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Abstract-Deep learning-based RF fingerprinting has recently 
been r ecognized as a potential solution for enabling newly 
emerging wireless network applications, such as spectrum access 
policy enforcement, automated n etwork device authentication, 
and unauthorized network access monitoring and control. Real, 
comprehensive RF datasets are now needed more than ever to 
enable t he study, assessment, and validation of newly developed 
RF fingerprinting approaches. In this paper, we present and 
release a large-scale RF fingerprinting dataset, collected from 
25 different LoRa-enabled IoT transmitting devices using USRP 
8 210 receivers. Our dataset consists of a large number of SigMF-
compliant b inary files representing t he UQ time-domain samples 
and their corresponding FFT-based files of LoRa transmissions. 
This dataset provides a comprehensive set of essential experimen-
tal scenarios, considering both indoor and o utdoor environments 
and various network deployments and configurations, such as 
the d istance between the transmitters and the receiver, the 
configuration of the considered L oRa modulation, the physical 
location of the conducted experiment, and t he receiver hardware 
used for train ing a nd testing the neural network models. 

Index Terms-IoT Testbed, RF Dataset Collection and Release, 
RF Fingerprinting, Deep Learning, LoRa Protocol. 

I. I TRODUCTION 

This paper presents and releases a comprehensive dataset 
consisting of massive RF signal data captured from 25 LoRa-
enabled transmitters using Ettus USRP B210 receivers. The RF 
dataset provides the research community with a set of first-of-
its-kind real-world setups, all helpful in enabling the study 
of the effectiveness and robustness of deep learning-based 
wireless techniques, such as RF/device fingerprinting. These 
experimental setups cover and provide a comprehensive set of 
practical scenarios for indoor and outdoor environments while 
considering various realistic network deployment variability 
across time, location, hardware, and modulation configura-
tion. These are obtained by varying network deployment and 
configuration parameters, such as the distance between the 
transmitters and the receiver, the configuration of the LoRa 
protocol , the physical location of the experiment, and the 
receiver hardware used for collecting the data samples and 
for training/testing the neural network models . 

As research communities move away from model -based to 
data-driven solutions, many recently proposed frameworks on 
device/RF fingerprinting have also shifted from model -based 
classification approaches to deep learning-based approaches. 
Although recently proposed deep learning-based approaches 
have shown promising results, some still rely on synthesized 
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data for evaluation and validation, and most of those that 
rely on real datasets are evaluated on general indoor and 
outdoor setups, leaving behind many questions that need to 
be answered before claiming the feasibility and superiority of 
their proposed techniques in real-world settings. 

Other essential experimental scenarios, which are very 
useful for assessing the capability and robustness of deep 
learning-based fingerprinting techniques, have not been in-
vestigated. These essential scenarios allow for the study of 
the impact of various deployment parameters on the perfor-
mances achievable by these techniques, such as the impact 
of the distance between the transmitters and the receiver, the 
configuration of the used protocol, the physical location of 
the conducted measurements, and the hardware impairments 
of the receiver used in the training and inference stages. 

Another important scenario that is also missing is the study 
of the performance of deep learning models when the RF 
signals are captured during concurrent transmissions where 
some portions of the incoming packets overlap. 

A major challenge the wireless research community has 
been facing is the lack of comprehensive, publicly available 
datasets that could serve as benchmarks for the device/RF 
classification and fingerprinting techniques [ 1). Having public 
and easily accessible dataset benchmarks has indeed been one 
of the main drivers for innovation and idea maturity in closely 
related fields, like image recognition and natural language 
processing, in addition to creating collaboration opportunities 
among researchers. Therefore, such efforts must be mimicked 
in the wireless community to be able to foster innovation in 
this domain as well. 

