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Distributed data naturally arise in scenarios involving multiple sources of observations, 
each stored at a different location. Directly pooling all the data together is often prohibited 
due to limited bandwidth and storage, or due to privacy protocols. A new robust distributed 
algorithm is introduced for fitting linear regressions when data are subject to heavy-tailed 
and/or asymmetric errors with finite second moments. The algorithm only communicates 
gradient information at each iteration, and therefore is communication-efficient. To achieve 
the bias-robustness tradeoff, the key is a novel double-robustification approach that applies 
on both the local and global objective functions. Statistically, the resulting estimator 
achieves the centralized nonasymptotic error bound as if all the data were pooled together 
and came from a distribution with sub-Gaussian tails. Under a finite (2 + δ)-th moment 
condition, a Berry-Esseen bound for the distributed estimator is established, based on 
which robust confidence intervals are constructed. In high dimensions, the proposed 
doubly-robustified loss function is complemented with �1-penalization for fitting sparse 
linear models with distributed data. Numerical studies further confirm that compared with 
extant distributed methods, the proposed methods achieve near-optimal accuracy with low 
variability and better coverage with tighter confidence width.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

In many applications, there are a massive number of individual agents/organizations collecting data independently. 
Multiple-site research has brought the possibility of studying rare outcome that require larger sample sizes, accelerating 
more generalizable findings, and bringing together investigators with different expertise from various backgrounds (Sidran-
sky et al., 2009). Due to limited resources, such as bandwidth and storage, or privacy concerns, researchers across different 
sites are only allowed to share summary statistics without allowing collaborating parties to access raw data (Wu et al., 
2012). Moreover, the collected data may often be contaminated by high level of noise, and thus of low quality. For exam-
ple, in the context of gene expression data analysis, it has been observed that some gene expression levels have kurtosis 
values much larger than 3, despite of the normalization methods used (Wang et al., 2015). It is therefore important to de-
velop robust and distributed learning algorithms with controlled communication cost and desirable statistical performance, 
measured by both efficiency and robustness.
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Distributed learning algorithms have received considerable attention for multi-source studies in the past decade. Due 
to privacy concerns, data collected at each source, such as node, sensor or organization, must remain local. The goal is to 
develop efficient statistical learning methods that allow shared analyses or summary statistics without sharing individual 
level data. The classical divide-and-conquer principle is based on aggregating local estimators, that is, estimators computed 
separately on local machines, to form a final estimator; see, for example, Chen and Xie (2012), Li et al. (2013), Zhang et 
al. (2015), Zhao et al. (2016), Rosenblatt and Nadler (2016), Lee et al. (2017), Battey et al. (2018) and Volgushev et al. 
(2019), among many others. We refer to Huo and Cao (2018) for a more complete literature review. The divide-and-conquer 
approach, also known as one-step averaging, only takes one communication round, and therefore is convenient and has 
minimal communication cost. However, in order for the averaging estimator to achieve the same convergence rate as the 
centralized estimator, each local machine must have access to at least 

√
N samples, where N is the total sample size. This 

limits the number of machines allowed in the communication network.
To overcome this barrier of one-step averaging, multi-round procedures have been proposed for distributed data analysis 

with a large number of local agents (Shamir et al., 2014; Wang et al., 2017; Jordan et al., 2019; Wang et al., 2019). For 
linear and generalized linear models, Wang et al. (2017) and Jordan et al. (2019) proposed multi-round distributed (pe-
nalized) M-estimators that achieve optimal rates of convergence under very mild constraints on the number of machines. 
Chen et al. (2019) studied an iterative algorithm with proper smoothing for quantile regression under memory constraint, 
which may also apply under distributed computing platform. Alternatively, Dobriban and Sheng (2021) proposed an iterative 
weighted parameter averaging scheme for distributed linear regression when the dimension is comparable to the sample 
size.

For linear models under data parallelism, most of the existing distributed algorithms work with the least squares method, 
either by (weighted) averaging local least squares estimators or iteratively minimizing shifted (penalized) least squares loss 
functions. From a robustness viewpoint, distributed least squares based method inherits the sensitivity (non-robustness) of 
its centralized counterpart to the tails of the error distributions, hence increasing the variability of the estimator. In this 
paper, we propose a robust distributed algorithm for linear regression with heavy-tailed errors. Our proposal is inspired 
by Huber’s M-estimation (Huber, 1973) but with double data-adaptive robustification parameters to achieve a balanced 
tradeoff between statistical optimality and communication efficiency. We refer the reader to Yohai and Maronna (1979), 
Portnoy (1985), Mammen (1989), He and Shao (1996) and He and Shao (2000) for the asymptotic properties of the classical 
Huber regression estimator in both fixed-p and increasing-p settings.

Our setup includes the heteroscedastic linear model with asymmetric errors, to which the least absolute deviation (LAD) 
regression does not naturally apply. Following the terminology in Catoni (2012), the type of “robustness” considered in this 
paper is quantified by nonasymptotic exponential deviation of the estimator versus polynomial tail of the error distribution. 
The ensuing procedure does sacrifice a fair amount of robustness to adversarial contamination of the data. The motivation 
of this work is different from and should not be confused with the classical notion of robust statistics (Huber and Ronchetti, 
2009).

The distributed method is built upon the iterative, multi-round algorithm proposed by Wang et al. (2017) and Jordan 
et al. (2019), which only communicates gradient information at each round and therefore is communication-efficient. By 
a delicate choice of local and global robustification parameters, the proposed estimator satisfies exponential-type devia-
tion bounds when the errors only have finite variance. Specifically, we show that the distributed estimator, obtained by a 
few rounds of communications, achieves the optimal centralized deviation bound as if the data were pooled together and 
subject to sub-Gaussian errors. The robustification parameters are also self-tuned, making the algorithm computationally 
convenient. We further derive a Berry-Esseen bound for the distributed estimator, based on which we construct robust 
confidence intervals. Finally, we propose a distributed penalized adaptive Huber regression estimator for high-dimensional 
sparse models, and establish its (near-)optimal theoretical guarantees.

Notation: For each integer k ≥ 1, we use Rk to denote the k-dimensional Euclidean space. The inner product of two 
vectors u = (u1, . . . , uk)

T, v = (v1, . . . , vk)T ∈Rk is defined by uTv = 〈u, v〉 = ∑k
i=1 ui vi . We use ‖ · ‖p (1 ≤ p ≤ ∞) to denote 

the �p-norm in Rk: ‖u‖p = (
∑k

i=1 |ui |p)1/p and ‖u‖∞ = max1≤i≤k |ui |. For any k × k symmetric matrix A ∈ Rk×k , ‖A‖2
is the operator norm of A. For a positive semidefinite matrix A ∈ Rk×k , ‖ · ‖A denotes the norm induced by A, that is, 
‖u‖A = ‖A1/2u‖2, u ∈Rk . Moreover, we use Sk−1 = {u ∈Rk : ‖u‖2 = 1} to denote the unit sphere in Rk . For two sequences 
of non-negative numbers {an}n≥1 and {bn}n≥1, an � bn indicates that there exists a constant C > 0 independent of n such 
that an ≤ Cbn; an � bn is equivalent to bn � an; an � bn is equivalent to an � bn and bn � an .

2. Distributed adaptive Huber regression

2.1. Distributed Huber regression with adaptive robustification parameters

Suppose we observe independent data vectors {(yi, xi)}ni=1 following the linear model

yi = xTiβ
∗ + εi, E(εi|xi) = 0, i = 1, . . . ,N, (2.1)

where xi = (xi1, . . . , xip)T with xi1 ≡ 1 is the covariate for the ith individual, β∗ ∈ Rp is the underlying coefficient vector, 
and εi ’s are independent error variables. This setting allows conditional heteroscedastic models, where εi can depend on xi . 
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For example, in a location-scale model we have εi = σ(xi)ei , where σ(xi) is a function of xi , and ei is independent of xi . In 
the absence of normality assumption on the (conditional) error distribution, Huber’s M-estimator (Huber, 1973) is one of 
the most widely used robust alternative to the least squares estimator. Given some τ > 0, referred to as the robustification 
parameter, Huber’s regression M-estimator for estimating β∗ is defined as

β̂ = β̂τ ∈ argmin
β∈Rp

L̂τ (β) := 1

N

N∑
i=1

�τ (yi − xTiβ),

where �τ (u) = 0.5u2 I(|u| ≤ τ ) + (τ |u| − 0.5τ 2)I(|u| > τ) is the Huber loss. Traditionally, τ is often chosen to be 1.345σ
with σ either determined by a robust scale estimate or simultaneously estimated by solving a system of equations, in 
order to achieve 95% asymptotic relative efficiency while gaining robustness when there are contaminated or heavy-tailed 
symmetric errors (Bickel, 1975; Western, 1995). In the presence of asymmetric heavy-tailed errors, Fan et al. (2017) and 
Sun et al. (2020) proposed (regularized) adaptive Huber regression estimators with τ scaling with the sample size and 
parametric dimension, and established exponential-type deviation bounds when εi ’s only have finite (1 + δ)-th moments for 
some 0 < δ ≤ 1.

In linear model (2.1), we allow heteroscedastic errors that are of the form εi = σ(xi)ei , where σ(·) is an unknown 
function on Rp and ei is independent of xi . When the error variables εi are heavy-tailed, asymmetric and have finite 
variance σ 2, Sun et al. (2020) showed that Huber’s estimator β̂τ with τ � σ

√
N/(p + logN), referred to as the adaptive 

Huber regression (AHR) estimator, exhibits sharp finite-sample deviation properties (Catoni, 2012), while the least squares 
estimator is far less concentrated around β∗ . We say εi is heavy-tailed if it has infinite k-th absolute moment for some 
k ≥ 2.

In the distributed setting, assume that the overall dataset {(yi, xi)}Ni=1 is stored on m node machines, one central 
machine and m − 1 local machines that connected to the central. For j = 1, . . . , m, the jth machine stores a subsam-
ple of n j observations, denoted by {(yi, xi)}i∈I j , and I j ’s are disjoint index sets that satisfy ∪m

j=1I j = {1, . . . , N} and 
N = ∑m

j=1 |I j | = ∑m
j=1 n j . Without loss of generality, we assume n1 = · · · = n j = n and N = n ·m is divisible by m. We thus 

refer to n as the local sample size. When the entire dataset is available, the optimal τ scales with the total sample size N
and dimension p for optimal bias and robustness tradeoff. With decentralized data, each local machine only has access to a 
subsample, so that the “locally optimal” τ depends on the local sample size. This, however, will lead to sub-optimal bounds 
for the aggregated estimator because τ is not large enough to offset the bias. To parallelize AHR in a distributed setting with-
out compromising statistical optimality, we introduce two robustification parameters τ and κ , referred to as the global and 
local robustification parameters, and define the global and local Huber loss functions as L̂τ (β) = (1/N) 

∑N
i=1 �τ (yi − xTiβ)

and L̂ j,κ (β) = (1/n) 
∑

i∈I j
�κ(yi − xTiβ) for j = 1, . . . , m. Using this adaptive robustification procedure, we then extend the 

approximate Newton-type method (Shamir et al., 2014; Jordan et al., 2019) to robust regression with skewed heavy-tailed 
errors.

Starting with an initial estimator β̃(0) of β∗ , we define the shifted adaptive Huber loss

L̃(β) = L̂1,κ (β) − 〈∇L̂1,κ (β̃(0)) − ∇L̂τ (β̃(0)), β
〉

= L̂1,κ (β) −
〈
∇L̂1,κ (β̃(0)) − 1

m

m∑
j=1

∇L̂ j,τ (β̃(0)), β
〉
, β ∈Rp . (2.2)

Implicitly the shifted loss L̃(·) depends on both local and global robustification parameters κ and τ . It uses data available 
only on the first machine, used as the central machine, along with p-dimensional gradient vectors L̂ j,κ (β̃(0)) ( j = 2, . . . , m)

that were sent from the remaining local machines. The ensuing one-step estimator is given by

β̃(1) = β̃
(1)
κ,τ ∈ argmin

β∈Rp
L̃(β). (2.3)

This procedure requires one communication round of O (pm) bits, and thus is communication-efficient. To investigate the 
statistical properties of β̃(1) , we impose the following moment condition on the data generating process.

