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Distributed data naturally arise in scenarios involving multiple sources of observations,
each stored at a different location. Directly pooling all the data together is often prohibited
due to limited bandwidth and storage, or due to privacy protocols. A new robust distributed
algorithm is introduced for fitting linear regressions when data are subject to heavy-tailed
and/or asymmetric errors with finite second moments. The algorithm only communicates
gradient information at each iteration, and therefore is communication-efficient. To achieve
the bias-robustness tradeoff, the key is a novel double-robustification approach that applies
on both the local and global objective functions. Statistically, the resulting estimator
achieves the centralized nonasymptotic error bound as if all the data were pooled together
and came from a distribution with sub-Gaussian tails. Under a finite (2 + §)-th moment
condition, a Berry-Esseen bound for the distributed estimator is established, based on
which robust confidence intervals are constructed. In high dimensions, the proposed
doubly-robustified loss function is complemented with ¢;-penalization for fitting sparse
linear models with distributed data. Numerical studies further confirm that compared with
extant distributed methods, the proposed methods achieve near-optimal accuracy with low
variability and better coverage with tighter confidence width.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

In many applications, there are a massive number of individual agents/organizations collecting data independently.
Multiple-site research has brought the possibility of studying rare outcome that require larger sample sizes, accelerating
more generalizable findings, and bringing together investigators with different expertise from various backgrounds (Sidran-
sky et al,, 2009). Due to limited resources, such as bandwidth and storage, or privacy concerns, researchers across different
sites are only allowed to share summary statistics without allowing collaborating parties to access raw data (Wu et al.,
2012). Moreover, the collected data may often be contaminated by high level of noise, and thus of low quality. For exam-
ple, in the context of gene expression data analysis, it has been observed that some gene expression levels have kurtosis
values much larger than 3, despite of the normalization methods used (Wang et al., 2015). It is therefore important to de-
velop robust and distributed learning algorithms with controlled communication cost and desirable statistical performance,
measured by both efficiency and robustness.
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Distributed learning algorithms have received considerable attention for multi-source studies in the past decade. Due
to privacy concerns, data collected at each source, such as node, sensor or organization, must remain local. The goal is to
develop efficient statistical learning methods that allow shared analyses or summary statistics without sharing individual
level data. The classical divide-and-conquer principle is based on aggregating local estimators, that is, estimators computed
separately on local machines, to form a final estimator; see, for example, Chen and Xie (2012), Li et al. (2013), Zhang et
al. (2015), Zhao et al. (2016), Rosenblatt and Nadler (2016), Lee et al. (2017), Battey et al. (2018) and Volgushev et al.
(2019), among many others. We refer to Huo and Cao (2018) for a more complete literature review. The divide-and-conquer
approach, also known as one-step averaging, only takes one communication round, and therefore is convenient and has
minimal communication cost. However, in order for the averaging estimator to achieve the same convergence rate as the
centralized estimator, each local machine must have access to at least /N samples, where N is the total sample size. This
limits the number of machines allowed in the communication network.

To overcome this barrier of one-step averaging, multi-round procedures have been proposed for distributed data analysis
with a large number of local agents (Shamir et al., 2014; Wang et al., 2017; Jordan et al., 2019; Wang et al., 2019). For
linear and generalized linear models, Wang et al. (2017) and Jordan et al. (2019) proposed multi-round distributed (pe-
nalized) M-estimators that achieve optimal rates of convergence under very mild constraints on the number of machines.
Chen et al. (2019) studied an iterative algorithm with proper smoothing for quantile regression under memory constraint,
which may also apply under distributed computing platform. Alternatively, Dobriban and Sheng (2021) proposed an iterative
weighted parameter averaging scheme for distributed linear regression when the dimension is comparable to the sample
size.

For linear models under data parallelism, most of the existing distributed algorithms work with the least squares method,
either by (weighted) averaging local least squares estimators or iteratively minimizing shifted (penalized) least squares loss
functions. From a robustness viewpoint, distributed least squares based method inherits the sensitivity (non-robustness) of
its centralized counterpart to the tails of the error distributions, hence increasing the variability of the estimator. In this
paper, we propose a robust distributed algorithm for linear regression with heavy-tailed errors. Our proposal is inspired
by Huber’s M-estimation (Huber, 1973) but with double data-adaptive robustification parameters to achieve a balanced
tradeoff between statistical optimality and communication efficiency. We refer the reader to Yohai and Maronna (1979),
Portnoy (1985), Mammen (1989), He and Shao (1996) and He and Shao (2000) for the asymptotic properties of the classical
Huber regression estimator in both fixed-p and increasing-p settings.

Our setup includes the heteroscedastic linear model with asymmetric errors, to which the least absolute deviation (LAD)
regression does not naturally apply. Following the terminology in Catoni (2012), the type of “robustness” considered in this
paper is quantified by nonasymptotic exponential deviation of the estimator versus polynomial tail of the error distribution.
The ensuing procedure does sacrifice a fair amount of robustness to adversarial contamination of the data. The motivation
of this work is different from and should not be confused with the classical notion of robust statistics (Huber and Ronchetti,
2009).

The distributed method is built upon the iterative, multi-round algorithm proposed by Wang et al. (2017) and Jordan
et al. (2019), which only communicates gradient information at each round and therefore is communication-efficient. By
a delicate choice of local and global robustification parameters, the proposed estimator satisfies exponential-type devia-
tion bounds when the errors only have finite variance. Specifically, we show that the distributed estimator, obtained by a
few rounds of communications, achieves the optimal centralized deviation bound as if the data were pooled together and
subject to sub-Gaussian errors. The robustification parameters are also self-tuned, making the algorithm computationally
convenient. We further derive a Berry-Esseen bound for the distributed estimator, based on which we construct robust
confidence intervals. Finally, we propose a distributed penalized adaptive Huber regression estimator for high-dimensional
sparse models, and establish its (near-)optimal theoretical guarantees.

Notation: For each integer k > 1, we use RF to denote the k-dimensional Euclidean space. The inner product of two

vectors u = (ug, ..., U, v=(v1,..., vi)" € R¥ is defined by u™v = (u, v) = Zfﬂ ujvi. We use ||- ||, (1 <p <o0) to denote
the ¢,-norm in R¥: [lull, = (XX, [uilP)"/? and |Julleo = max;<i< [u;|. For any k x k symmetric matrix A € R®¥, |A|;,
is the operator norm of A. For a positive semidefinite matrix A € R¥*k | . ||x denotes the norm induced by A, that is,

lulla = |AY2u|, u € R¥. Moreover, we use Sk=1 = {u € R¥: ||lu|l, = 1} to denote the unit sphere in R¥. For two sequences
of non-negative numbers {an},>1 and {bn}n>1, an < by indicates that there exists a constant C > 0 independent of n such
that a, < Cby; ay 2 by is equivalent to b, < ap; a; < by is equivalent to a, < b, and b, < ay.

2. Distributed adaptive Huber regression
2.1. Distributed Huber regression with adaptive robustification parameters
Suppose we observe independent data vectors {(y;, x;)}_; following the linear model

yi=x{f*+¢ei, E(&lx)=0, i=1,...,N, (21)
1

where x; = (Xj1, ..., Xjp)" with x;; =1 is the covariate for the ith individual, * € RP is the underlying coefficient vector,
and ¢;’s are independent error variables. This setting allows conditional heteroscedastic models, where ¢; can depend on x;.
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For example, in a location-scale model we have ¢; = o (x;)e;, where o (x;) is a function of x;, and e; is independent of x;. In
the absence of normality assumption on the (conditional) error distribution, Huber’'s M-estimator (Huber, 1973) is one of
the most widely used robust alternative to the least squares estimator. Given some 7 > 0, referred to as the robustification
parameter, Huber’s regression M-estimator for estimating g* is defined as

N
~ o~ ~ 1
B =Br eargmin Lo (B) :=— )Y Lc(yi —xp),
T prie T N; (Vi :

where £;(u) = 0.5u2I(Ju| < 7) + (t|u| — 0.512)I(Ju| > T) is the Huber loss. Traditionally, T is often chosen to be 1.345¢
with o either determined by a robust scale estimate or simultaneously estimated by solving a system of equations, in
order to achieve 95% asymptotic relative efficiency while gaining robustness when there are contaminated or heavy-tailed
symmetric errors (Bickel, 1975; Western, 1995). In the presence of asymmetric heavy-tailed errors, Fan et al. (2017) and
Sun et al. (2020) proposed (regularized) adaptive Huber regression estimators with 7 scaling with the sample size and
parametric dimension, and established exponential-type deviation bounds when ¢;’s only have finite (14 §)-th moments for
some 0 <6 <1.

In linear model (2.1), we allow heteroscedastic errors that are of the form & = o (x;j)e;, where o (-) is an unknown
function on RP and e; is independent of x;. When the error variables &; are heavy-tailed, asymmetric and have finite
variance o2, Sun et al. (2020) showed that Huber’s estimator //3\1 with 7 < o,/N/(p +logN), referred to as the adaptive
Huber regression (AHR) estimator, exhibits sharp finite-sample deviation properties (Catoni, 2012), while the least squares
estimator is far less concentrated around g*. We say ¢; is heavy-tailed if it has infinite k-th absolute moment for some
k>2.

In the distributed setting, assume that the overall dataset {(y,-,xi)}{":1 is stored on m node machines, one central
machine and m — 1 local machines that connected to the central. For j=1,...,m, the jth machine stores a subsam-
ple of n; observations, denoted by (i, x)}iez;, and Zj's are disjoint index sets that satisfy U'}L]If ={1,...,N} and
N= Z;-":] |Z;| = ZT:] nj. Without loss of generality, we assume ny =---=nj=n and N =n-m is divisible by m. We thus
refer to n as the local sample size. When the entire dataset is available, the optimal 7 scales with the total sample size N
and dimension p for optimal bias and robustness tradeoff. With decentralized data, each local machine only has access to a
subsample, so that the “locally optimal” T depends on the local sample size. This, however, will lead to sub-optimal bounds
for the aggregated estimator because t is not large enough to offset the bias. To parallelize AHR in a distributed setting with-
out compromising statistical optimality, we introduce two robustification parameters t and «, referred to as the global and
local robustification parameters, and define the global and local Huber loss functions as £r (B) =(1/N) Zl 1l (i — xTﬁ)
and E,,,{(ﬂ) =(1/n) Z,dj L (yi —xjp) for j=1,...,m. Using this adaptive robustification procedure, we then extend the
approximate Newton-type method (Shamir et al., 2014; Jordan et al., 2019) to robust regression with skewed heavy-tailed
errors.

