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ABSTRACT
Background: Large (>1 Mb), polymorphic inversions have substantial impacts on
population structure and maintenance of genotypes. These large inversions can be
detected from single nucleotide polymorphism (SNP) data using unsupervised
learning techniques like PCA. Construction and analysis of a feature matrix from
millions of SNPs requires large amount of memory and limits the sizes of data sets
that can be analyzed.
Methods: We propose using feature hashing construct a feature matrix from a VCF
file of SNPs for reducing memory usage. The matrix is constructed in a streaming
fashion such that the entire VCF file is never loaded into memory at one time.
Results: When evaluated on Anopheles mosquito and Drosophila fly data sets, our
approach reduced memory usage by 97% with minimal reductions in accuracy for
inversion detection and localization tasks.
Conclusion:With these changes, inversions in larger data sets can be analyzed easily
and efficiently on common laptop and desktop computers. Our method is publicly
available through our open-source inversion analysis software, Asaph.

Subjects Bioinformatics, Computational Biology, Genomics, Data Mining and Machine Learning
Keywords Principal component analysis, Feature hashing, Chromosomal inversions, Single
nucleotide polymorphisms

INTRODUCTION
Several methods and associated software packages for detecting and localizing large
(>1 Mbp) polymorphic inversions from genome-wide single-nucleotide polymorphism
(SNP) data are available (Sindi & Raphael, 2010; Ma & Amos, 2012; Zheng et al., 2012;
Cáceres & González, 2015; Luu, Bazin & Blum, 2016; Love et al., 2019; Privé et al., 2020)
and have been applied successfully to species such zebra finches (Knief et al., 2016),
Atlantic cod (Kirubakaran et al., 2016), and sunflowers (Huang et al., 2020).
Mutations that develop in a particular orientation are often private to that orientation.
Recombination during meiosis is repressed in the inversion region between chromosomes
with different inversion orientations (Noor et al., 2001; Rieseberg, 2001; Fuller et al.,
2018), which prevents sharing of mutations. When variant sites are analyzed, they
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demonstrate high levels of correlation with each other and the inversion genotypes of the
samples. Consequently, principal component analysis (PCA), which identifies groups of
correlated variables and reduces each group to a single variable (component), is quite
effective at identifying the presence of large inversions in a population. Since other
processes such as population structure can also induce correlation, PCA can be combined
with single-SNP association tests to localize the correlated SNPs and differentiating
inversions from other sources of correlation (Nowling & Emrich, 2018; Nowling, Manke &
Emrich, 2020).

It is not uncommon for variant data sets to have hundreds of thousands or even millions
of SNPs per chromosome. For example, the Drosophila Genetics Reference Panel v2
(Huang et al., 2014) has ~750–950 k SNPs per chromosome arm, while 81 Burkina
Faso Anopheles gambiae mosquito samples from the 1000 Anopheles Genome Project
(Anopheles gambiae 1000 Genomes Consortium, 2017) have ~8.5–11.5 million SNPs per
chromosome arm. Widely used machine learning libraries such as scikit-learn expect
feature matrices to be encoded using 32-bit floating-point numbers. The amount of
memory required to even load and construct feature matrices from these data sets can
exceed what is available on current “high-end” desktops (e.g., 32 or 64 GB of RAM).
For example, Tsuyuzaki et al. (2020) reviewed 21 implementations of 10 approximate PCA
algorithms on single-cell RNA sequencing (scRNA-seq) data in terms of accuracy, run
time, and memory usage; On the larger data sets, 13 PCA implementations required more
than the available 128 GB of RAM and crashed.

