solid structure.
378 Nickel in slow-growing Fe-Mn crusts is predominantly structurally incorporated into
379 birnessite (specifically vernadite/ $\delta\text{-MnO}_2$) vacancy sites (Peacock and Sherman, 2007a),
380 while adsorption in experiments occurs primarily as a triple-corner-sharing surface
381 complex over the vacancy sites (Peacock and Sherman, 2007b; Sorensen et al., 2020).
382 Surface complexation is also likely to be dominant in dynamic open system
383 environments like the redoxcline of the Black Sea. It is possible, therefore, that structural
384 incorporation of Ni is associated with a different isotope effect than adsorption as a
385 surface complex. A second explanation relates to reaction kinetics, with slow-growing

386 (a few mm/Ma) Fe-Mn crusts exhibiting long-term isotopic equilibration of Ni with
387 seawater; exchangeability of Ni in Fe-Mn crusts has recently been demonstrated by
388 Hens et al. (2019). Finally, it has been suggested that Ni speciation in seawater may
389 control the isotopic composition of the sorbing Ni species, with a possible role for
390 organic complexation (Sorensen et al., 2020).

391

392 Fe-Mn crusts are not only marked by relatively positive $\delta^{60}\text{Ni}$ values, but also by
393 significant variability in $\delta^{60}\text{Ni}$ (Fig. 5A, +0.41 to +2.47‰; Gall et al., 2013), which may
394 reflect the complexities of the aforementioned processes. We note, however, that a depth
395 profile through one crust (ZEP2-DR05-04) from the Pacific Ocean shows a marked
396 transition towards much lighter Ni isotope compositions coupled to decreasing Mn/Ni
397 ratios at depth (Fig. 5B; Gueguen et al., 2016). The authors attributed this transition to
398 lighter isotopic compositions to the reductive dissolution of primary Mn oxide phases
399 followed by their reprecipitation and the resorption of Ni in an open system (Gueguen
400 et al., 2016) – i.e. the same process of Mn cycling described here.

401

402 Phyllosilicate-rich surface Mn nodules may also record the impact of Mn cycling in
403 their Ni isotope compositions, because they contain Ni from both hydrogenic and
404 diagenetic sources. They consist of hydrogenic layers formed by precipitation from
405 seawater (vernadite/ δ -MnO₂ and amorphous FeOOH) and diagenetic layers formed
406 during re-precipitation from sub-oxic porewaters (primarily 7 and 10 Å birnessite) (e.g.,
407 Koschinsky and Halbach, 1995; Heller et al., 2018). These nodules are variably
408 isotopically light (at +0.28 to +1.06‰) compared to seawater, and fall close to the
409 Mn/Ni v $\delta^{60}\text{Ni}$ evolution line of the Fe-Mn crust affected by Mn cycling (Fig. 5B,
410 Gueguen et al., 2016).

411

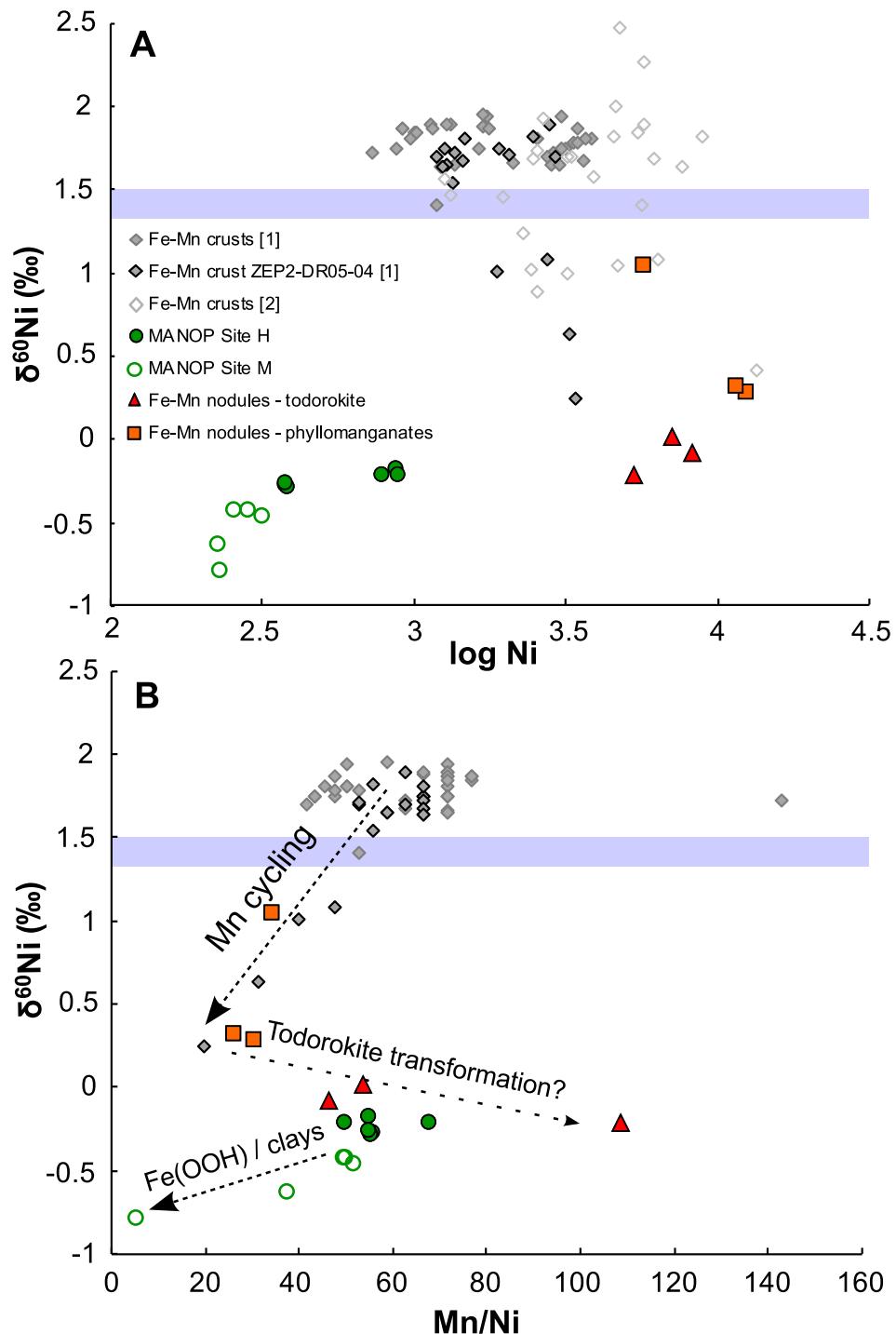
412 Overall, a consistent picture of the impact of Mn cycling on Ni isotope compositions
413 emerges from the MANOP sediments, Fe-Mn crusts and Mn nodules. Hydrogenetic
414 $\delta^{60}\text{Ni}$ values (represented by Fe-Mn crusts) are similar to the seawater Ni isotope
415 composition, with Mn cycling during diagenesis leading to partial dissolution and
416 reprecipitation of phyllo-manganates that re-scavenge isotopically light Ni in a variably
417 open system, associated with decreasing Mn/Ni ratios.

418

419 *Todorokite transformation*

420 During diagenesis, birnessite can also transform (via a 10 Å phase) to the
421 tectomanganate todorokite (Atkins et al., 2014; Wegorzewski et al., 2020). Recent
422 experimental work suggests that this transformation leads to significant Ni release to
423 porewaters, because Ni is not significantly incorporated in the todorokite crystal
424 structure (Atkins et al., 2016). Consistent with this finding, buried Mn nodules of
425 todorokite exhibit *higher* Mn/Ni ratios compared to phyllo-manganate-rich surface
426 nodules (Fig. 5B; Heller et al., 2018; Wegorzewski et al., 2020), i.e. the opposite
427 evolution to that inferred for Mn cycling. Furthermore, buried nodules are isotopically
428 even lighter (at -0.22 to $+0.01\text{\textperthousand}$) than surface nodules (at $+0.28$ to $+1.06\text{\textperthousand}$), suggesting
429 that todorokite transformation may lead to further Ni isotope fractionation.

430


431 However, the relevance of todorokite transformation to the Ni isotope composition of
432 the MANOP sediments, and to marine Ni cycling more broadly, remains unclear,
433 because the timescale and mechanism of todorokite transformation and its prevalence
434 in marine sediments is difficult to establish. Typically considered a process of
435 phyllo-manganate ageing under oxic conditions, oxic transformation of birnessite to

436 todorokite in the lab has only been achieved at higher than ambient temperatures and/or
437 lower than circumneutral pH (e.g., Atkins et al., 2014). Recently, Jung et al. (2020)
438 demonstrate that cyclic redox fluctuations (driven in the lab by cyclic voltammetry) can
439 also trigger the layer-to-tunnel phase transformation. Cyclic redox fluctuations are
440 common in marine sediments, suggesting that todorokite transformation may occur
441 outside of fully oxic diagenetic settings. Nevertheless, identification of todorokite by
442 XRD is currently impossible at the low abundances present in marine sediments, due to
443 the similar crystallographic structure of different Mn oxide polymorphs. While our XRD
444 data for the MANOP sediments indicates the presence of a phyllosilicate phase, we
445 cannot rule out the occurrence of more crystalline todorokite at low abundance.
446 Geochemically, MANOP Mn/Ni ratios are more similar to those of the buried,
447 todorokite-rich Mn nodules than to surface nodules, but they are also similar to
448 hydrogenetic Pacific Fe-Mn crusts (Fig. 5B).

449

450 Future experimental work will test the hypothesis that todorokite transformation leads
451 to preferential retention of isotopically light Ni in the solid phase, and investigate the
452 relationships between the transformation mechanism, Ni release, and evolving Mn/Ni
453 ratios.

454

455

456 **Figure 5.** A) log Ni concentration and B) Mn/Ni ratios versus $\delta^{60}\text{Ni}$ values for samples
 457 from MANOP site H (green filled circles), MANOP site M (green open circles), Mn
 458 nodules of predominantly phyllo-manganates (orange squares) and todorokite (red
 459 triangles), and literature values for Fe-Mn crusts (grey diamonds). Labelled dashed
 460 arrows in B represent the proposed diagenetic effects of Mn cycling, todorokite
 461 transformation, and scavenging by Fe (hydr)oxides or authigenic clays (see text for
 462 details). Error bars on $\delta^{60}\text{Ni}$ values are approximately the size of the symbols (\pm
 463 0.07‰). Literature data: [1] Gueguen et al. (2016) and [2] Gall et al. (2013) (Note: No
 464 Mn data are presented by Gall et al., 2013).

465 **5.3 Nickel isotope fractionation during diagenesis: Fe (hydr)oxides or authigenic
466 clays?**

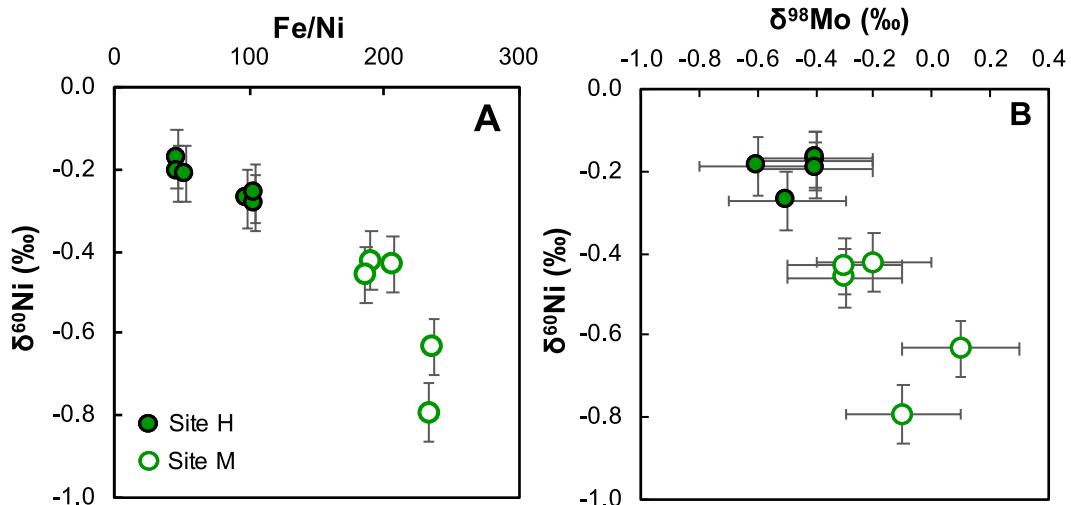
467

468 We suggest that the diagenetic cycling of Ni coupled to Mn is the key control on the Ni
469 isotope compositions of the MANOP sediments. However, the sample with the lightest
470 Ni isotope composition (at $-0.79\text{\textperthousand}$), from 18 cm depth at site M, has the lowest Mn
471 concentration (0.12 wt%) and lowest Mn/Ni ratio (5.4, Fig. 5B). Despite limited Mn
472 enrichment, this sample is significantly Ni enriched ($\text{Ni/Al} = 0.0056$ cf. $\text{Ni/Al}_{\text{UCC}} =$
473 0.0006). Together, these observations suggest an additional control on Ni isotope
474 compositions in low Mn sediments. We consider two possibilities: (1) sorption of
475 isotopically light Ni on nanoscale Fe (hydr)oxides, and (2) incorporation of isotopically
476 light Ni in Fe-rich authigenic clays.