Starting with an initial estimator 8 of g*, we define the shifted adaptive Huber loss

-~

L(B)=L1,c(B) — (VL1 (B?D) — VL (B?), B)

~ o~ T s
= L1c(8) = (VE1c(B) = = > VL (B®). B). BeR. (22)

j=1

Implicitly the shifted loss Z(~) depends on both local and global robustification parameters k and t. It uses data available
only on the first machine, used as the central machine, along with p-dimensional gradient vectors £j,,((,3(0)) (j=2,...,m)
that were sent from the remaining local machines. The ensuing one-step estimator is given by

BD =B € argmin Z(B). (23)
BeRP

This procedure requires one communication round of O(pm) bits, and thus is communication-efficient. To investigate the
statistical properties of S, we impose the following moment condition on the data generating process.

(C1). The predictor x € RP is sub-Gaussian: there exists v > (2log2)~1/2 such that P(|z'u| > vt) < 2e~/2 for every unit
vector u € SP~! and t > 0, where z=X"1/2x and ¥ =[E(xxT) is positive definite. Moreover, the regression error & satisfies
E(g|x) =0 and E(e2|x) < o2 almost surely.

For prespecified parameters r, r, > 0, define the events

& ={?ecom} and &.(r)={IIVL:(B)la <1}, (2.4)

where O(r) :={8 e RP: || —p*|lx <r} and Q:= =~!. Here r quantifies the statistical accuracy of the initial estimator E(O),
and r* determines the estimation error of the centralized AHR estimator which essentially depends on the score VL (8*%)
with the global robustification parameter.
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Theorem 2.1. Assume Condition (C1) holds. For any u > 0, let the robustification parameters satisfy T > k < o/n/(p +u), and
suppose the local sample size satisfies n 2 p + u. Then, conditioned on the event Ey(rg) N Ex(ry) with 8r, <rg < o, the one-step
estimator BV defined in (2.3) satisfies

1BV = plls S [ ro v, and (25)
~ DN Tu
1BV — 5+ 2TV (s S o, (2.6)

with probability at least 1 — 3e™

In the above theorem, the bound (2.5) reflects the delicate dependence of the one-step error on the initial error rg as
well as the centralized error rate r,. If we take E(O) to be a local estimator constructed on a single local machine that has
access to only n observations, we may expect a sub-optimal convergence rate ro < o +/p/n. Moreover, it can be shown that
HVllf(ﬂ Vg <o+/p/N+0?/t + tp/N with high probability, up to logarithmic factors; see Lemma Appendix A.2 in the
Appendix. Hence, the choice of r, corresponds to the optimal rate of convergence when the entire dataset is available and
T =< 0/N/p. Under the prescribed sample size scaling n 2> p, the one-step estimator E(l) refines the statistical accuracy of
,5(0) by a factor of order /p/n, which is strictly less than 1. We thus expect the multi-step estimator, with sufficiently many
communication rounds, will achieve the optimal convergence rate obtainable on the entire dataset.

The proposed multi-round procedure for adaptive Huber regression is iterative, starting at iteration 0 with an initial
estimate B ¢ RP. At iteration t > 1, it updates the estimate 8© by fitting a shifted adaptive Huber regression which
leverages global first-order information, depending on t, and local higher-order information, depending on «. The procedure
involves two steps.

1. COMMUNICATING GRADIENT INFORMATION. The central machine broadcasts B'“*” to every local machine. The jth machine,
2 < j <m, computes the gradient V.L; ; (8¢~1), and sends it back to the central machine. This step requires a communica-
tion of 2(m — 1)p bits.

2. FITTING LocAL sHIFTED AHR. The central machine computes the update E‘t), defined as a solution to the optimization
problem

min £(B) := L1.c(B) — <v21,x<ﬁ“*”> - % D VL (B, ﬁ>, (2.7)

P
BeR i

which can be solved by the method of iteratively reweighted least squares or quasi-Newton methods. Details are given in
section 4.1. We summarize the procedure, with an early stopping criterion, in Algorithm 1.

Algorithm 1: Communication-Efficient Adaptive Huber Regression.

Input: data batches {(y;, Xi)}iez;, j=1,...,m, stored on m machines, robustification parameters T > k > 0, initialization E‘O’, number of iterations
T, gradient tolerance go = 1.
1: fort=1,2...,T do

2:  Broadcast /3“ D to all local machines;

3:  The jth (1< j < m) machine computes VE T(,B“ Dy, and transmit it to the central machine;

4:  Compute VL (BCD)=(1/m) Y \VL;, f(ﬂ“ DY, VL1 (Bt V) and g = |VL: (B V)|l on the central machine;

5:  If g, >g_1 or g <107 break ; otherwise, on the central machine, solve the shifted adaptive Huber regression problem in (2.7) to update the
estimate g©;

6: end for

output: g,

Theorem 2.2. /Esume the same conditions in Theorem 2.1, and let 81, < rg < o. Conditioned on event Ey(rg) N E« (), the distributed
AHR estimator BT) with T > [log(ro/r+)/log(n/(p + u))] satisfies the bounds

~ ~ RPN +u
1B = p*lls <1 and |BV - p*+ % 1vcr<ﬂ*>||zs,/pn T, (2.8)

with probability at least 1 — 2T + 1)e™".

The above result shows that, with proper choices of T and k as well as the number of iterations, the statistical error
of the multi-step distributed AHR estimator matches that of the centralized AHR estimator on the entire dataset. For the
initialization, we may take E(O) to be a local AHR estimator computed on the central machine. With the above preparations,
we are ready to explicitly describe the estimation error and Bahadur linearization error of the proposed distributed AHR
estimator. The result is nonasymptotic, and carefully tracks the impact of the parametric dimension p, local sample size n
and the number of machines m.
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Corollary 2.1. Assume Condition (C1) holds, and suppose the local sample size satisfies n 2 p + logn + log, m, where log, m :=
log(logm) and m = N/n. Choose the robustification parameters T > k > 0 as T < a\/N/(p—l—logn—Hogz m) and k =
o/n/(p +logn + log, m). Then, starting at iteration 0 with a local AHR estimate B, the distributed estimator g = B with

- log(m) ;
T= |—log(n/(P+logn+log2 m))—| satisfies

~ 1 I
Hﬂ—ﬁW:SGJEiﬁE%i%QT and (2.9)
N
~ 41 p +logn + log, m
1
Hﬁ —p -y i§_1 Ve (€0)Xi . S OGN (2.10)

with probability at least 1 — Cn=", where yr; (u) := £ (u) = sign(u) min(|u|, 7).

The above corollary indicates that the multi-step distributed AHR estimator E achieves the optimal statistical rate of
convergence by a delicate combination of the local robustification parameter, the global robustification parameter, and num-
ber of communication rounds. The second bound, (2.10), explicitly describes the error term of the Bahadur linearization.
This allows to establish the asymptotic distribution of ﬁ when both p,n tend to infinity. Moreover, to achieve statistical
optimality and communication efficiently simultaneously, the above results impose minimal conditions on the number of
machines m. In summary, when data are heavy-tailed and collected on each machine remain local, the proposed procedure
delivers a statistically optimal estimate by communicating as many as O (pmlog(m)) bits.

2.2. Distributed confidence estimation

In this section, we consider uncertainty quantification of the multi-step estimator in a distributed setting, with a particu-
lar focus on statistical confidence estimation. We first establish a Berry-Esseen bound for linear functions of the distributed
AHR estimator 8, which explicitly quantifies the normal approximation error.

Theorem 2.3. In addition to the conditions in Theorem 2.1, assume E(£2|x) = 2 and E(|e|*+®|x) < vas almost surely for some
0 < 8 < 1. Then, the distributed estimator g = BT satisfies

P{N”T@—ﬁ)
E{y:(e)a™s"1x}2

<Pt logn+log,m  vais(p + logn + log, m)(1+9)/2
~ nl/2 + o 2+3 Nb/2 ;

sup
teR, acRP

]l

(2.11)

where ®(-) is the standard normal distribution function. In particular, assume E(|e|3|x) < v3 < oo almost surely. Then, under the
dimension constraint p + log, m = o(n'/?),

N'24"(B — g*) N2a"(8 — B*)

d
—->N(@©,1) and ——————=- > N(0,1), (2.12)
VE{y (6)a"=—1x)2 o@xla)l/?
uniformly overa e RP asn — oo.
Let E (51,.. ﬂp)T be the distributed estimator described in the previous subsection. Theorem 2.3 implies that,

for each 1 < j<p, NV ﬁ /3 ) is asymptotically normal with zero mean and variance (S~ 'E{y;(8)xx"}2% 1)]
Let & = (1/N) Zi:l x,-x,T be the sample version of ¥, and & = y; — xlTﬂ be the fitted residuals. It can be shown that
EINTYN, Y2 E)xix! $-1);; provides a consistent estimator of (S~'E{y,(e)xx"}>S~1)};. In a distributed setting, the
computation of this variance estimator requires communicating O (p2m) bits, thus incurring exorbitant communication costs
when p is large.

To achieve a tradeoff between communication and statistical efficiency, we propose averaging pointwise variance estima-
tors, defined by 5 =1/m> L 102 for j=1,...,p, where

e o 1 -1
a].zk:(ZklAk2,<1)jj, Ay = o wa(@)xix} and X = - inx}.