While many common analyses such as inferring population structure (Patterson, Price
& Reich, 2006; Reich, Price & Patterson, 2008), correcting for stratification in GWAS
(Price et al., 2006), and detecting inversions (Ma & Amos, 2012; Nowling & Emrich, 2018)
employ dimensionality reduction techniques such as PCA as a final step, they still require
the construction of the full feature matrix in memory as a preliminary step. We are led
to ask: why do we even need the full feature matrix in the first place if we are just going to
perform PCA in the end? While efficient approximate PCA algorithms (e.g., Halko et al.
(2011)) are commonly available in libraries like Scikit-Learn (Pedregosa et al., 2011),
most methods are focused on reducing run time complexity, not memory usage.
An out-of-core (online) PCA algorithm by Halko et al. (2011) and three online algorithms
implemented in Tsuyuzaki et al. (2020) are most similar to our work in terms of their goals.
The algorithm by Halko et al. (2011) requires the construction of ≥2 O(mk) matrices
to find k components of a n × m matrix, which prevent any significant reduction in
memory usage for wide data sets like those found in genomics. Tsuyuzaki et al. (2020)
implemented three online PCA methods that were able to successfully process even the
largest of the scRNA-seq they considered. Their online PCA methods, however, are only
suited for streaming over samples (row first), while we need to be able to stream over
variants (column-first) to detect inversions.

Diaz-Papkovich et al. (2019) demonstrated the feasibility of “stacking” multiple rounds
of dimensionality reduction. They pre-processed their data with PCA, which is more
computationally efficient, before performing a second round of dimensionality reduction
with UMAP (McInnes, Healy & Melville, 2018), which is less scalable. With this in mind,
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we designed and implemented a two-step approach that avoids the construction of the full
feature matrix in memory. First, feature hashing (Weinberger et al., 2009; Attenberg et al.,
2009; Freksen, Kamma & Larsen, 2018) is used to directly construct a reduced feature
matrix as variant data are read column-wise from a VCF file. Feature hashing is a naïve
dimensionality reduction method related to random projection techniques (Freksen,
Kamma & Larsen, 2018; Achlioptas, 2001; Li, Hastie & Church, 2006). Feature hashing
requires less memory and compute power than PCA but is not able to reduce the data to
as few dimensions. Therefore, we apply PCA to the much smaller matrix as a second round
of dimensionality reduction to identify a handful of dimensions which capture the
inversions of interest.

Here, we demonstrate that inversions can be detected and localized using a much
smaller matrix. We achieve similar accuracies with as few as 10,000 dimensions, a
significant reduction from the original hundreds of thousands to millions of dimensions.
Most dimensionality reduction methods applied to matrices already loaded into
memory, but this negates any potential memory savings. Instead, we use feature hashing
(Weinberger et al., 2009; Attenberg et al., 2009; Freksen, Kamma & Larsen, 2018) to
directly construct feature matrices in a reduced dimensionality space. When evaluated
on previously characterized A. gambiae mosquito and D. melanogaster fly inversions,
memory usage of our software Asaph (Nowling & Emrich, 2018; Nowling, Manke &
Emrich, 2020) was reduced by up to 97% with no apparent reduction in accuracy.

MATERIALS AND METHODS
Data sets
We used SNP data from the 2L and 2R chromosome arms of 81 A. gambiae and 198
D. melanogaster samples (see Table 1). These SNPs were originally released as part of the
1000 Anopheles Genome (Anopheles gambiae 1000 Genomes Consortium, 2017) and
Drosophila Genetics Reference Panel v2 (Mackay et al., 2012; Huang et al., 2014)
publications. We prepared the data (e.g., selected samples, kept only biallelic sites) by
following steps described in Nowling, Manke & Emrich (2020) and as implemented in
scripts available in the Asaph GitHub repository.

Inversion analysis using SNP data
An overview of the pipeline for inversion analysis from single-nucleotide polymorphism
(SNP) data is presented in Fig. 1. SNP data are first read from VCF files. The variant
call format (VCF) is a tab-separated text file with headers for storing genomic variants for
each sample in a population (Samtools, 2020). Each line stores the information for a single
variant with its columns containing the values for each sample. Secondly, a feature
matrix is constructed. Third, PCA is performed on the feature matrix. And lastly,
inversions are detected and localized from Manhattan plots of PC-SNP associations.

Feature matrix construction with categorical features
Assume that we have n samples and v positions with biallelic genotypes. Each position has
a reference allele and an alternative allele, and at each position, each sample has one of
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three genotypes (homozygous reference, homozygous alternate, or heterozygous).
We encode the variants as a feature matrix X with dimensions n × 3v. If sample i has the
homozygous reference, homozygous alternate, or heterozygous genotype at position k,
then we set matrix entry Xi,3k+1, Xi,3k+2, or Xi,3k+3, respectively, to 1. If the sample’s
genotype is unknown, then all three entries are 0. The total required storage is O(nv).