477

478 *Nanoscale Fe oxides*

479 Iron is significantly more enriched at site M ($\text{Fe/Al} \sim 1.3$) compared to site H (Fe/Al
480 ~ 0.8 ; Fig. 3), with the difference attributed to the presence of hydrothermal precipitates
481 at site M (Fischer, 1983). Sorption of Ni on Fe (hydr)oxides is less energetically
482 favoured than on phyllosilicates, due to the higher pH_{pzc} for Fe (hydr)oxide phases
483 (at about 7 to 8) compared to MnO_2 (at about 2, Stumm and Morgan, 1996; Tripathy
484 and Kanungo, 2005). Nevertheless, when phyllosilicates are scarce, Fe (hydr)oxide
485 phases become environmentally relevant.


486

487 Experimental investigations of Ni isotope fractionation on sorption to ferrihydrite found
488 $\Delta^{60}\text{Ni}_{\text{ferrihydrite-aqueous}} = -0.35\text{\textperthousand}$ (Wasylenski et al., 2015; Gueguen et al., 2018). For Ni
489 coprecipitation with ferrihydrite, Wang and Wasylenski (2017) found that the

490 fractionation factor increased from -0.08 to $-0.50\text{\textperthousand}$ with increased co-precipitation
491 (e.g., at higher pH). Sorption to goethite is associated with a larger fractionation factor,
492 $\Delta^{60}\text{Ni}_{\text{goethite-aqueous}} = -0.77\text{\textperthousand}$ (Gueguen et al., 2018). A correlation is observed between
493 Fe/Ni and Ni isotope compositions at site M (Fig. 6A), consistent with the hypothesis
494 of scavenging of isotopically light Ni by Fe (hydr)oxide phases. We envisage that this
495 process occurs during diagenesis, due to the evolution towards lighter Ni isotope
496 compositions at site M compared to site H. (Fig. 6A) However, it is also feasible that
497 dissolved Ni is scavenged by hydrothermal Fe precipitates suspended in the water
498 column and which subsequently settle out.

499

500 Interestingly, $\delta^{60}\text{Ni}$ also correlates with published $\delta^{98}\text{Mo}$ values for the MANOP
501 samples (Fig 6B; Poulson Brucker et al., 2009). Like Ni, Mo cycling has been strongly
502 linked to Mn in oxic marine sediments, but a role for sorption to Fe (hydr)oxides in the
503 oceanic Mo cycle has also been proposed (Goldberg et al., 2009). Molybdenum sorption
504 on Mn oxides exhibits a stronger preference for light isotopes (e.g., Barling and Anbar,
505 2004) than Mo sorption on Fe (hydr)oxides (Goldberg et al., 2009). Thus, these two
506 competing controls on Mo isotope compositions appear to be consistent with the
507 MANOP $\delta^{98}\text{Mo}$ values, in which the site M samples (rich in Fe) are isotopically heavier
508 than those of site H (rich in Mn).

509

510 **Figure 6.** Relationships between A. Fe/Ni and B. $\delta^{98}\text{Mo}$ (data: Poulson Brucker et al.,
 511 2009) and Ni isotope compositions at the two MANOP sites. Error bars on $\delta^{60}\text{Ni}$ are the
 512 long-term reproducibility ($\pm 0.07\text{\textperthousand}$) and on $\delta^{98}\text{Mo}$ are $\pm 0.20\text{\textperthousand}$ (the estimated external
 513 reproducibility on bulk $\delta^{98}\text{Mo}$ values from Poulson Brucker et al., 2009).

514

515 *Authigenic clay minerals*

516 Though it has long been inferred that authigenic Fe (hydr)oxide coatings are an
 517 important host phase for trace elements in marine sediments, direct image-based
 518 identification of these phases has proven challenging. The XRD technique utilised in
 519 this study, for example, has a detection limit of ~ 2 wt% for Fe (hydr)oxide phases.
 520 However, it has been suggested that part of the challenge in directly observing Fe
 521 (hydr)oxide coatings reflects the fact that authigenic Fe is (at least partly) hosted in
 522 authigenic clay minerals (e.g., Abbott et al., 2019). By extension, it is possible that Fe
 523 (hydr)oxides are not as quantitatively important scavengers of trace elements, and that
 524 authigenic clay minerals play an under-appreciated role (e.g., Hein et al., 1979; Abbott
 525 et al., 2019).

526

527 The dominant mineral phase at both MANOP sites is smectite; indeed, authigenic
 528 smectite (Fe-rich montmorillonite) makes up 26 to 66% of the clays present in north
 529 equatorial Pacific sediments (Hein et al., 1979). Hein et al. (1979) found that this

530 smectite contains 70 – 150 µg/g Ni, though the clay fraction analysed may have included
531 sorbed nanoscale Fe (hydr)oxides. Nevertheless, using x-ray absorption spectroscopy,
532 Merrot et al. (2019) find that Ni is primarily hosted by Fe-rich smectite and early
533 diagenetic greenalite in lagoon sediments. During terrestrial weathering, Ni liberated
534 from primary minerals is concentrated by smectite, where present (e.g., Ratié et al.,
535 2018). Furthermore, the smectitic zone of a weathering profile is characterized by light
536 Ni isotope compositions compared to the protolith (Ratié et al., 2018), consistent with
537 experimental results indicating a small light isotope effect on sorption to Na-
538 montmorillonite (a form of smectite), of $-0.11 \pm 0.09\text{\textperthousand}$ (Spivak-Birndorf et al., 2018).
539 We suggest that better evaluation of the role of authigenic clays in sedimentary trace
540 element budgets should be a target for future research.

541

542

543 **5.4 Implications for whole oceanic mass balance**

544

545 Assuming steady state, there is a significant flux and isotopic mass imbalance in the
546 oceanic Ni cycle, summarised most recently by Ciscato et al. (2018). In their analysis,
547 the input of Ni (riverine dissolved Ni and Ni from mineral dust) is 3.7×10^8 mol/year,
548 with $\delta^{60}\text{Ni}_{\text{input}} = +0.79\text{\textperthousand}$. By contrast, the estimated output flux to sediments ranges
549 from 7.2 to 17×10^8 mol/year (i.e. 2–5 times larger than the estimated input flux), with
550 $\delta^{60}\text{Ni}_{\text{output}} \approx +1.5\text{\textperthousand}$. By far the dominant feature of the existing Ni budget is the removal
551 flux to dispersed Fe-Mn oxides in ‘oxic sediments’ (where oxygen penetrates to >1 cm
552 depth; Morford and Emerson, 1999), which is estimated to range from 5.8 to 10.5×10^8
553 mol/yr (Gall et al., 2013; Cameron and Vance, 2014). The isotopic composition of this
554 oxic sink has been assumed to reflect that of Fe-Mn crusts, at about $+1.6\text{\textperthousand}$.

555

556 Ciscato et al. (2018) suggest that the previously assumed flux of Ni to the oxic sink, and
557 its isotopic composition, might be erroneous. Balancing the budget would require an
558 oxic sink of 1.8×10^8 mol/yr (3–5 times smaller than previously estimated), with an
559 average isotopic composition of about +0.5‰. Our study suggests a resolution of this
560 problem, via the diagenetic remobilization of isotopically heavy Ni and its release into
561 bottom waters. From here on, we assume that this diagenetic remobilization and release
562 occurs in sub-oxic (specifically, Mn reducing) settings. However, we note that
563 todorokite transformation may also occur in oxic settings, and thus this process may be
564 significantly underrepresented in the following assessment.

565

566 First, we recalculate the Ni burial flux in oxic sediments by coupling to estimates for
567 Mn. The authigenic accumulation rate of Mn in pelagic clays is estimated at 6 – 23
568 $\mu\text{mol}/\text{cm}^2/\text{kyr}$ (best guess: 13 $\mu\text{mol}/\text{cm}^2/\text{kyr}$) (Rehkämper and Nielsen, 2004 and
569 references therein). The Ni/Mn ratio of the MANOP site H sediments and of Fe-Mn
570 crusts is 0.019 (by weight; USGS compilation of Manheim and Lane-Bostwick, 1991).
571 Of the sediment types described in the marine sediment census of Dutkiewicz et al.
572 (2015), we include only ‘clay’ (40.2% ocean area) in this category. The remainder are
573 predominantly calcareous oozes, which have a low Mn content (Morford and Emerson,
574 1999 and references therein), though we note that two ‘transitional’ sediment types
575 (‘siliceous mud’, 5.0% and ‘fine-grained calcareous sediment’, 12.4%; Dutkiewicz et
576 al., 2015) may be a significant Mn sink and should be a target of future studies. We
577 estimate a Ni burial flux to oxic sediments (in this case, exclusively clay) of 1.5 to 5.9
578 $\times 10^8$ mol/yr (Table 3). Nickel burial in association with carbonates is negligible on this
579 scale, at about 0.14×10^8 mol/year (Ciscato et al., 2018). Following previous authors,

580 we assume that the Ni isotope composition of oxic sediments is represented by Fe-Mn
581 crusts, at $+1.62 \pm 0.37\text{\textperthousand}$ (1 SD, Table 3; Gall et al., 2013; Gueguen et al., 2016).

582

583 Next, we estimate the benthic return flux of Ni *from* sub-oxic sediments, also by
584 comparison to Mn. Morford and Emerson (1999) estimate that sub-oxic sediments
585 (defined as those deposited at >1000 m water depth for which oxygen penetrates to ≤ 1
586 cm) cover $\sim 4\%$ of the ocean area. They estimate a sub-oxic benthic Mn flux of $0.7 - 1.3$
587 $\times 10^{10}$ mol/yr (Morford and Emerson, 1999). Our study suggests that Mn diagenesis
588 leads to preferential retention of Ni in sediments compared to Mn (Fig. 5B), but
589 todorokite transformation should have the opposite effect (Fig. 5B; Atkins et al., 2016).
590 Direct measurements of porewater Ni/Mn ratios for the MANOP sediments are variable,
591 but generally similar to the solid phase (i.e. ~ 0.019) ranging from $0.005 - 0.031$ (mean
592 site M = 0.009, mean site H = 0.020; Klinkhammer, 1980). For an estimated Ni/Mn
593 range of $0.009 - 0.020$, we calculate a benthic Ni flux of $0.6 - 2.3 \times 10^8$ mol/yr.

594

595 Next, we solve for the isotopic composition of the benthic flux by expanding equation
596 (1) for all known fluxes and assuming steady state, where:

597

598 (3) $F_{\text{river}}\delta_{\text{river}} + F_{\text{dust}}\delta_{\text{dust}} + F_{\text{benthic}}\delta_{\text{benthic}} = F_{\text{oxic}}\delta_{\text{oxic}} + F_{\text{org}}\delta_{\text{org}} + F_{\text{eux}}\delta_{\text{eux}} + F_{\text{carb}}\delta_{\text{carb}}$

599

600 In equation (3), the Ni sources include rivers, dust and the benthic flux, while the sinks
601 are pelagic clays ('oxic'), organic-rich sediments on continental margins ('org'), euxinic
602 sediments ('eux') and carbonates ('carb').