(C1). The predictor x ∈ Rp is sub-Gaussian: there exists υ1 ≥ (2 log2)−1/2 such that P (|zTu| ≥ υ1t) ≤ 2e−t2/2 for every unit 
vector u ∈Sp−1 and t ≥ 0, where z = 
−1/2x and 
 = E(xxᵀ) is positive definite. Moreover, the regression error ε satisfies 
E(ε|x) = 0 and E(ε2|x) ≤ σ 2 almost surely.

For prespecified parameters r, r∗ > 0, define the events

E0(r) = {
β̃(0) ∈ �(r)

}
and E∗(r∗) = {‖∇L̂τ (β∗)‖� ≤ r∗

}
, (2.4)

where �(r) := {β ∈Rp : ‖β −β∗‖
 ≤ r} and � := 
−1. Here r quantifies the statistical accuracy of the initial estimator β̃(0) , 
and r∗ determines the estimation error of the centralized AHR estimator which essentially depends on the score ∇L̂τ (β∗)
with the global robustification parameter.
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Theorem 2.1. Assume Condition (C1) holds. For any u > 0, let the robustification parameters satisfy τ ≥ κ � σ
√
n/(p + u), and 

suppose the local sample size satisfies n � p + u. Then, conditioned on the event E0(r0) ∩ E∗(r∗) with 8r∗ ≤ r0 ≤ σ , the one-step 
estimator β̃(1) defined in (2.3) satisfies

‖β̃(1) − β∗‖
 �
√

p + u

n
· r0 + r∗ and (2.5)

‖β̃(1) − β∗ + 
−1∇L̂τ (β∗)‖
 �
√

p + u

n
· r0, (2.6)

with probability at least 1 − 3e−u .

In the above theorem, the bound (2.5) reflects the delicate dependence of the one-step error on the initial error r0 as 
well as the centralized error rate r∗ . If we take β̃(0) to be a local estimator constructed on a single local machine that has 
access to only n observations, we may expect a sub-optimal convergence rate r0 � σ

√
p/n. Moreover, it can be shown that 

‖∇L̂τ (β∗)‖� � σ
√

p/N + σ 2/τ + τ p/N with high probability, up to logarithmic factors; see Lemma Appendix A.2 in the 
Appendix. Hence, the choice of r∗ corresponds to the optimal rate of convergence when the entire dataset is available and 
τ � σ

√
N/p. Under the prescribed sample size scaling n � p, the one-step estimator β̃(1) refines the statistical accuracy of 

β̃(0) by a factor of order 
√

p/n, which is strictly less than 1. We thus expect the multi-step estimator, with sufficiently many 
communication rounds, will achieve the optimal convergence rate obtainable on the entire dataset.

The proposed multi-round procedure for adaptive Huber regression is iterative, starting at iteration 0 with an initial 
estimate β̃(0) ∈ Rp . At iteration t ≥ 1, it updates the estimate β̃(t) by fitting a shifted adaptive Huber regression which 
leverages global first-order information, depending on τ , and local higher-order information, depending on κ . The procedure 
involves two steps.
1. Communicating gradient information. The central machine broadcasts β̃(t−1) to every local machine. The jth machine, 
2 ≤ j ≤m, computes the gradient ∇L̂ j,τ (β̃(t−1)), and sends it back to the central machine. This step requires a communica-
tion of 2(m − 1)p bits.
2. Fitting local shifted AHR. The central machine computes the update β̃(t) , defined as a solution to the optimization 
problem

min
β∈Rp

L̃(t)(β) := L̂1,κ (β) −
〈
∇L̂1,κ (β̃(t−1)) − 1

m

m∑
j=1

∇L̂ j,τ (β̃(t−1)), β

〉
, (2.7)

which can be solved by the method of iteratively reweighted least squares or quasi-Newton methods. Details are given in 
section 4.1. We summarize the procedure, with an early stopping criterion, in Algorithm 1.

Algorithm 1: Communication-Efficient Adaptive Huber Regression.
Input: data batches {(yi , xi)}i∈I j , j = 1, . . . , m, stored on m machines, robustification parameters τ ≥ κ > 0, initialization β̃(0) , number of iterations 
T , gradient tolerance g0 = 1.
1: for t = 1, 2 . . . , T do
2: Broadcast β̃(t−1) to all local machines;
3: The jth (1 ≤ j ≤m) machine computes ∇L̂ j,τ (β̃(t−1)), and transmit it to the central machine;
4: Compute ∇L̂τ (β̃(t−1)) = (1/m) ∑m

j=1 ∇L̂ j,τ (β̃(t−1)), ∇L̂1,κ (β̃(t−1)) and gt = ‖∇L̂τ (β̃(t−1))‖∞ on the central machine;

5: If gt ≥ gt−1 or gt ≤ 10−5 break ; otherwise, on the central machine, solve the shifted adaptive Huber regression problem in (2.7) to update the 
estimate β̃(t);

6: end for
Output: β̃(T ) .

Theorem 2.2. Assume the same conditions in Theorem 2.1, and let 8r∗ ≤ r0 ≤ σ . Conditioned on event E0(r0) ∩E∗(r∗), the distributed 
AHR estimator β̃(T ) with T � �log(r0/r∗)/ log(n/(p + u))� satisfies the bounds

‖β̃(T ) − β∗‖
 � r∗ and ‖β̃(T ) − β∗ + 
−1∇L̂τ (β∗)‖
 �
√

p + u

n
· r∗, (2.8)

with probability at least 1 − (2T + 1)e−u .

The above result shows that, with proper choices of τ and κ as well as the number of iterations, the statistical error 
of the multi-step distributed AHR estimator matches that of the centralized AHR estimator on the entire dataset. For the 
initialization, we may take β̃(0) to be a local AHR estimator computed on the central machine. With the above preparations, 
we are ready to explicitly describe the estimation error and Bahadur linearization error of the proposed distributed AHR 
estimator. The result is nonasymptotic, and carefully tracks the impact of the parametric dimension p, local sample size n
and the number of machines m.
4
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Corollary 2.1. Assume Condition (C1) holds, and suppose the local sample size satisfies n � p + logn + log2m, where log2m :=
log(logm) and m = N/n. Choose the robustification parameters τ ≥ κ > 0 as τ � σ

√
N/(p + logn + log2m) and κ �

σ
√
n/(p + logn + log2m). Then, starting at iteration 0 with a local AHR estimate β̃(0), the distributed estimator β̃ = β̃(T ) with 

T � � log(m)
log(n/(p+logn+log2m))

� satisfies

‖β̃ − β∗‖
 � σ

√
p + logn + log2m

N
and (2.9)∥∥∥∥β̃ − β∗ − 
−1 1

N

N∑
i=1

ψτ (εi)xi

∥∥∥∥



� σ
p + logn + log2m

(nN)1/2
, (2.10)

with probability at least 1 − Cn−1 , where ψτ (u) := �′
τ (u) = sign(u) min(|u|, τ ).

The above corollary indicates that the multi-step distributed AHR estimator β̃ achieves the optimal statistical rate of 
convergence by a delicate combination of the local robustification parameter, the global robustification parameter, and num-
ber of communication rounds. The second bound, (2.10), explicitly describes the error term of the Bahadur linearization. 
This allows to establish the asymptotic distribution of β̃ when both p, n tend to infinity. Moreover, to achieve statistical 
optimality and communication efficiently simultaneously, the above results impose minimal conditions on the number of 
machines m. In summary, when data are heavy-tailed and collected on each machine remain local, the proposed procedure 
delivers a statistically optimal estimate by communicating as many as O (pm log(m)) bits.

2.2. Distributed confidence estimation

In this section, we consider uncertainty quantification of the multi-step estimator in a distributed setting, with a particu-
lar focus on statistical confidence estimation. We first establish a Berry-Esseen bound for linear functions of the distributed 
AHR estimator β̃ , which explicitly quantifies the normal approximation error.

Theorem 2.3. In addition to the conditions in Theorem 2.1, assume E(ε2|x) = σ 2 and E(|ε|2+δ |x) ≤ v2+δ almost surely for some 
0 < δ ≤ 1. Then, the distributed estimator β̃ = β̃(T ) satisfies

sup
t∈R,a∈Rp

∣∣∣∣P[
N1/2aT(β̃ − β∗)√
E{ψτ (ε)aT
−1x}2 ≤ t

]
− �(t)

∣∣∣∣
� p + logn + log2m

n1/2
+ v2+δ(p + logn + log2m)(1+δ)/2

σ 2+δNδ/2
, (2.11)

where �(·) is the standard normal distribution function. In particular, assume E(|ε|3|x) ≤ v3 < ∞ almost surely. Then, under the 
dimension constraint p + log2m = o(n1/2),

N1/2aT(β̃ − β∗)√
E{ψτ (ε)aT
−1x}2

d−→ N (0,1) and
N1/2aT(β̃ − β∗)
σ (aT
−1a)1/2

d−→ N (0,1), (2.12)

uniformly over a ∈Rp as n → ∞.

Let β̃ = (β̃1, . . . , ̃βp)
T be the distributed estimator described in the previous subsection. Theorem 2.3 implies that, 

for each 1 ≤ j ≤ p, N1/2(β̃ j − β∗
j ) is asymptotically normal with zero mean and variance (
−1E{ψτ (ε)xxT}2
−1) j j . 

Let 
̂ = (1/N) 
∑N

i=1 xix
T
i be the sample version of 
, and ε̂i = yi − xTi β̃ be the fitted residuals. It can be shown that 

(
̂−1N−1 ∑N
i=1 ψ2

τ (̂εi)xixTi 
̂
−1) j j provides a consistent estimator of (
−1E{ψτ (ε)xxT}2
−1) j j . In a distributed setting, the 

computation of this variance estimator requires communicating O (p2m) bits, thus incurring exorbitant communication costs 
when p is large.

To achieve a tradeoff between communication and statistical efficiency, we propose averaging pointwise variance estima-
tors, defined by σ̂ 2

j := (1/m) 
∑m

k=1 σ̂ 2
jm for j = 1, . . . , p, where

σ̂ 2
jk = (
̂−1

k �̂k
̂
−1
k ) j j, �̂k = 1

n

∑
i∈Ik

ψ2
τ (̂εi)xix

T
i and 
̂k = 1

n

∑
i∈Ik

xix
T
i .

This approach takes one additional round of communication, and is robust against heteroscedastic errors that are of the 
form εi = σ(xi)ei . When εi is independent of xi , the asymptotic variances reduce to E{ψ2

τ (ε)}(
−1) j j , and thus can be 
consistently estimated by σ̃ 2 := (σ̂ 2

ε /m) 
∑m

k=1(
̂
−1) j j , where σ̂ 2

ε = (N − p)−1 ∑N
i=1 ψ2

τ (̂εi). For α ∈ (0, 1), the distributed 
j k

5
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100(1 − α)% normal-based confidence intervals for β∗
j , j = 1, . . . , p, are given by [β̃ j − zα/2σ̂ j N−1/2, ̃β j + zα/2σ̂ j N−1/2] or 

[β̃ j − zα/2σ̃ j N−1/2, ̃β j + zα/2σ̃ j N−1/2], where zα/2 = �−1(1 − α/2).
The consistency of σ̂ 2

ε is established in the following proposition.

Proposition 2.1. In addition to Condition (C1), assume E(ε2|x) = σ 2 and E(|ε|2+δ |x) ≤ v2+δ almost surely for some 0 < δ ≤ 1. 
Then, conditioned on the event {β̃ ∈ �(r)} with 0 < r � σ , the variance estimator ̂σ 2

ε satisfies the bound

|σ̂ 2
ε − σ 2|� v1/22+δτ

1−δ/2

√
p log(N) + t

N
+ τ 2 p log(N) + t

N
+ σ r

with probability at least 1 − 2e−t as long as N � p + t. In particular, assume E(|ε|3|x) ≤ v3 almost surely, and choose the robustifi-
cation parameter τ � σ {N/(p + logn)}1/3 . Then, conditioned on {β̃ ∈ �(r)} we have |σ̂ 2

ε − σ 2| � v1/23 σ 1/2(p/N)1/3 log(N) + σ r
with probability at least 1 − 2N−1 .

