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A B S T R A C T

Global optimization algorithms have been adopted to the simultaneously refinement of orientation and pattern
center for electron backscatter diffraction patterns as well as deformation state extraction. The hyperparameter
space and mutation schemes of differential evolution (DE) algorithm has been thoroughly investigated and
showed to be a more efficient algorithm than the particle swarm optimization (PSO) algorithm. The optimal
hyperparameters for DE generally depend on conditions such as the number of variables to be optimized and
the size of bounded search space but reasonably close initial values for crossover probability is 0.9, mutation
factor is 0.5, population size is ten times the number of variables, and number of iterations is at least 100.
Validation on a set of simulated undeformed single crystal nickel patterns reveals a mean accuracy of ≈ 0.03◦

and ≈0.01% detector width across a large field of view. In addition, validation using noisy simulated deformed
patterns with known deformation state and pattern center shows that the mean accuracy of shear strain and
rotation components is ≈0.001 and for the normal strain ≈0.002.
1. Introduction

Fully automated electron backscatter diffraction (EBSD) in a scan-
ning electron microscope [1–4] has enabled many aspects of materi-
als characterization, such as spatially resolved crystal orientation and
phase mapping, texture analysis, and deformation studies [5]. In the
past, efforts in the EBSD community have been focused on reducing the
measurement error through improved information retrieval algorithms
or advanced calibration methods [6]; for instance, the angular resolu-
tion of the modern Hough-based EBSD system is around 0.2-1◦ and the
bsolute orientation error could reach about 1-2◦ [7,8]. The angular
esolution (i.e., the precision of the EBSD measurement) is typically
ssociated with the retrieval method, i.e., the Hough transform to
ocate Kikuchi bands and the localization of the pattern center [6].
he absolute orientation error (i.e., the accuracy of the EBSD measure-
ent) is attributed to poor system calibration, e.g., an unaccounted
or inclination of the sample surface [9]. Since the true orientation is
ot known for real patterns, the true orientation error is often hard to
etermine. From the von Mises–Fisher distribution, one can statistically
nfer that the true orientation accuracy is limited by the confidence
egion (0.3◦) of the retrieval algorithm in which the angular distance
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between detector plane normal vectors and recalculated plane normal
vectors is minimized. To improve the angular resolution, methods
such as the 3D-Hough transform [10], iterative indexing [11], pattern
comparison method [12], and HR-EBSD [13] have been previously
developed.

Additionally, the accuracy of orientation determination also relies
on an accurate localization of the pattern center [6]. One common
method of refining the pattern center of a single pattern is to use the
iterative fitting method by minimizing an objective function related
to the pattern center coordinates [14], resulting in an accuracy of
around 0.5% of the detector width. Other more sophisticated methods
have also been developed based on improved retrieval algorithms [10],
a moving detector screen [15,16], shadow-casting [17], and a single
crystal calibrant [18,19].

More recently, the dynamical scattering of BSEs on their way out
of the sample has been modeled starting from the Darwin–Howie–
Whelan dynamic equations [20] in the Bloch-wave formalism [21]. In
addition, the stochastic nature of scattering can be merged with the
deterministic process using a Monte Carlo simulation approach [22]
that allows for simulated patterns to be compared directly with ex-
perimental patterns with encouraging indexing precision [23–26]. For
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instance, Singh et al. have shown that the dictionary indexing (DI) ap-
proach, which is based on normalized dot products between simulated
EBSD patterns and experimental patterns, has an improved sensitivity
compared to the conventional Hough-based indexing for poor quality
diffraction patterns and overlapping patterns [27]. Recently, Ding et al.
have also shown that a uniformly sampled dictionary of patterns can
be effectively used as a training data set for a convolutional neural
network (CNN) to index experimental patterns [28]. However, indexing
of lower symmetry crystals necessarily increases the required size of
the dictionary since the dictionary size is proportional to the size
of fundamental zone (FZ) of the corresponding crystal. Alternatively,
forward model based orientation indexing can be conveniently ac-
complished with a single simulated spherical Kikuchi sphere of the
corresponding crystal structure using the spherical harmonic transform
(SHT) [26,29], significantly reducing the computation time for lower
symmetry crystals.