603

604 We carry out a Monte Carlo simulation (10,000 iterations), allowing each flux to vary
605 within its given range (flux and $\delta^{60}\text{Ni}$; values given in italics in Table 3) and solving for
606 the benthic flux required to balance the Ni mass budget (model results in bold in Table
607 3). Flux magnitudes were forced by uniformly distributed random numbers, and isotopic
608 compositions by normally distributed random numbers (around the mean and standard
609 deviation of published data, see Table 3). For further discussion of the approach, see the
610 Supplementary Information. Note that the carbonate and euxinic sinks, and the dust
611 source, are minor, and therefore represented in the simulation simply by the best guess
612 at their magnitudes and isotopic compositions (Table 3). The riverine flux is included
613 as the concentration and discharge-weighted average of Cameron and Vance (2014).
614 Post-simulation, the benthic flux range was restricted to $0.6 - 2.3 \times 10^8 \text{ mol/yr}$, with the
615 side effect of reducing the maximum output flux to pelagic clays to $4.6 \times 10^8 \text{ mol/yr}$
616 (see SI for further discussion).

617

618 This analysis suggests that the isotopic composition of the benthic flux required to
619 balance the oceanic Ni budget is approximately $+3\text{\textperthousand}$ (Table 3). Compared to the
620 isotopic composition of oxic sediments (at $+1.6\text{\textperthousand}$), this equates to an effective
621 fractionation factor for diagenesis of about $-1.4\text{\textperthousand}$ (averaged globally). This value is
622 comparable to the observed isotopic difference between the MANOP sediments (at
623 about -0.2 to $-0.8\text{\textperthousand}$) and the possible sources of Ni to the site (at about $+0.1$ to $+1.6\text{\textperthousand}$;
624 Section 5.1), supporting the hypothesis that diagenetic remobilisation of isotopically
625 heavy Ni can balance the oceanic Ni budget.

626

627

628 **Table 3.** Modelled oceanic mass balance of Ni and Ni isotopes (see text and SI for full
 629 details). Values in italics were used in the Monte Carlo simulation. Values in bold are
 630 outputs from the model.

	Flux ($\times 10^8$ mol/yr)		$\delta^{60}\text{Ni}$ (‰)	
	Range	Best guess	Mean and SD	Best guess or range
Source fluxes				
Rivers ^a	-	3.60	-	0.8
Dust ^{b,c}	-	0.076	-0.09 to 0.37	0.14
Benthic	<i>0.6 to 2.3</i>	1.44	3.17 ± 1.08	3.03*
Sink fluxes				
Pelagic clays	<i>1.5 to 4.6 (5.9)</i>	3.08	<i>1.62 ± 0.37^d</i>	1.62
Organic-rich ^b	<i>1.1 to 2.4</i>	1.74	<i>1.12 ± 0.08</i>	1.12
Carbonates ^b	0.031 to 0.44	0.14	1.10 to 1.64	1.29
Euxinic ^b	0.093 to 0.25	0.15	0.3 to 0.6 ^c	0.45
Total in/out	4.3 to 6.0	5.1	1.41 ± 0.23	1.40
Residence time ¹	18 to 25 kyr	21 kyr		

631 *Best guess $\delta^{60}\text{Ni}$ is the median value output by the model (For details see SI, Fig. S8).

632 ¹Residence time calculated given a global ocean volume of 1.35×10^{21} kg and mean Ni
 633 concentration of 8 nM (i.e. 1.08×10^{13} moles Ni).

634 References: ^aCameron and Vance (2014), ^bCiscato et al. (2018), ^cVance et al. (2016),

635 ^dGall et al. (2013).

636

637

638 6. Conclusions

639

640 We report Ni isotope compositions for metalliferous sediments from two of the eastern
 641 Pacific MANOP sites. Both sites exhibit very light Ni isotope compositions (at -0.8 to
 642 -0.2‰) compared to hydrogenetic Fe-Mn crusts (at $+1.6\text{‰}$). Low but variable $\delta^{60}\text{Ni}$
 643 values are also observed for Mn nodules (-0.2 to $+1.0\text{‰}$). We propose two primary
 644 mechanisms to explain the isotopically light diagenetic Ni ‘fingerprint’: (1) Mn cycling,
 645 in which Ni cycling is coupled to the redox-driven dissolution and reprecipitation of Mn
 646 oxides, and (2) the mineralogical transformation of birnessite to todorokite, which may
 647 occur in oxic or sub-oxic sedimentary environments. In Mn-poor oxic sediments we
 648 suggest that additional Ni (and Mo) isotope fractionation accompanies the scavenging

649 of isotopically light Ni by nanoscale Fe (hydr)oxides or Fe-rich authigenic clays.

650

651 We hypothesize that diagenetic remobilization of isotopically heavy Ni balances the
652 oceanic Ni budget. Based on estimates for Mn, we calculate a benthic Ni flux of 0.6 to
653 2.3×10^8 mol/yr, comparable in magnitude to the riverine Ni flux, at 3.6×10^8 mol/yr.

654 The required isotopic composition of this benthic flux to balance the oceanic Ni budget
655 is approximately +3‰, providing a testable hypothesis for future studies. Our
656 calculation does not directly consider the under-constrained possibility of Ni release
657 during the transformation of phyllosilicates to todorokite in oxic marine sediments,
658 a process that would not be associated with a benthic Mn flux. Further lab and field-
659 based investigations are underway targeting the analysis of oxic and sub-oxic sediments
660 and porewaters, and to investigate the Ni isotope fractionation associated with
661 todorokite transformation.

662

663 **Acknowledgements**

664 We would like to thank Francis Albarède and an anonymous reviewer for their
665 comments on a previous version of this paper. SHL is supported by a NERC
666 independent research fellowship (NE/P018181/1). ETH involvement in this research
667 was supported by the Swiss National Science Foundation (SNF) through grants
668 200020-16590 and 200021_184873/1 (to DV). JM's contributions were supported by
669 NSF grant 1657832. The authors would like to thank Emily Ciscato and Aditi
670 Chatterjee for helpful discussions during the project, Rhian O'Callaghan for making
671 Figure 1, Caroline Peacock for feedback on an earlier version of the manuscript, and
672 Matthias Haeckel for providing the Peru Basin nodule sample (77BC11-6).

673

674

675 **References**

676

677 Abbott, A.N., Löhr, S., Trethaway, M., 2019. Are Clay Minerals the Primary Control
678 on the Oceanic Rare Earth Element Budget? *Front. Mar. Sci.* 6, 1–19.
679 <https://doi.org/10.3389/fmars.2019.00504>

680 Archer, C., Vance, D., Lohan, M.C., Milne, A., 2020. The oceanic biogeochemistry of
681 nickel and its isotopes: new data from the South Atlantic and the Southern Ocean
682 biogeochemical divide. *Earth Planet. Sci. Lett.*

683 Atkins, A.L., Shaw, S., Peacock, C.L., 2016. Release of Ni from birnessite during
684 transformation of birnessite to todorokite: Implications for Ni cycling in marine
685 sediments. *Geochim. Cosmochim. Acta* 189, 158–183.
686 <https://doi.org/10.1016/j.gca.2016.06.007>

687 Atkins, A.L., Shaw, S., Peacock, C.L., 2014. Nucleation and growth of todorokite
688 from birnessite: Implications for trace-metal cycling in marine sediments.
689 *Geochim. Cosmochim. Acta* 144, 109–125.
690 <https://doi.org/10.1016/j.gca.2014.08.014>

691 Barling, J., Anbar, A.D., 2004. Molybdenum isotope fractionation during adsorption
692 by manganese oxides. *Earth Planet. Sci. Lett.* 217, 315–329.
693 [https://doi.org/10.1016/S0012-821X\(03\)00608-3](https://doi.org/10.1016/S0012-821X(03)00608-3)

694 Bourne, H.L., Bishop, J.K.B., Lam, P.J., Ohnemus, D.C., 2018. Global Spatial and
695 Temporal Variation of Cd:P in Euphotic Zone Particulates. *Global Biogeochem.*
696 Cycles. <https://doi.org/10.1029/2017GB005842>

697 Bruland, K.W., 1980. Oceanographic distributions of cadmium, zinc, nickel and
698 copper in the North Pacific. *Earth Planet. Sci. Lett.* 47, 176–198.

699 Burns, R.G., Burns, V.M., 1979. Manganese oxides, in: Burns, R.G. (Ed.), *Marine*
700 *Minerals*. pp. 1–46.

701 Cameron, V., Vance, D., 2014. Heavy nickel isotope compositions in rivers and the
702 oceans. *Geochim. Cosmochim. Acta* 128, 195–211.
703 <https://doi.org/10.1016/j.gca.2013.12.007>

704 Cameron, V., Vance, D., Archer, C., House, C.H., 2009. A biomarker based on the
705 stable isotopes of nickel. *Proc. Natl. Acad. Sci.* 106, 10944–10948.
706 <https://doi.org/10.1073/pnas.0900726106>

707 Ciscato, E.R., Bontognali, T.R.R., Vance, D., 2018. Nickel and its isotopes in organic-
708 rich sediments: implications for oceanic budgets and a potential record of ancient

709 seawater. *Earth Planet. Sci. Lett.* 494, 239–250.
710 <https://doi.org/10.1016/j.epsl.2018.04.061>

711 Collier, R., Edmond, J., 1984. The trace element geochemistry of marine biogenic
712 particulate matter. *Prog. Oceanogr.* 13, 113–199. <https://doi.org/10.1016/0079->
713 6611(84)90008-9

714 Dutkiewicz, A., Müller, R.D., O'Callaghan, S., Jónasson, H., 2015. Census of seafloor
715 sediments in the world's ocean. *Geology* 43, 795–798.
716 <https://doi.org/10.1130/G36883.1>

717 Fischer, K., 1983. Particle Fluxes in the Eastern Tropical Pacific Ocean - Sources and
718 Processes. Oregon State University.

719 Gall, L., Williams, H.M., Siebert, C., Halliday, A.N., Herrington, R.J., Hein, J.R.,
720 2013. Nickel isotopic compositions of ferromanganese crusts and the constancy
721 of deep ocean inputs and continental weathering effects over the Cenozoic. *Earth*
722 *Planet. Sci. Lett.* 375, 148–155. <https://doi.org/10.1016/j.epsl.2013.05.019>

723 Goldberg, T., Archer, C., Vance, D., Poulton, S.W., 2009. Mo isotope fractionation
724 during adsorption to Fe (oxyhydr)oxides. *Geochim. Cosmochim. Acta* 73, 6502–
725 6516. <https://doi.org/10.1016/j.gca.2009.08.004>

726 Gueguen, B., Rouxel, O., Rouget, M.L., Bollinger, C., Ponzevera, E., Germain, Y.,
727 Fouquet, Y., 2016. Comparative geochemistry of four ferromanganese crusts
728 from the Pacific Ocean and significance for the use of Ni isotopes as
729 paleoceanographic tracers. *Geochim. Cosmochim. Acta* 189, 214–235.
730 <https://doi.org/10.1016/j.gca.2016.06.005>

731 Gueguen, B., Sorensen, J. V., Lalonde, S. V., Peña, J., Toner, B.M., Rouxel, O., 2018.
732 Variable Ni isotope fractionation between Fe-oxyhydroxides and implications for
733 the use of Ni isotopes as geochemical tracers. *Chem. Geol.*
734 <https://doi.org/10.1016/j.chemgeo.2018.01.023>

735 Heggie, D., Kahn, D., Fischer, K., 1986. Trace metals in metalliferous sediments,
736 MANOP Site M: interfacial pore water profiles. *Earth Planet. Sci. Lett.* 80, 106–
737 116. [https://doi.org/10.1016/0012-821X\(86\)90023-3](https://doi.org/10.1016/0012-821X(86)90023-3)

738 Hein, J.R., Yeh, H.-W., Alexander, E., 1979. Origin of Iron-Rich Montmorillonite
739 from the Manganese Nodule Belt of the North Equatorial Pacific. *Clays Clay*
740 *Miner.* 27, 185–194. <https://doi.org/10.1346/ccmn.1979.0270303>

741 Heller, C., Kuhn, T., Versteegh, G.J.M., Wegorzewski, A. V., Kasten, S., 2018. The
742 geochemical behavior of metals during early diagenetic alteration of buried

743 manganese nodules. Deep. Res. Part I Oceanogr. Res. Pap. 142, 16–33.
744 <https://doi.org/10.1016/j.dsr.2018.09.008>

745 Hens, T., Brugger, J., Etschmann, B., Paterson, D., Brand, H.E.A., Whitworth, A.,
746 Friedrich, A.J., 2019. Nickel exchange between aqueous Ni(II) and deep-sea
747 ferromanganese nodules and crusts. Chem. Geol. 528, 119276.
748 <https://doi.org/10.1016/J.CHEM GEO.2019.119276>

749 Jaun, B., Thauer, R.K., 2007. Methyl-Coenzyme M Reductase and its Nickel Corphin
750 Coenzyme F430 in Methanogenic Archaea, in: Nickel and Its Surprising Impact in
751 Nature. <https://doi.org/10.1002/9780470028131.ch8>

752 Jung, H., Taillefert, M., Sun, J., Wang, Q., Borkiewicz, O.J., Liu, P., Yang, L., Chen,
753 S., Chen, H., Tang, Y., 2020. Redox Cycling Driven Transformation of Layered
754 Manganese Oxides to Tunnel Structures. J. Am. Chem. Soc.
755 <https://doi.org/10.1021/jacs.9b12266>

756 Kadko, D.C., 1981. A detailed study of uranium-series nuclides for several sediment
757 realms of the Pacific. Columbia University.