3. Distributed regularized adaptive Huber regression

In this section, we consider high-dimensional linear models under sparsity. Specifically, we allow the parametric dimen-
sion p to be much larger than the local sample size n, and assume β∗ is s-sparse, where s = |S| and S = supp(β∗) = {1 ≤
j ≤ p : β∗

j �= 0} denotes the true active set.
Given independent observations {(yi, xi)}Ni=1 from the linear model (2.1), the centralized/global �1-penalized Huber re-

gression estimator (�1-Huber) is defined as

β̂ = β̂τ (λ) ∈ argmin
β∈Rp

{
L̂τ (β) + λ‖β‖1

}
, (3.1)

where λ > 0 is a regularization parameter. Statistical properties of �1-penalized Huber regression have been thoroughly 
studied by Lambert-Lacroix and Zwald (2011), Fan et al. (2017), Loh (2017) and Chinot et al. (2020) from different perspec-
tives. To deal with asymmetric heavy-tailed errors, Fan et al. (2017) established high probability bounds for the �1-Huber 
estimator with τ � σ

√
N/ log(p) in the high-dimensional regime p � n � s log(p).

Remark 3.1. In practice, it is natural to leave the intercept or a given subset of the parameters unpenalized in the penalized 
M-estimation framework (3.1). Denote by R ⊆ {1, . . . , p} the index set of unpenalized parameters, which is typically user-
specified and contains at least index 1. A more flexible �1-Huber estimator can be obtained by solving minβ∈Rp {L̂τ (β) +
λ‖βRc‖1} = minβ∈Rp {L̂τ (β) + λ 

∑
j∈Rc |β j |}. Similar theoretical analysis can be carried out with slight modifications, and 

thus will be omitted.

In a distributed setting, we integrate the ideas of Wang et al. (2017) and Jordan et al. (2019) with adaptive robustifica-
tion to parallelize regularized Huber regression with controlled communication cost and optimal statistical guarantees. As 
before, let τ and κ be the global and local robustification parameters. Recall that L̂ j,κ (·), j = 1, . . . , m, denote local Huber 
loss functions. Commenced with a regularized estimator β̃(0) , let L̃(β) = L̂1,κ (β) − 〈∇L̂1,κ (β̃(0)) − ∇L̂τ (β̃(0)), β〉 be the 
shifted adaptive Huber loss as in (2.2). With slight abuse of notation, we define the one-step �1-penalized Huber regression 
estimator as

β̃(1) = β̃
(1)
κ,τ (λ) ∈ argmin

β∈Rp

{
L̃(β) + λ‖β‖1

}
. (3.2)

To assess the statistical properties of the one-step estimator β̃(1) , we work under the following moment condition on the 
random covariate vector in high dimensions.

(C2). The covariate vector x = (x1, . . . , xp)T ∈Rp with x1 ≡ 1 has bounded components and uniformly bounded kurtosis. That 
is, max1≤ j≤p |x j| ≤ B for some B ≥ 1 and μ4 = supu∈Sp−1 E(zTu)4 < ∞, where z = 
−1/2x and 
 = (σ jk)1≤ j,k≤p = E(xxT). 
Write σu = max1≤ j≤p σ

1/2
j j and λl = λmin(
) > 0. For simplicity, we assume λl = 1. Moreover, the error variables εi satisfy 

E(εi |xi) = 0 and E(ε2
i |xi) ≤ σ 2 almost surely.

As before, we first examine the performance of β̃(1) conditioned on certain “good” events in regard of the initialization 
and the centralized �1-Huber estimator. For r0, λ∗ > 0, define

E0(r0) = {
β̃(0) ∈ �(r0) ∩ �

}
and E∗(λ∗) = {‖∇L̂τ (β∗) − ∇Lτ (β∗)‖∞ ≤ λ∗

}
, (3.3)

where � := {β ∈Rp : ‖β − β∗‖1 ≤ 4s1/2‖β − β∗‖
} is an �1-cone.
6
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Theorem 3.1. Assume Condition (C2) holds. Given δ ∈ (0, 1) and 0 < r0, λ∗ � σ , let (τ , κ, λ) satisfy τ ≥ κ � σ
√
n/ log(p/δ) and 

λ = 2.5(λ∗ + ρ) with

ρ � max

{
r0

√
s log(p/δ)

n
, s−1/2σ 2τ−1

}
.

Moreover, suppose the local sample size satisfies n � s log(p/δ). Then, conditioned on the event E0(r0) ∩ E∗(λ∗), the one-step regular-
ized estimator β̃(1) defined in (3.2) satisfies β̃(1) ∈ � and

‖β̃(1) − β∗‖
 � s

√
log(p/δ)

n
· r0 + σ 2τ−1 + s1/2λ∗, (3.4)

with probability at least 1 − δ.

Theorem 3.1 indicates that the one-step procedure is able to reduce the statistical error of the initial estimator by a 
factor of s

√
log(p)/n when the local sample size satisfies n � s2 log(p); see the first term on the right-hand of (3.4). The 

second term, σ 2τ−1 + s1/2λ∗ , corresponds to the global error rate achievable on the entire dataset. In view of Theorem B.2 
(with δ = 1) in Sun et al. (2020), if we take λ∗ � σ

√
log(p)/N and τ � σ

√
N/ log(p), the centralized �1-Huber estimator 

given in (3.1) satisfies ‖β̂ − β∗‖
 � σ 2τ−1 + s1/2λ∗ � σ
√
s log(p)/N with probability at least 1 − Cp−1.

Now we extend the iterative procedure in Section 2 to high-dimensional settings, starting at iteration 0 with an initial 
estimate β̃(0) ∈Rp . At iteration t = 1, 2, . . ., it proceeds as follows:
Communicating gradient information. The jth (2 ≤ j ≤ m) machine receives β̃(t−1) from the central machine, computes the 
local gradient ∇L̂ j,τ (β̃(t−1)), and sends it back to the central.
Fitting local regularized AHR: On the central machine, solve minβ∈Rp {L̃(t)(β) + λt‖β‖1} to obtain β̃(t) , where L̃(t)(β) =
L̂1,κ (β) − 〈∇L̂1,κ (β̃(t−1)) − (1/m) 

∑m
j=1 ∇L̂ j,τ (β̃(t−1)), β〉 and λt > 0 is a regularization parameter.

Computationally, we use a variant of the majorize-minimize algorithm (Lange et al., 2000), a proximal gradient descent 
type method, to solve the regularized optimization problem at each iteration. Details are provided in section 4.2. The-
orem 3.2 below describes the statistical properties of the solution path {β̃(t)}t≥1 conditioned on a prespecified level of 
accuracy of the initial estimator.

Theorem 3.2. Assume Condition (C2) holds. Given δ ∈ (0, 1) and 0 < r0, λ∗ � σ , let (τ , κ) satisfy τ ≥ κ � σ
√
n/ log(p/δ). For t =

1, 2, . . ., set λt = 2.5(λ∗ +ρt) > 0with ρt � s−1/2 max{αtr0, σ 2τ−1} and α � s
√
log(p/δ)/n. Suppose the local sample size satisfies 

n � s2 log(p/δ), and let r∗ � σ 2τ−1 + s1/2λ∗ . Then, conditioned on event E0(r0) ∩ E∗(λ∗), the distributed regularized estimator β̃(T )

with T � log(r0/r∗)
log(1/α)

satisfies β̃(T ) ∈ � and ‖β̃(T ) − β∗‖
 � r∗ with probability at least 1 − T δ.

With sufficiently many samples on the central machine—n � s2 log(p), Theorems 3.1 and 3.2 ensure that the initial 
estimation error, albeit being sub-optimal, can be repeatedly refined by a factor of order s

√
log(p)/n until it reaches the 

optimal rate. For simplicity, we take β̃(0) to be a local �1-penalized AHR estimator, that is, β̃(0) ∈ argminβ∈Rp {L̂1,κ (β) +
λ0‖β‖1}.

Corollary 3.1. Assume Condition (C2) holds, and the sample size per machine satisfies n � s2 log p. Choose the robustification and 
regularization parameters as τ � σ

√
N/ log(p), κ � σ

√
n/ log(p) and

λt � σ

√
log p

N
+ σ

(
s2 log p

n

)t/2√
log p

n
, t = 0,1,2, . . . .

Starting at iteration 0 with a local �1-penalized AHR estimator, the multi-step estimator β̃(T ) after T � �log(m)� rounds of communi-
cation satisfies the bounds

‖β̃(T ) − β∗‖
 � σ

√
s log p

N
and ‖β̃(T ) − β∗‖1 � σ s

√
log p

N
,

with probability at least 1 − C log(m)/p.

Corollary 3.1, along with the global error analysis in Fan et al. (2017) and Loh (2017), implies the optimality of distributed 
adaptive Huber regression in terms of the tradeoff between communication cost and statistical accuracy.

Remark 3.2. Under light-tailed error distributions (e.g., sub-Gaussian errors), Lee et al. (2017) and Battey et al. (2018)
studied a one-shot approach based on averaging debiased Lasso estimators (Zhang and Zhang, 2014; van de Geer et al., 
2014). Theoretically, averaged debiased Lasso achieves the optimal error rate when the local size satisfies n � ms2 log(p); 
7
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and computationally, each local machine needs to estimate a p × p matrix for debiasing the Lasso. We may expect the same 
issues for the robust one-shot method that averages debiased �1-Huber estimators. The proposed distributed AHR method 
not only requires the minimum sample complexity but also is computationally efficient.

4. Optimization methods

4.1. Barzilai-Borwein gradient descent for distributed AHR

Let us first recall the multi-round distributed procedure for adaptive Huber regression. Starting with an initial estimator 
β̃(0) ∈Rp , and given robustification parameters τ and κ , for t = 1, . . . , T , we update

β̃(t) ∈ argmin
β∈Rp

L̃(t)(β) = L̂1,κ (β) − 〈∇L̂1,κ (β̃(t−1)) − ∇L̂τ (β̃(t−1)), β
〉
. (4.1)

Note that the empirical loss L̃(t)(·) is convex and continuously differentiable. Moreover, since the Huber loss is locally 
strongly convex around zero, we will show that L̃(t)(·) is locally strongly convex in a neighborhood of β̃(t) with high 
probability. To take advantage of such a local strong convexity, we employ the gradient descent method with a Barzilai-
Borwein update step (GD-BB) (Barzilai and Borwein, 1988) to solve the optimization problem in (4.1). The Barzilai-Borwein 
method is motivated by quasi-Newton methods, which avoid calculating the inverse Hessian at each iteration. The latter 
is computationally expensive when p is large. To be specific, let us consider the optimization minβ∈Rp L̃(t)(β) for a fixed 
t ≥ 1. Starting with the initialization β̃(t,0) = β̃

(t−1)
, at (inner) iteration k = 1, 2, ..., compute the update β̃(t,k+1) = β̃

(t,k) −
min{ηk, 10}∇L̃(t)(β̃

(t,k)
), where η1 = 1 and for k ≥ 2,

ηk = 〈β̃(t,k) − β̃(t,k−1), β̃(t,k) − β̃(t,k−1)〉
〈β̃(t,k) − β̃(t,k−1),∇L̃(t)(β̃(t,k)) − ∇L̃(t)(β̃(t,k−1))〉 (4.2)

or

ηk = 〈β̃(t,k) − β̃(t,k−1),∇L̃(t)(β̃(t,k)) − ∇L̃(t)(β̃(t,k−1))〉
‖∇L̃(t)(β̃(t,k)) − ∇L̃(t)(β̃(t,k−1))‖22

.

In practice, the step size computed in GD-BB may sometimes vibrate to some extent, and this may cause instability of 
the algorithm. Therefore, we set a upper bound for the step sizes by taking min{ηk, 10}. This procedure is summarized in 
Algorithm 2.

4.2. Majorize-minimize algorithm for distributed penalized AHR

In the high-dimensional setting, we need to solve �1-penalized shifted Huber loss minimization problems.