€Ty i€y

This approach takes one additional round of communication, and is robust against heteroscedastic errors that are of the
form &; = o (x;)e;. When ¢; is independent of x;, the asymptotic variances reduce to E{xprz(s)}(Z*])jj, and thus can be

consistently estimated by 5].2 = (G2 /m) YL, (fk_l)ﬂ, where 62 = (N — p)~' YN, ¥2@). For « € (0, 1), the distributed

5
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100(1 — )% normal-based confidence intervals for %, j=1,..., p, are given by [} — z¢/26;N "2, B} + za/26;N~1/?] or
[Ej — Za/zngfl/z, Ej + za/zb“er*”Z], where zy /2 = o1 1 —-a/2).
The consistency of 352 is established in the following proposition.

Proposition 2.1. In addition to Condition (C1), assume E(&?|x) = 6% and E(|&|**?|x) < vys almost surely for some 0 < § < 1.
Then, conditioned on the event {8 € ®(r)} with 0 < r < o, the variance estimator 852 satisfies the bound

A log(N) +t log(N) +t
IU‘L:Z—GZISV;EBT]_&/ZVP g(N)+ +12P g(N)+ +or

with probability at least 1 — 2e~" as long as N > p + t. In particular, assume E(|&|?|x) < v3 almost surely, and choose the robustifi-
cation parameter T < o {N/(p + logn)}'/3. Then, conditioned on {§ € ©(r)} we have |62 — 02| < \/;/201/2(p/N)1/3 log(N) +or
with probability at least 1 — 2N~ 1.

3. Distributed regularized adaptive Huber regression

In this section, we consider high-dimensional linear models under sparsity. Specifically, we allow the parametric dimen-
sion p to be much larger than the local sample size n, and assume B* is s-sparse, where s = |S| and S = supp(8*) ={1 <
ji<p: ﬂ;‘ # 0} denotes the true active set.

Given independent observations {(y,-,x,-)}f’:] from the linear model (2.1), the centralized/global ¢;-penalized Huber re-
gression estimator (£1-Huber) is defined as

B =B:(\) € argmin{Z; (B) + AlIBl1}. (31)
BeRP

where A > 0 is a regularization parameter. Statistical properties of ¢1-penalized Huber regression have been thoroughly
studied by Lambert-Lacroix and Zwald (2011), Fan et al. (2017), Loh (2017) and Chinot et al. (2020) from different perspec-
tives. To deal with asymmetric heavy-tailed errors, Fan et al. (2017) established high probability bounds for the ¢;-Huber
estimator with 7 < o,/N/log(p) in the high-dimensional regime p > n 2 slog(p).

Remark 3.1. In practice, it is natural to leave the intercept or a given subset of the parameters unpenalized in the penalized
M-estimation framework (3.1). Denote by R € {1,..., p} the index set of unpenalized parameters, which is typically user-
specified and contains at least index 1. A more flexible ¢;-Huber estimator can be obtained by solving mingerr{L7(8) +
MBRel1} = minﬂeRp{[?I B) + )‘ZjeRC |8;j1}. Similar theoretical analysis can be carried out with slight modifications, and
thus will be omitted.

In a distributed setting, we integrate the ideas of Wang et al. (2017) and Jordan et al. (2019) with adaptive robustifica-
tion to parallelize regularized Huber regression with controlled communication cost and optimal statistical guarantees. As
before, let T and x be the global and local robustification parameters. Recall that Ej,,((~), j=1,...,m, denote local Huber
loss functions. Commenced with a regularized estimator 8©, let £(8) = L1.c(B) — (VL1.«(B©®) — VL (B®), B) be the
shifted adaptive Huber loss as in (2.2). With slight abuse of notation, we define the one-step ¢1-penalized Huber regression
estimator as

BV =B o) e aggﬁlrggn {£(B) + AIBII - (3.2)
€

To assess the statistical properties of the one-step estimator 5(1), we work under the following moment condition on the
random covariate vector in high dimensions.

(C2). The covariate vector x = (x1, ..., xp)T € RP with x; =1 has bounded components and uniformly bounded kurtosis. That
is, maxj<j<p |xj| < B for some B >1 and f14 = sup,csr-1 E(z'u)* < oo, where z=2""2x and £ = (0jk)1<jk<p = E(xx").
Write oy = maXi<j<p aj]j/z and A = Amin(¥) > 0. For simplicity, we assume A; = 1. Moreover, the error variables &; satisfy
E(&i|xj) =0 and E(e?|x;) <02 almost surely.

As before, we first examine the performance of () conditioned on certain “good” events in regard of the initialization
and the centralized ¢1-Huber estimator. For rg, A, > 0, define

Eo(ro) = | € O(r) N A} and (k) = (VL (B*) — VL (B lloo < i), (3.3)
where A :={8 e RP : || — g*||; <4s!/?||p — B*|s} is an £;-cone.

6
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Theorem 3.1. Assume Condition (C2) holds. Given § € (0,1) and 0 < 1o, A« S 0, let (T, k, ) satisfy T > k < o/n/log(p/8) and
L =250\ + p) with

/sl 1)
£ < max {ro 5()g'(1717/)’51/2021,1}.

Moreover, suppose the local sample size satisfies n 2 slog(p/8). Then, conditioned on the event Ey(rp) N Ex(1x), the one-step regular-
ized estimator BV defined in (3.2) satisfies 8V € A and

~ | )
1BV~ Bz <5/ Og(,f/) ro+ ot 45172, (3.4)

with probability at least 1 — 6.

Theorem 3.1 indicates that the one-step procedure is able to reduce the statistical error of the initial estimator by a
factor of s,/log(p)/n when the local sample size satisfies n > s?log(p); see the first term on the right-hand of (3.4). The
second term, o271 4 s1/2),, corresponds to the global error rate achievable on the entire dataset. In view of Theorem B.2
(with 6 = 1) in Sun et al. (2020), if we take A, < o/log(p)/N and t < o/N/log(p), the centralized ¢;-Huber estimator
given in (3.1) satisfies || — B*||x < o2t~ ! +51/2), = 0\/slog(p)/N with probability at least 1 — Cp~.

Now we extend the iterative procedure in Section 2 to high-dimensional settings, starting at iteration O with an initial
estimate B© e RP. At iteration t =1, 2, ..., it proceeds as follows:

Communicating gradient information. The ]th (2 < j <m) machine receives /3“ D from the central machine, computes the
local gradient VEJ (BD), and sends it back to the central.

Fitting local regularized AHR: On the central machine, solve minﬁeRp{Z@(ﬂ) + AellBll1} to obtain E(t), where E(t)(ﬂ) =
L1.x(B) — (VL1 (B — (1/m) Py ij,,('ﬁ(t*”), B) and A; > 0 is a regularization parameter.

Computationally, we use a variant of the majorize-minimize algorithm (Lange et al., 2000), a proximal gradient descent
type method, to solve the regularized optimization problem at each iteration. Details are provided in section 4.2. The-
orem 3.2 below describes the statistical properties of the solution path {E(f)}tzl conditioned on a prespecified level of
accuracy of the initial estimator.

Theorem 3.2. Assume Condition (C2) holds. Given § € (0,1) and 0 < ro, Ay < 0, let (T, k) satisfy T > k < o/n/log(p/é). Fort =
1,2, ..., 56t At = 2.5(hs + 0¢) > 0 with pr < s~'/2max{a'ro, 02t~} and a = s,/log(p/8)/n. Suppose the local sample size satisfies
n> 2 log(p/é) and let ry, < 0211 4 s1/2).,. Then, conditioned on event Ey(rg) N Ex(Ay), the distributed regularized estimator BT

with T < l;’fg((r?;g*)) satisfies BT € A and ||BT — B*||s <, with probability at least 1 — T§.

With sufficiently many samples on the central machine—n > s?log(p), Theorems 3.1 and 3.2 ensure that the initial
estimation error, albeit being sub-optimal, can be repeatedly reﬁned by a factor of order s,/log(p)/n until it reaches the
optimal rate. For simplicity, we take B to be a local ¢;-penalized AHR estimator, that is, 3@ argmmﬂe]Rp{E] «(B) +
dollBll1}-

Corollary 3.1. Assume Condition (C2) holds, and the sample size per machine satisfies n > s? log p. Choose the robustification and

regularization parameters as T < o/N/log(p), k < o/n/log(p) and

/1 2] v 1
MO ng-i—o(S ogp) ng, t=0,1,2,....
N n n

Starting at iteration 0 with a local £1-penalized AHR estimator, the multi-step estimator E(T> after T =< [log(m)] rounds of communi-
cation satisfies the bounds

~ 1 ~ 1
1BT — Bz S0\ and IBT =Bl S o =,

with probability at least 1 — C log(m)/p.

Corollary 3.1, along with the global error analysis in Fan et al. (2017) and Loh (2017), implies the optimality of distributed
adaptive Huber regression in terms of the tradeoff between communication cost and statistical accuracy.

Remark 3.2. Under light-tailed error distributions (e.g., sub-Gaussian errors), Lee et al. (2017) and Battey et al. (2018)
studied a one-shot approach based on averaging debiased Lasso estimators (Zhang and Zhang, 2014; van de Geer et al.,
2014). Theoretically, averaged debiased Lasso achieves the optimal error rate when the local size satisfies n > ms?log(p);

7
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and computationally, each local machine needs to estimate a p x p matrix for debiasing the Lasso. We may expect the same
issues for the robust one-shot method that averages debiased ¢1-Huber estimators. The proposed distributed AHR method
not only requires the minimum sample complexity but also is computationally efficient.