758 Kessler, W.S., 2006. The circulation of the eastern tropical Pacific: A review. Prog.
759 Oceanogr. <https://doi.org/10.1016/j.pocean.2006.03.009>

760 Klinkhammer, G.P., 1980. Early diagenesis in sediments from the eastern equatorial
761 Pacific, II. Pore water metal results. Earth Planet. Sci. Lett. 49, 81–101.
762 [https://doi.org/10.1016/0012-821X\(80\)90151-X](https://doi.org/10.1016/0012-821X(80)90151-X)

763 Koschinsky, A., Halbach, P., 1995. Sequential leaching of marine ferromanganese
764 precipitates: Genetic implications. Geochim. Cosmochim. Acta 59, 5113–5132.
765 [https://doi.org/10.1016/0016-7037\(95\)00358-4](https://doi.org/10.1016/0016-7037(95)00358-4)

766 Koschinsky, A., Hein, J.R., 2003. Uptake of elements from seawater by
767 ferromanganese crusts: Solid-phase associations and seawater speciation. Mar.
768 Geol. 198, 331–351. [https://doi.org/10.1016/S0025-3227\(03\)00122-1](https://doi.org/10.1016/S0025-3227(03)00122-1)

769 Krishnaswami, S., 1976. Authigenic transition elements in Pacific pelagic clays.
770 Geochim. Cosmochim. Acta 40, 425–434. [https://doi.org/10.1016/0016-7037\(76\)90007-7](https://doi.org/10.1016/0016-7037(76)90007-7)

772 Little, S.H., Sherman, D.M., Vance, D., Hein, J.R., 2014. Molecular controls on Cu
773 and Zn isotopic fractionation in Fe-Mn crusts. Earth Planet. Sci. Lett. 396, 213–
774 222. <https://doi.org/10.1016/j.epsl.2014.04.021>

775 Lyle, M., Heath, G.R., Robbins, J.M., 1984. Transport and release of transition
776 elements during early diagenesis: Sequential leaching of sediments from

777 MANOP Sites M and H. Part I. pH 5 acetic acid leach. *Geochim. Cosmochim. Acta* 48, 1705–1715. [https://doi.org/10.1016/0016-7037\(84\)90026-7](https://doi.org/10.1016/0016-7037(84)90026-7)

779 Manheim, F.T., Lane-Bostwick, C., 1991. Chemical composition of ferromanganese
780 crusts in the world ocean: a review and comprehensive chemical composition of
781 ferromanganese crusts in the world ocean: a review and comprehensive database.
782 Woods Hole, MA.

783 Merrot, P., Juillot, F., Noël, V., Lefebvre, P., Brest, J., Menguy, N., Guigner, J.M.,
784 Blondeau, M., Viollier, E., Fernandez, J.M., Moreton, B., Bargar, J.R., Morin, G.,
785 2019. Nickel and iron partitioning between clay minerals, Fe-oxides and Fe-
786 sulfides in lagoon sediments from New Caledonia. *Sci. Total Environ.* 689,
787 1212–1227. <https://doi.org/10.1016/j.scitotenv.2019.06.274>

788 Morford, J.L., Emerson, S., 1999. The geochemistry of redox sensitive trace metals in
789 sediments. *Geochim. Cosmochim. Acta* 63, 1735–1750.
790 [https://doi.org/10.1016/S0016-7037\(99\)00126-X](https://doi.org/10.1016/S0016-7037(99)00126-X)

791 Ohnemus, D.C., Rauschenberg, S., Cutter, G.A., Fitzsimmons, J.N., Sherrell, R.M.,
792 Twining, B.S., 2017. Elevated trace metal content of prokaryotic communities
793 associated with marine oxygen deficient zones. *Limnol. Oceanogr.* 62, 3–25.
794 <https://doi.org/10.1002/lno.10363>

795 Palenik, B., Brahamsha, B., Larimer, F.W., Land, M., Hauser, L., Chain, P., Lamerdin,
796 J., Regala, W., Allen, E.E., McCarren, J., Paulsen, I., Dufresne, A., Partensky, F.,
797 Webb, E.A., Waterbury, J., 2003. The genome of a motile marine
798 *Synechococcus*. *Nature*. <https://doi.org/10.1038/nature01943>

799 Peacock, C.L., Sherman, D.M., 2007a. Crystal-chemistry of Ni in marine
800 ferromanganese crusts nodules. *Am. Mineral.* 92, 1087–1092.
801 <https://doi.org/10.2138/am.2007.2378>

802 Peacock, C.L., Sherman, D.M., 2007b. Sorption of Ni by birnessite: Equilibrium
803 controls on Ni in seawater. *Chem. Geol.* 238, 94–106.
804 <https://doi.org/10.1016/j.chemgeo.2006.10.019>

805 Poulson Brucker, R.L., McManus, J., Severmann, S., Berelson, W.M., 2009.
806 Molybdenum behavior during early diagenesis: Insights from Mo isotopes.
807 *Geochemistry, Geophys. Geosystems* 10. <https://doi.org/10.1029/2008GC002180>

808 Price, N.M., Morel, F.M.M., 1991. Colimitation of phytoplankton growth by nickel
809 and nitrogen. *Limnol. Oceanogr.* <https://doi.org/10.4319/lo.1991.36.6.1071>

810 Ragsdale, S.W., 2009. Nickel-based enzyme systems. *J. Biol. Chem.* 284, 18571–

811 18575. <https://doi.org/10.1074/jbc.R900020200>

812 Ratié, G., Garnier, J., Calmels, D., Vantelon, D., Guimarães, E., Monvoisin, G.,
813 Nouet, J., Ponzevera, E., Quantin, C., 2018. Nickel distribution and isotopic
814 fractionation in a Brazilian lateritic regolith: Coupling Ni isotopes and Ni K-edge
815 XANES. *Geochim. Cosmochim. Acta* 230, 137–154.
816 <https://doi.org/10.1016/j.gca.2018.03.026>

817 Rehkämper, M., Nielsen, S.G., 2004. The mass balance of dissolved thallium in the
818 oceans. *Mar. Chem.* 85, 125–139. <https://doi.org/10.1016/j.marchem.2003.09.006>

819 Rudnick, R.L., Gao, S., 2003. 3.01 - Composition of the Continental Crust. *Treatise on*
820 *Geochemistry* 1, 1–64. <https://doi.org/http://dx.doi.org/10.1016/B0-08-043751-6/03016-4>

821 Sorensen, J. V., Gueguen, B., Stewart, B.D., Peña, J., Rouxel, O., Toner, B.M., 2020.
822 Large nickel isotope fractionation caused by surface complexation reactions with
823 hexagonal birnessite. *Chem. Geol.* 119481.
824 <https://doi.org/10.1016/J.CHEM GEO.2020.119481>

825 Spivak-Birndorf, L.J., Wang, S.J., Bish, D.L., Wasyljenki, L.E., 2018. Nickel isotope
826 fractionation during continental weathering. *Chem. Geol.*
827 <https://doi.org/10.1016/j.chemgeo.2017.11.028>

828 Stumm, W., Morgan, J.J., 1996. Metal Ions in Aqueous Solutions: Aspects of
829 Coordination Chemistry, in: *Aquatic Chemistry: Chemical Equilibria and Rates*
830 in Natural Waters.

831 Takano, S., Liao, W.H., Tian, H.A., Huang, K.F., Ho, T.Y., Sohrin, Y., 2020. Sources
832 of particulate Ni and Cu in the water column of the northern South China Sea:
833 Evidence from elemental and isotope ratios in aerosols and sinking particles.
834 *Mar. Chem.* 219, 103751. <https://doi.org/10.1016/j.marchem.2020.103751>

835 Takano, S., Tanimizu, M., Hirata, T., Shin, K.C., Fukami, Y., Suzuki, K., Sohrin, Y.,
836 2017. A simple and rapid method for isotopic analysis of nickel, copper, and zinc
837 in seawater using chelating extraction and anion exchange. *Anal. Chim. Acta*
838 967, 1–11. <https://doi.org/10.1016/j.aca.2017.03.010>

839 Tripathy, S.S., Kanungo, S.B., 2005. Adsorption of Co^{2+} , Ni^{2+} , Cu^{2+} and Zn^{2+} from
840 0.5 M NaCl and major ion sea water on a mixture of $\delta\text{-MnO}_2$ and amorphous
841 FeOOH . *J. Colloid Interface Sci.* 284, 30–38.
842 <https://doi.org/10.1016/j.jcis.2004.09.054>

843 Twining, B.S., Baines, S.B., Vogt, S., Nelson, D.M., 2012. Role of diatoms in nickel
844

845 biogeochemistry in the ocean. *Global Biogeochem. Cycles* 26, 1–9.
846 <https://doi.org/10.1029/2011GB004233>

847 Vance, D., Little, S.H., Archer, C., Cameron, V., Andersen, M.B., Rijkenberg, M.J.A.,
848 Lyons, T.W., 2016. The oceanic budgets of nickel and zinc isotopes: the
849 importance of sulfidic environments as illustrated by the Black Sea. *Philos.*
850 *Trans. R. Soc. A Math. Phys. Eng. Sci.* 374, 20150294.
851 <https://doi.org/10.1098/rsta.2015.0294>

852 Wang, R.M., Archer, C., Bowie, A.R., Vance, D., 2018. Zinc and nickel isotopes in
853 seawater from the Indian Sector of the Southern Ocean: The impact of natural
854 iron fertilization versus Southern Ocean hydrography and biogeochemistry.
855 *Chem. Geol.* 1–13. <https://doi.org/10.1016/j.chemgeo.2018.09.010>

856 Wang, S.J., Rudnick, R.L., Gaschnig, R.M., Wang, H., Wasyljenki, L.E., 2019.
857 Methanogenesis sustained by sulfide weathering during the Great Oxidation
858 Event. *Nat. Geosci.* 12. <https://doi.org/10.1038/s41561-019-0320-z>

859 Wang, S.J., Wasyljenki, L.E., 2017. Experimental constraints on reconstruction of
860 Archean seawater Ni isotopic composition from banded iron formations.
861 *Geochim. Cosmochim. Acta* 206, 137–150.
862 <https://doi.org/10.1016/j.gca.2017.02.023>

863 Wasyljenki, L.E., Howe, H.D., Spivak-Birndorf, L.J., Bish, D.L., 2015. Ni isotope
864 fractionation during sorption to ferrihydrite: Implications for Ni in banded iron
865 formations. *Chem. Geol.* 400, 56–64.
866 <https://doi.org/10.1016/j.chemgeo.2015.02.007>

867 Wegorzewski, A. V., Grangeon, S., Webb, S.M., Heller, C., Kuhn, T., 2020.
868 Mineralogical transformations in polymetallic nodules and the change of Ni, Cu
869 and Co crystal-chemistry upon burial in sediments.