With the increasing demand of using EBSD to determine strain [30]
or to resolve pseudosymmetry issues [31,32], a convenient way of
simultaneously refining the orientation and the pattern center has
become increasingly attractive. For instance, the pattern matching
method has been incorporated recently into an optimization algo-
rithm to obtain a refined orientation and pattern center. Different
optimization algorithms have been explored by Winkelmann et al.
(NMS: multi-start Nelder–Mead simplex) [33]; Singh et al. (BOBYQA:
bound optimization by quadratic approximation) [34]; Pang et al.
(SNOBFIT: stable noisy optimization by branch and fit) [35], and
Tanaka et al. (DE: differential evolution) [36] to simultaneously refine
pattern center and orientation. Some recent applications of this tech-
nique include the spatial resolved mapping c/a ratio of martensites [37,
38]. These optimization methods mainly fall into three categories: (1)
sampling methods or direct search methods that require a rather signif-
cant number of function evaluations, e.g., DE; (2) modeling methods
hat approximate the function over a region by some model function,
.g., BOBYQA; and (3) a hybrid approach of (1) and (2) like the
ulti-start NMS and SNOBFIT. In comparison, sampling methods usually
rovide a more accurate picture of the optimization landscape to locate
he global minimum whereas the modeling methods are less accurate
n terms of the global picture of optimization but are computationally
heaper. However, direct implementation of a sampling method such as
he Nelder–Mean simplex alone has been found to be inefficient [33,35]
ue to the sloppy optimization landscape when orientation and pattern
enter were simultaneously refined. As shown by Pang et al. [35] and
ingh et al. [34], the small orientation changes can be compensated by
hifts in pattern center positions and vice versa, resulting in a shallow
ptimization landscape and a slow convergence along the sloppy direc-
ion. A multi-start NMS has been shown to help with this convergence
roblem [33] with a search space of the optimization limited to 1◦
n misorientation and ±2% in detector width for the pattern center.
imilarly, SNOBFIT also provides excellent refinement accuracy within
limited search space of 1◦ in misorientation and ±1% in detector

width for the pattern center. More specifically, the SNOBFIT method
uses branching and local stochastic model fitting (linear or quadratic)
to simultaneously search for multiple local minima: a surrogate func-
tion based derivative-free approach with multiple search branches to
explore the global optimization landscape simultaneously. Since the
surrogate functions are fitted to the evaluated function points instead
of directly interpolated, it is robust for noisy function values. However,
these hybrid methods rely on the search spaces containing the ground
truth to be sufficiently narrow to allow for an accurate convergence.

To overcome the limited range of search space and the sloppy
optimization landscape, global optimization methods, such as DE, have
been shown to work rather well for a search space of 10◦ in mis-
rientation and ±5% in detector width for the pattern center using
oisy simulated patterns [36]. Despite the success of their work, some
uestions were left unanswered, for instance, the justification of using
2

E over other global optimization methods such as particle swarm
optimization; the optimal range of optimization parameters and choice
mutation scheme; the effect of changing the search space, and so on.
More specifically, one concern was related to the optimization of the
pattern center in the presence of significant deformation, which has
been shown to cause a bias in the pattern center. Therefore, a method
of incorporating the deformation tensor into the optimization routine
is needed.

Experimental measurement of absolute strain and rotation has been
previously explored by many others [39–42] using relatively strain free
reference patterns from the same material. Furthermore, simulation
based HR-EBSD has been previously studies by Villert et al. [39] using
oth kinematically and dynamically simulated strain free reference
atterns. Another iterative scheme developed by Kacher et al. [19] used
inematical pattern to be simulated several times until convergence to
e used as strain free reference pattern. However, calibrant sample is
eeded for Kacher’s approach to accurately locate the pattern center
o that the comparison of simulated pattern and experimental becomes
eaningful. The present study aims to provide an accurate determi-
ation of the pattern center and deformation tensor via simulated
ased optimization approach without a calibrant sample. The caveat
f simultaneous determination of pattern center and deformation ten-
or has been previously discussed by Alkorta [43]. To a first order
pproximation, the error in pattern center can be compensated by
phantom deformation gradient tensor. The polar decomposition of
his phantom deformation gradient tensor reveals that it consists of
wo lattice rotation components 𝜔31 and 𝜔23 that compensates for
he pattern center shifts in the 𝑦 and 𝑥 direction respectively (in the
detector frame). This also helps to explain the sloppy optimization
problem observed by others [34,35], which is the motivation of the
current work.

In the present work, evolutionary algorithms, such as particle swarm
optimization (PSO) and differential evolution (DE), are explored to-
gether and compared. Both methods can be parallelized easily over
multiple CPU threads using openMP. In addition, NMS has also been
implemented after global optimization to further refine the solution,
i.e., a hybrid optimization strategy. These global (hybrid) optimization
algorithms (DE and PSO) have been tested on the problem of pattern
center and orientation refinement using simulated data with a known
ground truth. Since the performance of these algorithms relies on
an appropriate selection of the optimization parameters, a parametric
study has been done to fine-tune these parameters. In addition, direct
inference of the deformation state through pattern matching using a
forward model based global optimization is also revisited in this study,
based on recent work in our group [44]. Previously, we have demon-
strated that an approximate model for the inclusion of deformation into
simulated EBSPs can be utilized to accurately infer the deformation
gradient tensor (eight degrees of freedom) and the pattern center pa-
rameters (three degrees of freedom) with the PSO+NMS method [44],
while keeping the Euler angles known and fixed. The accuracy of the
deformation tensor was found to be ≈10−4 on noise free simulated
patterns and ≈10−3 for noisy patterns. However, the spatial variation
of the absolute error using noisy simulated patterns based on Yoffe–
Shaibani–Hazzledine (YSH) [45,46] dislocation displacement field data
was unclear and no experimental patterns were included.