A. What Distinguishes Our Dataset From Existing Ones? 
Researchers in [2] presented three LPWAN (Sigfox and 

LoRAWAN) datasets collected in an outdoor environment 
aimed at evaluating location fingerprinting algorithms. These 
datasets have been collected over three months in both rural 
and urban areas. Sigfox-rural and Sigfox-urban datasets consist 
respectively of 25k+ and 14k+ Sigfox messages, whereas 
LoRaWAN dataset consists of 123k+ LoRaWA messages. 
These messages include a couple of protocol information, time 
of reception, and GPS location information but do not include 
device labels, and therefore, can not be used for supervised 
deep learning-based device classification. The closest existing 
work to our work is the recently released work at Northeastern 
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Setups Number of Number of Protocol Number Transmissions Duration pe r Distances Environment Representation Transmitters Receivers of Days per Device Transmission 
1) Diff Days Indoor 25 I LoRa 5 to 20s 5m Indoor IQ/FFf 
2) Diff Days Outdoor 25 I LoRa 5 to 20s 5m Outdoor IQ/FFf 
3) Diff Days Wired 25 I LoRa 5 to 20s 5m Wired IQ/FFf 
4) Diff Distances 25 I LoRa 1 4 20s 5,to,15,20m Outdoor IQ/FFf 
5) Diff Configurations 25 I LoRa 1 4 20s 5m Indoor IQ/FFf 
6) Diff Locations 25 I LoRa 1 3 20s 5m 2 Indoor, 1 Outdoor IQ/FFf 
7) Diff Receivers 25 2 LoRa 1 2 20s Sm Indoor IQ/FFf 

TABLE I: Summary of Experimental Setups/Scenarios. 

University [!] , which collected and released a massive dataset 
of IEEE 802. 11 a/g (WiFi) standard data obtained from 20 
wireless devices with identical RF circuitry over several days 
in (a) an anechoic chamber, (b) in-the-wild testbed, and (c) 
with cable connections. The focus of the Northeastern dataset 
is to explore the impact of the wireless channel on the perfor-
mance of deep learning-based RF fingerprinting models. The 
dataset is limited in terms of the covered scenarios, and it is for 
WiFi signals only. Unfortunately, to the best of our knowledge, 
there are still no public datasets for LoRa device fingerprinting 
nor datasets that include the diverse experimental scenarios we 
mentioned. Our dataset presented in this paper fulfills the need 
for a large-scale LoRa dataset covering a wide range of diverse 
scenarios for a more comprehensive evaluation and validation. 

B. Our LoRa Dataset in Brief 
Our RF dataset provides both time-domain UQ samples and 

corresponding FFT samples collected using an IoT testbed 
consisting of 25 identical Pycom IoT devices and a USRP 
B210 receiver, operating at a center frequency of 915MHz, 
used for recording the received signals sampled at lMS/s. 
Recorded data in the form of both the time-domain UQ 
samples and FFT samples are stored into binary files in 
compliance with Sigl\1F [3] by creating, for each binary file , 
a metafile written in plain-text JSON to include recording 
information such as sampling rate, time and day of recording, 
and carrier frequency, among other parameters. 

This dataset covers multiple experimental setup scenarios, 
which are summarized in Table I and can be downloaded at 
http:! /research. en gr. oregonstate.edu/hamdaoui/datasets. 

The experimental scenarios are briefly described next, with 
more details provided in [4]. 

• Setup 1-Different Days Indoor Scenario: Indoor setup 
with data collected over 5 consecutive days . For each 
day, 10 transmissions were captured from each of the 25 
transmitters, with each transmission having a duration of 
20s. All transmissions took place 1 minute apart from 
one another. 

• Setup 2-Different Days Outdoor Scenario: Outdoor 
setup with data collected over 5 consecutive days. For 
each day, 10 transmissions were captured from each 
of the 25 transmitters , with each transmission having a 
duration of 20s. All transmissions took place 1 minute 
apart from one another. 

• Setup 3--Different Days Wired Scenario: Wired setup 
with data collected over 5 consecutive days . For each 

day, 10 transm1ss1ons were captured from each of the 
25 transmitters, with each transmission having a duration 
of 20s. All transmissions are 1 minute apart from one 
another. 

• Setup 4--Different Distances Scena rio: Outdoor setup 
with data collected from 4 different distances: Sm, lOm, 
15m, and 20m away from the receiver. For each distance, 
one transmission was captured from each of the 25 
transmitters, with each transmission having a duration 
of 20s. All transmissions are 1 minute apart from one 
another. 

• Setup 5--Different Configura tions Scenario: I ndoor 
setup with data collected from 4 different LoRa config-
urations. For each configuration, one transmission was 
captured from each of the 25 transmitters, with each 
transmission having a duration of 20s. All transmissions 
are 1 minute apart from one another. 

• Setup 6--Different Locations Scenario: This data has 
been collected in 3 different locations: room, outdoor, and 
office environments. At each location, one transmission 
was captured from each of the 25 transmitters, with each 
transmission having a duration of 20s. All transmissions 
are 1 minute apart from one another. 