4. Optimization methods

4.1. Barzilai-Borwein gradient descent for distributed AHR

Let us first recall the multi-round distributed procedure for adaptive Huber regression. Starting with an initial estimator

E(O) € RP, and given robustification parameters 7 and «, for t =1, ..., T, we update
B € argmin LU (B) = L1 ¢ (B) — (VL1 (B) = VL (B, B). (41)
BeRP

Note that the empirical loss L‘,~<”(~) is convex and continuously differentiable. Moreover, since the Huber loss is locally
strongly convex around zero, we will show that £®(.) is locally strongly convex in a neighborhood of B®© with high
probability. To take advantage of such a local strong convexity, we employ the gradient descent method with a Barzilai-
Borwein update step (GD-BB) (Barzilai and Borwein, 1988) to solve the optimization problem in (4.1). The Barzilai-Borwein
method is motivated by quasi-Newton methods, which avoid calculating the inverse Hessian at each iteration. The latter
is computationally expensive when p is large. To be specific, let us consider the optimization mingcrpr L£O (B) for a fixed

t > 1. Starting with the initialization ﬁ(t’o) = E(t_l), at (inner) iteration k =1, 2, ..., compute the update ﬁ“’kﬂ) = ﬁ(t’k) —

min{n, 10}V£~(f)(,§(t'k)), where ;=1 and for k > 2,
(Bth _ Bk=1) Bk _ gk

M= = (4.2)

(Bl — Btk=1) 2O (BEI) — vLO (BEk=1))
or

(Bl — gltk=1) g7 gLl _ v O gtk-1)y)
IVLO(BE0) — vLO BEk-D)|5

Nk =
In practice, the step size computed in GD-BB may sometimes vibrate to some extent, and this may cause instability of
the algorithm. Therefore, we set a upper bound for the step sizes by taking min{ny, 10}. This procedure is summarized in
Algorithm 2.

4.2. Majorize-minimize algorithm for distributed penalized AHR

In the high-dimensional setting, we need to solve ¢1-penalized shifted Huber loss minimization problems.

Algorithm 2: Gradient Descent with Barzilai-Borwein stepsize for solving (4.1).

Input: Local data vectors {(yi, Xi)}icz,, initial estimator % = B¢~V gradient VL1, (B¢~V) and VL (B*D) for j=1,..., m, and gradient
tolerance level § = 1074,

1: Compute B! < B° — VL® (BY)

2: fork=1,2... do

3:  Compute 7 as defined in (4.2).

4:  Update B*1 « B¥ — min{n, 10}VL® (B%);

5: end for when [|[VL® (84|50 <8

With slight abuse of notation, given an initial regularized estimator E(O), at each iteration t =1,2,..., T, define the
update as
BY e argmin {BO (B)+ MBIl = L1c(B) — (VL1 (B™) = VL (B, B)+ 2Bl |- (43)
BeRP

Here we use S_ € RP~! to denote the subvector of 8 with its first component removed. To solve the optimization problem
in (4.3), we employ the locally adaptive majorize-minimize (LAMM) principle Fan et al. (2018), which extends the classical
MM algorithm (Hunter and Lange, 2000) to accommodate ¢ penalty. This procedure minimizes a surrogate ¢;-penalized
isotropic quadratic function at each iteration, thus permitting an analytical solution.

Let E(‘) be the loss function of interest. For k =1, 2, ..., define

P g2,

gx(B: B 0 = LB + (VI B — 1)+ 5
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We say gi(B; B, ¢) majorizes £(B) at g+~

g(B: B g = L(B) VP RP and g(BTi BN i) = LB, (44)
By choosing ¢y large enough, g, (-; X1, ¢y) is guaranteed to satisfy (4.4). To find the smallest such ¢, we start with

¢o = 0.0001, and repeatedly inflate it by a constant factor, say 1.1, until (4.4) is satisfied. Finally, we update g¥ by minimiz-
ing

gk(B; B i) + MllB- Il (4.5)
Due to the isotropic quadratic term in gi(8; 81, ¢x), B¥ can be obtained by a simple analytic formula:

{ B =B — ¢ (VLB

Bk = sw" ' (VLB b, =20 D,

where S(u, A) = sign(u) max(Ju| — A, 0) denotes the soft-thresholding operator. This algorithm also guarantees a descent in
the overall loss function at every iteration, which is a direct consequence of (4.4) and (4.5):

LB+ 18511 < g (B ﬂ"—‘ o) +ABY I
< g(BY B o) + MBS = LB + 1B

Algorithm 3 summarizes the LAMM algorithm described above.

Algorithm 3: Local adaptive majorize-minimize (LAMM) algorithm for solving (3.2).

Input: Local data vectors {(y;, X;)}ic,, initial estimator % = B¢~ gradient vectors V27, (B¢~V) and VL, (B¢~D), regularization parameter 1,
initial isotropic parameter ¢ and convergence tolerance 3§

1: fork=1,2... do

2:  Set¢y < max{go, ¢x-1/1.1}

3 repeat ~

4 Update B « gkt — ¢,:1Vﬂ1 LB

5: Update B% eS(Ek*‘ 7¢,; 'g, LB g2 for j=2,....p

6 If gi(B: B" 190 < LY. set ¢ 114

7

8

until g (B*; B¢ -1 L) = LB
: end for when || ¥ —E" Ny <6

5. Numerical studies

In this section, we compare the numerical performance of the proposed method with several state-of-the-art distributed
regression methods in both low and high dimensions.

5.1. Distributed robust regression and inference

In the low-dimensional setting where n > p, we consider five distributed regression methods: (i) the global adaptive
Huber regression (AHR) estimator (Sun et al., 2020) that uses all the available N = mn observations; (ii) divide-and-conquer
AHR (DC-AHR) estimator based on averaging m local AHR estimators; (iii) DC-OLS estimator that averages m local OLS
estimators; (iv) distributed OLS estimator (Shamir et al., 2014); and (v) the proposed distributed AHR estimator with early
stopping.

To implement methods (i) and (ii), we use the self-tuning principle proposed by Wang et al. (2021) which automatically
selects the robustification parameter 7. The distributed procedures (iv) and (v) are iterative, and require a reasonably well
initial estimator, say B®. In our simulations, we take 8 to be either the DC-AHR or the DC-OLS estimator, which only
requires one communication round. When the error distribution is heavy-tailed and symmetric, DC-AHR often has better
finite-sample performance than DC-OLS. However, it produces biased estimate when the error is asymmetric. In contrast,
although the DC-OLS exhibits larger variability due to heavy-tailedness, it has smaller bias on average. Therefore, we use
DC-OLS estimator as the initialization for both methods (iv) and (v). Recall that the distributed AHR estimator involves
two robustification parameters « and t. The local parameter ¥ can be automatically obtained by the self-tuning procedure
(Wang et al., 2021). Guided by theoretical orders of (x, 7) stated in Theorem 2.1, we choose the global parameter 7 to be
cm'/2k, where ¢ > 1 is a numerical constant that can be tuned by the validation set approach. We suggest to choose ¢ from
{1, 2, 3,4, 5}, which suffices to achieve promising performance in a wide range of simulation settings.

We generate data vectors {(y;, x,~)}l{\’:1 from a heteroscedastic model y; = ,T,B* +c*1(x}ﬂ*)2£,-, where g* = (1.5,...,1.5)T
e R, xi = (1,xi2, ..., Xip)" with x;j ~N(0,1) for j=2,...,p and ¢ = /3|#*|| that makes E{c~!(x[$*)?}? = 1. The re-
gression errors &; are generated from one of the following four distributions (centered if the mean is nonzero): (a) NV (0, 1)

9
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Fig. 1. Plots of estimation error (under ¢;-norm) versus number of machines when (n, p) = (400, 20), averaged over 500 replications. Five estimators
are presented: global AHR estimator (-#—#); DC-AHR estimator (®— ®=); DC-OLS estimator (-®— ®-); distributed OLS estimator (--A--4-); and
distributed AHR estimator (- #-----).
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Fig. 2. Boxplots of estimation error (under ¢;-norm) versus the number of machines when (n, p) = (400, 20) for distributed OLS estimator (E#) and

distributed AHR estimator (&), averaged over 500 replications.

(standard normal), (b) ty (t-distribution with 2 degrees of freedom), (c) Par(4, 2)-Pareto distribution with scale parameter
4 and shape parameter 2, and (d) Burr(1, 2, 1)-Burr distribution or the Singh-Maddala distribution (Singh and Maddala,
1976), which is commonly used to model household income. First, we fix (n, p) = (400, 20) and let the number of machines
m increase from 10 to 500. Fig. 1 plots the ¢;-error H,B\— B*|l2 versus the number of machines, averaged over 500 replica-
tions, for all five methods. The global and distributed AHR estimators have almost identical performance, thus corroborating
our theoretical results. The DC-AHR estimator only performs well under symmetric errors and suffers from non-negligible
bias if the errors come from asymmetric distributions. This is largely expected because the robustification parameter for
a local AHR estimator is tuned by a small subset of the data and results in a bias scaling with the local sample size. Af-
ter averaging, this bias will not be offset when the number of machines increases. This points out a key drawback of the
one-shot averaging approach when dealing with skewed data distributed across local machines. It is worth noticing that
the distributed OLS and DC-OLS estimators perform almost identically in all the settings, which is as expected according
to Jordan et al. (2019). They have decaying estimation errors as m grows, but at a slower rate compared to the global
and the distributed AHR estimators for heavy-tailed data. The boxplots in Fig. 2 further reveal that the distributed OLS
method often produces very poor estimates with high variability, while the distributed AHR method exhibits high degree of
robustness.

Interestingly, under symmetric errors such as A/(0, 1) and t,, the DC-AHR estimator even outperforms the global AHR
estimator, which may be due to the following reasons. Recall that the data is generated from a heteroscedastic model.
The global AHR estimator chooses only one t value using all the data, while for the DC approach, each local AHR esti-
mator is based on a self-tuned « using the local data. Due to symmetry, local AHR estimators gain robustness without
sacrificing bias; moreover, averaging independent estimators reduces the variance. On the other hand, in the presence of
asymmetric errors, each local AHR suffers from a bias depending only on the local sample size. Although averaging re-
duces variance, the bias remains and therefore the performance of DC-AHR barely improves as the number of machines
increases.

Turning to uncertainty quantification, we construct approximate 95% confidence intervals for the slope coefficients based
on distributed OLS and AHR methods. As before, we set (n, p) = (400,20) and let m increase from 10 to 500. Table 1
shows the average coverage probabilities and widths, with standard errors in parentheses, across all slope coefficients based
on 500 Monte Carlo simulations. Across all the settings, the AHR-based confidence intervals are consistently accurate with
tight width and reliable with high coverage. In the presence of heavy-tailed errors, the OLS-based confidence intervals
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Table 1
Coverage probabilities and widths (with standard errors in parentheses) of the normal-based ClIs (averaged over all slope coefficients) for the distributed
OLS and distributed AHR methods, based on 500 Monte Carlo simulations.

