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Renormalized e-finite master integrals and their virtues:
the three-loop self energy case

Stephen P. Martin
Department of Physics, Northern Illinois University, DeKalb IL 60115

Loop diagram calculations typically rely on reduction to a finite set of master
integrals in 4 — 2¢ dimensions. It has been shown that for any problem, the masters
can be chosen so that their coefficients are finite as € — 0. I propose a definition
of renormalized e-finite master integrals, which incorporate ultraviolet divergence
subtractions in a specific way. A key advantage of this choice is that in expressions
for physical observables, expansions to positive powers in € are never needed. As
an example, I provide the subtractions for general three-loop self-energy integrals.
The differential equations method is used to compute numerically the renormalized
e-finite master integrals for arbitrary external momentum invariant, in special cases
with internal masses equal to a single scale or zero. These include the ones necessary
for the three-loop QCD corrections to the self-energies of the W, Z and Higgs
bosons. In principle, the same method should provide for numerical computation of
general three-loop self energies with any masses.

Contents

. Introduction

Renormalized e-finite master integrals

Self-energy integrals

A. General conventions

B. One-loop and two-loop self-energy integrals
C. Three-loop self-energy integrals

D. Numerical evaluation by differential equations

The case of massless internal propagators

. The case of all internal propagator masses equal

Integrals with odd thresholds
Integrals with even thresholds
Outlook

References

Bl Bl Bl Bl Bl ] BEf==== = &=


http://arxiv.org/abs/2112.07694v2

I. INTRODUCTION

Precision calculations of radiative corrections in relativistic quantum field theory in the modern
era almost always make use of dimensional regularization | to

d=4—2e (1.1)

dimensions in order to deal with ultraviolet (UV) and sometimes infrared (IR) divergences. The
integration by parts (IBP) method ﬂ, Ig] can then be used to reduce the expressions to linear
combinations of so-called master integrals, with coefficients that are rational expressions in e,
the propagator squared masses, and the external momentum invariants. There are an infinite
number of IBP relations, but only a finite number ﬂg] of master integrals are needed to express
the results for any given problem. In principle, the method of ref. [10] can always be used to solve
the IBP relations. However, in practice the reduction process can have formidable memory and
computing time requirements, which has prompted the development of various advanced algorithms
and computer codes ] to solve the problem.

The choice of master integrals is not unique, and there are at least three distinct criteria one
might use to choose them. One goal might be to simplify as much as possible the task of reduction
of a general integral to the masters. A second possible criteria could be to simplify the analytic
or numerical calculation of the master integrals themselves. A third criteria might be to simplify
as much as possible the presentation of results for physical observables. These criteria need not
coincide, and can naturally lead to quite different choices for the master intejsgSome proposals

24-35].

In the present paper, I will be interested in the specific goal of making the presentation of

for how to choose the master integrals in various contexts are given in refs.

physical observables in terms of the master integrals as simple as possible. First, one often has to
deal with the issue of “spurious” poles in €, which occur not in the master integrals themselves
but in the coefficients multiplying the master integrals in some physical quantity of interest. These
can be a quite common occurrence when propagator masses vanish, and leads to the following
problem. If the coefficient of a master integral has a pole 1/€™, then one will need the expansion of
the master integral itself up to order € in order to obtain a correct expression in the ¢ — 0 limit.

Fortunately, it was shown by Chetyrkin, Faisst, Sturm, and Tentyukov in ref. ] that for any
problem one can always make a choice of the master integrals, called an e-finite basis, so that the
coefficients multiplying them are finite as e — 0. The choice of an e-finite basis' is neither unique
nor obvious in general, but the existence proof also provides a simple algorithm for its construction.
Moreover, for a given diagram topology class, this property of e-finiteness is independent of the
physical observable being calculated.

However, even after choosing an e-finite basis for a given fixed loop order, there is another
problem to be considered. Suppose one is doing a calculation at [-loop order in perturbation
theory, using master integrals at every loop order k, with 1 < k£ < [. Then, when computing
a renormalized quantity, each k-loop order master could be multiplied by an (I — k)-loop-order

f Note that it is only the coefficients that are finite as € — 0, not the master integrals. If the propagator squared
masses are all non-zero and generic, then any basis without explicit factors of € is e-finite. Also, in practice, the
“basis” chosen might actually be over-complete, either because not all linear relations between them are known,
or because imposing some of the known linear relations would cause unwelcome complexity in coefficients.



counterterm, and can also occur in factorized integrals multiplied by other master integrals whose
loop order totals I — k. In both cases, k-loop order master integrals will be multiplied by poles as

l—k

severe as 1/e¢'~". This would seem to suggest that for an [-loop order calculation, even with an

e-finite basis, the expansion of masters of lower loop order k£ will be needed for all positive powers
up to =k,

In this paper, I emphasize that the last problem is also avoided if one expresses results in
terms of what I will call renormalized e-finite master integrals. As explained in more detail in the
next section, these are obtained from the e-finite masters by subtracting UV sub-divergences in a
specific way, and then taking the limit as ¢ — 0. The key point is that when presenting results
for the calculations of renormalized observables, by organizing the results in terms of renormalized
e-finite masters, it is never necessary to expand to positive powers in e. This remains true even
if the calculation is later extended to an arbitrary higher loop order. A heuristic justification for
why this pleasant feature is not completely unexpected is that in the calculation of renormalized
physical observables, one could in principle employ some other regulator not based on dimensional
continuation at all, in which case there would be no essential reason for the appearance of higher
moments of the integrals continued away from d = 4.

In this sense, the renormalized e-finite masters provide an optimal way of expressing and nu-
merically computing physical results, since the components with positive powers of € do not appear
and will never be needed. The essential reason for this is that the necessary renormalization of UV
divergences automatically works together with the counterterms included within the definitions
of the masters themselves, while IR divergences and other kinetic singularities must cancel if the
calculated quantity is indeed an observable. This has already been verified for a variety of effective
potential, tadpole, and self-energy calculations up to (now) three-loop order, as detailed below.

The rest of this paper is organized as follows. In the next section, I give a definition of renor-
malized e-finite master integrals. In section [[II], I explicitly provide the necessary definitions for
three-loop self-energy (and vacuum) functions, which are the focus of the rest of the paper. In
section [[V] I review the results for the case of internal propagators that are all massless, and in
section [V] for the case that all internal propagators have the same non-zero mass. Sections [VI| and
[VIT treat the case of integrals that arise in the three-loop QCD contributions to the self-energies
of the W boson and the Z, H boson in the Standard Model, respectively. These have one non-zero
propagator mass (that of the top quark) and other internal masses (for gluons and other quarks)
vanishing. Those results, obtained in the pure MS tadpole-free scheme, will appear in a separate
paper ﬂé
e-finite master integrals (valid even for the range of external momentum invariant such that the

|. In each case, a method for straightforward numerical computation of the renormalized

expansions around zero and infinite external momenta do not converge) is given, based on the
differential equations method @@] Section [VIII] contains some concluding remarks.

II. RENORMALIZED - FINITE MASTER INTEGRALS

Consider an [-loop scalar integral I in d = 4—2e dimensions, which depends on some propagator
squared masses and external momentum invariants. Suppose that I is a member of an e-finite basis,



as in ref. ﬂ2__4|] Let us define the corresponding renormalized integral I according to

l
1 _ k,div
I = lim [I M1 ] , (2.1)

k=0

where the UV k-loop sub-divergences I*»4V have been subtracted. More specifically,

pFdiv ZJk Z icf{i 7 (2.2)

where the Jj are the integrals obtained from I by collapsing UV-divergent k-loop sub-diagrams to
a point and eliminating the corresponding momentum integrations. Thus, each Jj is an (I — k)-
loop integral, and in particular J; = 1. The sum over Jj is obtained by considering all of the
complementary collapsed k-loop sub-diagrams that contain UV poles. The counterterm coefficients
CETZ) are polynomials in the propagator squared masses and the external momentum invariants,
chosen so that I is free of UV divergences. Here, the UV divergences are defined to be those
obtained for generic propagator squared masses and external momentum invariants. All remaining
poles in € are called infrared (IR) here, although it might be more precise to say “non-UV”.T In the
self-energy and vacuum integral cases studied explicitly below, each renormalized e-finite master
integral I is well-defined and finite for ¢ — 0, and so is independent of €, but for more external legs
it might be useful to keep remaining poles as 1/€f.

One can also expand the original integral I in powers €”, starting from the leading pole at
n=—l:

o0

I=) eI, (2.3)

n=-—I

However, I propose that physical (renormalized) results should always be presented in terms of
the integrals I, and not in terms of the integrals I(?), which are different except in the case that
I is already finite. If one uses the I(© integrals, then master integrals found at lower loop order
will have to be expanded to positive powers in €. Instead, organizing the results in terms of the
integrals I avoids this, and is most convenient for extensions of the calculation to higher orders.
Renormalized e-finite masters have already been defined exactly as above and employed in
various self-energy calculations through two-loop order in refs. E], and in the calculation of
the effective potential through three-loop order in refs. @@] In those previous examples, the
“renormalized” part of the definition of the masters was paramount, ensuring that positive powers
in € for one-loop and two-loop masters were not needed. The e-finiteness did not really play a role,
simply because IR divergences were regulated by giving small regulator masses to gauge bosons,
Goldstone bosons, and chiral fermions, rather than giving them exactly zero mass from the start.
In this paper, I will treat the case of self-energy functions and vacuum integrals up to three-loop
order, with applications to QCD corrections to weak boson self-energies in which gluons and the

T Integrals evaluated at thresholds can have non-UV poles in ¢ that are also not IR divergences but are treated in
the same way.



quarks other than the top quark will be treated as exactly massless from the start. These results
appear in a companion paper ref. [36], and illustrate the thematic property that expansions of the
one-loop, two-loop, and three-loop masters to positive powers in € are never needed.