870

871

872

873

874

Table 2. Mn-rich sediments analysed in this study and their Ni isotope compositions. Other sample details: depth in sediment, XRD (for MANOP) or identified MnOx phase (Mn nodules) selected elemental concentrations (for full list, see Table S2), Ni/Al ratios and Ni enrichment factors (where EF = $(\text{Ni/Al})_{\text{sample}} / (\text{Ni/Al})_{\text{UCC}}$).

	Depth (cm)	XRD analysis?	Mn (wt%)	Fe (wt%)	P (wt%)	Al (wt%)	Ni (µg/g)	Ni/Al	Ni EF	$\delta^{60}\text{Ni}$	2σ
MANOP Site H sediments											
VULCAN 37BC MP8950 AAZ	3 - 4 cm	✓	4.77	4.08	0.14	5.27	872	0.017	54	-0.17	0.04
VULCAN 37BC MP5306 AAZ	5 - 7 cm		4.42	4.23	0.15	5.41	892	0.016	54	-0.18	0.05
<i>Repeat</i>											
VULCAN 37BC MP5307 AAZ	7 - 9 cm	✓	5.34	4.15	0.14	5.29	785	0.015	49	-0.21	0.04
VULCAN 37BC MP5310 AAZ	13 - 15 cm		2.12	3.75	0.13	4.80	379	0.008	26	-0.27	0.05
VULCAN 37BC MP5312 AAZ	17 - 19 cm		2.12	3.99	0.15	5.17	382	0.007	24	-0.29	0.06
<i>Repeat</i>											
VULCAN 37BC MP5313 AAZ	19 -21 cm	✓	2.09	3.99	0.15	5.26	379	0.007	24	-0.26	0.03
MANOP Site M sediments											
PLUTO 20BC MP8966 AAZ	0.5 - 1 cm		1.43	5.45	0.12	4.16	286	0.007	23	-0.42	0.04
PLUTO 20BC MP8967 AAZ	1 - 3 cm	✓	1.65	5.92	0.13	4.69	317	0.007	22	-0.46	0.04
PLUTO 20BC MP8969 AAZ	5 - 7 cm		1.27	5.30	0.12	4.19	256	0.006	20	-0.43	0.04
PLUTO 20BC MP8971 AAZ	9 - 11 cm		0.85	5.40	0.11	4.23	228	0.005	18	-0.63	0.04
PLUTO 20BC MP8975 AAZ	17 - 19 cm		0.12	5.35	0.09	4.11	229	0.006	18	-0.79	0.05
Mn Nodules											
	Depth (cm)	Main MnOx phase									
USGS NodA1	Surface	Phyllo manganeseates	19.8	9.75	0.45	1.63	5732	0.352	1153	1.06	0.02*
USGS NodP1	Surface	Phyllo manganeseates	30.1	4.91	0.16	1.36	11559	0.850	2784	0.34	0.05*
21KG-1n	Surface	Phyllo manganeseates	31.6	4.29	0.11	1.57	11000	0.790	2587	0.28	0.03
77BC-6	Shallow buried	Todorokite	48.2	0.62	0.05	0.67	1884	0.793	2599	-0.22	0.04
22KL-530cm	Buried, 530cm	Todorokite	31.7	3.23	0.09	1.83	10328	0.452	1482	-0.08	0.04
22KL-801cm	Buried, 801cm	Todorokite	31.9	3.37	0.09	2.03	11492	0.351	1150	0.01	0.03

*n = 5, 2 SD

Supplementary information containing:

1. Ni column chemistry procedures
2. Mineralogy of MANOP samples by XRD (Table S1, Figs S1-S4)
3. Organic C hosted delivery of Ni to MANOP sediments (Fig S5)
4. The oceanic mass balance of Ni: Monte Carlo simulation (Figs S6-S8)

Supplementary Information for “Towards balancing the oceanic Ni budget”

S.H. Little et al., 2020

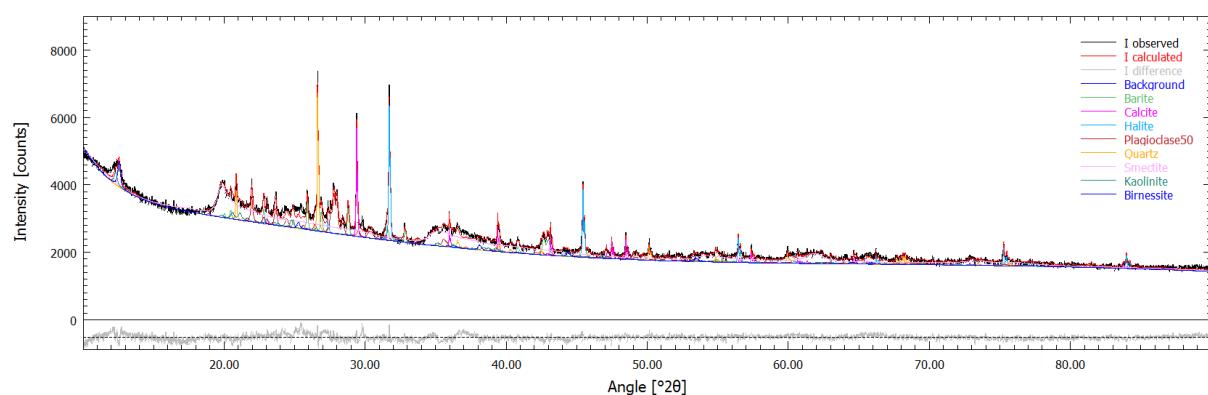
1. Ni column chemistry procedures

The methods used in this study to isolate Ni from its interfering matrix elements have been built upon previous methods used in this lab, and are described in detail elsewhere (Cameron et al., 2009; Ciscato et al., 2018; Vance et al., 2016; Wang et al., 2018). However during this work, the methodology used to purify Ni was changed from the Ni-specific (Eichrom) DMG based resin protocols as described in the earlier work (Cameron et al., 2009; Ciscato et al., 2018; Vance et al., 2016) to a modification of the multi-step protocol described in Wang et al. (2018) (Fig. 2, main text). The main advantage to adopting the multi-step protocol was a reduction of the procedural blank, from an amount as high as 5 ng to negligible values (Archer et al., 2020; Cameron et al., 2009). However, as alluded to by Archer et al. (2020), although the Nobias PA-1 chelate resin produces a matrix-free Ni fraction for seawater samples, the large amounts of Al and Ti that co-exist as potentially interfering matrix elements in sediments or rocks are not removed. Two additional columns were employed to quantitatively remove these elements (Fig. 2). Firstly, the Ni fraction was passed through a cation exchange resin (AG 50W X8, Bio-Rad Inc.) to remove any Al, with Ni eluted in a 0.75 M HCl solution. Secondly, Ti was removed by passing the Al-cleaned Ni fraction through the rare earth specific “Re-Resin” (Eichrom), with Ni eluted in a 7M HCl solution. Both of these columns provide quantitative recovery and separation of Ni from Al and Ti respectively with negligible blank contribution, with the interfering element retained on the resin in both cases. To remove any residual organics, the pure Ni fraction was oxidised by refluxing in a mixture of 15M HNO₃ and H₂O₂ for approximately 1 hour, before finally dissolving in a 2% HNO₃ solution for mass spectrometric analysis.

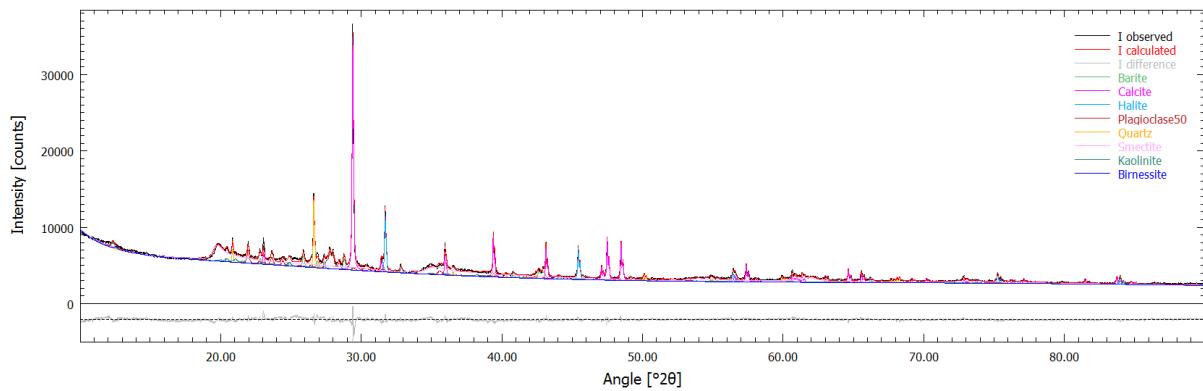
2. Mineralogy of MANOP samples by XRD

Samples were homogenized in an agate pestle and mortar and then back-loaded into 16mm internal diameter stainless steel sample holders. A PANalytical X’Pert PRO XRD instrument was used to collect X-ray powder diffraction patterns between 4 and 90° 2θ at a step size of 0.02° and a collection time of 400 or 800 second per step. The operation conditions for the Cu radiation source were 45 kV and 40 mA, and a Ni filter was used to remove Cu Kβ radiation.

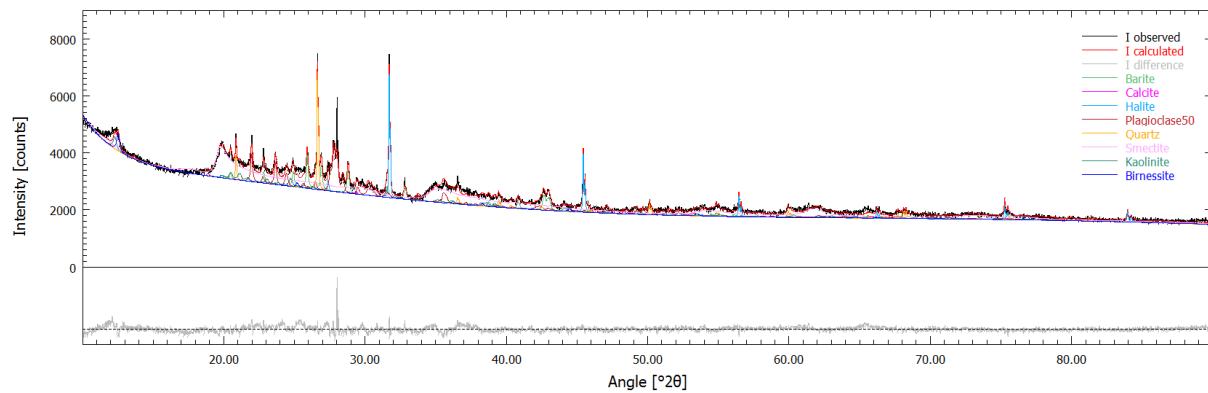
Diffraction patterns were initially interpreted using the Highscore software (PANalytical) with the PDF-2 database from ICDD. Phase quantification was subsequently attempted via a Rietveld refinement analysis of the 10 – 90° 2θ region using BGMN-Profex (Bergmann et al., 1998; Doebelin and Kleeberg, 2015). Crystal structure data for the identified phases were taken from the ICSD and BGMN databases. The major phase smectite was refined with the turbostratically disordered structure model developed by Ufer et al. (2004). The plagioclase structure was refined with an andesine model. The fitting of the diffraction patterns included the refinement of the global parameters background (Lagrange polynomial 7th-8th order) and sample displacement, and the phase parameters scale factors, unit cells, peak profiles and preferred orientation. Refined texture correction factors converged in the range between 0.5 and 3, which is the proposed range for slightly textured samples (e.g., Monecke et al., 2001). The refinements were carried out between 10 and 90° 2θ excluding the broad region of the low-intense basal 001-reflection of smectite (4-8° 2Theta). This 001-reflection of smectite is poorly defined under air dried conditions (1 and/or 2 water interlayers contribute to peak shifts), can affect proper fitting of the background curve and inclusion in the refinement can lead to unclear results (Ufer et al., 2004). The results of the Rietveld analysis are shown in Figures S1 to S4 and Table S1.