Feature matrix construction with feature hashing
We create an n × k feature matrix X, where k is a parameter provided by the user.
The alleles for each variant position were encoded as strings in the form
“chromosome_position_allele” (e.g., “2L_34534_T” or “2R_9897_A”). The associated
column p for each allele was determined from the string s by p = abs(hash(s)) % k as
described by Weinberger et al. (2009) (Note that we do not alternate the signs of the
values). We increment the feature matrix entry Xi,p by the number of copies sample i has of

Table 1 Benchmark Results.

Species Inversion Samples Number
of SNPs

Inversion frequencies Data source

An. gambiae 2La 81 8,296,600 90.7% Anopheles gambiae 1000 Genomes Consortium, 2017

An. gambiae 2Rb 81 11,332,702 82.1% Anopheles gambiae 1000 Genomes Consortium, 2017

D. melanogaster In(2L)t 198 910,880 14.4% Mackay et al., 2012; Huang et al., 2014

D. melanogaster In(2R)NS 198 740,948 12.1% Mackay et al., 2012; Huang et al., 2014

Figure 1 Diagram of inversion analysis workflows. In the first step of the analysis, SNPs are streamed
from a VCF file and used to construct a feature matrix. In the second step, PCA is performed on the
feature matrix. After this, there are three separate analyses that can be performed: supervised prediction
of inversion genotypes using PC coordinates, detection of inversions from Manhattan plots visualizing
PC-SNP association tests along the chromosome (arm), and localization of inversions by through
boundary detection. Full-size DOI: 10.7717/peerj.12831/fig-1
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that allele. If the sample has a homozygous genotype, then the position will be incremented
by 2. If the sample has a heterozygous genotype, then two positions are each incremented
by 1. If the sample’s genotype is unknown, then no entries in the matrix are changed.
Dimensionality reduction is achieved by setting k such that k ≪ v, the number of variant
positions.

Our implementation uses the Scikit-Learn FeatureHasher transformer. The FeatureHasher
API expects a list of all strings for each sample, while VCF files are transposed relative to the
usual ordering of feature matrices; each line stores the alleles for all samples for a single
variant. Our implementation proceeds as follows: A dense n × k feature matrix of all zeros is
initialized. Lines (each containing one variant) of the VCF file are read and parsed in batches.
A list of allele strings is created for each sample in the batch. The lists of strings are
hashed and a sparse feature matrix of the hashed features for the subset of variants in the
batch are returned. The sparse matrix is used to update the dense matrix and then discarded.
This process is repeated until all variants are processed. The total required storage is O(nk).

Choosing the number of dimensions
Assume that we want to bound the ratio of distances in projected and full spaces between
any two samples u and v by e:

1� e � k p uð Þ � p vð Þ k2
k u� v k2 � 1þ e

The Johnson–Lindenstrauss (JL) lemma (Larsen & Nelson, 2017) relates the minimum
number of dimensions k needed in a randomly generated subspace to bound the error by e
given the number of samples n:

k � 4log nð Þ
e2

2
� e3

3

(1)

Assume that there are l + m SNPs. l SNPs are different between the inversion genotypes,
while the genotypes of the m remaining SNPs are determined randomly with the caveat
that there must be variation at each site. Assume that samples u and v both have one
homozygous genotype and w has a heterozygous genotype of the inversion. The l SNPs will
be the same in u and v but different between w and the other two:

k u� v k2, k u� w k2

We want to ensure that the bound e on the error due to the projection is less than the
ratio of samples with different inversion genotypes. We will need to pick a value for e such
that

e <
k u� w k2
k u� v k2 � 1

We assume that the SNP genotypes are encoded as described above. In other words,
one column is used per possible value of the variable and only one column in the group
may have a value of 1 indicating that the variable has that value. For samples with
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unknown genotypes, all columns in the group will have values of 0. The maximum
difference in distance between two samples contributed by a single variant position is 1.
We assume that the m non-inversion SNPs are the same in the two samples w and v
and any differences are among the l inversion SNPs. The total difference in distance due to
the inversion is then:

e <
l þm
m

� 1

e <
l
m

(2)

Eq. (2) can be used to choose the e parameter for Eq. (1) and estimate the minimum
number of dimensions required to detect an inversion.