III. SELF-ENERGY INTEGRALS

A. General conventions

In this section I establish the notations and conventions to be used below. Momentum integrals
are defined in terms of their Wick-rotated Euclidean versions in d = 4 —2¢ dimensions. In diagrams
below, each line carrying 4-momentum k* and with squared mass x represents a propagator factor
of 1/(k? 4+ z), and the loop-momentum integration measure is

2¢
/k = (16%2)(5ﬂ)d/ddk. (3.1)

The regularization scale p is then traded for a scale @) (equal to the renormalization scale if the
MS scheme @, @] is adopted), according to

Q? = 4dmwe V2, (3.2)

in terms of the Euler constant v = 0.5772156649 . ... Now define

L, = In(z) = In(z/Q?), (3.3)

where the second notation was used in refs. @] and the first notation will be used below. The
external momentum invariant for self-energy functions is defined to be

s = —p? + i, (3.4)

with a Euclidean (or signature —4++) metric, so that

L_g =1In(—s) = In(s) — i, (3.5)

where the last equation holds for positive (physical) s. Below, s and @ will always be suppressed
as function arguments, because they are always the same for all self-energy functions in a given
expression or equation.

B. One-loop and two-loop self-energy integrals

The master integrals for one-loop and two-loop scalar self—ene%integrals are as shown in Figure

[B.1] following the same notations and conventions as in refs. |. Thus the (non-renormalized)



FIG. 3.1: Topologies for one-loop and two-loop self-energy and vacuum master integrals in eqs. ([B.0])-
[BI12), following the same conventions and notations used in refs. M] The integer labels on the
internal lines denote the ordering of internal propagator squared mass arguments.

master integrals at one loop are:

and at two loops,

Aw) = /k 16271” (3.6)
1
Beo) = | mram e (3.7)

tews) = | | mragErer T (38)
Stewa) = | e (39)
Twwe) = [ ErrEnm e (3.10)
Vo) = | | e e T 30
Mo, w,29,2) = /k q[k2+vnq2+wn<k—p>2+i][<q—p>2+yn<k—q>2+z]' (3.12)

Note that the dot on a propagator in the diagram indicates that the propagator is doubled.

Derivatives of the above master integrals with respect to the squared mass arguments are useful.

For the one-loop integrals and the two-loop vacuum integral:

= (1-e)A(x)/z, (3.13)
A;y [(1=26)(z —y —s)B(z,y) + (1 — ) {(z +y — s)A(x)/z — 2A(y)}], (3.14)
1

5|0 -206 =y = 2Mwp.2) + (1= Of (@ =y + DA@AG) /o

+(z+y - 2)A@)A(:)/z ~ 2AH)A()} ], (3.15)



where the triangle function is
Apy. = 22+ 92+ 2% — 20y — 202 — 2y2. (3.16)

For the two-loop self-energy integrals, the simplest derivative is

%S(:ﬂ,y, z) = —T(x,y,2), (3.17)
since it is merely a definition. The other derivatives of 2-loop integrals with respect to squared mass
arguments are somewhat more complicated, and so the complete set of squared mass derivatives of
A B, I,S, T, U, and M are provided in electronic form in an ancillary file derivs2loopbold, for
generic values of the squared masses. Also provided in that file are the derivatives with respect to
s, which can be obtained from the squared mass derivatives by dimensional analysis.

Following the protocols given in the Introduction, the renormalized one-loop master integrals
are now defined by subtracting the UV divergent parts and taking the limit:

Alz) = 11_)11% [A(z) +x/e] = xLy — z, (3.18)
1
Ba.y) = lim Ba.) = 1/d = = [ dtTalta+ (1= 1y — (1= s (3.19)

The first of these equations allows us to trade A(x) for L, at will, while the second can be easily
evaluated analytically. For the two-loop three-propagator renormalized master integral, define

[following the general form of eqs. (ZI)-22)]:
S(.Z', Y, Z) = h_% S(.Z', Y, Z) - Sl’div(x7 Y, Z) - Sz’div(aja Y, Z)] 9 (320)
with contributions from one-loop and two-loop UV sub-divergences:

SLAV (g ) = %[A(m) Ay + A, (3.21)

. 1 1
2, div _ _ o —
S5 M (x,y, 2) 2¢2 (x4+y+2)+ 5 (s/2—x—y—2). (3.22)

The renormalized integrals I(z,y, z) and T'(x,y, z) follow immediately from the above, as

I(z,y,2) = S(z,y,2)| _, (3.23)
0
T(x,y,2z) = —%S(az,y,z). (3.24)

Next, define for the four-propagator renormalized integral:

Ulw,z,y,z) = ling) U(w,z,y,2) — Ul’div(w,x,y,z) — U2’div(w,x,y,z) , (3.25)
€E—



where the one-loop and two-loop UV sub-divergence contributions are

1

Ul’div(w,x,y,z) = EB(ZU,:E), (3.26)
U> W (w,x,y,2) = _ L + i (3.27)
B 2¢2 ¢

Finally, the five-propagator two-loop self-energy master integral is free of UV sub-divergences, so
M, w,x,y,z) = liIr(l]M(v,w,x,y, z). (3.28)
e—

The derivatives of the renormalized integrals A, B,I,S,T,U, M with respect to each of their
squared mass arguments, and s, can all be found in ref. ] For convenience, they are also all pro-
vided in an ancillary file derivs2looprenorm of the present paper. Also, the implicit dependences
of the renormalized integrals on @) are given by:

Q28Q2 (z) = —u, (3.29)
Q28Q23(:¢ y) = 1, (3.30)

Q? aQQI(:v Y, 2) = Alz) + A(y) + A(z) =z —y — 2, (3.31)

Q? aQQS(:ﬂ 9 2) = Alx) + Aly) + A(z) —z —y — 2+ 5/2, (3.32)
QzanT(:n y,2) = —A(z)/z, (3.33)
QQOTPU(w,w,y,Z) = 1+ B(w, ), (3.34)
Q28%2M(v,w,a:,y,z) = 0. (3.35)

It is also often convenient to define

Viw,z,y,2z) = —%U(w, ,Y, 2). (3.36)
Strictly speaking, this is not a master integral unless one of the squared masses vanishes, as it can
be expressed in terms of the others (see the ancillary file derivs2looprenorm of the present paper,
or egs. (3.22)-(3.28) of ref. ], for the explicit form). However, using it often simplifies expressions
in practice. Moreover, if one of the squared masses vanishes, then 7'(0, z,y) has a doubled massless
propagator and is therefore IR divergent, so it is not available as an e-finite master integral.
However, it can be replaced by either of the e-finite integrals V(z,y,0,y) or V(y,x,0,x), or by the
integral defined by the finite limit in which the mass-regulated IR divergence is subtracted:

T0,z,y) = ;112% [T(z,xz,y) + L.,B(z,y)]. (3.37)



The relation between T(0,z,y) and V (x,7,0,y) is given by (see the Appendix of ref. B], which
contains some similar identities):

T(0,2,y) = 2y |V(z,y,0,y) + (2 — Ly)%B(az,y)} +T(y,0,2) + L,B(z,y). (3.38)

For the special case y = z in section [VII] of the present paper, I will choose to use V(z,z,0,z) as
one of the master integrals. The program TSIL [49] can be used for fast and accurate numerical
evaluation of the renormalized e-finite master integrals A, B,I,S,T,T,U,V,M for any desired
values of the arguments.

There are already several calculations that show by explicit example that the renormalized
e-finite master integrals are the only ones needed to express renormalized two-loop self-energy
observables in a general theory. These include the self-energies of scalars refs. @@], fermions in
refs. @, @] and the Standard Model W and Z vector bosons in refs. ﬂﬁ, @] One might perhaps
have thought that the integrals A.(z) and B.(z,y) defined by

A(z) = —f + A(z) + eAc(z) + EAn(2) .. ., (3.39)

B(z,y) % + B(z,y) + €Bc(z,y) + €Bea(x,y) + ... (3.40)
might be necessary. However, this is not the case. In fact, it proved a useful check on the
calculations listed above to observe the complete cancellation of A, and B, in the expressions for
renormalized quantities. In a similar way, I have checked explicitly in ref. @] that in the three-loop
calculation of scalar and vector boson self-energy functions, one does not need A.2 or B2, or the
coefficients of positive powers of € in the two-loop functions I, S, T, U, M, either.! All occurrences
of them cancel. Among the one-loop and two-loop integral functions, only A, B, I, S,T,U, M (and
either T or V if a squared mass vanishes) are needed for the self-energy expressed in terms of
renormalized couplings and masses, even at three-loop order. A similar statement holds for the
general three-loop effective potential, as shown explicitly in ref. @] This is presumably true at
all orders in perturbation theory. It should also hold in on-shell and hybrid type renormalization
schemes, since they can be related to the modified minimal subtraction scheme by redefinitions
involving renormalized physical quantities.