N(0,1) ty Par(4,2) Burr(1,2,1)
Coverage Width Coverage Width Coverage Width Coverage Width
mean (sd) mean (sd) mean (sd) mean (sd) mean (sd) mean (sd) mean (sd) mean (sd)

t Dist-OLS 0.93(0.011 0.029(0.001 0.93(0.011) 0.097(0.056) 0.93(0.012 0.35(0.420) 0.94(0.011) 0.088(0.068)

m=50" Di-AHR  0.95(0.007

m=100 Dist-OLS 0.93(0.012
Dist-AHR 0.95(0.010
m =200 Dist-OLS 0.93(0.011

) ( ) ( ) (
) 0.031(0.001)  0.95(0.009)  0.077(0.007)  0.95(0.008)  0.23(0.025)  0.95(0.009)  0.058(0.006)
(0.012)  0.020(0.000)  0.94(0.010)  0.072(0.056)  0.93(0.012)  0.25(0.220)  0.93(0.008)  0.058(0.021)
(0.010)  0.022(0.001)  0.96(0.008)  0.058(0.005)  0.95(0.009)  018(0.017)  0.95(0.009)  0.044(0.004)
(0.011)  0.014(0.000)  093(0.013)  0.052(0.031)  093(0.010)  018(0.095)  0.94(0.015)  0.044(0.021)
Dist-AHR  0.96(0.007)  0.015(0.000)  0.95(0.011)  0.043(0.003)  0.95(0.009)  0.13(0.012)  0.96(0.012)  0.034(0.003)
m=300 Dist-OLS  0.93(0.013)  0.012(0.000)  0.94(0.011)  0.043(0.022)  0094(0.011)  018(0.820)  0.93(0.008)  0.038(0.020)

Dist-AHR  0.95(0.010)  0.013(0.000)  0.96(0.010)  0.036(0.003)  0.95(0.012) ( ( (

(0.010) (0.000)  0.94(0.011)  0.040(0.046)  0.93(0.008) ( ( (

( ) ( ) ( ( ( ) ( ( (

0.96(0.009) 0.031(0.002) 0.95(0.012

0.11(0.009)  0.96(0.009)  0.028(0.002)
013(0.071)  0.94(0.010)  0.032(0.014)
) 0.96(0.009)  0.025(0.002)

m =400 Dist-OLS 0.93(0.010
Dist-AHR 0.95(0.009

0.010(0.000

0.011(0.000 0.10(0.008
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Fig. 3. Plots of estimation error (under ¢;-norm) versus the number of machines, over 100 replications, under a high-dimensional heteroscedastic
model when (n, p,s) = (250, 1000, 5). Four estimators are presented: centralized ¢;-penalized AHR estimator (—#—); DC ¢;-penalized AHR estima-
tor (®— ®-); centralized Lasso estimator (- -A--4-); and proposed distributed regularized AHR estimator (- #-----).

tend to be wider, and standard errors of the interval width are also larger than those of the AHR method by one order of
magnitude.

5.2. Distributed regularized Huber regression

In the high-dimensional setting where the dimension p exceeds the sample size n, we compare four methods across a
range of settings: (1) centralized ¢;-penalized AHR estimator; (2) DC ¢1-penalized AHR estimator; (3) centralized Lasso; and
(4) distributed regularized AHR estimator with T = |log(m)] rounds of communication and with a local Lasso estimator as
the initialization. All four methods involve a regularization parameter A, which will be tuned by a held-out validation set of
size |0.25N]. Similarly to the low-dimensional case, the robustification parameters 7 in methods (1), (2) and « in method
(4) are also determined by a self-tuning principle; see equation (3.10) in Wang et al. (2021). The 7 value for method (4) is
chosen by the validation set approach and the theoretical scaling stated in Corollary 3.1.

As before, we generate {(y,v,xi)}f\’:1 from the heteroscedastic model y; = ,T,B* + cfl(x{ﬂ*)ze,-, where g* = (1.5,1.5,1.5,
1.5,1.5,0,...,0" € RP, x; = (1, xi2, ..., xip)" with x;; ~N(0,1) for j=2,...,p, and c = ﬁllﬂ*ll%. The regression errors
g; are generated from one of the four distributions considered in Section 5.1, which are A'(0, 1), t; (heavy-tailed and
symmetric), Par(4,2) and Burr(1,2,1) (heavy-tailed and skewed). We fix (n, p) = (250,1000) and let m increase from
10 to 50. Fig. 3 plots the ¢, error ||E— B*|l2 versus the number of machines m, averaged over 100 replications, for all
four methods. The averaging ¢1-penalized AHR estimator has a nondecaying estimation error as m increases, which is
expected because of its sub-optimal convergence rate that scales with the local sample size n. The distributed AHR estimator
with T = [log(m)] rounds of communication performs as good as the centralized AHR on the entire data set, and has
much smaller estimation errors than the centralized Lasso in heavy-tailed cases. Furthermore, from the boxplots displayed
in Fig. 4 we see that the distributed AHR improves upon centralized Lasso in terms of both average performance and
variability.

6. Conclusion

Distributed inference aims at efficiently combining local information (statistics computed on each local machine) to ob-
tain a global solution that is satisfactory, both in terms of communication costs between the machines and in terms of
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Fig. 4. Boxplots of estimation errors (under ¢,-norm) versus the number of machines, over 100 replications, for centralized Lasso (E3) and distributed AHR

(B¥) under a high-dimensional heteroscedastic model when (n, p, s) = (250, 1000, 5).

statistical accuracy of the final estimator. This paper proposes a new robust algorithm for distributed linear and sparse
regressions when data are subject to asymmetric heavy-tailed errors. Founded on the communication-efficient framework
proposed by Wang et al. (2017) and Jordan et al. (2019), the new proposal relies on a novel double-robustification approach
that applies on both the local and global objective functions. The proposed procedure iteratively minimizes a one-step com-
bination of local and global objectives to improve statistical accuracy. With properly chosen local and global robustification
parameters, convergence rates and Bahadur representations are derived for the multi-step estimator. These results show
that the optimal rate can be achieved after as many as log(m) rounds of communication, where m is the number of ma-
chines. Under slightly stronger moment conditions, an explicit Berry-Esseen bound is established for the final estimator,
based on which asymptotic confidence sets are constructed. In high dimensions, a sparse framework is adopted, where the
proposed low-dimensional doubly-robustified objective function is complemented with an ¢;-penalty. Near-optimal con-
vergence rates under ¢1- and ¢;-norms are obtained. Computationally, the proposed procedure employs gradient descent
with Barzilai-Borwein step size and the locally adaptive majorize-minimization algorithm to solve the optimization prob-
lems, respectively, in low- and high-dimensional settings. To highlight the importance of robustness in distributed inference,
this paper closes with extensive numerical studies under models with light- and heavy-tailed, symmetric and asymmetric
errors.
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Appendix A. Preliminaries

For any convex function ¥ : R¥ — R, define the corresponding Bregman divergence Dy(W,w) =y W) — ¢y(w) —
(V¥ (w), w — w) and its symmetrized version

Dy(w,w)=Dy(w,w)+Dy(W,w)=(V(w) = Vy(w),w—w), wwe Rk, (A1)

Let z=%"1/2x € RP be the standardized vector of covariates such that E(zz") = Ip, and define py = supycgp-1 E|Zulk
for k > 1. In particular, i = 1. For every § € (0, 1], define

ueSpr-1

ns =inf{n>0: sup E{(zTu)21(|zTu|>n)}ga}. (A.2)

Under Condition (C1), s depends only on § and vq, and the map § — 7s is non-increasing with ns | 0 as § — 1. By
Markov’s inequality,

E{(z'w)?1(|"ul > n)} < n2E(Z'u)* < n~2py4 forallu e SP~1.

Therefore, a crude bound for 73, as a function of §, is ns < (14/8)'/2.

In Lemmas Appendix A.1 and Appendix A.2 below, we provide a lower bound on the symmetrized Bregman divergence
and an upper bound on the score, respectively. The former is a direct consequence of Lemmas C.3 and C.4 in Sun et al.
(2020) with slight modifications, and the latter combines Lemmas C.5 and C.6 in Sun et al. (2020) with § = 1. For the
shifted Huber loss E(~), note that
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Dz(B, ") = (VL1 (B) — VL1, (B), B — B*).