• Setup 7-Different Receivers Scenario: I ndoor setup 
with data collected using 2 different receivers. For each 
receiver, one transmission was captured from each of the 
25 transmitters, with each having a duration of 20s. All 
transmissions are 1 minute apart from one another. 

The rest of the paper is organized as follows. Section II 
describes the testbed components. Sections III and IV describe 
the different experimental setups and the dataset, respectively. 
Section V presents a use case for the dataset. The challenges, 
limitations, and new opportunities are discussed in Section VI 
and the paper is concluded in Section VII. 

II. T ESTB ED 

In this section, we describe the hardware, software, and 
protocol components used in building our testbed. 

A. Hardware Description 
Our IoT testbed, shown in Fig. 1, consists of 25 Pycom 

devices with Semtech SX1276 LoRa transceivers, 25 Pycom 
sensor shields, and an Ettus USRP (Universal Software Radio 
Peripheral) B210 for data sampling, which was configured 
with a center frequency of 915MHz and a sample rate of 
l MS/s. Our collection of Pycom devices is made up of 23 
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Fig. l: IoT Testbed: 2S Pycom devices and USRP B210. 

Lopy4 boards and 2 Fipy boards, which are MicroPython-
enabled development boards with multiple network capabili-
ties: LoRa, Sigfox, WiFi, Bluetooth, and NB-IoT. The sensor 
shield collection comprises 22 PySense boards equipped with 
sensing capability, 2 PyScan boards equipped with RFID 
scanning capability, and 1 PyTrack board equipped with 
GPS/tracking capability. We used lipo batteries to power the 
devices. Each Pycom device was connected to a dedicated 
LoRa antenna and configured to transmit LoRa transmissions 
at the 91Sl\1Hz US band adapting the following configuration: 
Raw-LoRa mode, 12SKHz bandwidth, a spreading factor (SF) 
of 7, a preamble of 8, a TX power of 20dBm, and a coding 
rate of 4/ S. 

B. Software Description 
1) Transmission Subsystem.: We programmed and config-

ured our Pycom boards using MicroPython [5] , which is an 
efficient implementation of Python3 that is composed of a 
subset of standard Python libraries and optimized to run on 
microcontrollers and constrained environments. Also, we used 
Pymakr plugin as a REPL console that connects to Pycom 
boards to run codes or upload files. 

2) Reception Subsystem.: We used the GNURadio software 
[6], a real-time signal processing graphical tool , to set up and 
configure the USRP receiver to capture LoRa transmissions, 
plot their time and spectrum domains, implement some pre-
processing techniques and store the samples into their files . 
Fig. 2 shows the general ftowgraph used for data acquisition. 

C. LoRa Protocol Description 
We transmitted/captured LoRa modulation signals, a pro-

prietary physical layer implementation that employs Chirp 
Spread Spectrum (CSS) in the sub-GHz ISM band and trades 
data rate for coverage range, power consumption, or link 
robustness . LoRa does so by providing a tunable parameter, 
called a spreading factor (SF), which varies from 7 to 12 
and determines the sequence length of an encoded symbol 
within a fixed bandwidth. A higher spreading factor means 
longer ranges with lower data rates . Unlike other spread 
spectrum techniques, the chirp-based modulation allows LoRa 
to maintain the same coding gain and immunity to noise 

and interference while meeting the low-cost, low-power con-
sumption requirements. A LoRa modulator generates both raw 
chirp signals with fixed amplitude and continuously varying 
frequency with constant rate and a set of modulated chirps 
that are cyclically time-shifted raw-chirps where the initial 
frequency determines the content of the chirp symbol. 

Ill. EX PERIMENTAL SETUPS 

We use our testbed described in Section II to create and 
collect large-scale, comprehensive LoRa RF fingerprinting 
dataset for multiple experimental scenarios that are specifically 
designed to allow intensive and comprehensive performance 
evaluation of various deep learning-based wireless networks 
techniques, with a special focus on RF/device fingerprinting. 
We chose a bandwidth of 12SKHz for all LoRa transmissions. 
However, in [7], we demonstrated that considering out of band 
spectrum enhances the performance of the model, and hence 
we provide a total bandwidth of lMHz that covers the in-
band as well as an adjacent out of band spectrum of LoRa 
transmissions for all setups. In the remainder of this section, 
we present each of the seven considered experimental setups. 
Throughout this section, we will be referring to Fig. 3 for 
experimental setups l, 2, and 3, and for Fig. 4 for experimental 
setups 4, 5, 6 and 7. Table I summarizes these 7 setups. 