Algorithm 2: Gradient Descent with Barzilai-Borwein stepsize for solving (4.1).
Input: Local data vectors {(yi , xi)}i∈I1 , initial estimator β̂0 = β̃(t−1) , gradient ∇L̂1,κ (β̃(t−1)) and ∇L̂ j,τ (β̃(t−1)) for j = 1, . . . , m, and gradient 
tolerance level δ = 10−4.
1: Compute β̂1 ← β̂0 − ∇L̃(t)(β̂0)

2: for k = 1, 2 . . . do
3: Compute ηk as defined in (4.2).
4: Update β̂k+1 ← β̂k −min{ηk, 10}∇L̃(t)(β̂k);
5: end for when ‖∇L̃(t)(β̂k)‖∞ ≤ δ

With slight abuse of notation, given an initial regularized estimator β̃(0) , at each iteration t = 1, 2, . . . , T , define the 
update as

β̃(t) ∈ argmin
β∈Rp

{
L̃(t)(β) + λ‖β−‖1 = L̂1,κ (β) − 〈∇L̂1,κ (β̃(t−1)) − ∇L̂τ (β̃(t−1)), β

〉 + λ‖β−‖1
}

. (4.3)

Here we use β− ∈ Rp−1 to denote the subvector of β with its first component removed. To solve the optimization problem 
in (4.3), we employ the locally adaptive majorize-minimize (LAMM) principle Fan et al. (2018), which extends the classical 
MM algorithm (Hunter and Lange, 2000) to accommodate �1 penalty. This procedure minimizes a surrogate �1-penalized 
isotropic quadratic function at each iteration, thus permitting an analytical solution.

Let L̃(·) be the loss function of interest. For k = 1, 2, ..., define

gk(β;βk−1, φk) = L̃(βk−1) + 〈∇L̃(βk−1),β − βk−1〉 + φk

2
‖β − βk−1‖22.
8
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We say gk(β; βk−1, φk) majorizes L̃(β) at βk−1 if

gk(β;βk−1, φk) ≥ L̃(β) ∀β ∈Rp and gk(β
k−1;βk−1, φk) = L̃(βk−1). (4.4)

By choosing φk large enough, gk(·; βk−1, φk) is guaranteed to satisfy (4.4). To find the smallest such φk , we start with 
φ0 = 0.0001, and repeatedly inflate it by a constant factor, say 1.1, until (4.4) is satisfied. Finally, we update βk by minimiz-
ing

gk(β;βk−1, φk) + λ‖β−‖1. (4.5)

Due to the isotropic quadratic term in gk(β; βk−1, φk), βk can be obtained by a simple analytic formula:{
βk
1 = βk−1

1 − φ−1
k (∇L̃(βk−1))1

βk
j = S(βk−1

j − φ−1
k (∇L̃(βk−1)) j, φ

−1
k λ), j = 2, . . . , p,

where S(u, λ) = sign(u) max(|u| − λ, 0) denotes the soft-thresholding operator. This algorithm also guarantees a descent in 
the overall loss function at every iteration, which is a direct consequence of (4.4) and (4.5):

L̃(βk) + λ‖βk−‖1 ≤ gk(β
k;βk−1, φk) + λ‖βk−‖1

≤ gk(β
k−1;βk−1, φk) + λ‖βk−1− ‖1 = L̃(βk−1) + λ‖βk−1− ‖1.

Algorithm 3 summarizes the LAMM algorithm described above.

Algorithm 3: Local adaptive majorize-minimize (LAMM) algorithm for solving (3.2).
Input: Local data vectors {(yi , xi)}i∈I1 , initial estimator β̂0 = β̃(t−1) gradient vectors ∇L̂1,κ (β̃(t−1)) and ∇L̂τ (β̃(t−1)), regularization parameter λ, 
initial isotropic parameter φ0 and convergence tolerance δ
1: for k = 1, 2 . . . do
2: Setφk ← max{φ0, φk−1/1.1}
3: repeat
4: Update β̂k

1 ← β̂k−1
1 − φ−1

k ∇β1 L̃(β̂k−1)

5: Update β̂k
j ← S(β̂k−1

j − φ−1
k ∇β j L̃(β̂k−1), φ−1

k λ) for j = 2, . . . , p
6: If gk(β̂k; ̂βk−1, φk) < L̃(β̂k), set φk ← 1.1φk

7: until gk(β̂k; ̂βk−1, φk) ≥ L̃(β̂k)

8: end for when ‖β̂k − β̂k−1‖2 ≤ δ

5. Numerical studies

In this section, we compare the numerical performance of the proposed method with several state-of-the-art distributed 
regression methods in both low and high dimensions.

5.1. Distributed robust regression and inference

In the low-dimensional setting where n � p, we consider five distributed regression methods: (i) the global adaptive 
Huber regression (AHR) estimator (Sun et al., 2020) that uses all the available N =mn observations; (ii) divide-and-conquer 
AHR (DC-AHR) estimator based on averaging m local AHR estimators; (iii) DC-OLS estimator that averages m local OLS 
estimators; (iv) distributed OLS estimator (Shamir et al., 2014); and (v) the proposed distributed AHR estimator with early 
stopping.

To implement methods (i) and (ii), we use the self-tuning principle proposed by Wang et al. (2021) which automatically 
selects the robustification parameter τ . The distributed procedures (iv) and (v) are iterative, and require a reasonably well 
initial estimator, say β̃(0) . In our simulations, we take β̃(0) to be either the DC-AHR or the DC-OLS estimator, which only 
requires one communication round. When the error distribution is heavy-tailed and symmetric, DC-AHR often has better 
finite-sample performance than DC-OLS. However, it produces biased estimate when the error is asymmetric. In contrast, 
although the DC-OLS exhibits larger variability due to heavy-tailedness, it has smaller bias on average. Therefore, we use 
DC-OLS estimator as the initialization for both methods (iv) and (v). Recall that the distributed AHR estimator involves 
two robustification parameters κ and τ . The local parameter κ can be automatically obtained by the self-tuning procedure 
(Wang et al., 2021). Guided by theoretical orders of (κ, τ ) stated in Theorem 2.1, we choose the global parameter τ to be 
cm1/2κ , where c ≥ 1 is a numerical constant that can be tuned by the validation set approach. We suggest to choose c from 
{1, 2, 3, 4, 5}, which suffices to achieve promising performance in a wide range of simulation settings.

We generate data vectors {(yi, xi)}Ni=1 from a heteroscedastic model yi = xTiβ
∗ + c−1(xTiβ

∗)2εi , where β∗ = (1.5, . . . , 1.5)T

∈ Rp, xi = (1, xi2, . . . , xip)T with xij ∼ N (0, 1) for j = 2, . . . , p and c = √
3‖β∗‖22 that makes E{c−1(xTiβ

∗)2}2 = 1. The re-
gression errors εi are generated from one of the following four distributions (centered if the mean is nonzero): (a) N (0, 1)
9



J. Luo, Q. Sun and W.-X. Zhou Computational Statistics and Data Analysis 169 (2022) 107419
Fig. 1. Plots of estimation error (under �2-norm) versus number of machines when (n, p) = (400, 20), averaged over 500 replications. Five estimators 
are presented: global AHR estimator ( ); DC-AHR estimator ( ); DC-OLS estimator ( ); distributed OLS estimator ( ); and 
distributed AHR estimator ( ).

Fig. 2. Boxplots of estimation error (under �2-norm) versus the number of machines when (n, p) = (400, 20) for distributed OLS estimator ( ) and 
distributed AHR estimator ( ), averaged over 500 replications.

(standard normal), (b) t2 (t-distribution with 2 degrees of freedom), (c) Par(4, 2)–Pareto distribution with scale parameter 
4 and shape parameter 2, and (d) Burr(1, 2, 1)–Burr distribution or the Singh-Maddala distribution (Singh and Maddala, 
1976), which is commonly used to model household income. First, we fix (n, p) = (400, 20) and let the number of machines 
m increase from 10 to 500. Fig. 1 plots the �2-error ‖β̂ − β∗‖2 versus the number of machines, averaged over 500 replica-
tions, for all five methods. The global and distributed AHR estimators have almost identical performance, thus corroborating 
our theoretical results. The DC-AHR estimator only performs well under symmetric errors and suffers from non-negligible 
bias if the errors come from asymmetric distributions. This is largely expected because the robustification parameter for 
a local AHR estimator is tuned by a small subset of the data and results in a bias scaling with the local sample size. Af-
ter averaging, this bias will not be offset when the number of machines increases. This points out a key drawback of the 
one-shot averaging approach when dealing with skewed data distributed across local machines. It is worth noticing that 
the distributed OLS and DC-OLS estimators perform almost identically in all the settings, which is as expected according 
to Jordan et al. (2019). They have decaying estimation errors as m grows, but at a slower rate compared to the global 
and the distributed AHR estimators for heavy-tailed data. The boxplots in Fig. 2 further reveal that the distributed OLS 
method often produces very poor estimates with high variability, while the distributed AHR method exhibits high degree of 
robustness.

Interestingly, under symmetric errors such as N (0, 1) and t2, the DC-AHR estimator even outperforms the global AHR 
estimator, which may be due to the following reasons. Recall that the data is generated from a heteroscedastic model. 
The global AHR estimator chooses only one τ value using all the data, while for the DC approach, each local AHR esti-
mator is based on a self-tuned κ using the local data. Due to symmetry, local AHR estimators gain robustness without 
sacrificing bias; moreover, averaging independent estimators reduces the variance. On the other hand, in the presence of 
asymmetric errors, each local AHR suffers from a bias depending only on the local sample size. Although averaging re-
duces variance, the bias remains and therefore the performance of DC-AHR barely improves as the number of machines 
increases.

Turning to uncertainty quantification, we construct approximate 95% confidence intervals for the slope coefficients based 
on distributed OLS and AHR methods. As before, we set (n, p) = (400, 20) and let m increase from 10 to 500. Table 1
shows the average coverage probabilities and widths, with standard errors in parentheses, across all slope coefficients based 
on 500 Monte Carlo simulations. Across all the settings, the AHR-based confidence intervals are consistently accurate with 
tight width and reliable with high coverage. In the presence of heavy-tailed errors, the OLS-based confidence intervals 
10
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Table 1
Coverage probabilities and widths (with standard errors in parentheses) of the normal-based CIs (averaged over all slope coefficients) for the distributed 
OLS and distributed AHR methods, based on 500 Monte Carlo simulations.

N(0,1) t2 Par(4,2) Burr(1,2,1)

Coverage 
mean (sd)

Width 
mean (sd)

Coverage 
mean (sd)

Width 
mean (sd)

Coverage 
mean (sd)

Width 
mean (sd)

Coverage 
mean (sd)

Width 
mean (sd)

t
m = 50

Dist-OLS 0.93(0.011) 0.029(0.001) 0.93(0.011) 0.097(0.056) 0.93(0.012) 0.35(0.420) 0.94(0.011) 0.088(0.068)
Dist-AHR 0.95(0.007) 0.031(0.001) 0.95(0.009) 0.077(0.007) 0.95(0.008) 0.23(0.025) 0.95(0.009) 0.058(0.006)

m = 100 Dist-OLS 0.93(0.012) 0.020(0.000) 0.94(0.010) 0.072(0.056) 0.93(0.012) 0.25(0.220) 0.93(0.008) 0.058(0.021)
Dist-AHR 0.95(0.010) 0.022(0.001) 0.96(0.008) 0.058(0.005) 0.95(0.009) 0.18(0.017) 0.95(0.009) 0.044(0.004)

m = 200 Dist-OLS 0.93(0.011) 0.014(0.000) 0.93(0.013) 0.052(0.031) 0.93(0.010) 0.18(0.095) 0.94(0.015) 0.044(0.021)
Dist-AHR 0.96(0.007) 0.015(0.000) 0.95(0.011) 0.043(0.003) 0.95(0.009) 0.13(0.012) 0.96(0.012) 0.034(0.003)

m = 300 Dist-OLS 0.93(0.013) 0.012(0.000) 0.94(0.011) 0.043(0.022) 0.94(0.011) 0.18(0.820) 0.93(0.008) 0.038(0.020)
Dist-AHR 0.95(0.010) 0.013(0.000) 0.96(0.010) 0.036(0.003) 0.95(0.012) 0.11(0.009) 0.96(0.009) 0.028(0.002)

m = 400 Dist-OLS 0.93(0.010) 0.010(0.000) 0.94(0.011) 0.040(0.046) 0.93(0.008) 0.13(0.071) 0.94(0.010) 0.032(0.014)
Dist-AHR 0.95(0.009) 0.011(0.000) 0.96(0.009) 0.031(0.002) 0.95(0.012) 0.10(0.008) 0.96(0.009) 0.025(0.002)

Fig. 3. Plots of estimation error (under �2-norm) versus the number of machines, over 100 replications, under a high-dimensional heteroscedastic 
model when (n, p, s) = (250, 1000, 5). Four estimators are presented: centralized �1-penalized AHR estimator ( ); DC �1-penalized AHR estima-
tor ( ); centralized Lasso estimator ( ); and proposed distributed regularized AHR estimator ( ).

tend to be wider, and standard errors of the interval width are also larger than those of the AHR method by one order of 
magnitude.