C. Three-loop self-energy integrals

Consider scalar self-energy functions at three-loop order, which can have the topologies in
Fig. B2, with denominators arising from arbitrary powers of the propagators shown, and numera-
tors that are polynomials in scalar products of the external 4-momenta p*, and the loop integration
momenta ¢, k*, r#. In this paper, I define “candidate master” 3-loop scalar self-energy integrals
as follows.

T In the particular case of A(z) and B(z,y), the expansions to all orders in ¢ are known; see ref. [64] for the latter
in terms of Nielsen polylogarithms. The point being made here is that these should never be needed.
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FIG. 3.2: Topologies for three-loop self-energy and vacuum scalar integrals. The integer labels on the internal
lines denote the ordering of propagator squared mass arguments adopted in this paper. The vacuum integrals
F. G, and H follow the conventions also used in refs. @] and ﬂﬁ__ﬂ] For the self-energy integrals with names
containing I, the first (integer) subscript in the name is the number of internal propagator lines. Not shown
are topologies that factorize into products of 1-loop and 2-loop integrals.
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First, we have three 8-propagator scalar integrals

:[8(1(:1:17x27x37x47$57$67$77$8 /// +$1 k2+$2][7‘ —|—IIJ‘3][(’I"— )2—1_:1:4]

(a2 +asllla — k) + agll(k — ) +arllir — 0 +as]} (3.41)

Igy (21, 22, 3, 24, 5, T6, X7, T3) /// q + x1][ k‘2+332][7‘ + a3][(r — ) + 24

(g =) +asll(a — k) +zgll(k — )+ 2]k —p)” +25]} (3.42)

Ig (21, x2, 3, 24, T5, T6, L7, T8) /// [¢* + 21][k* + z2][r? + 23][(r — p)* + 4]

(g~ ) +asllla — k) +zell(k — )+ arll(g +r —k—p)? + ]} (3.43)

as depicted in the top row of Figure The last of these has a non-planar topology.

Besides the 8-propagator integrals, it is necessary to also include all integrals obtained from
them by removing one of more of the scalar propagator factors, as shown in the remaining rows
of Figure In particular, this figure defines the 7-propagator integrals labeled I, I7p, I7., I7q4,
and I7., the 6-propagator integrals shown in the third and fourth rows, the 5-propagator integrals
in the fifth row, and the 4-propagator integrals in the sixth row. In each case, the ordering of the
squared mass arguments x1,xo, ..., is indicated by the integer labels. The external momentum
invariant s and the renormalization scale () are the same in each case, so they are not included
explicitly in the list of arguments.

However, the integrals just defined (with unit numerator, and denominators with only single
powers of propagators) are not sufficient. In addition, the list of candidate master integrals includes
all integrals obtained from the ones shown by doubling one of the propagators, which is the same
as taking the negative of the derivative with respect to the corresponding squared mass argument.
This is indicated by adding the corresponding integer to the end of the subscript in the integral
name, for example:

0

I4l(w,x,y,z) = _%14(“}7%7?472)7 (344)
0

ISal(U7w7‘Tay7'z) - _%I5a(v7w7‘ruy7'z)7 (345)
0

1605(u,v,w,:17,y,z) = _a_y160(u7vvw7x7y7z)' (346)

However, for the eight-propagator integrals, I find that derivatives of Ig, and Ig; are never necessary,
and only one of the two distinct derivatives of Ig. is necessary, which can be chosen to be Ig..
Besides the preceding, a few other integrals are useful in the general case. For the four-propagator
topology only, define an integral with both of the first two propagators doubled:

82
I412(w,:17,y,z) = m14(w7x7y7 Z)7 (347)
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and one with the first propagator tripled:

1 02
Iyi(w,z,y,2) = —=—=Iy(w,z,y, 2). 3.48
a1 (w, ,y, 2) 5 502 s(w,z,y, 2) (3.48)
Finally, for the non-planar 8-propagator topology (8c) only, it is evidently necessary (see, for
example, the case of all masses equal, considered in section [V] below) to define a master integral
with p - k in the integrand numerator:

Wor s, aias,asanas) = [ [ ook {le + ol +ali + ol -2 + o
q r

[(q—p)* + z5][(q — k)* + a6][(k — r)* + 27][(q+ 7 — k —p)* + :vs]}_l- (3.49)

Together with products of 1-loop and 2-loop integrals, this concludes’ the listing of the 3-loop can-
didate master self-energy integrals. Not all of these will be linearly independent, so the number of
actual master integrals will always be smaller, depending on the choice of squared mass arguments.
Also, integrals with IR divergences cannot be e-finite masters. The IR divergent cases include any
integral with a doubled massless propagator, and also integrals I74(x1,0,0,0,0,0,0) for any z1, and
I3,(0,0,0,24,25,0,0,0) for any x4 and z5. The choice of the masters from among the candidate
masters is not unique. Furthermore, the possibility of identities that could eliminate one or more
of the putative masters is not always easy to rule out. However, it does no harm (except, in some
cases, some avoidable complication) to include extra masters beyond a minimal set. In some cases,
including extra masters may lead to more compact expressions.

I now proceed to define the renormalized e-finite masters. First, for the vacuum integrals
F(w,x,y,z), Glv,w,z,y,z), and H(u,v,w,x,y,z), the definitions have already been provided
in section II of ref. [50], and also coincide with the definitions given below for Iy (w,z,y, 2),
Isq(v,w,x,y, z), and Igq(u,v,x,w,z,y) with s = 0. The program 3VIL provides for the fast and
accurate evaluation of the functions F, G, and H with arbitrary arguments, including various
special cases given originally in refs. @@] For another approach to the numerical calculation of
three-loop vacuum and self-energy integrals with general masses, see refs. @] and @] respectively.

For the four-propagator self-energy integral [compare to the general form of eqs. (ZI))-(Z2])]:

14(10, z,Y, Z) = llHEl) |:I4(U), €, Y, Z) - Izll’div(wv x,Y, Z) - Iidiv(wv x,Y, Z) - Iidiv(w’ z,Y, Z):| ) (350)
e—

where the 1-loop, 2-loop, and 3-loop UV sub-divergence subtractions are:

!

1Y (0, 2,y 2) = : [ A(w)A(z) + A(w)A(y) + A(w)A(z) + A(z)A(y) + A(z)A(2)

+A(y)A(z)] ; (3.51)

¥ Integrals that would be redundant by symmetry are not included; for example, there is no Isa3, because
Isa3(v, w, z,y, z) would be the same as Isq2(v, 2, w,y, 2).
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- 1 1 1
Ii,dlv(w T,Y,2) = { (ﬁ - 2—> (r+y+2)+ 4—(8 + w)} A(w) + (three permutations), (3.52)
€ € €
2
3,div s 1 I3 2. 2., 2., 2
I, (w,a:,y,z):ﬁ—i-(@—g)s(w—kx—i-y—kz)—i-(@—g (w* 4+ 2° +y° + 2%)
(2 2 1 (wz +wy +wz + 2y + r2 + Y2) (3.53)
— — — 4+ — | (wr +wy + wz + zy + 2+ yz). .
33 3e2  3e Y 4 4

The expressions for the renormalized integrals 141, 1411, and 1412 are easily obtained from the above
by taking derivatives with respect to the squared mass arguments, following from eqs. (3:44]), (347
and (3.48]), by making use of eq. (B.13)).

The remaining renormalized masters are constructed in an entirely analogous way. For the
five-propagator integrals, the subtractions before taking the limit ¢ — 0 are:

Ié;div(v,w,x,y, z) = %[S(v,w,:z:) +S(v,y,2)], (3.54)
2% (0, w,2,y,2) = —EizA(v) + <2i€ — 2—12> [A(w) + A(z) + A(y) + A(2)],  (3.55)
Y (0, w,z,y,2) = (—% + i) s+ (—6% + % — %) (w+z+y+=2)
n <—3—13 - 3i> . (3.56)
and
Iég)div(v,w,x,y,z) = %[S(v,w,x) +1I(v,y, 2)], (3.57)
IgédiV(v,w,x,y, z) = —E%A(v) + <2i€ — 2—12 [A(w) + A(z) + A(y) + A(2)], (3.58)
IgbdiV(U,w,x,y,z) = (—1217 2%6> 5+ <_6_13 + 212 - 3—> (w+zx+y+2)
T (—3% ot i) N (3.59)
and
LY (5w, g, 2) = %B(U,’w) [A(z) + AQy) + A(2)], (3.60)
B (0w 0.2) = ~ A0+ (5 - o) [A) + AW + A
+ KL - i) (x+y+2)+ iw] B(v,w), (3.61)
2e? 2 4e
Ig’cdiv(v,w,x,y,z) = —%263 + <—6—12 + %) (v+w) + (—% + % — i) (x+y+2). (3.62)
Again the corresponding expressions for 5,1, I5q2,... are obtained from the above by taking

derivatives with respect to the appropriate squared mass arguments in the obvious way, making
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use of egs. (B.13)-B.I5) and B.I7).