A. Setup 1: Different Days Indoor Scenario 

In order to enable performance evaluation while masking 
the impact of the outside environment, we created an indoor 
setup, ran experiments, and collected datasets for this setup. 
These indoor experiments were carried out in a typical occu-
pied room environment over S consecutive days. All devices 
transmitted the same message from the same location, Sm 
away from the receiver so that all devices experience similar 
channel conditions. As shown in Fig. 3, for each day, each 
transmitter generated 10 transmissions, each of 20s duration, 
all spaced apart by 1 minute. Hence, we collected about 200M 
complex-valued samples from each device per day. We used 
GNURadio packages to store the sampled raw-1/Q values and 
their corresponding FFT-Based representation into binary files 
as depicted in Fig. 3. 

B. Setup 2: Different Days Outdoor Scenario 

In order to allow for performance evaluation while con-
sidering the impact of outdoor wireless channel impairments, 
we carried out the experiments in an outdoor environment 
at nighttime. Here again, all devices transmitted the same 
message from the exact location, situated Sm away from 
the receiver, so that all devices experience similar channel 
conditions. Like in the indoor setup case and as shown in 
Fig. 3, for five consecutive days, each transmitter generated 
10 transmissions per day, each of 20s duration, all spaced 1 
minute apart from one another. This resulted in about 200M 
complex-valued samples per device per day. We ran this 
experiment over S consecutive days and provided 5-day worth 
of data to study the robustness of deep learning models when 
trained on data collected on one day but tested on data captured 

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on February 01,2022 at 21:08:11 UTC from IEEE Xplore.  Restrictions apply. 



Options: 
T itle: Lora_lesl:bed 

Aut hor: abdurrahman 

O utpu t La n g uage: Python 

Gener a te O ptio n.s; : No GUI 

Run Option s: Run to Completion 

UHO: U SRP Sou rce 

Sy n c: Unknown PPS 

FFT 
FFT Size : L024k 

Fo n va.-d/ Rev e.-se : Fo.-wa.-d 

W indo w : w indow.b lackmanha.-. .. 

Shift : Yes 

Num. Thr-ead_s;: l 

Sa mp .-ate (Sps;): lM 

~--1 ChO: Cente .- Freq (Hz): 915M 

co m man d Cho : A GC: Default 

Fi le Sink 

• t-''--H • F ile : IQ_fi le .dat 
Unbuffer-ed : Off 
Appe n d fi le : Overwrite 

File Sink 
F ile : fft_fi le. dat 

Unbuffe.-ed: Off 
Appe n d fi le: Overwrite ChO: Gain Va lue: 0 

ChO: Gain T y pe : Absolute (dB) 

ChO: A nte nna : R.X2 

Fig. 2: The ftowgraph of our data collection. 
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Fig. 3: Setup diagram: setups I, 2 and 3. 

on a different day. We used G URadio packages to store the 
sampled raw-1/Q values and their corresponding FFT-based 
representation into binary files as depicted in Fig. 3. 

C. Setup 3: Different Days Wired Scenario 
The wireless channel has a notable impact on the perfor-

mance of deep learning models and presents its unique chal-
lenges [l]. Hence, to assess how well these models perform 
in the absence of the wireless channel's impact, we created a 
wired setup where the Pycom boards are directly connected to 
the USRP via an SMA cable and 30dB attenuator. Similar to 
the Indoor and Outdoor experiments, we ran this experiment 
over 5 consecutive days. For every day, each device transmitted 
10 bursts each of 20s duration. Therefore, the total amount of 
collected data is 200M complex-valued samples per device 
per day. We again used GNURadio packages to store the 
sampled raw-1/Q values and their corresponding FFT-based 
representation into binary files as depicted in Fig. 3. 