The bulk mineral assemblages of the four MANOP samples are similar. The major mineral phase in all samples is smectite (49 – 60 wt%). The broad asymmetric band 02,11 between 19 and 26° 2θ indicates the occurrence of a dioctahedral clay species (montmorillonite) with a turbostratic disordered structure. Other minerals present in all samples include calcite (0.1 – 22 wt%), plagioclase (13 – 20 wt%), quartz (4 – 6 wt%), halite (4 – 5 wt%), kaolinite (4 – 6 wt%) and barite (1 – 3 wt%). A Mn oxide phase, tentatively identified as birnessite, is present at levels close to the detection limit of the XRD analysis (0.3 – 2 wt%). Muscovite (4 wt%) is identified in the sample from site M (8967, 1–3 cm depth) only, representing the only notable difference between this sample and the deepest sample at site H (5313, 19–21 cm), which are

otherwise similar in their phase quantification. Both have significant calcite (at ~20 wt%), considerably more than the two shallower samples from site H (8950, at 3–4 cm, and 5307, at 7–9 cm), which contain 0.1 and 5 wt% calcite respectively. These two shallower site H samples, however, contain proportionally more smectite (at ~60 wt%) and larger amounts of the postulated Mn oxide phase (at ~ 1 wt%) than the site M and deeper site H samples (i.e. 5313 and 8967).


Table S1. XRD: Phase proportions (wt%) of four MANOP samples derived from Rietveld analysis

	Site H				Site M			
	8950	+/-	5307	+/-	5313	+/-	8967	+/-
smectite	59.6	1.7	60.0	1.7	48.6	1.6	49.9	1.5
plagioclase	19.7	1.0	14.6	0.9	12.7	0.7	14.2	0.6
quartz	6.0	0.4	6.1	0.3	5.2	0.3	3.8	0.1
calcite	0.1	0.1	4.9	0.5	21.9	0.8	17.7	0.6
kaolinite	6.2	1.0	5.6	0.9	4.9	0.7	4.3	0.6
halite	4.5	0.3	5.1	0.3	4.6	0.2	3.9	0.2
barite	2.8	0.2	2.2	0.2	1.8	0.2	1.4	0.1
birnessite	1.1	0.2	1.5	0.2	0.3	0.1	0.3	0.1
muscovite	-	-	-	-	-	-	4.4	0.6
R_{wp} %	3.30		3.11		2.90		2.49	
R_{exp} %	2.00		2.05		1.56		1.43	
S	1.65		1.52		1.86		1.74	


Note: R_{wp} weighted residual error, R_{exp} expected error, S goodness of fit. Calculated uncertainties of phase proportions are given as 3 sigma

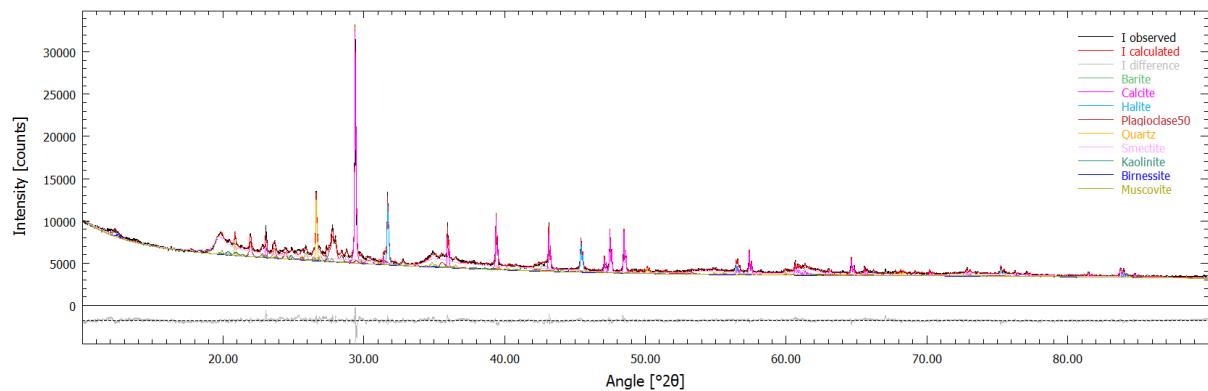

Figure S1. XRD pattern and Rietveld fit of MANOP sample 5307

Figure S2. XRD pattern and Rietveld fit of MANOP sample 5313

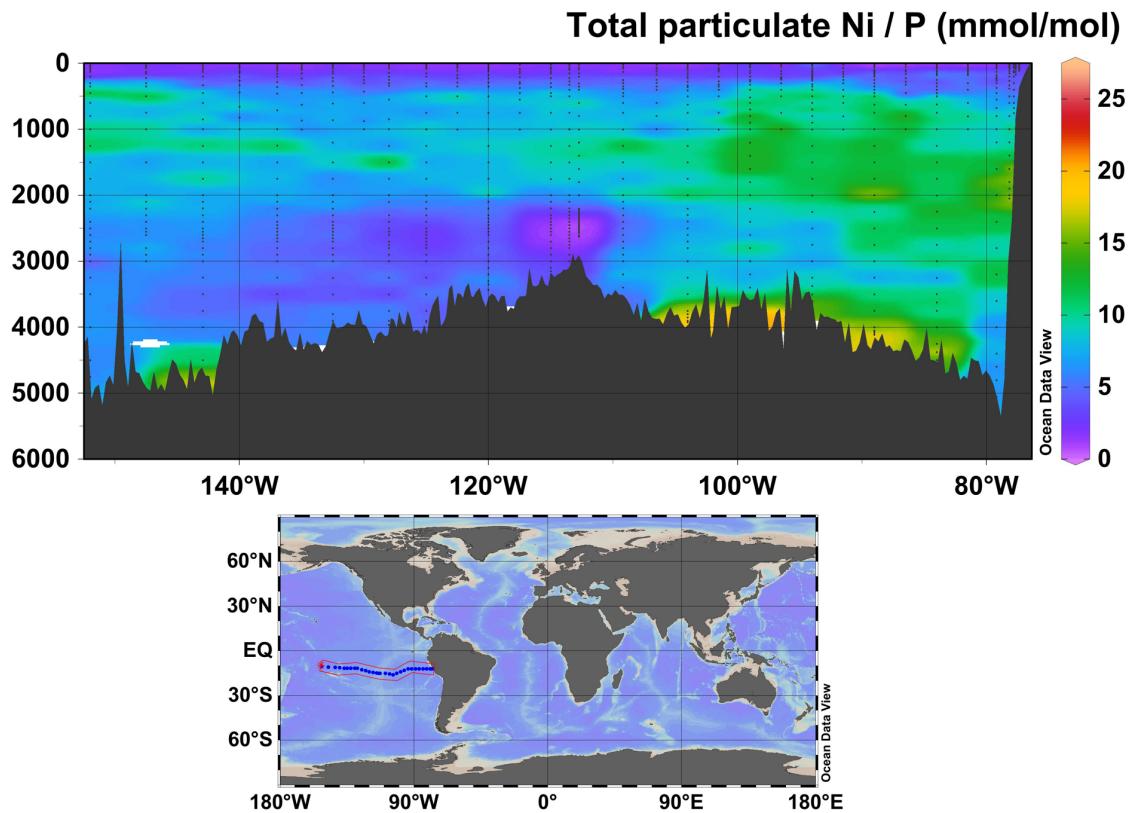

Figure S3. XRD pattern and Rietveld fit of MANOP sample 8950

Figure S4. XRD pattern and Rietveld fit of MANOP sample 8967

3. Organic C hosted delivery of Ni to MANOP sediments

For calculation, please see separate Table S3.

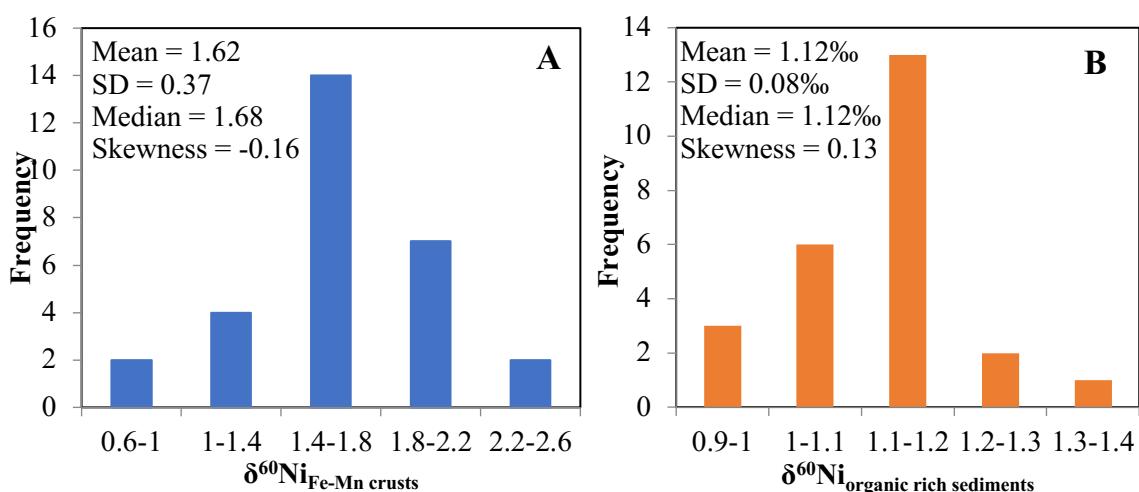
Figure S5. Total particulate Ni/P ratios (from bottle filtration) for GEOTRACES GP16 transect in the eastern equatorial Pacific (Dataset: Ohnemus et al., 2017). Plotted from the GEOTRACES IDP2017 (Schlitzer et al., 2018) using Ocean Data View software (Schlitzer, 2016).

4. The oceanic mass balance of Ni

The Monte Carlo simulation utilised the MATLAB solve tool, whereby two variables (e.g., $\delta^{60}\text{Ni}_{\text{benthic}}$, F_{benthic}) are solved for simultaneously given the following mass balance equations:

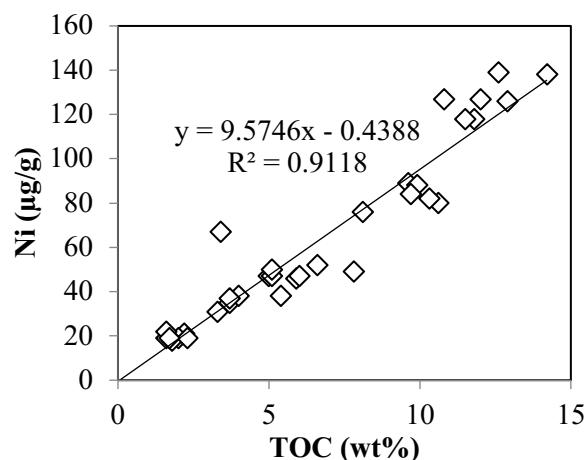
$$(1) \quad F_{\text{river}}\delta_{\text{river}} + F_{\text{dust}}\delta_{\text{dust}} + F_{\text{benthic}}\delta_{\text{benthic}} = F_{\text{oxic}}\delta_{\text{oxic}} + F_{\text{org}}\delta_{\text{org}} + F_{\text{eux}}\delta_{\text{eux}} + F_{\text{carb}}\delta_{\text{carb}}$$

$$(2) \quad F_{\text{river}} + F_{\text{dust}} + F_{\text{benthic}} = F_{\text{oxic}} + F_{\text{org}} + F_{\text{eux}} + F_{\text{carb}}$$