Evaluation of inversion genotype separation with number of
dimensions
The ability of inversion genotypes to be separated after PCA was evaluated using a
supervised learning experiment (Nowling, Manke & Emrich, 2020). A sweep was
performed over the dimensions parameter with the goal of determining whether the
inversion genotypes were separable after PCA. For each number of dimensions, the
following steps were taken: (1) a feature matrix of the given dimensionality was
constructed, (2) the first two principal components were extracted using scikit-learn’s PCA
class with the parameter whiten = True, (3) the samples were divided into training
and testing sets using scikit-learn’s train_test_split function stratification enabled, (4) a
logistic regression model was trained to predict the inversion genotypes from the first two
PC coordinates using scikit-learn’s SGDClassifier class with the loss = “log” parameter,
and (5) accuracy was calculated on the models’ predictions for the testing using
scikit-learn’s accuracy_score function.

Inversion detection
We compared Asaph, pcadapt (Luu, Bazin & Blum, 2016; Privé et al., 2020), and inveRsion
(Cáceres et al., 2012; Cáceres & González, 2015; Caceres, 2021) on the task of inversion
detection. SNPs were evaluated for association with the PC coordinates by statistical
tests. The SNPs were read from the VCF file in a streaming fashion to avoid loading the full
data set into memory. For each SNP, the genotypes of the samples were tested against the
samples’ coordinates along a single principal component. We employed the one-way
analysis of variation (ANOVA) test as implemented by Scipy (Virtanen et al., 2020).
Samples’ PC coordinates were partitioned into groups by the samples’ genotypes. When a
sample had a missing genotype for a given SNP, the sample was excluded from the test.
The −log10 transformed p-values for each SNP were plotted along the chromosome to
create a Manhattan plot. Inversions were detected by visual identification of a square wave
pattern.

We used the following parameters for Asaph: Import and PCA using a reduced matrix
was specified by the “–feature-type hashed –num-dimensions” flags to the asaph_pca
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program. 3,847 and 4,532 dimensions were used for the A. gambiae and D. melanogaster
samples, respectively. With the full matrix, we used categorical features (“–feature-type
categories”). PCA was performed with the default number of PCs (10) for Asaph. Only the
first PC was used in association testing and plotting (“–components 1”).

For pcadapt, the VCF files were converted into the Plink binary bed (Purcell et al., 2007;
Chang et al., 2015) format using Plink v1.9 (“–make-bed–allow-extra-chr”). Two principle
components were specified for the analysis (“pcadapt (filename, K = 2)”). Lastly, SNP
association scores were plotted (“plot (x, option = “scores”)”).

We used the following approach for the R package inveRsion: VCF files for the four SNP
data sets were converted to the “raw” text format using Plink with “–recode A –allow-
extra-chr”. A custom script (see Asaph GitHub repository) was used to convert the raw
format to the expected file format for inveRsion. InveRsion was run on each of the four
data sets with the following commands and parameters: setUpGenoDatFile (file =
“inveRsion.txt”, sortMinor = TRUE, saveRes = FALSE), codeHaplo (gDat, saveRes =
FALSE), scanInv (hapCode, window = 0.5, saveRes = FALSE), and listInv (scanRes,
hapCode = hapCode, geno = TRUE, all = FALSE, thBic = 0). We encountered errors on the
Anopheles data sets, but we were able to resolve the errors by specifying the regions of
interest for the listInv function as 1 Mb to the left and right (19.5–43.5 and 18.0–28.0 Mbp,
respectively) of the known 2La and 2Rb inversion boundaries from Corbett-Detig et al.
(2019) and Lobo et al. (2010).