The subtractions for the six-propagator three-loop self-energy integrals are given by

v 1
I (w0, w,,y,2) = —[U(u,v,w,2) + Ulu,v,y,2)], (3.63)
' 1
Ig;lle(u’ij’x,y,Z) = _E_QB(uvv)v (364)
3,div 1 1 1
Iﬁal (u,v,w,x,y, Z) = g - @ - ga (365)
and
v 1
I (u,v,w,2,,2) = ~[U(u,0,y,2) + Ulv,u,w, )], (3.66)
€
i 1
Ig;)le(u’ij’x,y,Z) = _E_QB(uvv)v (367)
3,di 1 1 1
Iﬁb lV(u,U’w’x’y’ Z) = g - @ - ga (368)
and
1,div 1
I (u,v,w,2,y,2) = EU(u,v,w,:E), (3.69)
di 11
Ig,c IV(U, 'U,’LU, x, y, Z) = <2_€ — 2—€2> B(u, 'U), (370)
3,div 1 2
Iﬁc (uvvaw7x7y72) = 6? - @ + %7 (371)
and
Ié;ldiv(u7vaw7x7y7z) = Igadiv(u7vaw7x7y7z) - 07 (372)
Ié;idlv(u7vvw7x7y7z) = 2C3/67 (3.73)
and
1,div 1
I (u,v,w,2,y,2) = EU(v,w,u,x), (3.74)
i 1 1
Igéle(uyv,w,x,y,z) = <§ _ @) B(v,w), (3.75)
3,div 1 1 2
166 (uy any x, y, Z) = 6? —_— @ + i, (3,76)
and
- 1
Ié,}ilv(u,v,w,x,y,z) = EB(u,v)B(w,a;), (3.77)

Ié,ﬁiv(u,v,w,x,y, z) = (— - —> [B(u,v) + B(w, z)], (3.78)
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3,div 1 2 1
Isy (u,v,w,z,y,2) = 33 32 + 3 (3.79)
Again the corresponding expressions for Ig,1, Iga3,... are obtained from the above by taking

derivatives with respect to the appropriate squared mass arguments, making use of eq. (314l
and the corresponding formulas for the derivatives of U, which can be found in the ancillary file
derivs2loopbold.

For the seven-propagator three-loop integrals, only I7. and I7, have UV divergences. The
corresponding subtractions are:

o 1
L (v, w,2,y,2) = =Mt u,w,0,2), (3.80)
€
L (v, w,2,y,2) = B0 (G u,0,w,2,y,2) = 0, (3.81)
and
phdiv 1
Te (t,u,v,w,:n,y,z) - EM(t7w7u7U7$)7 (382)
Ig’ediv(t,u,v,w,a:,y,z) = I?’ediv(t,u,v,w,x,y,z) = 0. (3.83)
The corresponding expressions for I7.1, I7.3,... are obtained by making use of the formulas for

the derivatives of M with respect to its squared mass arguments, as given in the ancillary file
derivs2loopbold.

There are no UV divergences, and therefore no subtractions, for the seven-propagator candidate
masters I7,, Iz, I74, and the eight-propagator integrals Is,, Isp, Isc, and Ilg’lj. The renormalized
e-finite candidate masters Iz, I7p, 174, I8a, Isp, Isc, and Igf are therefore just the ¢ — 0 limits of
the bold-faced integrals. The same holds for arbitrary derivatives of them with respect to their
squared mass arguments.

The renormalized masters that required UV subtractions depend on the scale ), although this

dependence is suppressed from the list of arguments. The results for Qa— are determined by the

above definitions, and are given in an ancillary file QddQ provided with this paper.

One approach is to treat all squared masses as completely generic, in which case IR divergences
are regularized by the non-zero values assigned to gauge bosons and chiral fermions, which can be
sent to zero at the end of calculation. If, on the other hand, we impose special relations among
the masses (typically, that some of them vanish, and/or that others are equal to each other) then
expressions can be much simpler but it is not completely trivial to choose an e-finite basis for the
master integrals. We will do this in some notable special cases in sections [V, V], VT, and [VIIl

To conclude this section, note that the relationship between the original (bold-faced) and renor-
malized integrals can of course be inverted, in an expansion in e¢. For example, for the four-
propagator self-energy integral, one can write:

1 - 1 1 -
14(707337?472) = _3I4E 3)(“}7%%2’) + 6_2];& 2)(?07337?472) + EILE D(w,a:,y,z) + L&O)(w,a;,y,z) +.
(3.84)
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where
17 (w,2,y,2) = (we 4wy + w2 +ay + oz +yz) /3, (3.85)
17 (w,,y,2) = —s(w+o+y+2)/12 = W +2% + 4%+ 2%)/12

+(wz +wy + xy + wz + 2+ yz)/3 — [(:17 +y+ 2)A(w)
+w+y+2)Ax) + (w+x+ 2)Aly) + (w+ 2+ y)A(2) | /2, (3.86)

Ii_l)(w,a:,y,z) = 52/36 — s(w+x+y+2)/8 = 3(w? + 2% +y* + 2%)/8
+(wx + wy + wz +xy+xz+yz)/3+ (s + w— 2z — 2y — 22)A(w) /4
+(s+a—2w—2y —22)A(x)/4+ (s +y — 2w — 2z — 22)A(y) /4
+(s+ 2z —2w -2z —2y)A(2)/4 + A(w)A(x) + A(w)A(y) + A(w)A(z)
+A(@)A(y) + A(2)A(2) + A(Y)A(2) — (z +y + 2)Ac(w) /2
—(wHy+2)A(x)/2 — (w+x+2)Ac(y)/2 — (w+ 2 +y)Ac(2)/2, (3.87)
L&O)(w,a:,y,z) = L(w,z,y,2) + s[Ac(w) + Ac(z) + Ac(y) + Ac(2)] /4
+Aw)[Ae(z) + Acly) + Ac(2)] + A(2) [Ac(w) + Ac(y) + Ac(2)]
+A(Y) [Ae(w) + Ae(@) + Ac(2)] + A(2) [Ac(w) + Ac(@) + Ae(y)]
—(z+y+2)[Ac(w) + Az (w)] /2 — (w+y + 2) [Ac (:13)+A52(x)]/2
—(wHz+2)[Ac(y) + A ()] /2 — (w+ z + y) [Ac(2) + A2(2)] /2
+HwAc(w) + zAc(r) + yAc(y) + 2zA(2)] /4. (3.88)

[ S
A/—\

However, I emphasize that integral functions like 1, io)’ which occur as the coefficient of €® in the
expansion of the original integrals, are quite sub-optimal for expressing results for renormalized
physical quantities. This is because writing 3-loop results in terms of such integrals requires that the
expressions will also include A.(z), A.2(x), as can be seen from eq. (B:88]). Similarly, for quantities
with five or more propagators, Be(x,y), Bea(z,y), Sc(z,y,z) etc. will appear, which involve the
coeflicients of positive powers of € from integrals at lower loop order than the calculation being
performed. The big advantage of organizing results in terms of the renormalized e-finite integrals
like I4(w,z,y, z) is that such coefficients of positive powers of € are never needed. This property
should persist to arbitrary loop order.

D. Numerical evaluation by differential equations

For the case of self-energy renormalized e-finite master integrals, the derivatives with respect to
s can be expressed as linear combinations of them:

d
%Ij = ZCjka, (389)

where the coefficients c;;, are rational functions of s and the internal propagator squared masses.
(Note that the cj, do not depend on e in this approach, since the I; are independent of e by
construction.) Once these coefficients have been found, as we will do below in various special
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FIG. 3.3: Path in the complex s plane for numerical integration of first-order coupled differential equations
for the master integrals. The integration starts at s = sg chosen within the domain of convergence of the
small-s series expansion. The contour avoids singular points in the differential equations (shown here as
occurring at s = 4t, 9¢, and 16¢, as in section [V]) by proceeding in the upper-half complex plane, giving
the correct branch cut for an infinitesimal imaginary part of s at the end of the path.

cases, then one can solve the coupled first-order differential equations numerically, using a Runge-
Kutta or similar algorithm.

The initial boundary conditions for the numerical integration of the differential equations can
be obtained at or near s = 0. If s = 0 is not a threshold for any of the master integrals under
consideration, then the initial boundary conditions can typically be set at s = 0 in terms of the

If s = 0 is a threshold for
one or more of the masters, then one can instead choose an initial boundary condition at some

vacuum integral masters, available in the notation of the present paper from ref. @], incorporating
some original analytic calculations for special cases from refs. ﬂé@]

small sg. To do so, the self-energy masters can be written as a series expansion in small s, with
coefficients obtained using the same differential equations (3.89) and expressed in terms of the
vacuum integral masters. The initial conditions are then evaluated at an appropriate s = sg within
the radius of convergence of the series.

In order to obtain the correct imaginary parts of the masters, one can follow the strategy
introduced in ref. ﬂﬁ, IE] by using a contour in the upper-half complex plane for the Runge-Kutta
integration, thus avoiding branch cuts and other special points on the Im[s] = 0 line, as shown
in Figure B3l This procedure is the one used by the program TSIL @], to find the two-loop
self-energy renormalized masters for general squared masses.

I have constructed a similar (but not particularly well-optimized) mathematica program to
compute the three-loop master integrals for the special cases considered in sections [Vl [VI, and
[VITl below. (It is left as an exercise for the reader to do the same.) In principle, this should be
straightforward in more general cases, although the coefficients will be considerably more compli-
cated and some optimization (including partial fraction decomposition of coefficient functions, and
certain specialized Runge-Kutta routines designed to minimize numerical problems and improve
calculation speed near thresholds) may be needed.