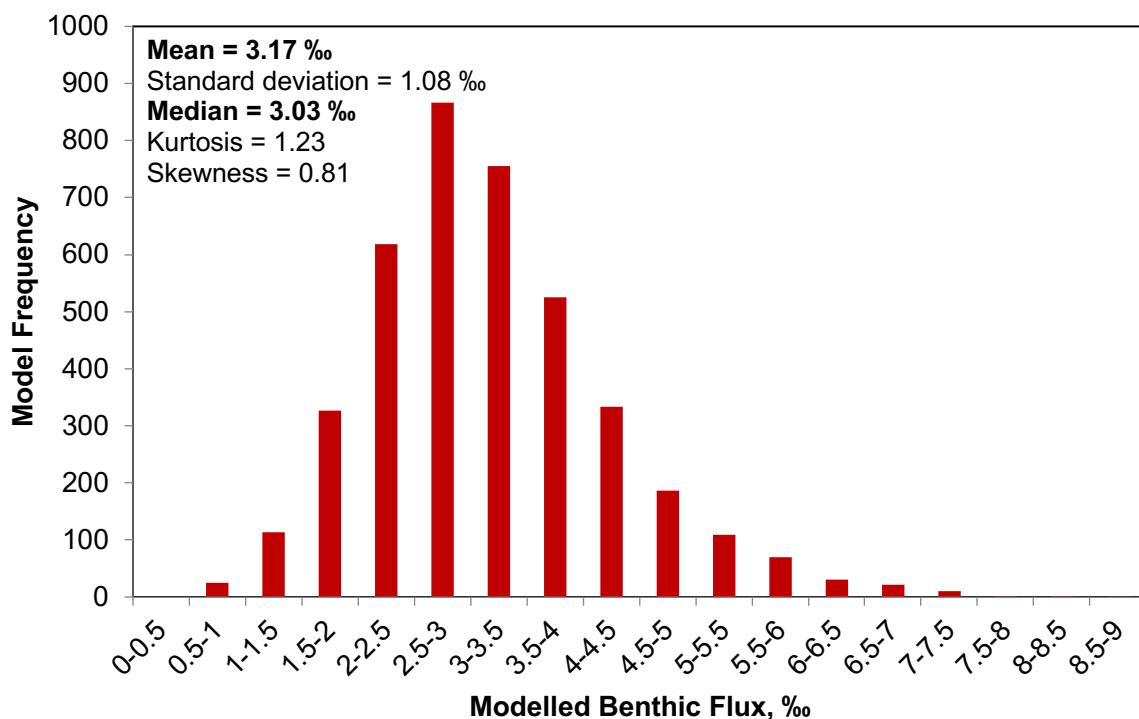

Prior to solving for the unknown variables (i.e. $\delta^{60}\text{Ni}_{\text{benthic}}$, F_{benthic}), the other flux magnitudes are forced by a uniformly distributed random number within their given ranges (Table 3, main text), and their isotopic compositions are forced by a normally distributed random number (see below), generating $\delta^{60}\text{Ni}$ values describing the mean and standard distribution of published data (Table 3, main text). With these initial conditions, the solve tool is then used to solve for the unknown variables, the output is saved, and the simulation is repeated (~10,000 times). Once the desired number of iterations is complete, the modelled benthic flux

magnitude is restricted to its estimated range (as discussed in the main text) by discarding solutions outside of this range. This post-processing has the effect of reducing output flux range for pelagic clays to $1.6 - 4.6 \times 10^8$ mol/yr, compared to its starting range of $1.5 - 5.9 \times 10^8$ mol/yr. This result appears to be robust, however, emerging even if a different output flux variable is selected as an unknown (i.e. solving for F_{oxic} or F_{org} instead of F_{benthic}).

The decision to approximate the isotopic compositions of the ‘known’ output fluxes as normally distributed variables was made based on inspection and analysis of the published data for Fe-Mn crusts (Fig. S6A; Gall et al., 2013; Gueguen et al., 2016) and organic-rich sediments (Fig. S6B; Ciscato et al., 2018). The assumption of normality for a dataset is difficult to prove, but is supported if the following observations are made:


- (1) Mean value similar to median value
- (2) Skewness (measure of symmetry) between -2 and 2
- (3) Kurtosis (measure of how quickly data tails off) between -2 and 2
- (4) ‘Normal’ looking distribution when plotted as a histogram

All four criteria are met for both datasets, albeit that the number of datapoints are too small to be especially confident. This is particularly true for the organic-rich sediment dataset, which is from a single location (the Peru margin – see also below). Nevertheless, while imperfect, this approach was considered more appropriate than the uniformly-distributed approach taken for flux magnitudes.


Figure S6. δ⁶⁰Ni datasets illustrated as frequency histograms showing ‘normal’-like distributions, with selected descriptive statistics. **A.** Fe-Mn crusts (Gall et al., 2013, excluding one outlier at 0.43‰; and Gueguen et al., 2016, means) and **B.** organic-rich sediments (bulk digests, Ciscato et al., 2018).

Relatedly, our reanalysis of the dataset of Ciscato et al. (2018) gives a slightly lower mean $\delta^{60}\text{Ni}_{\text{org}}$ (of $+1.12\text{\textperthousand}$) and a slightly smaller upper limit to the flux to organic-rich sediments (of $2.4 \times 10^8 \text{ mol/yr}$) than given in the original study ($1.22\text{\textperthousand}$ and $2.7 \times 10^8 \text{ mol/yr}$, respectively). Our values are based on the bulk $\delta^{60}\text{Ni}$ and Ni/TOC ratios given in the original Table 2 (we exclude one anomalous bulk Ni/TOC ratio at 1.97×10^{-4}). We choose to cite bulk values (rather than corrected $\delta^{60}\text{Ni}_{\text{auth}}$ values) because there is a good correlation of TOC v Ni, with an intercept at $\sim 0 \text{ \mu g/g Ni}$ (Fig. S7), suggesting no major lithogenic Ni component. By comparison, there is significant scatter in a plot of TOC v Ni/Al, making it difficult to accurately constrain the lithogenic background Ni/Al ratio by this method (as originally suggested by Böning et al., 2012). In future, further studies of this important output flux will better constrain both its magnitude and isotopic composition.

Figure S7. TOC versus Ni concentration for Peru margin organic-rich sediments (replotted from data in Ciscato et al., 2018).

Finally, the modelled isotopic composition on the benthic flux is visualised for the ~ 5000 ‘accepted’ solutions in Fig. S8. The distribution has a slight skew towards higher $\delta^{60}\text{Ni}$; for this reason the median value is taken as the ‘best guess’ $\delta^{60}\text{Ni}_{\text{benthic}}$ value in Table 3 (main text). The range is given as the mean $\pm 1 \text{ SD}$.

Figure S8. Histogram of the modelled $\delta^{60}\text{Ni}_{\text{benthic}}$, with selected descriptive statistics.

References

Archer, C., Vance, D., Lohan, M.C., Milne, A., 2020. The oceanic biogeochemistry of nickel and its isotopes: new data from the South Atlantic and the Southern Ocean biogeochemical divide. *Earth Planet. Sci. Lett.*

Bergmann, J., Friedel, P., Kleeberg, R., 1998. BGMN - a New Fundamental Parameters Based Rietveld Program for Laboratory X-ray Sources, it's Use in Quantitative Analysis and Structure Investigations. *IUCr Comm. Powder Diffr. Newslett.* 20, 5–8.

Böning, P., Fröllje, H., Beck, M., Schnetger, B., Brumsack, H.J., 2012. Underestimation of the authigenic fraction of Cu and Ni in organic-rich sediments. *Mar. Geol.* 323–325, 24–28. <https://doi.org/10.1016/j.margeo.2012.07.004>

Cameron, V., Vance, D., Archer, C., House, C.H., 2009. A biomarker based on the stable isotopes of nickel. *Proc. Natl. Acad. Sci.* 106, 10944–10948. <https://doi.org/10.1073/pnas.0900726106>

Ciscato, E.R., Bontognali, T.R.R., Vance, D., 2018. Nickel and its isotopes in organic-rich

sediments: implications for oceanic budgets and a potential record of ancient seawater. *Earth Planet. Sci. Lett.* 494, 239–250. <https://doi.org/10.1016/j.epsl.2018.04.061>

Doebelin, N., Kleeberg, R., 2015. Profex: A graphical user interface for the Rietveld refinement program BGMN. *J. Appl. Crystallogr.* 48, 1573–1580. <https://doi.org/10.1107/S1600576715014685>

Gall, L., Williams, H.M., Siebert, C., Halliday, A.N., Herrington, R.J., Hein, J.R., 2013. Nickel isotopic compositions of ferromanganese crusts and the constancy of deep ocean inputs and continental weathering effects over the Cenozoic. *Earth Planet. Sci. Lett.* 375, 148–155. <https://doi.org/10.1016/j.epsl.2013.05.019>

Gueguen, B., Rouxel, O., Rouget, M.L., Bollinger, C., Ponzevera, E., Germain, Y., Fouquet, Y., 2016. Comparative geochemistry of four ferromanganese crusts from the Pacific Ocean and significance for the use of Ni isotopes as paleoceanographic tracers. *Geochim. Cosmochim. Acta* 189, 214–235. <https://doi.org/10.1016/j.gca.2016.06.005>

Monecke, T., Köhler, S., Kleeberg, R., Herzig, P.M., Gemmell, J.B., 2001. Quantitative phase-analysis by the Rietveld method using X-ray powder-diffraction data: Application to the study of alteration halos associated with volcanic-rock-hosted massive sulfide deposits. *Can. Mineral.* 39, 1617–1633. <https://doi.org/10.2113/gscanmin.39.6.1617>

Ohnemus, D.C., Rauschenberg, S., Cutter, G.A., Fitzsimmons, J.N., Sherrell, R.M., Twining, B.S., 2017. Elevated trace metal content of prokaryotic communities associated with marine oxygen deficient zones. *Limnol. Oceanogr.* 62, 3–25. <https://doi.org/10.1002/lno.10363>

Schlitzer, R., 2016. Ocean Data View.

Schlitzer, R., Anderson, R.F., Dudas, E.M., Lohan, M., Geibert, W., Tagliabue, A., Bowie, A., Jeandel, C., Maldonado, M.T., Landing, W.M., Cockwell, D., Abadie, C., Abouchami, W., Achterberg, E.P., Agather, A., Aguliar-Islas, A., van Aken, H.M., Andersen, M., Archer, C., Auro, M., de Baar, H.J., Baars, O., Baker, A.R., Bakker, K., Basak, C., Baskaran, M., Bates, N.R., Bauch, D., van Beek, P., Behrens, M.K., Black, E., Bluhm, K., Bopp, L., Bouman, H., Bowman, K., Bown, J., Boyd, P., Boye, M., Boyle, E.A., Branellec, P., Bridgestock, L., Brissebrat, G., Browning, T., Bruland, K.W., Brumsack, H.-J., Brzezinski, M., Buck, C.S., Buck, K.N., Buesseler, K., Bull, A., Butler, E., Cai, P., Mor, P.C., Cardinal, D., Carlson, C., Carrasco, G., Casacuberta, N., Casciotti, K.L., Castrillejo, M., Chamizo, E., Chance, R., Charette, M.A., Chaves, J.E., Cheng, H., Chever, F., Christl, M., Church, T.M., Closset, I., Colman, A., Conway,