D. Setup 4: Different Distances Scenario 
Some end-devices constantly change their positions, so it is 

critical to explore the impact of distance on the performance 
of classifiers and see whether or not a classifier would still 
recognize a device when it moves to a position that is different 
from the one used for training. This experiment was carried 
out in a typical outdoor environment in a sunny day. We 
considered four different distances, 5m, lOm, 15m, and 20m, 
and for each distance, we collected 1 transmission of 20s 

Dist/Conf/Loc/Rec 
1 

Day 1 
Indoor/Outdoor 

Dist/Conf/LodRec 
2 

((<>)) ~ 

~- De_ v_ic _e _3 ~ • • o ~ 

Ra..-.a Dllla FFT Data Raiw-iQ Dllla FFT Data RIN'"IC IJ!lta FFT Oala RMll-iCIOala FFT Data 

Fig. 4: Setup diagram: setups 4, 5, 6, and 7. 

for each of the 25 devices . We kept the receiver at the 
same location for all the transmissions while locating the 
transmitters at 4 different distances away from the receiver 
base (5m, lOm, 15m, and 20m). The transmissions were 
captured consecutively in time with only 60s apart from one 
another. Each transmitter generated 4 transmissions each of 
20s duration, resulting in SOM complex-valued samples from 
each device. We again used GNURadio packages to store the 
sampled raw-1/Q values and corresponding FFT-based samples 
into binary files as depicted in Fig. 4. 

E. Setup 5: Different Configurations Scenario 
LoRaWAN uses the Adaptive Data Rate (ADR) mechanism 

to optimize the data rates, air-time, and energy consumption in 
the network to accommodate the varying RF conditions. This 
mechanism allows the network server to inform end devices to 
adjust their power consumption and data rate as needed. This 
is achievable by controlling the following parameters at end 
devices: spreading factor, bandwidth, and power consumption. 
Changing the spreading factor, for example, in LoRa modu-
lation results in a change in the data rate, receiver sensitivity, 
time in the air, and power consumption. Fig. 5 shows the fre-
quency spectrum of a snapshot of the four Lo Ra configurations 
that we included in our dataset. Ideally, a classification model 
(e.g., a deep learning fingerprinting model) should identify a 
device even if it changes its configuration; i.e., models that 
are trained using one configuration but tested on a different 
configuration should still perform well. Therefore, in order 
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Fig. 5: Spectrum of the 4 LoRa configurations from Setup 5 

Configurations Spread Bandwidth Bit Rate Tx Coding 
Factor Power Rate 

Configuration 1 7 1 25KHz 5470 bps 20dBm 415 
Configuration 2 8 125KHz 3125 bps 20dBm 415 
Configuration 3 11 125KHz 537 bps 20dBm 415 
Configuration 4 12 125KHz 293 bps 20dBm 415 

TABLE II: LoRa Configurations 

to enable the assessment of how agnostic these models are 
to protocol configuration, we captured transmissions using 4 
different configurations, as presented in Table II. For this, 
we collected a single LoRa transmission of 20s from each 
device for each configuration in an indoor setup with 5m as 
the distance between the receiver and transmitters. Like other 
setups, for this setup, we used GNURadio packages to store 
the sampled raw-UQ values and their corresponding FFT-based 
representation into binary files as depicted in Fig. 4. 

F. Setup 6: Different Locations Scenario 
Another practical scenario we consider here aims at allow-

ing deep learning models to be trained on data captured in one 
location but tested on data collected in another location. For 
this, we captured LoRa transmissions in three different loca-
tion deployments, room environment, office environment, and 
outdoor environment, all taken on the same day. Here, we kept 
the distance between the receiver and transmitters (i .e., 5m) 
and the LoRa configuration the same. We captured a single 
transmission of 20s from each device at each location with 
a 60s period between the devices, resulting in 60M complex 
samples from each device. We again used GNURadio packages 
to store the sampled raw-UQ values and their corresponding 
FFT-based representation into binary files as depicted in Fig. 4. 

G. Setup 7: Different Receivers Scenario 
Like transmitters, receivers also suffer from hardware im-

pairments due to hardware imperfection. Therefore, deep 
learning models trained using data collected by one receiver 
but tested using data collected by a different receiver may 
not perform well due to the possible additional impairments 
caused by the receiver's reception. To allow researchers to 
study the impact of such a change in the receiving device, 
we provided a dataset for the 25 Pycom transmitting devices, 

collected using two different USRP B210 receivers . In this 
experiment, we considered an indoor setup where the trans-
mitters (the 25 Pycom devices) were located 5m away from the 
receiver. For each receiver, we captured a single transmission 
of 20s from each of the 25 Py com transmitters, yielding a total 
of 40M samples for each device. Like other setups, for this 
setup, we used GNURadio packages to store the sampled raw-
UQ values and their corresponding FFT-based representation 
into binary files as depicted in Fig. 4. 