5.2. Distributed regularized Huber regression

In the high-dimensional setting where the dimension p exceeds the sample size n, we compare four methods across a 
range of settings: (1) centralized �1-penalized AHR estimator; (2) DC �1-penalized AHR estimator; (3) centralized Lasso; and 
(4) distributed regularized AHR estimator with T = �log(m)� rounds of communication and with a local Lasso estimator as 
the initialization. All four methods involve a regularization parameter λ, which will be tuned by a held-out validation set of 
size �0.25N�. Similarly to the low-dimensional case, the robustification parameters τ in methods (1), (2) and κ in method 
(4) are also determined by a self-tuning principle; see equation (3.10) in Wang et al. (2021). The τ value for method (4) is 
chosen by the validation set approach and the theoretical scaling stated in Corollary 3.1.

As before, we generate {(yi, xi)}Ni=1 from the heteroscedastic model yi = xTiβ
∗ + c−1(xTiβ

∗)2εi , where β∗ = (1.5, 1.5, 1.5,
1.5, 1.5, 0, . . . , 0)T ∈ Rp , xi = (1, xi2, . . . , xip)T with xij ∼ N (0, 1) for j = 2, . . . , p, and c = √

3‖β∗‖22. The regression errors 
εi are generated from one of the four distributions considered in Section 5.1, which are N (0, 1), t2 (heavy-tailed and 
symmetric), Par(4, 2) and Burr(1, 2, 1) (heavy-tailed and skewed). We fix (n, p) = (250, 1000) and let m increase from 
10 to 50. Fig. 3 plots the �2 error ‖β̂ − β∗‖2 versus the number of machines m, averaged over 100 replications, for all 
four methods. The averaging �1-penalized AHR estimator has a nondecaying estimation error as m increases, which is 
expected because of its sub-optimal convergence rate that scales with the local sample size n. The distributed AHR estimator 
with T = �log(m)� rounds of communication performs as good as the centralized AHR on the entire data set, and has 
much smaller estimation errors than the centralized Lasso in heavy-tailed cases. Furthermore, from the boxplots displayed 
in Fig. 4 we see that the distributed AHR improves upon centralized Lasso in terms of both average performance and 
variability.

6. Conclusion

Distributed inference aims at efficiently combining local information (statistics computed on each local machine) to ob-
tain a global solution that is satisfactory, both in terms of communication costs between the machines and in terms of 
11
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Fig. 4. Boxplots of estimation errors (under �2-norm) versus the number of machines, over 100 replications, for centralized Lasso ( ) and distributed AHR 
( ) under a high-dimensional heteroscedastic model when (n, p, s) = (250, 1000, 5).

statistical accuracy of the final estimator. This paper proposes a new robust algorithm for distributed linear and sparse 
regressions when data are subject to asymmetric heavy-tailed errors. Founded on the communication-efficient framework 
proposed by Wang et al. (2017) and Jordan et al. (2019), the new proposal relies on a novel double-robustification approach 
that applies on both the local and global objective functions. The proposed procedure iteratively minimizes a one-step com-
bination of local and global objectives to improve statistical accuracy. With properly chosen local and global robustification 
parameters, convergence rates and Bahadur representations are derived for the multi-step estimator. These results show 
that the optimal rate can be achieved after as many as log(m) rounds of communication, where m is the number of ma-
chines. Under slightly stronger moment conditions, an explicit Berry-Esseen bound is established for the final estimator, 
based on which asymptotic confidence sets are constructed. In high dimensions, a sparse framework is adopted, where the 
proposed low-dimensional doubly-robustified objective function is complemented with an �1-penalty. Near-optimal con-
vergence rates under �1- and �2-norms are obtained. Computationally, the proposed procedure employs gradient descent 
with Barzilai-Borwein step size and the locally adaptive majorize-minimization algorithm to solve the optimization prob-
lems, respectively, in low- and high-dimensional settings. To highlight the importance of robustness in distributed inference, 
this paper closes with extensive numerical studies under models with light- and heavy-tailed, symmetric and asymmetric 
errors.
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Appendix A. Preliminaries

For any convex function ψ : Rk → R, define the corresponding Bregman divergence Dψ(w ′, w) = ψ(w ′) − ψ(w) −
〈∇ψ(w), w ′ − w〉 and its symmetrized version

Dψ(w, w ′) = Dψ(w, w ′) + Dψ(w ′, w) = 〈∇ψ(w) − ∇ψ(w ′), w − w ′〉, w, w ′ ∈Rk. (A.1)

Let z = 
−1/2x ∈ Rp be the standardized vector of covariates such that E(zzT) = I p , and define μk = supu∈Sp−1 E|zTu|k
for k ≥ 1. In particular, μ2 = 1. For every δ ∈ (0, 1], define

ηδ = inf

{
η > 0 : sup

u∈Sp−1
E
{
(zTu)21(|zTu| > η)

} ≤ δ

}
. (A.2)

Under Condition (C1), ηδ depends only on δ and υ1, and the map δ �→ ηδ is non-increasing with ηδ ↓ 0 as δ → 1. By 
Markov’s inequality,

E
{
(zTu)21(|zTu| > η)

} ≤ η−2E(zTu)4 ≤ η−2μ4 for all u ∈ Sp−1.

Therefore, a crude bound for ηδ , as a function of δ, is ηδ ≤ (μ4/δ)
1/2.

In Lemmas Appendix A.1 and Appendix A.2 below, we provide a lower bound on the symmetrized Bregman divergence 
and an upper bound on the score, respectively. The former is a direct consequence of Lemmas C.3 and C.4 in Sun et al. 
(2020) with slight modifications, and the latter combines Lemmas C.5 and C.6 in Sun et al. (2020) with δ = 1. For the 
shifted Huber loss L̃(·), note that
12
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DL̃(β,β∗) = 〈∇L̂1,κ (β) − ∇L̂1,κ (β∗),β − β∗〉.
Moreover, define the �1-cone

� = {
β ∈ Rp : ‖β − β∗‖1 ≤ 4s1/2‖β − β∗‖


}
.

Lemma Appendix A.1. Let κ, r > 0 satisfy κ ≥ 4 max(η0.25r, σ).

(i) Condition (C1) ensures that, with probability at least 1 − e−u ,

DL̃(β,β∗) ≥ 1

4
‖β − β∗‖2
 holds uniformly over β ∈ �(r), (A.3)

as long as n � (κ/r)2(p + u).
(ii) Condition (C2) ensures that, with probability at least 1 − e−u ,

DL̃(β,β∗) ≥ 1

4
‖β − β∗‖2
 holds uniformly over β ∈ �(r) ∩ �, (A.4)

as long as n � (κ/r)2(s log p + u).

Proof. Without loss of generality, assume I1 = {1, . . . , n}. It suffices to prove (A.4) under Condition (C2). Following the 
proof of Lemma C.4 in Sun et al. (2020), the key is to upper bound the expected value of the maximum ‖(1/n) 

∑n
i=1 eixi‖∞ , 

where e1, . . . , en are independent Rademacher random variables. Let Ee be the expectation with respect to e1, . . . , en con-
ditional on the remaining variables. By Hoeffding’s moment inequality (see, e.g. Lemma 14.14 in Bühlmann and van de Geer 
(2011)),

Ee

∥∥∥∥∥1n
n∑

i=1

eixi

∥∥∥∥∥∞
≤ max

1≤ j≤p

(
1

n

n∑
i=1

x2i j

)1/2√
2 log(2p)

n
≤ B

√
2 log(2p)

n
,

which in turns implies E‖(1/n) 
∑n

i=1 eixi‖∞ ≤ B
√
2 log(2p)/n. Keep the rest of the proof the same proves the claimed 

bound. �
Consider the gradient ∇L̂τ (·) evaluated at β∗ , namely,

∇L̂τ (β∗) = − 1

N

N∑
i=1

ψτ (εi)xi,

where ψτ (u) = �′
τ (u). The following lemma provides high probability bounds on both �2- and �∞-norms of ∇L̂τ (β∗). Recall 

that � = 
−1.

Lemma Appendix A.2. Let u > 0 and write Lτ (·) =EL̂τ (·).

(i) Condition (C1) ensures that, with probability at least 1 − e−u ,

‖∇L̂τ (β∗) − ∇Lτ (β∗)‖
−1 ≤ C0

{
σ
√

(p + u)/N + τ (p + u)/N
}
, (A.5)

where C0 > 0 is a constant depending only on υ1. Moreover, ‖∇Lτ (β∗)‖� ≤ σ 2/τ .
(ii) Condition (C2) ensures that, with probability at least 1 − e−u ,

‖∇L̂τ (β∗) − ∇Lτ (β∗)‖∞ ≤ σσu

√
2{log(2p) + u}

N
+ Bτ

3

log(2p) + u

N
. (A.6)

Proof. The bound (A.5) is an immediate consequence of Lemma C.5 in Sun et al. (2020). It suffices to prove (A.6) under 
Condition (C2). Note that

‖∇L̂τ (β∗) − ∇Lτ (β∗)‖∞ = max
1≤ j≤p

∣∣∣∣∣ 1N
N∑

i=1

(1 −E)ξi xi j

∣∣∣∣∣,
where ξi := ψτ (εi) satisfy |ξi | ≤ τ and E(ξ2

i |xi) ≤E(ε2
i |xi) ≤ σ 2. For any 1 ≤ j ≤ p and z ≥ 0, applying Bernstein’s inequality 

yields that with probability at least 1 − 2e−z ,
13
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∣∣∣∣∣ 1N
N∑

i=1

(1−E)ξi xi j

∣∣∣∣∣ ≤ σ
1/2
j j σ

√
2z

N
+ Bτ

3

z

N
.

Taking z = log(2p) + u, the claimed bound (A.6) then follows from the union bound. �
Appendix B. Proof of main results

B.1. Proof of Theorem 2.1

Proof of (2.5). For simplicity, we write β̃ = β̃(1) , which minimizes the shifted Huber loss L̃(·) and thus satisfies the first-
order condition ∇L̃(β̃) = 0. Throughout the proof we assume the event E0(r0) ∩ E∗(r∗) occurs. In view of Lemma Appendix
A.1, we consider a local region �(rloc) with rloc = κ/(4η0.25), and define an intermediate estimator β̃c = (1 − c)β∗ + cβ̃ , 
where

c := sup
{
u ∈ [0,1] : (1 − u)β∗ + uβ̃ ∈ �(rloc)

}{
= 1 if β̃ ∈ �(rloc),

∈ (0,1) otherwise.

By construction, β̃c ∈ �(rloc). In particular, if β̃ /∈ �(rloc), we must have β̃c lying on the boundary of �(rloc), i.e. ‖β̃c −β∗‖
 =
rloc.