There are several advantages of the numerical evaluation method outlined above. First, all
of the masters descended from a given topology are obtained simultaneously as the result of a
single calculation. Second, the Runge-Kutta method (and refinements thereof) tends to be faster
and more accurate than multi-dimensional integral methods. Third, changing the contour in the
upper-half complex s plane allows for consistency checks and numerical error estimates.
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IV. THE CASE OF MASSLESS INTERNAL PROPAGATORS

In this section, I review the case that all internal masses vanish, where the integrals are all
known analytically. This will help to illustrate the connection between the general notation and
the known results in this special case.

With all vanishing masses, the renormalized e-finite master integrals do not include doubled
propagators, as these are IR divergent. The scalar integrals for the topologies I74 and Ig, are
also easily seen to be IR divergent, despite not having doubled massless propagators. By using
the IBP relations and known results ﬂ, , @], one finds that there are only four independent
renormalized e-finite master integrals. They can be chosen to be B, M, Igq, and I7,, although
there are clearly other equally valid choices. In terms of them, the renormalized e-finite candidate
master scalar integrals are (suppressing all internal squared mass arguments in this section, since
they all vanish):

B =2-1L_, (4.1)

S = s(B/2+5/8), (4.2)

U = B*/2+ B+3/2,, (4.3)
M = —6(s/s, (4.4)
I, = s?(B/12 + 35/216) , (4.5)
I, = s(B*/2+3B/2+47/24) (4.6)
I, = s(B?/4+5B/4+103/48) , (4.7)
Is. = —s(B/4+13/24), (4.8)
Isa = B*/3+ B*+2B+2(3/3+5/3, (4.9)
Iy = B*/3+ B?+2B —4(¢3/3 +5/3, (4.10)
Ise = B*/6+ B* +7B/2 —2(3/3 + 14/3, (4.11)
Isq = 3C4 + 6(3B, (4.12)
Ise = B%/6+ B>+ 7B/2 — 14¢3/3 + 14/3, (4.13)
Iey = B*/3+ B* + B+ 14(3/3 — 7/3, (4.14)
It = Iy, = —20(5/s, (4.15)
Izc = Ize = —6(3B/s, (4.16)
Iy, = Ig. = 20G5/s%, (4.17)
" — _5¢5/s. (4.18)

Alternatively, the independent master integral quantities can be taken to be L_g = In(s) —im from
1-loop order, (3 at two-loop order, and (4 and (5 at three-loop order.
The integrals I74 and Ig, can also be evaluated with the results

2
sl7g = —82[8[1 = 30 + (3 <— + 6B — 12> . (419)
€IR

Here the 1/eg poles remain uncanceled (there are no UV sub-divergences, and thus no countert-
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erms, for I74 and Ig,), reflecting the aforementioned IR divergences in each case. In expressions
for physical observables, the fact that IR divergences must be absent ensures that these integrals
can always be eliminated in favor of the e-finite master integrals. More generally, (4 (or equiva-
lently Isq) also cancels from the self-energy function contributions from massless particles in gauge
theories; the amusing absence of (,, with even n has been noted in various contexts in e.g. @Jj]

V. THE CASE OF ALL INTERNAL PROPAGATOR MASSES EQUAL

Next, consider the case that all of the internal propagators have the same squared mass, which
will be called t. In this case, there are no IR divergences, so all renormalized candidate masters are
e-finite. By applying the IBP relations, I find that all renormalized self-energy integrals (including
those with arbitrary momentum polynomials in the numerators) up to three-loop order can be
written in terms of the following renormalized e-finite masters:

I, = {A, B}, (5.1)
I2 = {I7 Sa T7 U7 M}7 (52)
I3 = {G, H, 1y, 141, In11, Isa, Isa1, Isa2, Isb, Isp1, Isp2, Isc, Loa, Lobs Locy Lods Lodi,

Ise, I6e1s Lofy I7as I7a1, I7a3, Tv, L7015 L7025 I7045 I7cs Itc1, I7ay I741, Ites I7e3,
Isa, Igp, Igc, Isc1, Ié’f}- (5.3)

The squared mass arguments are suppressed again in this section, because they are all equal. The

remaining candidate master integrals

{F, L2, Ispa, Isc1, Isc2, Isess Ioatr, Lea2s Loa3s Levis Loz, Lec1s Locas Loes,
Igca, Ioes, Toazs Lede, Loe2, L6e3s Leeas Leess Lef1s Lofsy L7ass I7a7, Tm6,

Ites, Ince, Iraz, Iras, Irar, Irer, Ire2, Treas Ires, Ires} (5.4)

are solved in terms of the masters, with results given in the ancillary file Tallmassive. The

derivatives si of the masters are also provided in an ancillary file Tallmassivesdds. The choice
of masters abosve is somewhat arbitrary, but has been made in such a way as to make denominators
simple, with factors of s — 4¢, s — 9¢, and s — 16t corresponding to the threshold singularities from
2-particle, 3-particle, and 4-particle cuts respectively. However, also present in a few cases in the

expressions for s— of the masters and for the solved integrals are denominator factors s —¢, s — 3t,

s+8t, and s% — 8381,5 + 412, which do not correspond to true thresholds. (These denominator factors
could be eliminated at the expense of increasing the set of masters to a larger overcomplete set
with some algebraic identities relating them, but there is no great advantage gained by doing so.)

It is now straightforward to obtain series solutions to the first-order differential equation in s,
using boundary conditions given at s = 0 by the known vacuum integrals,

15 3
Hum):th—EﬁﬁM—§ﬁ>, (5.5)
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53 13
F(t,t,t,t) =t =+ —L; —4L} + L} |, (5.6)

12 4

97 2 73
G(t,t,1,4,1) = t{12e; — o +6Cs + (26 — 6er) Ly — 8L + L7, (5.7)
H(t,t,t,t,t,1) = ey +6(3(1 — Ly), (5.8)
with
¢r = V3Im [Lig(e%i/?’)] — 1.1719536193. .. , (5.9)
2

cg = 16Lig(1/2) — 17¢, + §In2(2)[ln2(2) — % = 3c¢3 = 17.2476198987....  (5.10)

Defining » = s/t, I have obtained power series solutions convergent for |r| < 4. (The physical
reason for this range of convergence is that the point » = 4 corresponds to the lowest 2-particle
cut threshold.) The series results up to order 736 for the masters in eqs. (G.1)-(E3) as well as the
solved integrals in eq. (5.4]), are given in the ancillary file Tallmassiveseries. The coefficients in
these series involve only rational numbers and the constants (3, ¢y, and c¢y. The only appearances
of the constant ¢y are in H itself and in the 70 term in the expansion of I,.

For general s not necessarily small compared to 4t, a numerical integration of the coupled first
order differential equations for the integrals in eqs. (B.))-(53]), starting from the series solution at
s = 0.5 (for example) as the initial condition, is sufficient to quickly obtain accurate numerical
results, as explained in section As a check, I have verified numerically that the results for
s> t indeed asymptotically approach those given in eqs. ([£.])-([@I8)) in the previous section. A few
examples of results for dimensionless (6-propagator) integrals as a function of s are shown in Figure
.1l for the case t = Q2 = 1. The integral Is; has a two-particle cut threshold at s = 4, leading
to cuspy behavior near that point. The integrals I5,o and Ig; have three-particle cut thresholds at
s = 9. The integral I;1; has a relatively smooth four-particle cut threshold at s = 16. (The large
s asymptotic limits of the previous section for Isq and Iy are accurately realized only for s much
larger than the ranges shown in the figures.)

Another way of obtaining numerical results for general s for integrals with a single internal mass
scale is to make series expansions (in general, with square root and logarithmic factors) about the
threshold points s = 4¢ (two massive particle cut) and 9¢ (three massive particle cut) and 16¢ (four
massive particle cut) and oo. The coefficients in these series expansions can then be determined
by matching at points within the common range of convergence of pairs of series, starting from the
analytically known series coefficients for the expansion about s = 0. However, it does not seem so
easy to generalize this method to the case of arbitrary different internal propagator squared masses
for all s, and so the results will not be pursued here.
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411

FIG. 5.1: Sample results, for the dimensionless integrals I411, Isq2, I6q, and Isy, with all propagator
squared masses and the renormalization scale @ set equal to unity (t = Q? = 1), as a function of the
external momentum invariant s. The results were obtained by numerical solution of the coupled first-
order differential equations in s as provided in the ancillary file Tallmassivesdds, starting from the
series solution provided in the file Tallmassiveseries. In each case, the blue (heavier) line is the real
part, and the red (lighter) line is the imaginary part. The lowest threshold is at s = 16 (four-particle
cut) for Iy11, at s =9 (three-particle cut) for Is.o and Igq, and at s = 4 (two-particle cut) for Isy.

VI. INTEGRALS WITH ODD THRESHOLDS

In any unbroken gauge theory (such as QED or QCD) with massive and massless fermions
and massless gauge bosons, the allowed interaction vertices have an even number of massive lines.
Consider a self-energy diagram topology with a single internal propagator squared mass scale called
t (in honor of the top quark), with the other internal propagators massless. The cuts of the diagram
will correspond to thresholds at s = n?t, where the n are either all even integers n = 0,2,4, or
else all odd integers n = 1,3. Furthermore, it is easy to see that all descendants of the diagram
obtained by removing internal propagators will have the same property.