IV. DATASET DESCRIPTION 

Our dataset contains LoRa transmissions of 25 devices and a 
total of 43 transmissions on average for each device. An Ettus 
USRP B210 is used to record each transmission, operating at 
a center frequency of 915.MHz with a sampling rate of lMS/s. 
Each recording consists, on average, of 20M UQ samples. 
For each recording, we stored the time-domain UQ samples 
and FFT-based samples into binary files. The binary files are 
encoded with Float32, and the complex-valued sampled are 
interleaved where the I-values are in the odd indices, and the 
Q-values are in the even ones. In order to be SigMF (Signal 
Metadata Format) [3] compliant, we created a metadata file 
written in plain-text JSON adapting SigMF for each binary 
file to describe the essential information about the collected 
samples, the system that generated them, and the features of 
the signal itself. In our case, we stored in the metadata files 
information regarding ( i) the sampling rate, (ii) time and day 
of recording, and (iii) the carrier frequency, among others. 

More details and use cases of these LoRa datasets can be 
found in [4]. The datasets can be downloaded from NetSTAR 
Lab at http://research.engr.oregonstate.edu/hamdaoui/datasets. 
Users of the datasets may refer to Fig. 6 for help with the file 
organization and notation. Specifically, these are: 

• Diff_Days_lndoor _Setup, Diff_Days_ Outdoor _Setup, 
and Diff_Days_ Wired_Setup directories (correspond to 
Setups 1, 2 and 3), each having 5 subdirectories, one for 
each day. Each day subdirectory has 25 subdirectories, 
one for each device. Each device subdirectory has 40 
files (for 10 transmissions): 10 UQ data files plus their 
corresponding 10 metadata files and 10 fft data files plus 
their corresponding I 0 metadata files. 

• Diff_Distances_Setup directory (corresponds to Setup 
4), having 4 subdirectories representing the four dis-
tances. Each subdirectory includes 100 files: 25 UQ data 
files plus their corresponding 25 metadata files and 25 fft 
data files plus their corresponding 25 metadata files. 

• Diff_ Configurations_Setup directory (corresponds to 
Setup 5), having 4 subdirectories representing the four 
configurations. Each of these 4 subdirectories includes 
100 files: 25 UQ data files plus their corresponding 25 
metadata files and 25 fft data files plus their correspond-
ing 25 metadata files. 

• Diff_Locations_Setup directory (corresponds to Setup 
6), having 3 subdirectories representing the three loca-
tions . Each subdirectory includes I 00 files: 25 UQ data 
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Fig. 6: Online link/file organization of the datasets. Note that Diff_Days_lndoor_Setup, Diff_Days_Outdoor_Setup, and 
Diff_Days_ Wired_Setup directories have the same file system structure. 

I 

files plus their corresponding 25 metadata files and 25 fft 
data files plus their corresponding 25 metadata files. 

• Diff_Receivers_Setup directory (corresponds to Setup 
7), having 2 subdirectories representing the two receivers. 
Each subdirectory includes 100 files: 25 UQ data files plus 
their corresponding 25 metadata files and 25 fft data files 
plus their corresponding 25 metadata files. 
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Fig. 7: Top: UQ time-domain representation, Middle: Fre-
quency spectrum representation, Bottom: Spectrogram repre-
sentation from Device l , Indoor Setup. 

To visualize the captured LoRa signals, we plotted, in Fig. 7, 
the time-domain, frequency spectrum, and spectrogram of a 
LoRa transmission captured in an Indoor environment. The 
top figure in Fig. 7 represents the in-phase (I) and quadrature 
(Q) components of the time-domain signal from device l in 
an indoor setup, while the figure in the middle shows its 

frequency spectrum and the figure in the bottom shows the 
upward chirps in the spectrogram of the same LoRa signal. 