Applying Lemma C.1 in Sun et al. (2020), we see that the three points β̃, ̃βc and β∗ satisfy DL̃(β̃c, β∗) ≤ cDL̃(β̃, β∗), 
where DL̃(β, β∗) = 〈∇L̃(β) − ∇L̃(β∗), β − β∗〉 = 〈∇L̂1,κ (β) − ∇L̂1,κ (β∗), β − β∗〉. Together with the first-order condition 
∇L̃(β̃) = 0, this implies

DL̃(β̃c, β
∗) ≤ −c

〈∇L̃(β∗), β̃ − β∗〉 ≤ ‖∇L̃(β∗)‖� · ‖β̃c − β∗‖
. (B.1)

For the left-hand side of (B.1), applying Lemma Appendix A.1 with r = rloc and the fact β̃c ∈ �(rloc) yields that with proba-
bility at least 1 − e−u ,

DL̃(β̃c, β
∗) ≥ 1

4
‖β̃c − β∗‖2
, (B.2)

as long as n � p + u.
To bound the right-hand side of (B.1), we define vector-valued random processes{

�1(β) = 
−1/2
{∇L̂1,κ (β) − ∇L̂1,κ (β∗)

} − 
1/2(β − β∗),

�(β) = 
−1/2
{∇L̂τ (β) − ∇L̂τ (β∗)

} − 
1/2(β − β∗).
(B.3)

Let 0 < r0 ≤ σ . Following the proof of Theorem B.1 in the supplement of Sun et al. (2020) with B(β) therein replaced by 
�1(β) or �(β), it can be similarly shown that, with probability at least 1 − 2e−u ,

sup
β∈�(r0)

‖�1(β)‖2 ≤ C1

(√
p + u

n
+ σ 2

κ2

)
r0 and sup

β∈�(r0)
‖�(β)‖2 ≤ C1

(√
p + u

N
+ σ 2

τ 2

)
r0 (B.4)

as long as n � p + u, where C1 > 0 is a constant depending only on υ1. Recall that τ ≥ κ � σ
√
n/(p + u). Conditioned on 

event E0(r0) ∩ E∗(r∗), it follows that

‖∇L̃(β∗)‖� = ‖�(β̃(0)) − �1(β̃
(0)) + 
−1/2∇L̂τ (β∗)‖2

≤ ‖�(β̃(0)) − �1(β̃
(0))‖2 + ‖∇L̂τ (β∗)‖�

≤ C2r0

√
p + u

n
+ r∗. (B.5)

Together, the bounds (B.1), (B.2) and (B.5) imply that, conditioning on E0(r0) ∩ E∗(r∗),

‖β̃c − β∗‖
 ≤ 4‖∇L̃(β∗)‖� ≤ 4

(
C2r0

√
p + u

n
+ r∗

)
, (B.6)

with probability at least 1 − 3e−u . Provided that the sample size is sufficiently large—n � p + u, the right-hand side of the 
above inequality is strictly less than rloc = κ/(4η0.25) with κ � σ

√
n/(p + u). As a result, the intermediate estimator β̃c falls 

into the interior of �(rloc) with high probability conditioned on E0(r0) ∩ E∗(r∗). Via proof by contradiction, we must have 
β̃ ∈ �(rloc) and hence β̃ = β̃c ; otherwise if β̃ /∈ �(rloc), we have demonstrated that β̃c must lie on the boundary of �(rloc), 
which is a contradiction. Consequently, the bound (B.6) also applies to β̃ , as claimed.
14
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Proof of (2.6). To establish the Bahadur representation, note that the random process �1(·) defined in (B.3) can be written 
as �1(β) = 
−1/2{∇L̃(β) − ∇L̃(β∗)} − 
1/2(β − β∗). Moreover, note that

∇L̃(β∗) = ∇L̂1,κ (β∗) − ∇L̂1,κ (β̃(0)) + ∇L̂τ (β̃(0)) − ∇L̂τ (β∗) + ∇L̂τ (β∗),

which in turn implies

‖∇L̃(β∗) − ∇L̂τ (β∗)‖� ≤ ‖�1(β̃
(0))‖2 + ‖�(β̃(0))‖2.

Recall that ∇L̃(β̃) = 0, and by (B.6), ‖β̃ −β∗‖
 ≤ r1 := 4C2r0
√

(p + u)/n+4r∗ with high probability conditioned on E0(r0) ∩
E∗(r∗). For r0 ≥ 8r∗ , we have r1 ≤ r0/2 + r0/2 = r0 as long as n � p + u, and hence β̃ ∈ �(r0). Applying the bounds in (B.4)
again, we obtain that conditioned on E0(r0) ∩ E∗(r∗),

‖
1/2(β̃ − β∗) + 
−1/2∇L̂τ (β∗)‖2
= ‖�1(β̃) + 
−1/2∇L̃(β∗) − 
−1/2∇L̂τ (β∗)‖2
≤ ‖�1(β̃)‖2 + ‖�1(β̃

(0))‖2 + ‖�(β̃(0))‖2
≤ 2 sup

β∈�(r0)
‖�1(β)‖2 + sup

β∈�(r0)
‖�(β)‖2

�
√

p + u

n
· r0,

with probability at least 1 − 3e−u . This completes the proof. �
B.2. Proof of Theorem 2.2

Given a sequence of iterates {β̃(t)}t=0,1,...,T , we define “good” events

Et(rt) = {
β̃(t) ∈ �(rt)

}
, t = 0, . . . , T , (B.7)

for some sequence of radii r0 ≥ r1 ≥ · · · ≥ rT > 0 to be determined. Examine the proof of Theorem 2.1, we see that the 
statistical properties of β̃(t) depend on both first-order and second-order information of the loss function L̃(t)(·), namely, 
the �2-norm of the gradient ∇L̃(t)(β∗) and the (symmetrized) Bregman divergence of L̃(t)(·). For the former, we have

∇L̃(t)(β∗) = ∇L̂1,κ (β∗) − ∇L̂1,κ (β̃(t−1)) + ∇L̂τ (β̃(t−1)). (B.8)

Let �1(·) and �(·) be the random processes defined in (B.3), and observe that 
−1/2∇L̃(t)(β∗) = �(β̃(t−1)) − �1(β̃
(t−1)) +


−1/2∇L̂τ (β∗). By the triangle inequality,

‖∇L̃(t)(β∗)‖� ≤ ‖�(β̃(t−1))‖2 + ‖�1(β̃
(t−1))‖2 + ‖∇L̂τ (β∗)‖�. (B.9)

On the other hand, note that the shifted Huber losses L̃(t)(·) have the same Bregman divergence, denoted by

D(β1, β2) = 〈∇L̃(t)(β1) − ∇L̃(t)(β2),β1 − β2〉 = 〈∇L̂1,κ (β1) − ∇L̂1,κ (β2),β1 − β2〉.
Define the local radius rloc = κ/(4η0.25). Then, applying Lemma Appendix A.1 with r = rloc yields that, with probability at 
least 1 − e−u ,

D(β,β∗) ≥ 1

4
‖β − β∗‖2
 (B.10)

holds uniformly over β ∈ �(rloc). Let Elsc be the event that the local strong convexity (B.10) holds.
With the above preparations, we are ready to extend the argument in the proof of Theorem 2.1 to deal with β̃(t) sequen-

tially. At each iteration, we construct an intermediate estimator β̃(t)
imd—a convex combination of β̃(t) and β∗—which falls in 

�(rloc) and satisfies

D(β̃
(t)
imd, β

∗) ≤ ‖∇L̃(t)(β∗)‖� · ‖β̃(t)
imd − β∗‖
.

If event E∗(r∗) ∩ Elsc occurs, the bounds (B.9) and (B.10) imply

‖β̃(t)
imd − β∗‖
 ≤ 4

{‖�1(β̃
(t−1))‖2 + ‖�(β̃(t−1))‖2

} + 4r∗. (B.11)

Moreover, it follows from (B.8) and the first-order condition ∇L̃(t)(β̃(t)) = 0 that
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‖
1/2(β̃(t) − β∗) + 
−1/2∇L̂τ (β∗)‖2
= ‖
−1/2{∇L̃(t)(β̃(t)) − ∇L̃(t)(β∗)} − 
1/2(β̃(t) − β∗) + 
−1/2{∇L̃(t)(β∗) − ∇L̂τ (β∗)}‖2
≤ ‖�1(β̃

(t))‖2 + ‖�1(β̃
(t−1))‖2 + ‖�(β̃(t−1))‖2. (B.12)

In view of the bounds in (B.4), for every 0 < r ≤ σ we define the event

F(r) =
{

sup
β∈�(r)

{‖�1(β)‖2 + ‖�(β)‖2
} ≤ γ (u) · r

}
, (B.13)

with γ (u) = C
√

(p + u)/n for some C > 0, which satisfies P {F(r)} ≥ 1 − 2e−u .
Let 8r∗ ≤ r0 ≤ σ . In the following, we deal with {(β̃(t)

imd, ̃β(t)), t = 1, 2, . . . , T } sequentially conditioning on the event 
E0(r0) ∩ E∗(r∗) ∩ Elsc. At iteration 1, it follows from (B.11) that, conditioned on F(r0),

‖β̃(1)
imd − β∗‖
 ≤ r1 := 4γ (u) · r0 + 4r∗.

Provided that n � p + u, we have 4γ (u) ≤ 1/2 < 1 and r1 ≤ r0 < rloc = κ/(4η0.25), so that β̃(1)
imd ∈ �(r1) ⊆ int(�(rloc)). Via 

proof by contradiction, we must have β̃(1) = β̃
(1)
imd ∈ �(rloc), which in turns certifies event E(r1). Combining this with (B.12), 

we see that conditioned on F(r0), the event E1(r1) must happen and hence{ ‖ β̃(1) − β∗ ‖
 ≤ r1 = 4γ (u) · r0 + 4r∗ ≤ r0,

‖ β̃(1) − β∗ + 
−1∇L̂τ (β∗)‖
 ≤ 2γ (u) · r0.
.

Now assume that for some t ≥ 1, β̃(t) ∈ �(rt) with rt = 4γ (u) · rt−1 + 4r∗ ≤ rt−1 < rloc. At (t + 1)-th iteration, applying 
(B.11) again yields that, conditioned on event Et(rt) ∩F(rt),

‖β̃(t+1)
imd − β∗‖
 ≤ rt+1 := 4γ (u) · rt + 4r∗.

By induction, rt ≤ rt−1 < rloc so that rt+1 ≤ 4γ (u) · rt−1 + 4r∗ = rt < rloc. This implies that β̃(t+1)
imd falls into the interior of 

�(rloc), which enforces β̃(t+1) = β̃
(t+1)
imd ∈ �(rt+1) and thus certifies event Et+1(rt+1). Combining this with the bound (B.12), 

we find that{ ‖ β̃(t+1) − β∗ ‖
 ≤ rt+1 = 4γ (u) · rt + 4r∗ ≤ rt,

‖ β̃(t+1) − β∗ + 
−1∇L̂τ (β∗)‖
 ≤ 2γ (u) · rt .
.

Repeat the above argument until we obtain β̃(T ) . We have shown that conditioned on E∗(r∗) ∩Elsc ∩Et−1(rt−1) ∩F(rt−1)

for every 0 ≤ t ≤ T − 1, the event Et(rt) must occur. Therefore, conditioned on E∗(r∗) ∩ Elsc ∩ E0(r0) ∩ {∩T−1
t=0 F(rt)}, β̃(T )

satisfies the bounds{ ‖ β̃(T ) − β∗ ‖
 ≤ rT = 4γ (u) · rT−1 + 4r∗,

‖ β̃(T ) − β∗ + 
−1∇L̂τ (β∗)‖
 ≤ 2γ (u) · rT−1.
(B.14)

Observe that rt = {4γ (u)}tr0 + 1−{4γ (u)}t
1−4γ (u)

4r∗ for t = 1, . . . , T . We choose T to be the smallest integer such that 
{4γ (u)}T−1r0 ≤ r∗ , that is, T = �log(r0/r∗)/ log(1/{4γ (u)})� + 1. Consequently, the bounds in (B.14) become{ ‖ β̃(T ) − β∗ ‖
 ≤ {

γ (u) + 1
1−4γ (u)

}
4r∗ ≤ {4γ (u) + 8}r∗,

‖ β̃(T ) − β∗ + 
−1∇L̂τ (β∗)‖
 ≤ 18γ (u) · r∗.
(B.15)

Finally, it suffices to show that the event Elsc ∩ {∩T−1
t=0 F(rt)} occurs with high probability. Recall from (B.10) and (B.13)

that P (Elsc) ≥ 1 − e−u and P {F(rt)} ≥ 1 − 2e−u for every t = 0, 1, . . . , T − 1. The claimed result then follows from (B.15)
and the union bound. �
B.3. Proof of Theorem 2.3

For simplicity, we write q = p + logn + log2m throughout the proof. For every vector a ∈Rp , define Sa = N−1/2 ∑N
i=1 ξi wi

and S0a = Sa −ESa , where ξi = ψτ (εi) and wi = aT
−1xi . Under the moment condition E(|ε|2+δ |x) ≤ v2+δ , using Markov’s 
inequality yields |E(ξi |xi)| ≤ τ−1−δE(|εi |2+δ |xi) ≤ v2+δτ

−1−δ . Hence, |E(ξi wi)| ≤ v2+δ‖a‖� · τ−1−δ and |ESa| ≤ v2+δ‖a‖� ·
N1/2τ−1−δ .
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With the above preparations, we are ready to prove the normal approximation for β̃ . Note that

|N1/2aT(β̃ − β∗) − S0a |

≤ N1/2
∣∣∣∣〈
−1/2a,
1/2(β̃ − β∗) − 
−1/2 1

N

N∑
i=1

ψτ (εi)xi

〉∣∣∣∣ + |ESa|

≤ N1/2‖a‖� ·
∥∥∥∥β̃ − β∗ − 
−1 1

N

N∑
i=1

ψτ (εi)xi

∥∥∥∥



+ v2+δ‖a‖� · N1/2τ−1−δ.