Inversion localization
In Asaph v2, we introduced an algorithm for detecting inversion boundaries. The goal of
the algorithm is to identify change points in between inversion and non-inversion regions.
The SNP p-values from the PC–SNP association tests (see above) are used as input to
the algorithm. Each SNP is categorized as significant or not using a Bonferroni-corrected
significance threshold of 0.01/num_snps. The chromosome is divided into non-
overlapping windows (default window size of 10 kb). The fraction of significant SNPs
in each window is tested using a binomial test with the alternative hypothesis that the
observed fraction of statistically significant SNPs is greater than expected. The expected
probability of success (that a SNP is significant) is estimated as the fraction of statistically
significant SNPs across the entire chromosome. In cases where a window has no SNPs
or no significant SNPs, the p-value is estimated as 1.0. Windows are tested for significance
using a Bonferroni-corrected significance threshold of 0.0001/num_windows. Lastly, the
inversion ends are estimated from the centers of the left-most and right-most statistically
significant windows.

We compare the predicted coordinates for the four inversions from Asaph v2 and
inveRsion (Cáceres et al., 2012; Cáceres & González, 2015) to the known inversion
boundaries coordinates from Corbett-Detig et al. (2019), Lobo et al. (2010), and Huang
et al. (2014). We calculated the overlap between predicted and known coordinates
(rounded to units of 0.1 Mb) using the Sørensen–Dice coefficient:
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DSC ¼ 2 P \ Tj j
Pj j þ Tj j

where P is the range of the predicted region in units of bp and T is the range of the known
region in units of bp.

Benchmarking
We benchmarked Asaph (with full and reduced matrices), pcadapt, and inveRsion on
detection and localization to measure run times and memory usage. Note that the
workflows for detection and localization are the same for Asaph so this workflow was only
run once for both tasks. The separate stages of the Asaph, pcadapt, and inveRsion
workflows were grouped into single tasks as shell and R scripts, respectively. We used the
same parameters used in the validation analyses as described above. Run times and
memory usage were recorded with the GNU time command (v1.7) using the “-v” flag.
The following software versions were used in the benchmarks: Python 3.7.3, R 3.6.3,
matplotlib 3.3.2, Numpy 1.19.2, scipy 1.5.2, seaborn 0.11.0, and sklearn 0.23.2. Conversion
from VCF to Plink bed (pcadapt) and custom text file formats (inveRsion) were not
included in the benchmarks.

Software implementation
This software, which we have named Asaph, is available on GitHub (https://github.com/
rnowling/asaph) under the open-source Apache Software License v2.0. Asaph is
implemented in Python 3 and uses the Numpy (Harris et al., 2020), Scipy (Virtanen et al.,
2020), and Scikit-Learn (Pedregosa et al., 2011) libraries. Asaph development is supported
by a series of tests written against the command-line interface and run automatically
upon commit by a continuous integration (CI) process. Documentation is provided in the
form of tutorials available in the repository.

RESULTS
Heuristic accurately estimates number of dimensions required
We began by evaluating how the number of reduced dimensions influenced the
separability of the inversion genotypes with principal component analysis (PCA)
(see Fig. 2). We used SNP data sets for four chromosome arms (2L and 2R of 81
A. gambiae (Anopheles gambiae 1000 Genomes Consortium, 2017) and 2L and 2R of 198
D. melanogaster (Huang et al., 2014)) each with a single large (>5 mb) polymorphic
inversion (see Table 1). Using our derived heuristic (see Methods section), we estimated
that 3,847 and 4,532 dimensions, respectively, would be required to analyze inversions in
the A. gambiae and D. melanogaster samples. To evaluate this estimate, we constructed
reduced feature matrices ranging from 10 to 10,000 dimensions, performed PCA, and
trained logistic regression models to predict inversion genotypes from the first 2 PC
coordinates. The model genotyped the A. gambiae 2La and D. melanogaster In(2L)t and
ln(2R)NS inversions with 100% accuracy but only 94% accuracy for the A. gambiae 2Rb
inversion. Significantly fewer dimensions were needed than estimated by our heuristic
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in all cases except for the A. gambiae 2Rb inversion, for which the estimate was similar to
the observed number of required dimensions. We concluded that the heuristic model is a
useful heuristic for estimating the required number of reduced dimensions.