Moreover, define the £1-cone
A={BeRP:|p—p I <4s'?|p— B*Iz}.
Lemma Appendix A.1. Let «, r > O satisfy k > 4max(1o.257, 0).
(i) Condition (C1) ensures that, with probability at least 1 —e™",
Dz (B, p*) > 1||,8 — ﬂ*llzE holds uniformly over 8 € O(r), (A3)

as long asn > (k /r)*(p + u).
(ii) Condition (C2) ensures that, with probability at least 1 —e ™Y,

— 1
Dz(B,B*)=—IIB — ;_‘3*||2E holds uniformly over 8 € ®(r) N A, (A4)
aslong asn > (x /1) (slog p + u).
Proof. Without loss of generality, assume Z; = {1,...,n}. It suffices to prove (A.4) under Condition (C2). Following the
proof of Lemma C.4 in Sun et al. (2020), the key is to upper bound the expected value of the maximum [|(1/n) >, eiXilloo,

where eq, ..., e, are independent Rademacher random variables. Let [E, be the expectation with respect to eq, ..., e, con-
ditional on the remaining variables. By Hoeffding’s moment inequality (see, e.g. Lemma 14.14 in Bithimann and van de Geer

(2011)),
1o 2o 2p) 2log(2p)
2 [2log(2p [2log(2p
52}3&,(;; X“’) 0 SBT—h

1

Ee

n
1
n-

i=1

which in turns implies E|(1/n) Z?:] eiXilloo < By/2log(2p)/n. Keep the rest of the proof the same proves the claimed
bound. O

oo

Consider the gradient VZT() evaluated at 8*, namely,
1N
VL () =~ le Ve (81)Xi,
1=

where ¢ (u) = £, (u). The following lemma provides high probability bounds on both ¢;- and £.-norms of VEAI (B¥). Recall
that @ =¥~

Lemma Appendix A.2. Let u > 0 and write L (-) = EL; (-).
(i) Condition (C1) ensures that, with probability at least 1 —e™¥,

IVZe(B) = VL (B x1 = Cofo V(b +w/N+(p+uw/N|, (A5)

where Co > 0 is a constant depending only on vy. Moreover, | VL. (B*)|lq < o2/T.
(ii) Condition (C2) ensures that, with probability at least 1 —e ™Y,

~ 2{log(2 Bt log(2
IVEC(B") — VL (Bl < ooy BRI U], FTIOECD 4 Y, (A6)

Proof. The bound (A.5) is an immediate consequence of Lemma C.5 in Sun et al. (2020). It suffices to prove (A.6) under
Condition (C2). Note that

IVL: (B*) = VL (B)loo = 1

s

max
<j<p

1 N
N 21— B)éii
i=1

where & := v, (&) satisfy |&;| <t and E(Ei2|xi) < IE(si2|x,') <02 Forany 1< j<p and z> 0, applying Bernstein’s inequality
yields that with probability at least 1 — 2e~%,

13
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1/2 2z Bt z

Z(l—E)g,x,,<a Nt I N

Taking z = log(2p) + u, the claimed bound (A.6) then follows from the union bound. O
Appendix B. Proof of main results
B.1. Proof of Theorem 2.1

PROOF OF (2.5). For simplicity, we write E: E(l), which minimizes the shifted Huber loss E(~) and thus satisfies the first-
order condition VL£(B) = 0. Throughout the proof we assume the event & (rg) N E, (1) occurs. In view of Lemma Appendix
A.1l, we consider a local region ®(roc) with roc = k/(410.25), and define an intermediate estimator B, = (1 — ¢)8* + ¢,
where

=1 if B € O(Toc),

c:=sup{uef0,1]: (1 —u)p* +uf € Oroc) ) €(0,1) otherwise.

By construction, Ec € O(Ioc)- In particular, if E¢ ®(r1oc), We must have Ec lying on the boundary of ®(roc), i.e. ||EC —B*llg =

Toc-

Applying Lemma C1 in Sun et al. (2020), we see that the three points ﬁ ﬁc and B* satisfy DL(ﬁc,ﬂ ) < CDL(,B B*),
where Dﬁ(ﬂ B*) = VE(,B) Vﬁ(ﬂ ), B—B*)={( V[,l «(B) — \2 «(B*), B — B*). Together with the first-order condition
Vﬂ(ﬁ) =0, this implies

Dz(Be, %) < —c(VL(B*), B — B*) < IVL(B") - 1B — B*I1z- (B1)
For the left-hand side of (B.1), applying Lemma Appendix A.1 with r =}, and the fact Ec € O(rjoc) yields that with proba-
bility at least 1 —e™ ¥,

o~ 1 ~

Dz(Be. B*) = ;1B = B*I3. (B2)

aslongasn>p+u.
To bound the right-hand side of (B.1), we define vector-valued random processes

{ A(B) =37 V2{VL1 (B) — VL1 (B} — V2B — B,
A(B) =37 V2IVL(B) — VL (B9} — TV2(B — p*).

Let 0 < rg < 0. Following the proof of Theorem B.1 in the supplement of Sun et al. (2020) with B(8) therein replaced by
A1(B) or A(B), it can be similarly shown that, with probability at least 1 — 2e~Y,

[p+u o2 [p+u o2
sup [[A1(B)l2 < C1< + —2>ro and sup [[A(B)]2 =< C1< —+ = |0 (B.4)
BeO(ro) n K BeO(ro) N T

as long as n 2 p + u, where C1 > 0 is a constant depending only on v;. Recall that T > k < o4/n/(p + u). Conditioned on
event &y(ro) N E4(ry), it follows that

(B.3)

IVZ(B*) = 1ABP) — A1(BQ) + =712V (%2
<IABD) = A1 (B2 + IVL: (B lle

[p+u
< Carp % + T (B.5)

Together, the bounds (B.1), (B.2) and (B.5) imply that, conditioning on Ey(rp) N Ex(ry),

1Be — B*lls <4AIVE(EHlla < 4(czro,/ pnﬂ + r*>, (B.6)

with probability at least 1 — 3e™". Provided that the sample size is sufficiently large—n 2> p + u, the right-hand side of the
above inequality is strictly less than rioc = /(4n0.25) with k¥ <o /n/(p + u). As a result, the intermediate estimator ﬁc falls
into the interior of ®(roc) with high probability conditioned on £ (rp) N E,(r4). Via proof by contradiction, we must have
Ee ®(roc) and hence E: Ec; otherwise if Egé O(roc), we have demonstrated that Ec must lie on the boundary of ©(ryc),
which is a contradiction. Consequently, the bound (B.6) also applies to E as claimed.

14
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PROOF OF (2.6). To estgblish theNBahadur representation, note that the random process A1(-) defined in (B.3) can be written
as A(B) = = V2{VLB) — VLB — =1/2(8 — B*). Moreover, note that

VL(B*) =VLix(B*) — VL1 (BO) + VL (BQ) — VL (B*) + VL (BY),

which in turn implies

IVL(B*) — VL (B o < 1A1B)2 + 1AB) 2.

Recall that VE(E) =0, and by (B.6), ||§— B*|ls <r1:=4Caro/(p + u)/n+4r, with high probability conditioned on &y(rp) N
E«(ry). For rg > 8r,, we have r; <rp/2+r19/2=r19p as long as n 2 p + u, and hence 8 € ©(rp). Applying the bounds in (B.4)
again, we obtain that conditioned on £y(rg) N Ex(ry),

I=V2(B — B*) + 72V L (B2

=1a1(B) + =7PVLPBY) = =T PVL (B2

< 1A Bz + 181 (BD)ll2 + 1ABD) 12

<2 sup [[A1(Bll2+ sup [AB)I:2
BeBO(rg) BeBO(ro)

p+u
S P -T0,
n

with probability at least 1 — 3e~". This completes the proof. O

B.2. Proof of Theorem 2.2

Given a sequence of iterates {Bd(t)}[:(),],_mr, we define “good” events

& =P e0@)}, t=0,....T, (B.7)

for some sequence of radii 19 >r; > --->rr > 0 to be determined. Examine the proof of Theorem 2.1, we see that the
statistical properties of g® depend on both first-order and second-order information of the loss function L), namely,
the ¢2-norm of the gradient VL® (8*) and the (symmetrized) Bregman divergence of £® (.). For the former, we have

VEO(B*) = VL1 (B*) = VL1 (B D)+ VL (). (B.8)

Let A1(-) and A(-) be the random processes defined in (B.3), and observe that 2129 L0 (B*) = ABED) — A{(BED) +
=12V L. (8*). By the triangle inequality,

IVEZO Bl < 1AB) 2+ 181 (B2 + IVL (89 - (B.9)
On the other hand, note that the shifted Huber losses Z(f)(~) have the same Bregman divergence, denoted by

D(B1, 2) = (VLO(B1) — VLD (B2), 1 — B2) = (VL1 (B1) — VL1 £ (B2), B1 — Ba).

Define the local radius rioc = k/(410.25). Then, applying Lemma Appendix A.1 with r =, yields that, with probability at
least 1 —e ™Y,

— 1
DB, B*) = 4B = BII3 (B.10)
holds uniformly over 8 € ®(roc). Let ¢ be the event that the local strong convexity (B.10) holds.

With the above preparations, we are ready to extend the argument in the proof of Theorem 2.1 to deal with E“) sequen-

tially. At each iteration, we construct an intermediate estimator Eﬁ—a convex combination of © and g*—which falls in

®(roc) and satisfies

DB B < IVLO(B*)lla - 1 Bien — Bl
If event &, (ry) N Esc occurs, the bounds (B.9) and (B.10) imply

1Bt — B*Ils < 4{1 A B D)l2 + 1A B D)2} + 4. (B.11)
Moreover, it follows from (B.8) and the first-order condition VL® (8®) =0 that

15



J. Luo, Q. Sun and W.-X. Zhou Computational Statistics and Data Analysis 169 (2022) 107419

I=12(B© — %) + S V2V L (B2
== V2VLOBO) — VLO B} - V2(BY - )+ TTVHVLO(B*) — VL (B2
<IATBED) 2 + 121B D)2 + 1ABD) . (B12)

In view of the bounds in (B.4), for every 0 <r < o we define the event

Fo ={ sup (I8P +12@1} <y w-r}, (B13)
BeO()
with y (u) = C/(p + u)/n for some C > 0, which satisfies P{F(r)} > 1 —2e7".
Let 8 <rg <o. In the following, we deal with {(ﬁiﬁ,ﬂ(t)),t =1,2,...,T} sequentially conditioning on the event
Eo(ro) N Ex(ry) N Esc. At iteration 1, it follows from (B.11) that, conditioned on F(rg),

I1BL) — B*|lg < 1y := 4y (u) - ro + 4r,.

Provided that n 2 p + u, we have 4y (u) <1/2 <1 and r1 <rg < Ioc = k/(41n0.25), So that E,ﬂ; € O(r1) Cint(O(rec)). Via
proof by contradiction, we must have E(l) = E,(r:d) € O(rioc), Which in turns certifies event £(r1). Combining this with (B.12),

we see that conditioned on F(rg), the event £1(r1) must happen and hence

{ | BD — B* s <11 =4y ) - 1o + 4r, <10,
1BD — g* + 7 IVL (B |lx <2y W) - 1o,

Now assume that for some t > 1, EW € O(ry) with re =4y (u) - re—1 + 4r, <1t_1 < Tec- At (t + 1)-th iteration, applying
(B.11) again yields that, conditioned on event & (r¢) N F(r¢),

IBEED — B*|ls < rry1:= 4y (u) - 1 + 4.