Applying (2.10) in Theorem 2.1, we find that with probability at least 1 − Cn−1,

|N1/2aT(β̃ − β∗) − S0a | ≤ C1‖a‖� · (σqn−1/2 + N1/2v2+δτ
−1−δ

)
, (B.16)

where C1 > 0 is a constant independent of (N, n, p).
For the centered partial sum S0a , it follows from the Berry-Esseen inequality (see, e.g. Theorem 2.1 in Chen and Shao 

(2001)) that

sup
t∈R

∣∣P{
S0a ≤ var(S0a)

1/2t
} − �(t)

∣∣ ≤ 4.1
E|ξw −E(ξw)|2+δ

var(ξw)1+δ/2Nδ/2
, (B.17)

where ξ = ψτ (ε) and w = aT
−1x. Recall that τ � σ
√
N/q, and write σ 2

τ ,a = E(ξw)2. By Proposition A.2 in Zhou et al. 
(2018), |E(ξ2|x) − σ 2| ≤ 2δ−1v2+δτ

−δ � δ−1v2+δσ
−δ(q/N)δ/2, and hence

∣∣σ 2
τ ,a/(σ‖a‖�)2 − 1

∣∣� v2+δ

δσ 2+δ

(
q

N

)δ/2

. (B.18)

Moreover, E|ξw|2+δ ≤E|εw|2+δ ≤ μ2+δ‖a‖2+δ
� v2+δ , where μ2+δ := supu∈Sp−1 E|zTu|2+δ depends only on υ1 under Condi-

tion (C1). Substituting these bounds into (B.17) yields

sup
t∈R

∣∣P{
S0a ≤ var(S0a)

1/2t
} − �(t)

∣∣ ≤ C2
v2+δ

σ 2+δNδ/2
, (B.19)

provided that N � q. For the variance term, the bound |E(ξ |x)| ≤ σ 2τ−1 guarantees that

E(ξw)2 ≥ var(S0a) = E(ξw)2 − (Eξw)2 ≥ E(ξw)2 − (σ‖a‖�)2 · σ 2τ−2.

Combined with (B.18), this implies |var(S0a)/σ 2
τ ,a − 1| � σ 2τ−2, from which it follows that

sup
t∈R

∣∣�(t/var(S0a)
1/2) − �(t/στ,a)

∣∣ ≤ C3
σ 2

τ 2
. (B.20)

Let G ∼N (0, 1) and t ∈R. Combining the bounds (B.16), (B.19) and (B.20), we obtain

P
{
N1/2aT(β̃ − β∗) ≤ t

}
≤ P

{
S0a ≤ x+ C1‖a‖� · (σqn−1/2 + N1/2v2+δτ

−1−δ
)} + Cn−1

≤ P
{
var(S0a)

1/2G ≤ t + C1‖a‖� · (σqn−1/2 + N1/2v2+δτ
−1−δ

)} + Cn−1 + C2
v2+δ

σ 2+δNδ/2

≤ P
{
στ,aG ≤ t + C1‖a‖� · (σqn−1/2 + N1/2v2+δτ

−1−δ
)} + C2

v2+δ

σ 2+δNδ/2
+ C3

σ 2

τ 2

≤ P
(
στ,aG ≤ t

) + Cn−1 + C1(2π)−1/2(qn−1/2 + N1/2v2+δσ
−1τ−1−δ

) + C2
v2+δ

σ 2+δNδ/2
+ C3

σ 2

τ 2
.

A similar argument leads to a series of reverse inequalities, and thus completes the proof. �
B.4. Proof of Proposition 2.1

Consider the change of variable δ = 
1/2(β − β∗), so that β ∈ �(r) is equivalent to δ ∈ Bp(r)—the �2-ball in Rp with 
center 0 and radius r. For δ ∈Rp , define

σ̂ 2(δ) = 1

N

N∑
i=1

ψ2
τ (εi − zTi δ) and σ 2(δ) = Eσ̂ 2(δ), (B.21)
17
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where zi = 
−1/2xi . Then σ̂ 2
ε = σ̂ 2(̂δ) with ̂δ = β̃ − β∗ . Conditioned on the event {β̃ ∈ �(r)} for some predetermined r > 0, 

it suffices to bound supδ∈Bp(r) |σ̂ 2(δ) − σ 2|.
For any ε ∈ (0, r), there exists an ε-net {δ1, . . . , δKε } with Kε ≤ (1 + 2r/ε)p satisfying that, for every δ ∈ Bp(r), there 

exists some 1 ≤ k ≤ Kε such that ‖δ − δk‖2 ≤ ε . Consequently,

|σ̂ 2(δ) − σ 2| ≤ |σ̂ 2(δ) − σ̂ 2(δk)| + |σ̂ 2(δk) − σ 2(δk)| + |σ 2(δk) − σ 2|. (B.22)

Recall that the function ψτ (·) satisfies supt |ψτ (t)| ≤ τ and |ψτ (t1) − ψτ (t2)| ≤ |t1 − t2| for any t1, t2 ∈ R. Hence,

|σ̂ 2(δ) − σ 2| ≤ 1

N

N∑
i=1

∣∣ψ2
τ (εi − zTi δ) − ψ2

τ (εi − zTi δk)
∣∣

≤ 2τ

N

N∑
i=1

|zTi (δ − δk)| ≤ 2τε ·
∥∥∥∥ 1

N

N∑
i=1

zi z
T
i

∥∥∥∥
2

holds uniformly over all (δ, δk) pairs. For the last term on the right-hand side of (B.22), since δk ∈ Bp(r) and |ψτ (t) ≤ |t|, 
we have

|σ 2(δk) − σ 2| ≤E(2|ε| + |zTδk|) · |zTδk| ≤ 2σ r + r2.

Back to (B.22), first taking the maximum over k ∈ {1, . . . , Kε}, and then taking the supremum over δ ∈ Bp(r), we conclude 
that

sup
δ∈Bp(r)

|σ̂ 2(δ) − σ 2| ≤ 2τε ·
∥∥∥∥ 1

N

N∑
i=1

zi z
T
i

∥∥∥∥
2
+ max

1≤k≤Kε

|σ̂ 2(δk) − σ 2(δk)| + r(2σ + r). (B.23)

For ‖(1/N) 
∑N

i=1 zi z
T
i ‖2, using the same covering argument along with Bernstein’s inequality (see, e.g. Theorem 5.39 and 

Remark 5.40 in Vershynin (2012)), it can be shown that with probability at least 1 − e−t ,∥∥∥∥ 1

N

N∑
i=1

zi z
T
i − Ip

∥∥∥∥
2
�

√
p + t

N

∨ p + t

N
. (B.24)

It remains to bound |σ̂ 2(δk) − σ 2(δk)| for each k. Note that ψ2
τ (εi − zTi δk) ≤ τ 2 and

E
{
ψ4

τ (εi − zTi δk)
} ≤ τ 2−δE

{|ψτ (εi − zTi δk)|2+δ
}

≤ τ 2−δ21+δE
(|εi|2+δ + |zTi δk|2+δ

)
≤ τ 2−δ21+δ

(
v2+δ + μ2+δr

2+δ
)
.

By Bernstein’s inequality, we have that with probability at least 1 − 2e−t ,

|σ̂ 2(δk) − σ 2(δk)| ≤ 21+δ/2(v2+δ + μ2+δr
2+δ

)1/2
τ 1−δ/2

√
t

N
+ τ 2 t

3N
.

Taking the union bound over k = 1, . . . , Kε yields

max
1≤k≤Kε

|σ̂ 2(δk) − σ 2(δk)|

≤ 21+δ/2(v2+δ + μ2+δr
2+δ

)1/2
τ 1−δ/2

√
log(2Kε) + t

N
+ τ 2 log(2Kε) + t

3N
(B.25)

with probability at least 1 − e−t .
Finally, we set ε = r/N so that Kε ≤ (1 + 2N)p . Together, (B.23), (B.24) and (B.25) with r � σ prove the claimed 

bound. �
B.5. Proof of Theorem 3.1

As before, we assume without loss of generality that I1 = {1, . . . , n}. Write β̃ = β̃(1) for simplicity, and let h = β̃ − β∗
be the error vector. By the first-order optimality condition, there exists a subgradient g ∈ ∂‖β̃‖1 such that gTβ̃ = ‖β̃‖1 and 
∇L̃(β̃) + λ · g = 0. Moreover, the convexity of L̃(·) implies

0 ≤ DL̃(β̃, β∗) = hT
{∇L̃(β̃) − ∇L̃(β∗)

} = −λ · hTg − hT ∇L̃(β∗).
18
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Recall the true active set S = supp(β∗) ⊆ {1, . . . , p}, we have

−hTg ≤ ‖β∗‖1 − ‖β̃‖1 = ‖β∗
S‖1 − ‖hSc‖1 − ‖hS + β∗

S‖1 ≤ ‖hS‖1 − ‖hSc‖1.
Together, the above two displays yield

0 ≤ DL̃(β̃, β∗) ≤ λ
(‖hS‖1 − ‖hSc‖1

) − hT ∇L̃(β∗). (B.26)

To deal with ∇L̃(β∗) = ∇L̂1,κ (β∗) − ∇L̂1,κ (β̃(0)) + ∇L̂τ (β̃(0)), we define random processes

D̂1(β) = ∇L̂1,κ (β) − ∇L̂1,κ (β∗), D̂(β) = ∇L̂τ (β) − ∇L̂τ (β∗),

and write D1(β) = ED̂1(β) and D(β) = ED̂(β). The gradient ∇L̃(β∗) can thus be written as{
D̂(β) − D(β)

}∣∣∣
β=β̃(0)

+ {
D1(β) − D̂1(β)

}∣∣∣
β=β̃(0)

+ ∇L̂τ (β∗) − ∇Lτ (β∗)

+ {
D(β) − D1(β)

}∣∣∣
β=β̃(0)

+ ∇Lτ (β∗).

For any r > 0, define

�1(r) = sup
β∈�(r)∩�

‖D̂1(β) − D1(β)‖∞, �(r) = sup
β∈�(r)∩�

‖D̂(β) − D(β)‖∞, (B.27)

δ(r) = sup
β∈�(r)

‖D1(β) − D(β)‖� and b∗ = ‖∇Lτ (β∗)‖�. (B.28)

The quantity b∗ can be viewed as the robustification bias and by Lemma Appendix A.2, b∗ ≤ σ 2τ−1.
Back to the right-hand of (B.26), conditioning on the event E0(r0) ∩ E∗(λ∗), it follows from Hölder’s inequality that

|hT ∇L̃(β∗)| ≤ {
�(r0) + �1(r0) + λ∗

}‖h‖1 + {δ(r0) + b∗}‖h‖
. (B.29)

Let λ = 2.5(λ∗ + ρ) for some ρ > 0. Provided that

ρ ≥ max
[
�(r0) + �1(r0), s

−1/2{δ(r0) + b∗}], (B.30)

we have |hT ∇L̃(β∗)| ≤ 0.4λ‖h‖1 +0.4s1/2λ‖h‖
 . Combined with (B.26), this yields 0 ≤ 1.4‖hS‖1 −0.6‖hSc‖1 +0.4s1/2‖h‖
 . 
Consequently, with λl = λmin(
) = 1, we have ‖h‖1 ≤ (10/3)‖hS‖1+(2/3)s1/2‖h‖
 ≤ 4s1/2‖h‖
 , and hence β̃ ∈ �. Through-
out the rest of the proof, we assume that the constraint (B.30) holds.