Accurate inversion detection with substantially less memory
We next evaluated unsupervised detection of the four inversions with and without
dimensionality reduction (see Fig. 3). The four inversions were clearly visible in Manhattan

Figure 2 Heuristic accurately identifies upper bound on required dimensions. Feature matrices were constructed from SNPs from the four
different data sets using feature hashing. PCA was performed on the hashed feature matrices, and coordinates along the first two principal com-
ponents were used as inputs to logistic regression models trained to predict the inversion genotypes. The LRmodel was trained and evaluated with 10
to 10,000 feature hashing dimensions (blue solid lines). The maximum numbers of needed dimensions (red dashed lines) were estimated with the JL
Lemma from the fraction of the chromosome spanned by the inversions according to their previously determined physical coordinates (see Methods
section). Full-size DOI: 10.7717/peerj.12831/fig-2

Nowling et al. (2022), PeerJ, DOI 10.7717/peerj.12831 9/18

http://dx.doi.org/10.7717/peerj.12831/fig-2
http://dx.doi.org/10.7717/peerj.12831
https://peerj.com/


plots generated for both methods from single-SNP association tests between samples’ PC
coordinates and SNP genotypes (see Figs. 3A–3D, 3E–3H). There were no apparent
differences in the Manhattan plots created with and without dimensionality reduction.
We concluded that the online dimensionality reduction has no discernable negative impact
on Asaph’s ability to detect inversions.

We next compared Asaph v2 to pcadapt (Luu, Bazin & Blum, 2016; Privé et al., 2020)
and inveRsion (Cáceres et al., 2012; Cáceres & González, 2015; Caceres, 2021). Pcadapt
identified all four inversions (see Figs. 3I–3L), however only the endpoints of the In(2L)t
inversion were identified in Fig. 2K. We encountered an error in inveRsion during the
“scanInv” step when attempting to scan the entire 2L and 2R chromosome arms for the
A. gambiae data; we re-ran the step and defined a region of interest spanning 5 mb

Figure 3 Comparison of predicted inversion regions.We evaluated Asaph (with full and reduced feature matrices), pcadapt, and inveRsion on the
task of detecting inversions in four SNP data sets. Pcadapt and Asaph generate Manhattan plots showing −log10 p-values from association tests
between PCs and SNPs, while inveRsion identifies regions and calculates a Bayesian Information Criteria (BIC) score. Higher indicates greater
confidence in all cases. InveRsion reports ranges for each predicted inversion on a chromosome; the box for each predicted is colored so that it can be
distinguished from the others. Full-size DOI: 10.7717/peerj.12831/fig-3
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upstream and downstream of the known 2La and 2Rb inversion coordinates. InveRsion
detected the 2La and 2Rb inversions as the only inversions (see Figs. 3M, 3N). InveRsion
ran without error on the D. melanogaster 2L and 2R chromosome arms but detected
multiple potential inversions on each arm (see Figs. 3O, 3P). For 2L, two (0.1–6.3 Mbp,
9.7–14.5 Mbp) of the four detected regions covered the left and right endpoints of the
In(2L)t inversion. The two other regions (15.8–16.3 Mbp, 19.4–23.0 Mbp) were not
associated with any of the inversions described by Huang et al. (2014). Five possible
inversion regions were detected on 2R (see Fig. 3P). Huang et al. (2014) described seven
other inversions (In(2R)Y1–In(2R)Y7) on 2R, each observed in only a single individual;
yet none of the four other regions predicted by inveRsion were good matches.
We concluded that Asaph and pcadapt were similarly effective in detecting inversions,
while inveRsion was more sensitive at the cost of potential false positives.

Inversion breakpoint localization with new boundary detection
algorithm
In Asaph v1 and pcadapt, inversions are localized through visual inspection of the
Manhattan plots. For Asaph v2, we designed a boundary detection algorithm (see Methods
section) that provides precise predictions of the inversion breakpoint locations (see Table 2
and horizontal red lines in Figs. 3A–3H). We noted above that inveRsion detected the
two endpoints of the D. melanogaster In(2L)t inversion as separate regions, so we merged
these two regions to create a single predicted region (0.1–14.5 Mbp). For 2R, only a
single predicted region (11.3–16.4 Mbp) overlapped with the known coordinates for
In(2R)NS and was used.