In this section, I consider three-loop self energy integrals with possible thresholds only at s = ¢
and/or s = 9¢, which are referred to here as “odd threshold” integrals. These are the ones that can
arise in QCD corrections to the self energies of the W boson in which the W boson couples to t, b,
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FIG. 6.1: The odd-threshold single-mass three-loop self-energy topologies considered (along with their
descendants) in section [Vl The heavy solid internal lines represent propagators with squared mass ¢,
and the dashed lines represent massless propagators.

with the bottom quark treated as massless. They arise from diagram topologies corresponding to

the scalar integrals

[8(1(070707t7t707070)7 ISa(t7t7t7070707070)7 I8a(t707t70707t7t70)7
Ig,(0,¢,0,t,t,t,t,0), Ig(0,0,0,¢,¢,0,0,¢), Is.(0,0,0,¢,¢0,0,t), (6.1)

as depicted in Figure [6.], and their descendants obtained by removing internal lines in all possible
ways. Note that these six 8-propagator topologies are linked by a variety of common descendants.

Applying the IBP identities, I find that all scalar self-energy functions with these topologies
can be expressed in terms of the one-loop, two-loop, and three-loop renormalized e-finite master

integrals:
0 = {A(t), B(0,t)}, (6.2)
I®) = {5(0,0,1), S(t,t,1), U(t,0,¢,1), M(0,0,,£,0) }, (6.3)
70 = {H(0,0,t,0,¢,t), H(0,t,t,t,0,t), I4(0,t,t,t), Isa(t,0,0,t,t), Isp (¢, t,t,0,t),

I, (t,0,0,0,t,t), Igp1(t,0,0,¢,¢,t), Is4(0,0,t,0,¢,0), I64(0,0,t,¢,0,t),
I4(t,0,0,0,0,0), Isq(t,0,0,t,t,t), Leqa(t,t,t,t,t,0), Isqr(t,t,t,t,t,0),

I6c(0,0,t,t,t,t), I6(0,t,0,0,0,t), Isc(t,0,t,0,0,t), Ise(t,t,0,t,t,t), Isf(0,t,¢,0,0,t),
Is#1(t,0,0,t,0,t), 17,(0,0,0,0,t,t,t), I74(0,0,t,t,0,0,0), I74(0,t,¢,0,0,¢,0),
I74(t,1,0,0,t,t,0), I74(t,t,t,t,0,0,t), I7q5(t,,0,0,¢,t,0), I7(0,0,¢,0,t,0,0),
I7(t,0,0,0,t,0,t), Iz(t,t,t,0,¢,t,0), I7.(0,0,t,t,0,0,0), I74(0,t,0,t,0,t,0),
I74(0,¢,0,t,,0,t), I7.(0,¢,t,0,0,0,0), I7.(0,¢,¢,0,0,t,t), Is4(0,t,0,¢,¢,¢,¢0),
I,(0,0,0,¢,t,0,0,t), I3.(0,0,0,¢,¢,0,0,t), Igf(t,t,t,0,0,0,0,0)}. (6.4)

For the other candidate master integrals, the solutions (obtained from repeated use of the IBP
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relations) in terms of the masters above are given in an ancillary file Todd. The complete! list of
such solved renormalized e-finite candidate master integrals is:

{1(0,t,t), T(t,0,0), T(t,t,t), U(0,t,0,t), U(t,0,0,0), F(t,0,0,t), F(t,t,t,t),
G(0,0,0,t,t), G(0,t,t,t,t), G(t,0,t,0,t), 145(0,0,0,), I41(t,0,0,0), Iy (t,0,t,1),
I411(t,0,0,0), I411(¢,0,t,1), Ip2(t,t,0,t), I54(0,0,t,0,t), I5.(t,0,0,0,0), Is.(t, t,t,t,1),
I541(t,0,0,0,0), I5a1(t,0,0,¢,t), Isq1(t,t,t,t,t), I542(0,£,0,0,t), Isua(t,t,t,0,0),
Isao(t,t,t,t,1), I5p(0,0,t,0,0), Isp(0,0,¢,t,t), Is(t,0,0,0,t), Isp(t,t,t,0,t),
I5p1(£,0,0,0,t), Isp2(0,¢,0,0,0), Ispe(0,t,0,t,t), Ispe(t,t,t,0,t), I5pa(0,0,t,t,1),
Ispa(t,0,0,t,0), Ispa(t,t,t,t,0), I5(0,¢,0,0,t), I5.(0,t,t,t,t), I5.(t,0,0,0,0),
I50(t,0,0,¢,1), I5e3(0,t,t,0,0), Ise3(0,t,t,t,t), Ise3(t,0,t,0,t), I5:2(0,t,0,0,t),
I5e2(0,t,t,t,t), Ise1(t,0,0,0,0), Ise(t,0,0,t,t), Ig4(0,t,0,t,0,t), Is.(t,0,0,0,0,0),
I6q1(t,0,0,0,0,0), Tga1(t,0,0,0,%, 1), Iga2(0,,0,%,0,t), Isa3(0,t,¢,0,0,t), Isas(t,0,t,t,0,0),
I6p(0,1,0,0,0,t), Igp(0,¢,¢,¢,0,t), Iep1(t,0,0,¢,0,0), Isp3(0,t,t,¢,0,t), Igs(t,0,t,0,0,0),
Iep3(t,0,t,0,t,t), T6:(0,,0,t,0,t), Is.(0,t,t,0,0,0), Is:(0,t,t,0,t,t), Is:(t,0,0,0,0,0),
I6e(t,0,0,0,t,1), Ig.(t,0,t,t,0,t), Tge(t,0,0,0,0,0), Is1(t,0,0,0,t 1), g (t,0,t,t,0,t),
Ie2(0,1,0,t,0,t), Ise2(0,t,%,0,0,0), Tee2(0,t,t,0,t, 1), Is3(0,t,£,0,0,0), Is3(0,t,t,0,t,1),
Toe3(t,0,t,t,0,t), Iea(0,t,0,8,0,t), Tea(t,0,t,t,0,t), Tees(0,t,0,8,,0), Ises(0,t,¢,0,t,t),
Toes(t,0,0,0,t,t), Iges(t,0,t,t,t,0), Isq1(t,0,0,0,0,0), Igq1(,0,0,t,t,t), Teq2(0,¢,0,0,t, 1),
I6q42(0,t,0,¢,0,0), Isg(t,t,£,0,0,t), Igqa(t,t,t,t,t,0), Isqs(0,0,%,t,0,t), Isqs(t,0,0,t,t,t),
I6:(0,0,t,£,0,0), Ige1(t,0,t,0,0,t), Tge1(t,t,0,t,t,t), Ises(0,0,t,t,t,t), Ises(0,t,0,0,t,0),
Tges(t,0,t,0,t,0), Tges(t,t,0,t,t,t), Isea(0,1,0,0,0,t), Tgea(t,t,0,t,t,t), Igea(0,0,,¢,0,0),
I6ea(0,0,t,t,t,1), Iea(t,t,0,t,t,1), T6e3(0,0,%,¢,0,0), Ig3(0,0,t,t,t,t), Iges(t,0,t,0,0,t),
I6£(0,£,0,¢,0,0), Ir(0,8,0,¢,¢,t), Igps(0,t,0,t,t,t), Igss(0,t,¢,0,t,0), Isfi(t,0,t,0,0,0),
Ip1(8,0,¢,0,t,8), Irq1(¢,0,0,6,t,0,0), Izq1(t,¢,0,0,¢¢,0), Irei(t,¢,t,t,0,0,¢),
I743(0,0,%,¢,0,0,0), I743(0,,¢,0,0,¢,0), I7a3(t,t,t,£,0,0,t), I745(0,0,0,0,¢,¢,),
I745(t,0,0,t,t,0,0), I747(0,0,0,0,t,t,t), I7a7(t,t,t,t,0,0,t), Iz (t,0,0,0,t,0,t),

Iy (t,t,1,0,,t,0), Ino(0,t,0,£,0,0,0), Ina(t,t,t,0,t,¢,0), Inao(t,t,t,t,0,0,t),
I754(0,,0,¢,0,0,0), I7p4(t,0,0,,0,¢,0), Izpa(t,t,,¢,0,0,t), Ing(t,0,0,¢,0,¢,0),

I (t,t,t,0,,6,0), I7:(0,0,¢,¢,0,t,t), I701(t,¢,0,0,0,0,0), I7.(t ¢, 0,0,0,¢,t),
I7e6(0,0,t,t,0,t,t), I74(t,0,0,0,t,t,t), I741(t,0,0,0,t,¢,t), I742(0,t,0,t,0,t,0),
I742(0,t,0,¢,¢,0,t), I743(0,,¢,0,0,t,t), I743(0,t,t,0,%,0,0), I743(¢,0,¢,¢,0,0,t),
I747(0,¢,0,¢,¢,0,t), I747(t,0,0,0,¢,t,t), I7.(t,0,0,t,0,0,t), I7e1(t,0,0,t,0,0,t),
I7¢2(0,,,0,0,0,0), I7e2(0,t,t,0,0,t,t), I7¢3(0,t,t,0,0,0,0), I7.3(0,t,¢,0,0,t,1),
T7e4(t,0,0,%,0,0,t), I7.6(0,t,t,0,0,t, 1), I7e6(t,0,0,t,0,t,0), Is.(t,0,t,0,0,t,t,0),

T Although they do not have doubled massless propagators, Is.(0,0,0,t,t,0,0,0) and I74(t,0,0,0,0,0,0) are IR-
divergent, and are not candidates for renormalized e-finite master integrals.
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Isa(t,1,1,0,0,0,0,0) }. (6.5)

Furthermore, the derivatives of the master integrals in eqs. (6.2)-(6.4]) with respect to s can be
expressed in terms of that same set of masters. The results for the derivatives s% acting on all of
the master integrals are provided in the ancillary file Toddsdds.