T.M., Cossa, D., Croot, P., Cullen, J.T., Cutter, G.A., Daniels, C., Dehairs, F., Deng, F., Dieu, H.T., Duggan, B., Dulaquais, G., Dumousseaud, C., Echegoyen-Sanz, Y., Edwards, R.L., Ellwood, M., Fahrbach, E., Fitzsimmons, J.N., Russell Flegal, A., Fleisher, M.Q., van de Flierdt, T., Frank, M., Friedrich, J., Fripiat, F., Fröllje, H., Galer, S.J.G., Gamo, T., Ganeshram, R.S., Garcia-Orellana, J., Garcia-Solsona, E., Gault-Ringold, M., George, E., Gerringa, L.J.A., Gilbert, M., Godoy, J.M., Goldstein, S.L., Gonzalez, S.R., Grissom, K., Hammerschmidt, C., Hartman, A., Hassler, C.S., Hathorne, E.C., Hatta, M., Hawco, N., Hayes, C.T., Heimbürger, L.-E., Helgoe, J., Heller, M., Henderson, G.M., Henderson, P.B., van Heuven, S., Ho, P., Horner, T.J., Hsieh, Y.-T., Huang, K.-F., Humphreys, M.P., Isshiki, K., Jacquot, J.E., Janssen, D.J., Jenkins, W.J., John, S., Jones, E.M., Jones, J.L., Kadko, D.C., Kayser, R., Kenna, T.C., Khondoker, R., Kim, T., Kipp, L., Klar, J.K., Klunder, M., Kretschmer, S., Kumamoto, Y., Laan, P., Labatut, M., Lacan, F., Lam, P.J., Lambelet, M., Lamborg, C.H., Le Moigne, F.A.C., Le Roy, E., Lechtenfeld, O.J., Lee, J.-M., Lherminier, P., Little, S., López-Lora, M., Lu, Y., Masque, P., Mawji, E., Mcclain, C.R., Measures, C., Mehic, S., Barraqueta, J.-L.M., van der Merwe, P., Middag, R., Mieruch, S., Milne, A., Minami, T., Moffett, J.W., Moncoiffe, G., Moore, W.S., Morris, P.J., Morton, P.L., Nakaguchi, Y., Nakayama, N., Niedermiller, J., Nishioka, J., Nishiuchi, A., Noble, A., Obata, H., Ober, S., Ohnemus, D.C., van Ooijen, J., O'Sullivan, J., Owens, S., Pahnke, K., Paul, M., Pavia, F., Pena, L.D., Peters, B., Planchon, F., Planquette, H., Pradoux, C., Puigcorbé, V., Quay, P., Queroue, F., Radic, A., Rauschenberg, S., Rehkämper, M., Rember, R., Remenyi, T., Resing, J.A., Rickli, J., Rigaud, S., Rijkenberg, M.J.A., Rintoul, S., Robinson, L.F., Roca-Martí, M., Rodellas, V., Roeske, T., Rolison, J.M., Rosenberg, M., Roshan, S., Rutgers van der Loeff, M.M., Ryabenko, E., Saito, M.A., Salt, L.A., Sanial, V., Sarthou, G., Schallenberg, C., Schauer, U., Scher, H., Schlosser, C., Schnetger, B., Scott, P., Sedwick, P.N., Semiletov, I., Shelley, R., Sherrell, R.M., Shiller, A.M., Sigman, D.M., Singh, S.K., Slagter, H.A., Slater, E., Smethie, W.M., Snaith, H., Sohrin, Y., Sohst, B., Sonke, J.E., Speich, S., Steinfeldt, R., Stewart, G., Stichel, T., Stirling, C.H., Stutsman, J., Swarr, G.J., Swift, J.H., Thomas, A., Thorne, K., Till, C.P., Till, R., Townsend, A.T., Townsend, E., Tuerena, R., Twining, B.S., Vance, D., Velazquez, S., Venchiarutti, C., Villa-Alfageme, M., Vivancos, S.M., Voelker, A.H.L., Wake, B., Warner, M.J., Watson, R., van Weerlee, E., Alexandra Weigand, M., Weinstein, Y., Weiss, D., Wisotzki, A., Woodward, E.M.S., Wu, J., Wu, Y., Wuttig, K., Wyatt, N.,

Xiang, Y., Xie, R.C., Xue, Z., Yoshikawa, H., Zhang, J., Zhang, P., Zhao, Y., Zheng, L., Zheng, X.-Y., Zieringer, M., Zimmer, L.A., Ziveri, P., Zunino, P., Zurbrick, C., 2018. The GEOTRACES Intermediate Data Product 2017. *Chem. Geol.* <https://doi.org/10.1016/j.chemgeo.2018.05.040>

Ufer, K., Georg, R., Reinhard, K., Helge, S., Reiner, D., Jörg, B., 2004. Description of X-ray powder pattern of turbostratically disordered layer structures with a Rietveld compatible approach. *Zeitschrift für Krist. - Cryst. Mater.* 219, 519–527. <https://doi.org/10.1524/zkri.219.9.519.44039>

Vance, D., Little, S.H., Archer, C., Cameron, V., Andersen, M.B., Rijkenberg, M.J.A., Lyons, T.W., 2016. The oceanic budgets of nickel and zinc isotopes: the importance of sulfidic environments as illustrated by the Black Sea. *Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.* 374, 20150294. <https://doi.org/10.1098/rsta.2015.0294>

Wang, R.M., Archer, C., Bowie, A.R., Vance, D., 2018. Zinc and nickel isotopes in seawater from the Indian Sector of the Southern Ocean: The impact of natural iron fertilization versus Southern Ocean hydrography and biogeochemistry. *Chem. Geol.* 1–13. <https://doi.org/10.1016/j.chemgeo.2018.09.010>

Supplementary Table S2

MANOP Site H sediments	Depth (cm)	XRD?	Elemental concentrations	
			Mn (wt%)	Fe (wt%)
VULCAN 37BC MP8950 AAZ	3 - 4 cm	x	4.77	4.08
VULCAN 37BC MP5306 AAZ	5 - 7 cm		4.42	4.23
VULCAN 37BC MP5307 AAZ	7 - 9 cm	x	5.34	4.15
VULCAN 37BC MP5310 AAZ	13 - 15 cm		2.12	3.75
VULCAN 37BC MP5312 AAZ	17 - 19 cm		2.12	3.99
VULCAN 37BC MP5313 AAZ	19 - 21 cm	x	2.09	3.99
MANOP Site M sediments				
PLUTO 20BC MP8966 AAZ	0.5 - 1 cm		1.43	5.45
PLUTO 20BC MP8967 AAZ	1 - 3 cm	x	1.65	5.92
PLUTO 20BC MP8969 AAZ	5 - 7 cm		1.27	5.30
PLUTO 20BC MP8971 AAZ	9 - 11 cm		0.85	5.40
PLUTO 20BC MP8975 AAZ	17 - 19 cm		0.12	5.35
Mn Nodules				
Depth (cm)	Main MnOx		19.8	9.75
	USGS NodA1	phyllomanganates		
	USGS NodP1	phyllomanganates		
	21KG-1n	phyllomanganates		
	77BC-6	Todorokite		
	22KL-530cm	Todorokite		
22KL-801cm	Buried, 801cm	Todorokite	31.9	3.37

Mg (wt%)	Al (wt%)	P (wt%)	Ca (wt%)	Ti (wt%)	Li (µg/g)	Ni (µg/g)
1.36	5.27	0.14	1.25	0.25	65.4	872
1.41	5.41	0.15	1.71	0.31	49.6	892
1.39	5.29	0.14	2.79	0.30	32.8	785
1.20	4.80	0.13	8.31	0.28	28.6	379
1.26	5.17	0.15	7.25	0.29	31.6	382
1.27	5.26	0.15	7.50	0.29	32.5	379
1.34	4.16	0.12	6.10	0.22	33.7	286
1.52	4.69	0.13	6.55	0.24	37.7	317
1.37	4.19	0.12	6.32	0.21	26.7	256
1.39	4.23	0.11	9.26	0.21	29.9	228
1.53	4.11	0.09	11.45	0.21	32.1	229
2.78	1.63	0.45	10.52	0.25	65.8	5732
1.80	1.36	0.16	1.97	0.20	120.9	11559
1.74	1.57	0.11	1.32	0.19	179.2	12414
2.04	0.67	0.05	0.94	0.02	6.3	5313
2.14	1.83	0.09	0.86	0.11	22.3	8255
2.22	2.03	0.09	0.87	0.10	20.1	7109

Cu (µg/g)	Zn (µg/g)	Mo (µg/g)	Selected ratios		
			Fe/Al	Ni/Mn	Ni/P mmol/mol
512	537	39.1	0.78	0.018	319
523	492	59.6	0.78	0.020	305
481	400	34.9	0.78	0.015	289
354	316	5.5	0.78	0.018	150
387	343	5.5	0.77	0.018	139
388	347	5.4	0.76	0.018	135
193	307	9.9	1.31	0.020	128
217	341	11.4	1.26	0.019	127
188	298	4.0	1.26	0.020	116
195	301	1.7	1.28	0.027	109
142	317	0.4	1.30	0.187	131
1017	541	326	5.98	0.029	676
10190	1363	535	3.61	0.038	3916
11000	1615	601.6	2.73	0.039	5817
1884	952	275.6	0.93	0.011	5581
10328	617	195.9	1.77	0.026	4832
11492	602	151.4	1.66	0.022	4356

Table S3: Calculated delivery of Ni to MANOP sediments via sinking organic matter

Eq. Pacific plankton Ni/P Twining et al., 2012	g Ni / g P	Bulk plankton SD min max	1.08 mmol/mol 0.41 mmol/mol 0.25 mmol/mol 1.15 mmol/mol	0.0020 0.0008 0.0005 0.0022
Particulate Ni/P along GP16, below mixed layer Ohnemus et al., 2017 (Fig. S5)		Range, upper Range, lower	15 mmol/mol 5 mmol/mol	0.0284 0.0095
			Site H	Site M
Corg flux	µg / cm ² yr		110	130
Calculated org P flux	µg / cm ² yr		2.3	2.7
Calculated org Ni flux				
<i>Plankton Ni/P</i>	µg / cm ² yr	Bulk plankton SD min plankton max plankton	0.0047 0.0018 0.0011 0.0050	0.0055 0.0021 0.0013 0.0059
<i>Particulate Ni/P</i>	µg / cm ² yr	Upper Ni/P _{part} Lower Ni/P _{part}	0.0651 0.0217	0.0769 0.0256
Density	g / cm ³		0.168	0.211
g dry, salt-free sediment/cm ³ wet sediment			0.212	0.255
Sedimentation Rate	cm / yr		0.0007	0.001
Mass accumulation rate	g / cm ² yr		0.000148	0.000255
Calculated Ni concentration supplied by organic matter	µg/g	Bulk plankton min plankton max plankton Upper Ni/P _{part} Lower Ni/P _{part}	32 7 34 439 146	22 5 23 301 100
Measured Ni concentration <i>Whole cores</i>	µg / g	min max mean median	379 892 615 584	229 317 263 256
Ni concentration supplied by organic matter	% of mean Ni	Bulk plankton min plankton max plankton	5 1 5	8 2 9

Upper Ni/P _{part}	71	114
Lower Ni/P _{part}	24	38

References

Lyle, M., Heath, G.R., Robbins, J.M., 1984. Transport and release of transition elements during early
Cochran, J. K. (1985). Particle mixing rates in sediments of the eastern equatorial Pacific: Evidence
Kadko, D.C., 1981. A detailed study of uranium-series nuclides for several sediment reaimes of the
Ohnemus, D.C., Rauschenberg, S., Cutter, G.A., Fitzsimmons, J.N., Sherrell, R.M., Twining, B.S., 201
Twining, B.S., Baines, S.B., Vogt, S., Nelson, D.M., 2012. Role of diatoms in nickel biogeochemistry

	A.W.	Redfield		
g Ni / g P	C	12	124	1488
g Ni / g P	P	30.97	1	30.97
g Ni / g P				48.05
g Ni / g P				
g Ni / g P				

g Ni / g P
g Ni / g P

Reference, notes

Lyle et al., 1984

Assumes atomic C:P ratio of 124:1

Cochrane, 1985

Average: upper 5 cm of one core and one lander char

Average: upper 19 cm, one core each site

Kadko, 1981 (thesis, by 230Th and 231Pa)

γ diagenesis: Sequential leaching of sediments from MANOP Sites M and H. Part I. pH 5 acetate from 210Pb, 239,240 Pu and 137Cs distributions at MANOP sites. *Geochimica et Cosmochimica Acta* 73, 1–12. Columbia University.

7. Elevated trace metal content of prokaryotic communities associated with marine oxygen demand in the ocean. *Global Biogeochem. Cycles* 26, 1–9. <https://doi.org/10.1029/2011GB004233>

=====

nber at each site

c acid leach. *Geochim. Cosmochim. Acta* 48, 1705–1715.

Geochim. Cosmochim. Acta, 49 (5), 1195-1210.

deficient zones. *Limnol. Oceanogr.* 62, 3–25. <https://doi.org/10.1002/lno.10363>