Next, we apply Lemma Appendix A.1 to bound the left-hand side of (B.26) from below. As in the proof of Theorem 2.1, 
we set rloc = κ/(4η0.25) and define β̃c = (1 − c)β∗ + cβ̃ , where c = sup{u ∈ [0, 1] : (1 − u)β∗ + uβ̃ ∈ �(rloc)}. The same 
argument therein implies DL̃(β̃c, β∗) ≤ cDL̃(β̃, β∗). Recall that conditioned on E0(r0) ∩E∗(λ∗), β̃ falls in the �1-cone � and 
thus so does β̃c . Moreover, β̃c ∈ �(rloc) by construction. Then it follows from Lemma Appendix A.1 that, with probability at 
least 1 − e−u ,

DL̃(β̃c, β
∗) ≥ 1

4
‖β̃c − β∗‖2
,

as long as n � s log p + u. Combining this with (B.26), (B.29) and (B.30), we obtain that

1

4
‖β̃c − β∗‖2
 ≤ cλ

(
1.4‖hS‖1 + 0.4s1/2‖h‖


) ≤ 1.8s1/2λ‖β̃c − β∗‖
.

Canceling ‖β̃c − β∗‖
 on both sides yields

‖β̃c − β∗‖
 ≤ 7.2s1/2λ. (B.31)

Provided that κ > 28.8η0.25s1/2λ, the right-hand side is strictly less than rloc. Via proof by contradiction, we must have 
β̃ = β̃c ∈ �(rloc), and hence the bound (B.31) also applies to β̃ .

It remains to choose ρ properly so that the constraint (B.30) holds with high probability. Recall from Lemma Appendix
A.2 that b∗ ≤ σ 2τ−1. The following two lemmas provide upper bounds on the suprema �(r0), �1(r0) and δ(r0) defined in 
(B.27) and (B.28).

Lemma Appendix B.1. Assume Condition (C2) holds. Then, for any r, u > 0,

�(r) ≤ C1B
2r

{√
s log(2p)

N
+ s1/2

log(2p) + u

N

}
+ C2(σuμ4)

1/2r

√
log(2p) + u

N
, (B.32)

with probability at least 1 − e−u , where C1, C2 > 0 are absolute constants. The same bound, with N replaced by n, holds for �1(r).
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Lemma Appendix B.2. Condition (C2) guarantees δ(r) ≤ κ−2r(σ 2 + μ4r2/3) for any r > 0.

Let 0 < r0 � σ and set δ = 2e−u , so that log p + u � log(p/δ). Suppose the sample size per machine satisfies 
n � s log(p/δ). Then, in view of Lemmas Appendix B.1 and Appendix B.2, a sufficiently large ρ , which is of order

ρ � max

{
r0

√
s log(p/δ)

n
, s−1/2σ 2(κ−2r0 + τ−1)

}
,

guarantees that (B.30) holds with probability at least 1 − δ/2. With this choice of ρ , we see that the right-hand of (B.31) is 
strictly less than rloc as long as κ � s1/2{λ∗ + r0

√
s log(p/δ)/n} + σ 2(κ−2r0 + τ−1). Since κ � σ

√
n/ log(p/δ) and σ 2κ−2r0

is negligible compared to r0
√
s log(p/δ)/n, this holds trivially under the assumed sample size scaling, and thus completes 

the proof. �
We end this subsection with the proofs of Lemmas Appendix B.1 and Appendix B.2.

B.5.1. Proof of Lemma Appendix B.1
For any r1, r2 > 0, define the �1/�2-ball B(r1, r2) = {β ∈ Rp : ‖β‖1 ≤ r1, ‖β‖2 ≤ r2}. Consider the change of variable 

v = β − β∗ , so that v ∈ B(4s1/2r, r) for β ∈ �(r) ∩ �. It follows that

sup
β∈�(r)∩�

‖D̂(β) − D(β)‖∞

≤ max
1≤ j≤p

sup
v∈B(4s1/2r,r)

∣∣∣∣∣ 1N
N∑

i=1

(1−E)
{
ψτ (εi − xTi v) − ψτ (εi)

}
xij︸ ︷︷ ︸

=:φi j(v)

∣∣∣∣∣ = max
1≤ j≤p

� j, (B.33)

where � j := supv∈B(4s1/2r,r) |(1/N) 
∑N

i=1(1 −E)φi j(v)| and ψτ (u) = sign(u) min(|u|, τ ). By the Lipschitz continuity of ψτ (·), 
supv∈B(4s1/2r,r) |φi j(v)| ≤ supv∈B(4s1/2r,r) |xTi v| · |xij | ≤ 4B2s1/2r and, for each v ∈ B(4s1/2r, r),

Eφ2
i j(v) ≤ E{x2i j(xTi v)2} ≤ (

Ex4i j
)1/2{

E(xTi v)4
}1/2 ≤ σ j jμ4 · r2.

We then apply Bousquet’s version of Talagrand’s inequality (Bousquet, 2003) and obtain that, for any z > 0,

� j ≤E� j + sup
v∈B(4s1/2r,r)

{
Eφ2

i j(v)
}1/2√2z

N
+ 4

√
E� j · B2s1/2r

z

N
+ (4/3)B2s1/2r

z

N

≤E� j + (2σ j jμ4)
1/2r

√
z

N
+ 4

√
E� j · B2s1/2r

z

N
+ (4/3)B2s1/2r

z

N
, (B.34)

with probability at least 1 − 2e−z . For the expected value E� j , by Rademacher symmetrization we have

E� j ≤ 2E sup
v∈B(4s1/2r,r)

∣∣∣∣∣ 1N
N∑

i=1

eiφi j(v)

∣∣∣∣∣ = 2E

{
Ee sup

v∈B(4s1/2r,r)

∣∣∣∣∣ 1N
N∑

i=1

eiφi j(v)

∣∣∣∣∣
}

,

where e1, . . . , eN are independent Rademacher random variables. For each i, write φi j(v) = φ j(xTi v), where φ j(·) is such 
that φ j(0) = 0 and |φ j(t1) − φ j(t2)| ≤ |xij | · |t1 − t2| ≤ B|t1 − t2|. It thus follows from Talagrand’s contraction principle 
that

Ee sup
v∈B(4s1/2r,r)

∣∣∣∣∣ 1N
N∑

i=1

eiφi j(v)

∣∣∣∣∣ ≤ 2B ·Ee sup
v∈B(4s1/2r,r)

∣∣∣∣∣ 1N
N∑

i=1

eix
T
i v

∣∣∣∣∣ ≤ 8Bs1/2r ·Ee

∥∥∥∥∥ 1

N

N∑
i=1

eixi

∥∥∥∥∥∞
.

Again, applying Lemma 14.14 in Bühlmann and van de Geer (2011) yields Ee‖(1/N) 
∑N

i=1 eixi‖∞ ≤ B
√
2 log(2p)/N . Putting 

together the pieces, we conclude that, for j = 1, . . . , p,

E� j ≤ 16B2r

√
2s log(2p)

N
.

Finally, taking z = log(2p) + u in (B.34), the claimed bound follows from the union bound. �
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B.5.2. Proof of Lemma Appendix B.2
Let Lτ (β) = EL̂τ (β) be the population loss, so that

D1(β) = ∇Lκ (β) − ∇Lκ (β∗) and D(β) = ∇Lτ (β) − ∇Lτ (β∗).

Starting with D1(β), consider the change of variable v = 
1/2(β − β∗). Then, by the mean value theorem for vector-valued 
functions,


−1/2D1(β) − 
1/2(β − β∗)

= 
−1/2

1∫
0

∇2Lκ

(
(1− t)β∗ + tβ

)
dt
−1/2 · v − v

= −
1∫

0

E
{
P
(|ε − tzTv| > κ |x)zzT}dt · v.

Similarly, it can be obtained that


−1/2D(β) − 
1/2(β − β∗) = −
1∫

0

E
{
P
(|ε − tzTv| > τ |x)zzT}dt · v.

Recall that τ ≥ κ > 0. We have


−1/2{D1(β) − D(β)} = −
1∫

0

E
{
P
(
κ < |ε − tzTv| ≤ τ |x)zzT}dt · v.

By Markov’s inequality and the fact that E(ε|x) = 0, P (|ε − tzTv| > κ |x) ≤ κ−2{E(ε2|x) + t2(zTv)2} ≤ κ−2{σ 2 + t2(zTv)2}. 
Substituting this into the above bound yields

sup
β∈�(r)

‖D1(β) − D(β)‖� ≤ r

∥∥∥∥
1∫

0

κ−2[σ 2 + t2E{(zTv)2zzT}]dt∥∥∥∥
2

≤ κ−2r
[
σ 2 + 1

3‖E{(zTv)2zzT}‖2
]

≤ κ−2r
(
σ 2 + μ4r

2/3
)
,

as desired. �
B.6. Proof of Theorem 3.2

The proof will be carried out conditioning on the “good event” E0(r0) ∩ E∗(λ∗) for some predetermined 0 < r0, λ∗ � σ . 
Given δ ∈ (0, 1), let the robustification parameters satisfy τ ≥ κ � σ

√
n/ log(p/δ). Theorem 3.1 implies that the first iterate 

β̃(1) ∈ argminβ∈Rp {L̃(1)(β) + λ1‖β‖1} with

λ1 = 2.5(λ∗ + ρ1) and ρ1 � max

{
r0

√
s log(p/δ)

n
, s−1/2σ 2τ−1

}
,

satisfies the cone property β̃(1) ∈ � and the error bound

‖β̃(1) − β∗‖
 ≤ C1s
√
log(p/δ)/n · r0 + C2(σ

2τ−1 + s1/2λ∗) =: r1, (B.35)

with probability at least 1 − δ. In (B.35), we set α = α(s, p, n, δ) = C1s
√
log(p/δ)/n and r∗ = C2(σ

2τ−1 + s1/2λ∗), so that 
r1 = αr0 + r∗ . Provided the sample size per machine is sufficiently large, namely, n � s2 log(p/δ), the contraction factor α is 
strictly less than 1, and hence the initial estimation error r0 is reduced by a factor of α after one round of communication.

For t = 2, 3, . . . , T , define the events Et(rt) = {β̃(t) ∈ �(rt) ∩ �} and radius parameters

rt = αrt−1 + r∗ = α2rt−2 + (1 + α)r∗ = · · · = αtr0 + 1− αt

1 − α
r∗.

In the t-th iteration, we choose the regularization parameter λt = 2.5(λ∗ + ρt) with
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ρt � max

{
rt−1

√
s log(p/δ)

n
, s−1/2σ 2τ−1

}
� s−1/2 max

{
αtr0,σ

2τ−1}.
Commenced with β̃(t−1) at iteration t ≥ 2, we apply Theorem 3.1 to obtain that conditioned on event Et−1(rt−1) ∩ E∗(λ∗),

β̃(t) ∈ � and ‖β̃(t) − β∗‖
 ≤ αrt−1 + r∗ = rt, (B.36)

with probability at least 1 − δ. In other words, event Et(rt) occurs with probability at least 1 − δ conditioned on Et−1(rt−1) ∩
E∗(λ∗).

Finally, we choose T = �log(r0/r∗)/ log(1/α)� so that αTr0 ≤ r∗ . Then, applying (B.35), (B.36) and the union bound over 
t = 1, . . . , T yields that, conditioned on E0(r0) ∩ E∗(r∗), the T -th iterate β̃(T ) falls into the cone � and satisfies the error 
bound

‖β̃(T ) − β∗‖
 ≤ rT � r∗,
with probability at least 1 − T δ. This completes the proof of the theorem. �
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