For practical numerical evaluation, I have derived the series solutions to the differential equations
in r = s/t, convergent for |r| < 1, using as boundary conditions the limits of the integrals at s = 0.

These boundary conditions involve known vacuum integrals, using the notation of ref. @]

_ 3 1
F(0,t,t,t) =t [cF + (3¢ —3/2)Ly + §L§ - §L§’] : (6.6)
2
G(t,0,0,t,t) =t [CG + (154 G — 3¢r) Ly — 5L2 + gLf’} , (6.7)
H(0,t,t,t,0,t) = y +6(3(1 — Ly), (6.8)
H(0,t,t,t,t,t) = iy +6(1 — Ly),
which involve the numerical constants
1 3
cr = = —3cr +6V3(In3 — Lsy) — — ~ 9.0968675373, (6.10)
2 NG
52 2 2w 4
= — 46— — — 2 — —(3 ~ —19.1723294414, 6.11
cG 5 tbar—— W 3C3 (6.11)
/ : urt 4. 2 2
g = 32Liy(1/2) — -+ g1n (2) [In*(2) — 7°] ~ —13.2665092775, (6.12)
/" Tt 2 / 26
CH = S5~ 2¢7 + 4nlsg — 6Ls) — 5 In(3)(3 ~ —15.4292012365, (6.13)
where
2m/3
Lsy = — / dzIn?[2sin(x/2)] ~ —2.1447672125694944, (6.14)
0
2m/3
Ls), = — / dz x1n?[2sin(z/2)] ~ —0.4976755516066472. (6.15)
0
Note that F(0,t,t,t) is defined in ref. @] as
F(0,t,t,t) = lim [F(z,t,t,t) + L. I(t,t,1)], (6.16)

z—0

and can also be evaluated in terms of other renormalized e-finite vacuum integrals as

— 1 1 2 d
F(O,t1t) = Z(1+ L)I(tt,t) 4+t [39 — Ly —2L7 + gLf’ —2—G(x,t,t,0,t)

dx

w:t} . (6.17)

The series expansions for the renormalized e-finite three-loop odd-threshold self-energy integrals
are given in the ancillary file Toddseries in terms of powers of r = s/t up to 736, with coefficients
that involve Ly, cr, cq, ¢y, ¢f; as well as (o, (3, (4 and rational numbers. These series converge
for |r| < 1, and easily suffice for the relevant Standard Model physical value r = m3, /m7.

For larger values of s, as explained in section [[II D] it is straightforward to numerically integrate
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FIG. 6.2: Sample results, for some dimensionless (6-propagator) odd-threshold integrals, with all
internal propagator squared masses and the renormalization scale @ set equal to unity (t = Q2 = 1),
as a function of the external momentum invariant s. The results were obtained by numerical solu-
tion of the coupled first-order differential equations in s as provided in the ancillary file Toddsdds,
starting from the series solution provided in the ancillary file Toddseries evaluated at s = 0.5
as the initial condition. In each case, the blue (heavier) line is the real part, and the red (lighter)
line is the imaginary part. The lowest threshold is at s = 1 for I5,(1,0,0,0,1,1) (with a logarith-
mic singularity) and I.(0,0,1,1,1,1) and I44(1,0,0,0,0,0), with the first two also having visibly
conspicuous thresholds at s = 9. For Ig4(1,1,1,1,1,0), the only threshold is at s = 9.

the first-order coupled linear differential equations for the master integrals as a function of the de-
pendent variable s, starting from, for example, sqg = 0.5¢ where the numerical values can be obtained
using the series solution. A few examples of results for some dimensionless (6-propagator) integrals
as a function of s are shown in Figure[6.2] for fixed t = Q2 = 1. Here, I5,(1,0,0,0,1,1) has a thresh-
old at s = 1, with a logarithmic singularity. The integrals Is.(0,0,1,1,1,1) and Ig4(1,0,0,0,0,0)
remain finite at the thresholds at s = 1. Both I4,(1,0,0,0,1,1) and I4.(0,0,1,1,1,1) also have
visibly conspicuous three-particle-cut thresholds at s = 9. For Ig4(1,1,1,1,1,0), the only threshold

isat s =09.
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FIG. 7.1: The even-threshold single-mass three-loop self-energy topologies considered (along with their
descendants) in section [VTIl The heavy solid internal lines represent propagators with squared mass ¢,
and the dashed lines represent massless propagators.

VII. INTEGRALS WITH EVEN THRESHOLDS

Consider the three-loop self energy integrals corresponding to the topologies shown in Figure [[.1t

I8a(t7t7t7t7t707070)7 I8b(t7t7t7t7t70707t)7 I8c(t7t7t7t7t70707t)7
I8a(t707t7t7t7t7t70)7 ISb(t707t7t7t7t7t70)7 ISb(0707t7t70707t70)7 [8a(07t7070707t7t70)7 (71)

and their descendants obtained by removing internal lines in all possible ways. Note that these
8-propagator topologies are linked by various common descendants. They have possible thresholds
at s = 0, s = 4t, and/or s = 16t, but never at s = t or s = 9¢, and so are referred to here as
“even threshold” integrals. These, along with the all-massless integrals of section [V] arise in QCD
corrections to the self-energies of the Z and Higgs bosons. The QCD corrections to the W self-
energy in which the W couples to massless quarks also include descendants of Ig,(0,¢,0,0,0,t,¢,0).

Applying the IBP identities, I find that the resulting renormalized e-finite masters at one-loop,

two-loop, and three-loop orders can be chosen as (omitting the analytically known B(0,0) and
M (0,0,0,0,0), found in section [V)):

Zr = {AQ), B(t, 1)}, (7.2)

Ty, = {V(t,t,0,t), M(0,t,0,¢,t), M(t,t,t,t,0)}, (7.3)

I3 = {H(0,0,t,0,t,t), H(0,t,t,t,0,t), I4(t,t,t,t), Isa(t,0,¢,0,t), Isp(0,t,t,t,1),
Ise(t t,t,t,t), Tee(t, t,t,0,t,1), Tgea(t, t,t,0,0,0), Ig4(0,0,0,t,t,t), Igq(0,t,t,t,t,0),
Iq(t,0,t,0,t,0), Isq(t,0,t,t,0,t), Ic(0,0,0,0,t,t), Tee(0,t,t,t,0,t), Ise(t, t,t,0,t,1),
Ige1(t,t,t,0,0,0), I6£(0,0,0,0,t,t), Is55(0,0,0,0,¢,¢), I74(0,0,¢,¢,¢,t,t),
I74(t,1,0,0,0,0,t), I74(0,£,0,t,0,t,0), I743(t,0,t,0,¢,0,0), I7a(t,t,t,t,t,t,0),
Tras(t,t,t,t,t,1,0), I7p(0,t,¢,¢,¢,0,0), I7p(t,0,,0,0,0,t), I7(t,0,t,t,t,t,0),
Iopg(t,0,8,6,6,6,0), Izpa(t,t,0,t,¢,0,t), I7.(t,t,t,¢,0,0,0), I7q(t,t,0,¢,0,t,0),
I7q(t,t,0,t,t,0,t), I7.(0,0,0,0,0,t,t), I7.(0,0,t,t,t,0,0), Is.(t,0,t,t,t t,t,0),
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[8a(t7t7t7t7t7 07070)7 I8b(t7 07t7t7t7t7t7 0)7 I8b(0707t7t70707t7 0)7 I8b(t7t7t7t7t70707t)7
Is(t,0,t,t,t,t,¢,0), IEF(t,t,t,1,¢,0,0,t)}. (7.4)

For the other candidate master integrals, the solutions (obtained from the IBP relations) in terms of
the masters are given in an ancillary file Teven. The complete list of such solved e-finite candidate
master integrals is (omitting the analytically known massless integrals S(0,0,0) and U(0,0,0,0),
found in section [V]):

{1(0,t,t), S(0,t,t), T(t,0,t), U(0,0,t,t), U(t,t,0,t), F(t,0,0,t), F(t,t,t,t),
G(0,0,0,t,t), G(0,t,t,t,t), G(t,0,t,0,t), 14(0,0,t,t), I41(t,0,0,t), Iy (t,t,t,1),