We evaluated agreement by calculating overlap (using the Dice coefficient) between the
predicted coordinates from Asaph v2 (with full and reduced feature matrices) and
inveRsion and the physical coordinates given in Lobo et al. (2010),Huang et al. (2014), and
Corbett-Detig et al. (2019) Asaph achieved a slightly higher average overlap across all
four inversions with the full matrix (94.9% for the full matrix, 94.5% for the reduced
matrix). The differences manifested in improved overlap for D. melanogaster In(2R)NS
(91.6% vs 88.3%) but worse overlap for D. melanogaster In(2L)t (88.7% vs 90.2%); Asaph
identified the same boundaries for A. gambiae 2La and 2Rb with both matrices. When
compared with inveRsion, the difference in average overlap between the two methods was

Table 2 SNP data sets.

Chromosome Inversion Expected range (Mb) Predicted range (Mb, Overlap)

Asaph (full) Asaph (reduced) inveRsion

Anopheles 2L 2La 20.5–42.2 20.5–42.2 (100.0%) 20.5–42.2 (100.0%) 20.6–46.2 (91.3%)

Anopheles 2R 2Rb 19.0–26.8 19.0–26.7 (99.3%) 19.0–26.7 (99.3%) 19.1–27.7 (93.9%)

Drosophila 2L In(2L)t 2.2–13.2 0.5–14.3 (88.7%) 0.5–13.9 (90.2%) 0.1–14.5 (86.7%)

Drosophila 2R In(2R)NS 11.3–16.2 10.7–16.5 (91.6%) 10.7–16.9 (88.3%) 11.3–16.4 (98.0%)

Average Overlap 94.9% 94.5% 92.5%

Note:
In this study, we used four SNP data sets drawn from two chromosome arms of two insects. Details of the data sets, inversions, and sources are detailed below.
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relatively small (94.5% for Asaph with the reduced matrix, 92.5% for inveRsion). Notably,
inveRsion was more accurate for the D. melanogaster In(2R)NS inversion, while Asaph v2
was more accurate for the remaining three inversions (A. gambiae 2La and 2Rb and
D. melanogaster In(2L)t).

Online dimensionality reduction substantially reduces memory usage
We benchmarked the three tools (Asaph with full and reduced feature matrices, pcadapt,
and inveRsion) across three tasks (detecting, localizing, and genotyping inversions) and
recorded their run times and memory usage (see Table 3). In cases where a tool did
not support a particular task, a benchmark was not performed. In particular, pcadapt does
not support localization or genotyping, while inveRsion does not support genotyping. Note
that the workflows for detection and localization with Asaph are the same, so a single
benchmark was performed for both tasks.

Pcadapt was the fastest (≤14 s) tool for detecting inversions across all four data sets,
while Asaph (with both feature engineering methods) had the second lowest run time
(≤7 m 36 s). Asaph with the reduced feature matrix had the lowest memory usage
(≤0.3 GB), while pcadapt’s had the second lowest memory usage (≤0.8 GB). InveRsion’s
run time (≤11 h 1 m) and the memory usage for inveRsion (≤19.7 GB) and Asaph with the
full feature matrix (≤13.5 GB) were several orders of magnitude greater than pcadapt
and Asaph with the reduced feature matrix. Note that the same run time and memory
usage results apply to Asaph and inveRsion for localization since the detection and
localization workflows are the same for each program.

Table 3 Estimated inversion breakpoints.