By induction, 1t <r1¢_q < Toc SO that rey1 <4y (u) - re—1 + 4r, =1t < I'pc. This implies that /3<t+1) falls into the interior of

imd
O (1oc), which enforces B¢+D = B ¢ ©(r,41) and thus certifies event &1 (re+1). Combining this with the bound (B.12),
we find that

1B — B* llg <repr =4y () -1 +4rs <,

IBED — p* 4+ SIVE (B Iz <2y W) 1.

Repeat the above argument until we obtain E(T). We have shown that conditioned on &, (1) N Esc NEr—1(re—1) N F(re—1)
for every 0 <t <T — 1, the event & (r;) must occur. Therefore, conditioned on &, (ry) N Ejsc N Eo(rg) N {ﬂ{;&}'(rt)}, g™
satisfies the bounds

{IIE(T)—ﬂ* g <rr =4y ) -rr—1 +4rs, _
1D — g+ ZIVL (B*) lg <2 (W) 111

Observe that r; = {4y u)}ro + %4& for t =1,...,T. We choose T to be the smallest integer such that

{4y W)} rg <ry, that is, T = [log(ro/rs)/log(1/{4y (u)})] + 1. Consequently, the bounds in (B.14) become

{ 1T = Bl < {y W) + =g }4re < (4y () + 8)r.. (B15)

18D =+ 27IVL(B) |15 < 18y (u) - 1.

Finally, it suffices to show that the event & N {D[T;olf (r¢)} occurs with high probability. Recall from (B.10) and (B.13)
that P(Esc) > 1 —e Y and P{F (@)} >1—2e7 ¥ for every t =0,1,..., T — 1. The claimed result then follows from (B.15)
and the union bound. O

B.3. Proof of Theorem 2.3

For simplicity, we write g = p+logn +log, m throughout the proof. For every vector a € RP, define S, = N"1/2 "N | gw;
and SO =S, — ES,, where & =, (¢;) and w; =a’~~'x;. Under the moment condition E(|&|>*®|x) < v, using Markov’s
inequality yields [E(&i|x)| < T °E(|&i|**|x;) < va4s7 7%, Hence, |E(&w:)| < vayslalle - 7'7° and [ESq| < vaysllallq -

N1/27-1-8
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With the above preparations, we are ready to prove the normal approximation for E Note that
IN'2d"(B — B*) — g
L
<E_1/2a, 21/2(,3 _ ﬁ*) — 2_1/2ﬁ X]:w.[(é‘i)x[>
1=

<N1/2 + |ESql

N
~ 1
<N"alq- Hﬁ =B =BT ) W@

i=1

1/2..—-1-6
+vasslallq - N3¢ =170,
)}

Applying (2.10) in Theorem 2.1, we find that with probability at least 1 — Cn~1,

IN'2a"(B — B*) — S2| < Cillallg - (oqn™"/2 + N2vp 517179, (B.16)

where C; > 0 is a constant independent of (N, n, p).

For the centered partial sum 52, it follows from the Berry-Esseen inequality (see, e.g. Theorem 2.1 in Chen and Shao

(2001)) that

- 248
sup [P[S0 < var(s9) 2t} — d(0)] < 4.1 oW —EEW)]

teR var(i:w)1+8/2N6/2 ? (B.17)

where & = ¥, (¢) and w =a"x~'x. Recall that 7 < 0/N/q, and write 0, = E(§w)?. By Proposition A.2 in Zhou et al.
(2018), |E(£%|x) — 02| <267 'vo 510 <87 1va, 50 ~%(q/N)%/?, and hence

5/2
Vo+s (4
|07 o/ (@llall)® = 1] < 302++6<N) : (B18)

Moreover, E[gw|?*® < Elew|*™ < uoysllally ™ vays, where ways :=sup,csp-1 E|z'u|>+ depends only on vy under Condi-
tion (C1). Substituting these bounds into (B.17) yields

0 0\1/24] _ V2+s

sup |P{Sy <var(S)'/*t} — @(t)| < Co—srsNaTa (B.19)
provided that N > q. For the variance term, the bound |E(£|x)| < o2t ~! guarantees that

EEw)® = var(Sg) = E(Ew)® — (EEw)*> > EEw)? — (0 llalle)® - o°T 2.
Combined with (B.18), this implies |var(S9)/02, — 1| S ot ~2, from which it follows that

2
o
suﬂg |®(t/var(S)'/?) — @(t/or 0)| < C3;. (B.20)
te

Let G ~AN(0,1) and t € R. Combining the bounds (B.16), (B.19) and (B.20), we obtain
P{N'2a"(B — p*) <t}
<P{S?<x+Cilalg- (ogn?+ N 2vy 5t 170) )} +- Cn 7!

0,1/2 ~1/2 1/2 —1-5 -1 Va+s
<P{var(s)'2G <t +Cillalle - (oqn™"2 + N'2vo 7710 p+ Ol 4+ O 50
P -1/2 1/2 —1-5 V2+s o?
< {UT,aG§t+Cl||a||Q'(0qn + N /2oyt )}+C2W+C3ﬁ
-1 —1/2 (1 —1/2 1/2 —1,.-1-8 V245 o?
SP(O’r’aGSt)‘i‘CTl + C1(2m) (qn +N Vo450 T )+C2w+C3?

A similar argument leads to a series of reverse inequalities, and thus completes the proof. O
B.4. Proof of Proposition 2.1

Consider the change of variable § = £1/2(8 — B*), so that 8 € ©(r) is equivalent to § € BP(r)—the ¢»-ball in R? with
center 0 and radius r. For § € RP, define

N
~2.0 1 200 T 20 _ a2
o°(8) = N;w,(sl z;6) and 0°(8) =Eo (), (B.21)
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where z; = £7'/2x;. Then 62 = G2(5) with 3 = f — *. Conditioned on the event {§ € ®(r)} for some predetermined r > 0,
it suffices to bound supscpp ) [G2(8) — 02|

For any € € (0,r), there exists an e-net {31,...,8k.} with K¢ < (1 + 2r/e)P satisfying that, for every § € BP(r), there
exists some 1 <k < K¢ such that ||§ — 8|2 < €. Consequently,

152(8) — 02| < [6%(8) — T2 (8| + 152 (8k) — a2 (k)| + 0% (8p) — 02 (B.22)

Recall that the function v (-) satisfies sup; |¥¢ (t)| < T and |y (t1) — ¥ (t2)| < |t1 — t2| for any tq, t; € R. Hence,

N

R 1

G20) — 0%l < = D Vi ei = 2[8) — vi(ei — 28|
i=1

I\J

N
1
WDZ (5 — 8] < 27 HNZziz} 2
i=1 i=1

holds uniformly over all (8, §;) pairs. For the last term on the right-hand side of (B.22), since 8§, € BP(r) and |y (t) < |t],
we have

102(8) — 02| <EQle| + |28) - 12"8| < 2071 + 12

Back to (B.22), first taking the maximum over k € {1,..., K¢}, and then taking the supremum over § € B?(r), we conclude
that

N
1

=2 2 T
sup |[0°(8) —o“| <2t€- ‘— ZiZ;

SeBP(r) N Z g P

i=1

+ max [628) — 02| +1 Q2o +71). (B.23)
1<k<K¢

For ||(1/N) Z,N 1ZiZ} ||2, using the same covering argument along with Bernstein’s inequality (see, e.g. Theorem 5.39 and
Remark 5.40 in Vershynin (2012)), it can be shown that with probability at least 1 — e,

t t
H Zz,z 1| ,/p+ p+ (B24)

It remains to bound [5%(8,) — 02(8)| for each k. Note that y2(g; — z/8) < 2 and
E{y7 (e — 280} < T E{1¥ (6 — 218017}
< T2752]+8E(|8i|2+8 + |ZT8 |2+5)

< 12_521+5(V2+3 + M2+sr2+5)

By Bernstein’s inequality, we have that with probability at least 1 — 2e~¢,

=5 1/2 _1— t
152(81) — 0281 <212 (vays + papsr? ) 2 p 1702 /N T+l

Taking the union bound over k=1, ..., K¢ yields

~2 2
max [0“(&k) — o “(8k)l
1<k<Ke

log(2K. t log(2K t
<22 (v s 4 e ) P12 0g( Ne)+ 4 72108 31;)+ (B.25)

t

with probability at least 1 —e™
Finally, we set € =r/N so that K¢ < (1 + 2N)P. Together, (B.23), (B.24) and (B.25) with r < o prove the claimed
bound. O

B.5. Proof of Theorem 3.1
As before, we assume without loss of generality that Z; = {1, ..., n}. Write E: E(” for simplicity, and let h =~E— B*
be the error vector. By the first-order optimality condition, there exists a subgradient g € d|]l1 such that g'8 =18l and
VL(B) + A - g =0. Moreover, the convexity of £(-) implies
0<Dz(B.B*)=h"{VL(B) — VL )} =—1-h"g—h"VL(BY).

18
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Recall the true active set S =supp(8*) C{1,..., p}, we have
—h'g < 11B*Ih — 1Bl = 18511 = llhsellh — lhs + Bsll1 < lhsll1 — lhselr.
Together, the above two displays yield
0<Dz(B, %) < A(Ihsli — llhscll) — h" VL(B). (B.26)
To deal with VL(8*) = VL1« (B*) — VL1« (B@) + VL (B?), we define random processes
D1(B) =VLik(B) — VL1 (B*), D(B)=VL(B)— VL (B,
and write D1 (B8) = IE51(,3) and D(B) :Eﬁ(ﬁ). The gradient VZ(/B*) can thus be written as
(DB —D@B)|,_s, +{D1B) =Di®))| _, + VLB~ VL(B")

+{DB) - Dl(ﬂ)}‘ o T VLT (B

For any r > 0, define

A= sup [D1(B) —D1(B)le. AM)= sup [ID(B) —D(B)lloc. (B.27)
BeB)NA BeBO(NA
S ﬁSUP ID1(8) — D(B)lle and b* = VL (B")llq- (B.28)
€O(r)

The quantity b* can be viewed as the robustification bias and by Lemma Appendix A.2, b* < o271,

Back to the right-hand of (B.26), conditioning on the event &y (rp) N Ex(1y), it follows from Hoélder's inequality that
IR VLB < {A(ro) + A1(ro) + A}l + (8(ro) + b* k. (B.29)
Let L =2.5(A« + p) for some p > 0. Provided that
p = max [A(ro) + A1(ro), s /?{8(ro) + b*}], (B.30)

we have [h" VL(B*)| < 0.4x[lh|l; +0.4s"/2||h| 5. Combined with (B.26), this yields 0 < 1.4||hs|l1 — 0.6]lhsc (|1 +0.45"/|Ih|5.
Consequently, with A = Amin(Z) = 1, we have [|h]l1 < (10/3)[lhsl1 +(2/3)s'/2||h]ls. < 4s'/2||h]5, and hence f € A. Through-
out the rest of the proof, we assume that the constraint (B.30) holds.