L1 (£,0,0,8), Iy (8,6, 6,1), Tyia(t,£,0,0), Iua(t,t,t,t), Isq(0,0,0,¢,t), Isq(0,t,t,t,1),
Isa1(£,0,8,0,1), Isa2(0,t,,0,0), Isa2(0,t,t,t,t), Isaa(t,t,0,0,t), Is(0,0,0,¢, 1),
Isy(0,£,£,0,0), Isp(t,0,¢,0,t), Ispi(£,0,t,0,t), Ispa(0,£,£,0,0), Ispa(0, 8,8, 1,1,
Isyo(t,1,0,0,t), Ispa(0,0,0,¢,8), Ispa(0,t,8,8,1), Ipa(t,0,t,¢,0), I5.(0,0,0,t,t),
Ise(t,£,0,0,1), Ises3(0,0,¢,0,t), Ises(t,t,t,0,0), Ises(t, t,t,t,t), Isea(t,t,0,0,1),
Iseo(t,t,t,8,1), Iser(t,£,0,0,8), Isei(t,t,t,t,t), I6a(0,0,0,0,¢,t), Teq(0,0,t,¢,¢,¢),
Tsa(t,£,0,¢,0,t), Iga1(t,t,0,t,0,t), Toaa(t,t,0,¢,0,t), Isas(0,0,t,t,0,0), Isas(0,0,t,t,t,t),
Tsas(t,1,1,0,0,t), I55(0,0,0,0,t,t), I(0,0,¢,¢,t,t), Tep(t,t,0,¢,0,t), I (t,t,0,¢,0,1),
Tsp3(0,0,t,£,0,0), Ips(0,0,¢,¢,t,t), Igps(t,t,t,0,0,t), Is.(0,0,0,0,t,t), Is(0,0,t,t,0,t),
Tse(t,£,0,1,0,1), Tee(t,t,t,0,0,0), Tge1(t,t,0,¢,0,¢), Tger(t,t,1,0,0,0), Tger(t,t,8,0,t,t),
Tsea(t,1,0,8,0,1), Toea(t, t,8,0,t,1), Tees(0,0,¢,¢,0,t), Tses(t,t,t,0,0,0), Ises(t,t,t,0,t,1),
T64(0,0,¢,¢,0,1), Igea(t, t,0,¢,0,t), Ises(0,0,0,0,¢ 1), Iges(0,0, ¢ t,¢,0), Iges(t,t,0,¢,¢,0),
Tses(t,t,t,0,8,), Toqr(t,0,,0,¢,0), Igq1(t,0,t,t,0,t), Toq2(0,t,¢,0,0,t), Isaa(0,t,t,t,t,0),
Tsao(t,£,0,0,t,1), Tsaa(t,t,0,t,0,0), Tsas(0,0,0,t,t,t), Toas(t,0,t,¢,0,t), Ise(t,0,0,t,0,t),
Tse(t,£,1,0,0,0), Tge1(t,0,0,¢,0,t), Tger(t,t,,0,t,t), Ises5(0,0,0,0,t,t), Tses(0,t,t,t,t,0)
Tse5(t,0,0,8,¢,0), Iges(t,t,t,0,t,1), Tsea(0,,8,¢,0,t), Tgea(t,t,,0,0,0), Igea(t,t,t,0,t,¢)
Tsea(0,8,8,6,0,1), Tgea(t,0,0,£,0,t), Ises(0,t,t,t,0,t), Ises(t,t,t,0,0,0), Tges(t,t,t,0,t,t),
I65(0,0,1,t,0,1), Tgp(t,t,,8,0,0), Ios(t,t,t,t,t,1), Isss(0,0,t,t,1,0), Tops(t,t,t,t,t,1),
Ios1(t,1,0,0,0,1), Iopi(t,t,,2,0,0), Tgpi(t,t,t,t,,t), Ira1(t,0,t,0,t,0,0),
T7a1(£,£,0,0,0,0,8), Izqy(t,t,t,8,8,1,0), Tra3(0,0,,¢,¢,¢,t), I745(0,0,t,t,t,t,t),
T7a5(£,0,1,0,t,0,0), Iras(t,t,t,8,8,1,0), Tra7(0,0,¢,¢,¢,¢,t), Iza7(t,,0,0,0,0,¢),
I71(£,0,t,0,0,0,8), Ty (t,0,t,8,6,£,0), Inpa(0,¢,,¢,¢,0,0), Ina(t, t,0,0,0,t,0),
Tyo(t,1,0,8,8,0,8), Inpa(0,t,t,¢,,0,0), Ing(t,0,t,t,¢,¢,0), Ing(t,t,0,0,0,¢,0),
176(0,0,0,0,0,¢,t), Iro(t, t,t,t,0,t,t), Trer(t,t,¢,¢,0,0,0), Ire1(t,t,t,¢,0,t,1),
I76(0,0,0,0,0,t,t), Ireg(t,t,t,t,0,t,t), T74(0,0,0,0,¢,¢,t), Izq(t,t,0,¢,0,t,0),

Trgr (£,4,0,8,8,0,1), Trgo(t,t,0,¢,0,¢,0), Irga(t,t,0,t,t,0,t), I743(0,0,¢,¢0,0,t),
Trgs(t,6,4,0,0,t, 1), Trgs(t,t,t,0,,0,0), Irq7(0,0,0,0,t,t,t), Irgr(t,t,0,t,t,0,t),

9

)
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I7.(0,0,t, 8,8, 1), Ize(t,t,t,,0,0,t), I7e1(t,t,t,¢,0,0,t), Izea(t,t,t,t,0,0,t),
I7¢3(0,0,t,¢,¢,0,0), I7.3(0,0,¢,t,t,t,t), Izes3(t,t,t,t,0,0,t), I7¢4(0,0,t,t,t,0,0),
I7e4(0,0,t,t,t,t, ), Trea(t, t,t,£,0,0,t), I7.5(0,0,t,t,t,0,0), I7e5(0,0,t,t,t,t,1),
I7¢6(0,0,0,0,0,t,t), I7e6(0,0,t,t,t,t,t), Ize6(t,t,t,t,0,t,0), I34(0,£,0,0,0,¢,¢,0)}. (7.5)

Furthermore, the derivatives with respect to s of the master integrals in eqs. (Z.2)-(Z4]) can be

re-expressed in terms of the same set of masters. The results for s— acting on all of the master
integrals listed are provided in another ancillary file Tevensdds.

For numerical evaluation, I have derived the series solutions to the differential equations in s,
using as boundary conditions the values of the integrals at s = 0, which can be obtained from the
results for the vacuum integrals, including eq. (6.8]) and

H(0,0,,0,t,1) = —9¢4 + 6¢3(1 — Ly), (7.6)

using the notation of ref. @] The series results, up to order 735, for all of the integrals listed in
eqs. ([2)-(74) and (7.5)) are given in the ancillary file Ievenseries, in terms of r = s/t, L; = In(t),
and L_4 = B(s) —im and the constants (3, (4, ¢}, and other coefficients that are rational numbers.
These series solutions converge for |r| < 4, which is sufficient for evaluating the three-loop leading
QCD corrections to the Higgs and Z boson pole masses in the Standard Model with r = m2Z /m2.

As explained in section [[IID] for larger values of s, one can numerically integrate the first-
order coupled linear differential equations for the master integrals as a function of the dependent
variable s, starting from e.g. so = 0.5t where the numerical values can be obtained using the series
solutions. As one numerical consistency check, I have verified that the results for s > ¢ reproduce
those given in eqs. ([{1])-(I8]). Some examples of results for dimensionless (6-propagator) integrals
as a function of s are shown in Figure [Z.2] for fixed ¢t = @ = 1. The function I¢(0,0,0,0,1,1) has
a threshold due to a two-particle cut at s = 0, with a logarithmic singularity there. The function
I44(0,0,0,1,1,1) has a three-particle cut threshold at s = 0, with no singularity. The functions
I54(1,0,1,0,1,0) and I6.(0,1,1,1,0,1) have their lowest thresholds at s = 4, where the latter has
a sharp cusp but remains finite.

VIII. OUTLOOK

In this paper, I have formalized the concept of renormalized e-finite master integrals, in which
UV sub-divergences are subtracted. These have the advantage that the expansions of the master
integrals to positive powers of € never appear. (One hand-wavy way of understanding why this
is not totally unexpected is that the calculations of renormalized observables could in principle
employ some other regulator, not based on dimensional continuation at all, in which case there
would be no reason for the expansions of the integrals for finite e€.) The necessary subtractions
were given explicitly for three-loop self-energy integrals in section [ITCl

I also carried out the solution of the IBP relations for the cases with one internal mass scale

(and some vanishing propagator masses), and provided the results needed for fast and accurate
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FIG. 7.2: Sample results, for some dimensionless (6-propagator) even-threshold integrals, with all
internal propagator squared masses and the renormalization scale @ set equal to unity (t = Q% = 1),
as a function of the external momentum invariant s. The results were obtained by numerical solution
of the coupled first-order differential equations in s as provided in the ancillary file Ievensdds, starting
from the series solution provided in the ancillary file Tevenseries evaluated at sy = 0.5 as the initial
condition. In each case, the blue (heavier) line is the real part, and the red (lighter) line is the
imaginary part. The lowest threshold is at s = 0 (two-particle cut, with logarithmic singularity) for
I57(0,0,0,0,1,1), at s = 0 (three-particle cut) for I4(0,0,0,1,1,1), and at s = 4 for Is4(1,0,1,0,1,0)
and I6.(0,1,1,1,0,1).

numerical evaluation of the renormalized e-finite masters. The results obtained here are applied to
the calculation of the 3-loop QCD corrections to the physical masses of the Standard Model W,
Z, and Higgs bosons in the pure MS tadpole-free scheme in ref. @] The same methods can be
applied to numerically calculate three-loop self-energy integrals for arbitrary masses, although the
coefficients will be significantly more complicated in the general case, and the number of distinct
master integrals will of course be much larger.

In this paper, I have not attempted to specifically address situations with more than two exter-
nal legs. In that case, non-UV singular contributions involving virtual massless particles require
cancellation with the contributions from real emission diagrams at lower loop order, but the same
principle of incorporating the UV counterterms within the e-finite master integrals should be ben-
eficial.
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