Data set Method Detection Localization Run time (s) Memory usage (GB)

An. gambiae 2L Asaph (full) x x 5 m 31 s 10.0 GB

Asaph (reduced) x x 5 m 26 s 0.3 GB

pcadapt x 10 s 0.6 GB

inveRsion x x 4 h 13 m 13.9 GB

An. gambiae 2R Asaph (full) x x 7 m 0 s 13.5 GB

Asaph (reduced) x x 7 m 36 s 0.3 GB

pcadapt x 14 s 0.8 GB

inveRsion x x 11 h 1 m 19.7 GB

D. melanogaster 2L Asaph (full) x x 3 m 56 s 11.6 GB

Asaph (reduced) x x 3 m 36 s 0.3 GB

pcadapt x 10 s 0.5 GB

inveRsion x x 3 h 1 m 9.0 GB

D. melanogaster 2R Asaph (full) x x 3 m 14 s 9.5 GB

Asaph (reduced) x x 3 m 10 s 0.3 GB

pcadapt x 9 s 0.4 GB

inveRsion x x 2 h 33 m 8.6 GB

Note:
We compared the accuracy of inversion localization (boundary detection) by Asaph (with full and reducedmatrices) with
inveRsion. Overlaps between the estimated and predicted ranges were calculated using the Dice coefficient.
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Overall, we conclude that the required run time and memory usage of pcadapt and
Asaph with the reduced feature matrix are suitable for use on a common desktop or laptop
computer and the differences between the two would be largely inconsequential to
most users. Asaph with the reduced feature matrix offers a substantial improvement in
run time compared with Asaph with the full feature matrix. InveRsion is not a viable
option for users with common desktop or laptop computers due to extremely long run
times and high memory usage.

DISCUSSION
We evaluated feature hashing for reducing the dimensionality of feature matrices
generated from SNPs and the impact on the detection of large, polymorphic inversions
from variant data. We described a heuristic that applies the Johnson–Lindenstrauss (JL)
lemma to determine the number of dimensions used for feature hashing based on the
expected size of the inversion relative to the size of the chromosome. When evaluated
on two Anopheles and two Drosophila inversions, the heuristic appeared to overestimate
the number of required dimensions in most cases (Overestimation is preferred to
underestimation which would prevent the model from detecting the inversions).

With these changes, Asaph’s memory usage was reduced from tens of gigabytes to
hundreds of megabytes (up to 97%) for the four data sets considered here. Asaph and
pcadapt were similar in memory usage and run time and both were significantly faster and
more memory efficient than inveRsion. Asaph and pcadapt employ different but
complementary approaches. Pcadapt has native support for Plink’s binary bed format
(Chang et al., 2015; Purcell et al., 2007), which is able to encode each genotype with just
2 bits. In comparison, libraries like Scikit-Learn operate on matrices that use a 4-byte
(or 32-bit) floating point number to encode each genotype. From the storage format alone,
pcadapt reduces memory usage by a factor of 16. Internally, pcadapt provides functions
for calculating matrix-vector multiplications so that it can perform linear algebra
operations without unpacking the data. Our online dimensionality reduction approach
could be combined with pcadapt’s native support for the efficient binary Plink bed format
to obtain even further reductions in memory usage.

We also introduced an automated boundary detection algorithm. Inversion regions
predicted by the algorithm were able to reproduce the experimentally-determined region
with an average accuracy of 94.5%. The boundary detection algorithm is a step towards
producing a fully automated pipeline for inversion detection and localization that could be
used for high-throughput annotation of polymorphic inversions from variant data sets.

That said, our method was only tested on four data sets from two insect species,
A. gambiae and D. melanogaster. The inversions chosen as test cases could be
considered relatively easy. The data sets had large sample sizes (81 and 198 samples,
respectively), the inversions had relatively high frequencies (at least 10%), and only one
inversion was present on each chromosome. Going forward, it would be useful to test more
challenging cases such as multiple, overlapping inversions such as the 2Rbc inversion
system in A. gambiae and the 3R chromosomal arm of D. melanogaster and smaller,
lower-frequency, and more recently arisen inversions. We will also want to test alternatives
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to dimensionality reduction such as SNP thinning (e.g., selecting 1 SNP per 100 Kbp
region) and the impact of data sets with large numbers of SNPs with unknown genotypes.

CONCLUSIONS
In summary, Asaph can now analyze inversions using large variant data sets on a
commodity desktop or laptop computer. By achieving these performance improvements
with minimal changes in accuracy, we believe that Asaph will be of wider interest and
see greater usage. Further, the online dimensionality reduction approach we outlined can
be used to scale other variant data workflows (e.g., population inference) and has
significant utility beyond just the Asaph software package.
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