Next, we apply Lemma Appendix A.1 to bound the left-hand side of (B.26) from below. As in the proof of Theorem 2.1,
we set Tjoc = k/(4n0.25) and define Ec =1-0p*+ CE, where ¢ = sup{u € [0,1]: (1 —u)B* + uﬁ € O(roc)}. The same
argument theiein implies BE(EC, B*) < CBZ(E, B*). Recall that conditioned on Ey(rg) N Ex(Ay), E falls in the ¢1-cone A and
thus so does .. Moreover, . € O(roc) by construction. Then it follows from Lemma Appendix A.1 that, with probability at
least 1 —e™Y,

o~ 1 ~
Dz(Be, B9 = 4 lIBe = B3,
as long as n 2 slog p + u. Combining this with (B.26), (B.29) and (B.30), we obtain that
1 ~ ~
2B = B71% < ca(14]hs ]y +0.45"2 ]| 5) < 185211 Bc — Bz
Canceling ||/§L — B*|ls on both sides yields

I1Be — B*Ils <7.25"21. (B.31)

Provided that x > 28.879.255!/21, the right-hand side is strictly less than ri,.. Via proof by contradiction, we must have
B: Ec € O(roc), and hence the bound (B.31) also applies to E

It remains to choose p properly so that the constraint (B.30) holds with high probability. Recall from Lemma Appendix
A.2 that b* < o271, The following two lemmas provide upper bounds on the suprema A(rp), A1(ro) and 8(rg) defined in
(B.27) and (B.28).

Lemma Appendix B.1. Assume Condition (C2) holds. Then, for any r,u > 0,

log(2 log(2 log(2
AG) < Clgzr{ [sloz2p) +51/2W1 + Catous Vo EEDE L (32)

with probability at least 1 — e~ ", where Cy, C; > 0 are absolute constants. The same bound, with N replaced by n, holds for A1(r).
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Lemma Appendix B.2. Condition (C2) guarantees §(r) < k ~2r(c2 + uar?/3) for any r > 0.

Let 0 <rp S o and set § = 2e~ Y, so that logp + u x log(p/38). Suppose the sample size per machine satisfies
n 2> slog(p/8). Then, in view of Lemmas Appendix B.1 and Appendix B.2, a sufficiently large p, which is of order

1 )
0 = max {rg,/ wgr(lip/),s_]/zaz(ic_zro +1tHE,

guarantees that (B.30) holds with probability at least 1 — §/2. With this choice of p, we see that the right-hand of (B.31) is
strictly less than rjoc as long as « > s'/2{x* +ro,/slog(p/8)/n} + o 2(k ~rg + T~ ). Since k < o/n/log(p/8) and o2k ~?rg
is negligible compared to rg/slog(p/§)/n, this holds trivially under the assumed sample size scaling, and thus completes
the proof. O

We end this subsection with the proofs of Lemmas Appendix B.1 and Appendix B.2.

B.5.1. Proof of Lemma Appendix B.1
For any ri,r; > 0, define the £1/¢3-ball B(ri,r2) = {8 € RP : ||B]l1 <r1, [|Bll2 < r2}. Consider the change of variable
v =B — B* so that ve B(4s'/?r,r) for g € ©(r) N A. It follows that

sup [ID(B) — D(B)ll~o

BeOMNA

< max  sup Z(l —E) [y (si — X[v) — e () Jxij | = max X ;. (B.33)
1<j<P yeB4s!/2r,r)

= ¢1](V)

where @; := sup, stz [(1/N) Zf’:l(l —E)¢ij(v)| and ¢ (u) = sign(u) min(|ul, 7). By the Lipschitz continuity of v (-),
SUPy B (4si/2r.p) |91 (V)] < SUPy e asi/rpy IXTV] - |xij| < 4B?s'/?r and, for each v e B(4s'/?r, 1),

E¢Z(v) < ER ()2} < (Ext) P (Eiv)*) ' < ojja - 12,

We then apply Bousquet’s version of Talagrand’s inequality (Bousquet, 2003) and obtain that, for any z > 0,

2z z z
®;<Ed;j+ sup [EgZW)}*\/5 +4,/E®;- B2s1/2r T 4+ (4/3)B%V2r
veB4s'/2r,r) N N N
z z z
<E®; + (20jj1a)'/r /ﬁ +4,/E®; - B2s1/2r = + (4/3)3251/2rﬁ, (B.34)

with probability at least 1 — 2e~%. For the expected value E®;, by Rademacher symmetrization we have

Zel¢1](") Zel¢1](v) }

where eq,...,ey are independent Rademacher random variables. For each i, write ¢;;(v) = ¢j(xlTv), where ¢;(-) is such
that ¢;(0) =0 and |¢;j(t1) — ¢j(t2)| < Ixjj| - [ty — t2| < Blt; — t2|. It thus follows from Talagrand’s contraction principle
that

E®; <2E sup
veB(4s1/2r,r)

=2E]{ E, sup
veB(4s!/2rr)

N

1 Ze,-x}v

i=1

Ee sup <8Bs'/?r. E,

veB(4s!/2r,r)

<2B-E, sup
veB(4s1/2r,r)

1N
N Zei¢ij(v)

i=1

1 N
Y
N i=1 o]

Again, applying Lemma 14.14 in Biihlmann and van de Geer (2011) yields E.||(1/N) Z,N:] eiXilloo < By/2log(2p)/N. Putting
together the pieces, we conclude that, for j=1,...,p,

2510g(2
E®; < 163%,/%(‘)).

Finally, taking z =log(2p) + u in (B.34), the claimed bound follows from the union bound. O
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B.5.2. ProofofLemrEa Appendix B.2
Let £:(8) =EL;(B) be the population loss, so that

D1(B)=VLc(B) —VL(B*) and D(B)=VL(B) — VLA(B").

Starting with D1(8), consider the change of variable v = £1/2(8 — 8*). Then, by the mean value theorem for vector-valued
functions,

272Dy (B) — =V2(B - B%)
1
=312 / V2L (1 —0p* +tp)dt=~V2 v —v

0
1

=— f E{P(le —tz'v| > k|x)zz"}dt - v.
0
Similarly, it can be obtained that
1
>~ 12pp) - =3B - p*) = —/IE{IP’(|£ —tz'v| > t|x)zz"}dt - v.
0
Recall that T > k¥ > 0. We have
1
> V2(D1(B) — D(B)} = —/E{]P’(K <le—tZ'v| < t|x)zZ"}dt - v.
0

By Markov’s inequality and the fact that E(g|x) =0, P(le — tz'v| > k|x) < k “2{E(e?|x) + t2(z'v)?} < k ~%{c? + t2(z"v)?}.
Substituting this into the above bound yields

1

sup D1(8) — D(B)lla < / [0 + CE((Z'v) 22" ]de

BeB([)

2
<k r[o? + JIE(EV) 225
<k72r(0® + par?/3),

as desired. O

B.6. Proof of Theorem 3.2

The proof will be carried out conditioning on the “good event” £y(rg) N £.(A) for some predetermined 0 < rp, Ay S O.
Given 8 € (0, 1), let Ehe robustification parameters satisfy T > k < o/n/log(p/8). Theorem 3.1 implies that the first iterate
BN € argming rp {LM (B) + 211|111} with

/sl 8
A =250+ p1) and plxmax!ro S()gr(lip/),suzazrll,

satisfies the cone property 81 € A and the error bound

1BV — B*Ilx < Cisy/log(p/8)/n 1o+ Ca(o Pt +5"2h) =ir, (B.35)

with probability at least 1 — 8. In (B.35), we set o = «(s, p,n,8) = C15,/log(p/8)/n and r,, = Ca(c21~1 +51/21,), so that

11 = arg + 1. Provided the sample size per machine is sufficiently large, namely, n > s? log(p/$), the contraction factor « is

strictly less than 1, and hence the initial estimation error rg is reduced by a factor of « after one round of communication.
For t=2,3,..., T, define the events & (r;) = {B® € ®(;) N A} and radius parameters

2 ; 1—aof
rt=ar—1+re=ar2+(0+a)ri=---=arg+ 1

T

In the t-th iteration, we choose the regularization parameter A; = 2.5(Ay + po¢) with
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slo 8
p¢ = Max rt_h/%,s_”zozr_l = s~ "/2max{a'ry, ot}

Commenced with ﬁ(t‘” at iteration t > 2, we apply Theorem 3.1 to obtain that conditioned on event &_1(rt—1) N Ex(Ay),

BV e and [|BO —B*llx <arei+re=rr, (B.36)

with probability at least 1 —§. In other words, event & (r:) occurs with probability at least 1 —§ conditioned on &_1(r;—1) N
Ex ().

Finally, we choose T = [log(ro/r+)/log(1/c)] so that a"rg <r,. Then, applying (B.35), (B.36) and the union bound over
t=1,...,T yields that, conditioned on &Ey(rg) N &, (ry), the T-th iterate A7) falls into the cone A and satisfies the error
bound

2(T
1B — B*lls <rr =T,

with probability at least 1 — T§. This completes the proof of the theorem. O
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