V. USE CASE: LORA DEVICE FINGERPRINTING 

LoRaWAN [8], a low-power wide-area network technology, 
has emerged as the de facto standard for connecting thou-
sands of million devices serving many IoT ecosystems and 
applications. Its ability to transmit over long distances with an 
optimized low-power consumption, leading to a long battery 
life of up to lOx that of cellular M2M technologies, makes 
it a good fit for next-generation IoT connections. LoRaWAN 
defines two layers of security: network-level security that 
deals with LoRa device authenticity and message integrity, 
and application-level security that provides end-to-end data en-
cryption to ensure private device-to-server communication [9]. 
The functionality of these layers relies on generating and 
storing session keys (AppKey and NwkKey) in a secured 
manner. Some IDs and keys, such as DevEUI and AppKey, can 
be hard-coded on devices' tags or software, and thus simple 
but common human errors, such as failing in removing the tags 
or replacing the source code before deployment, can expose 
the network to security risks [ 10]. 

It is essential to ensure that conventional high-layer security 
mechanisms are complemented with unclonable, physical-
layer security solutions so as to increase the security ro-
bustness of such systems [11]. One technique that has been 
considered for providing physical-layer security is to exploit 
wave-level distortions in the received RF signals that are gen-
erated by hardware impairments to provide unique signatures 
(aka fingerprints) of the devices, which can serve as device 
identifiers (e.g., [12), [13]). The uniqueness of RF fingerprints 
comes from the collective random deviations of a tremendous 
number of RF analog components from their ideal values 
during the manufacturing process. Hence, we can confidently 
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claim that there are no two analog circuits w ith identical 
collective deviations profi les, and therefore, there are no two 
circuits with the same RF fingerprint. IQ imbalance, DC offset, 
phase noise, and power amplifier nonlinearity are among other 
transceiver hardware impairments that manifest in uniquely 
d istinguishing features that increase dev ices' separability in 
RF fingerprinting techniques [14]. 

Until recently, the feature selection process for RF finger-
printing techniques has been done manually, which requires 
expert knowledge and many trials and error iterations to find 
the features that guarantee the best performance. Nevertheless, 
in most cases, they end up with protocol-specific or vendor-
specific solutions. Following the unprecedented achievements 
of deep learning models in computer vision and natural lan-
guage processing in recent years, researchers have shown that 
the function approximation power of deep learning models can 
be leveraged to better improve the classification performance 
of RF fingerprinting techniques and other RF-domain chal-
lenges. These results led to a rush in research activities in the 
area of machine learning for RF systems from both industry 
and academia, creating an urgent need for comprehensive RF 
datasets that can be used for validating their proposed models. 

VI. CHALLENGES, LIMITATIONS AND OPPORTUNITIES 

We next describe some limitations and challenges faced 
when creating RF fingerprint datasets. 

• 

• 

• 

• 

Same channel condition. The time between a given 
dev ice's first and last transmissions may not be short 
enough for all transmissions to be assumed to be taken 
under the same condition. This makes it challenging to 
study the performance of a learning model w ith training 
and testing being done under the same channel condition. 
This is because all 25 devices must first be sampled for 
their first transm issions before moving to the subsequent 
transm ission. Even if one tries to collect all lO transm is-
sions seq uentially for each device to minimize this timing 
effect between transmissions, we run into the problem of 
increasing the experiment time between devices. 
Same power levels. Maintaini ng the same power level for 
all devices is important so that to mask the power impact. 
In our experiments, to mitigate this issue, we start with 
a full-charged battery every time, though this still cannot 
guarantee that all have the same power level. 
Concurrent transmissions. One interesting scenario but 
difficult to realize is the ability to collect data from 
multiple devices while all transmitting concurrently, as 
it often occurs in random access procedures for wireless 
base stations. Excelling on th is scenario would open the 
door for incorporating deep learning-based fingerprinting 
into next-generation cellular networks. 
Devices at scale. Increasing the number of transmitters 
in our testbed is another to-do-item that would add more 
credibility to the evaluation and allow us to assess the 
scalability performance of the proposed models. 

• Beyond RF fingerprinting. Leveraging the multi-bearer 
capability of our testbed, one can use the testbed to 

collect datasets for modulation recogmt10n using other 
technologies like LoRaWAN, SigFox, Bluetooth, WiFi, 
and NB-IoT technologies. Another use is for creating 
datasets for studying indoor device positioning problems. 

VII. CONCLUSION 

This paper presents a comprehensive LoRa RF finger-
print datasets for multip le experimental scenarios specifi-
cally designed to allow thorough performance assessment of 
deep learning-based wireless networks techniques, such as 
RF/device fingerprinting . This dataset is made available to the 
research community to serve as a benchmark for testing RF 
classification and fingerprinting techniques. 
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