We will present in this paper the efficient use of hybrid optimization
(global algorithm then followed by local algorithm) to simultaneously
refine pattern/orientation and infer the deformation tensor. For the
first time, the selection of hyperparameters for the global optimization
algorithm has been studied in details for pattern matching problem.
More importantly, combined with HR-EBSD, spatially resolved strain
maps closer to the absolute strain maps can be obtained after the strain
state has been corrected for the reference pattern. We would also like to
point out that, since the strain states are not known for experimental
patterns used in this study, the ‘‘absolute’’ strain mapping could still
be subject to some unknown systematic error. The accuracy measure

presented in this paper has been derived from simulated patterns with
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known strain states. Of course, there are still work left to be pursued
in terms of experimental validation and improvement of the current
algorithm. Nevertheless, the current method has clearly extended the
conventional HR-EBSD method and led to promising new research
directions in the understanding the relationship between mechanical
behavior of materials and microstructure, particularly, when a strain
free reference pattern is not readily available.

2. Methodology

2.1. Optimization problem setup

Solving an optimization problem is the process of maximizing or
minimizing an objective function defined with respect to a feasible
set of variables. In the context of diffraction pattern optimization, the
optimization problem is designed to search for a set of variables that
generates a simulated pattern that best matches the target pattern based
on the formal definition below:

max
𝐱∈𝐒

𝑓 (𝐱) = −min
𝐱∈𝐒

(−𝑓 (𝐱)), (1)

here 𝐱 is a vector containing 𝑛 simulation variables (pattern center,
eformation tensor, orientation, etc.), and 𝐒 is a feasible subset of R𝑛,
(𝐱) is the image similarity measure between the simulated pattern and
arget pattern (normalized dot product, cross-correlation coefficient,
tc.). Global optimization specifically seeks for the global minimizer
∗ which gives the optimal value 𝑓 (𝐱∗) at which

(𝐱∗) ≤ 𝑓 (𝐱) ∀ 𝐱 ∈ 𝐒. (2)

From the available experimental data set determined through Hough
ransform indexing, an initial estimate of the solution to the orientation
s well as pattern center coordinates is known prior to the optimization.
ence, the feasible solution set can reasonably be further constrained
own, i.e., bounded optimization. For a well calibrated system, this
ange of search space is typically small as discussed in the introduction
ection. If the EBSD system is poorly calibrated by the vendor’s tech-
ician or being improperly operated by user, the idea of implementing
he global optimization becomes more attractive. It can tolerate a larger
rror relative to the initial estimate by expanding the search space.
The orientation search space is confined by the misorientation angle

elative to an initial estimate in the back end. Each rotation relative
o the initial orientation is described by a neo-Eulerian representation
.e., a stereographic vector 𝐬, also known as the modified Rodrigues
arameter, [47] given by:

= 𝐧 tan𝜔∕4, (3)

here 𝐧 is the unit vector describing the axis of rotation and 𝜔 is
he angle of rotation about 𝐧. Additionally, the pattern center search
pace is defined in terms of percent of the detector width, consistent
ith other literature in the community. Finally, the elastic deformation
radient tensor components are bounded relative to the identity matrix
hich includes both rotation and stretch of the lattice. Therefore, the
ptions for optimization are: 1) orientation and pattern center, 2) de-
ormation gradient tensor and pattern center. Details regarding how to
se the global optimization program can be found in the supplementary
aterial.

.2. Evolutionary algorithm: Differential evolution

Differential evolution involves an evolving population of search
oints based on a bio-inspired evolutionary information to allow the
opulation of search points to converge to the global minimum, i.e., an
volutionary algorithm. The basic differential evolution algorithm, fol-
owing the study by Storn and Price [48], consists of several critical
teps: first, the initialization step is a random sampling of target vectors
3

𝑖,𝑔 within the prescribed range with respect to the initial solution
vectors outside the prescribed range are placed on the boundary). In
his case, the initial solution is determined by Hough indexing or other
vailable indexing methods.

𝑖,𝑔 = 𝑥𝑗,𝑖,𝑔 , 𝑗 ∈ {1,… , 𝐷}, 𝑖 ∈ {1,… , 𝑁𝑝}, 𝑔 ∈ {1,… , 𝑔𝑚𝑎𝑥}, (4)

here 𝐷 is the number of parameters to be optimized, 𝑁𝑝 is the
opulation size for target vectors of a generation and 𝑔 is the maximum
umber of generations or iterations. For each target vector in the
eneration, a mutation vector 𝐯𝑖,𝑔+1 is generated to evolve the search
pace through different mutation scheme, e.g., DE/rand/1, DE/rand/2,
E/rand-to-best/1, DE/best/1, DE/best/2; these five mutation schemes
orrespond to the following mutation equations:

𝑖,𝑔+1 = 𝐱𝑟1 ,𝑔 + 𝐹 (𝐱𝑟2 ,𝑔 − 𝐱𝑟3 ,𝑔), (5a)

𝑖,𝑔+1 = 𝐱𝑟1 ,𝑔 + 𝐹 (𝐱𝑟2 ,𝑔 + 𝐱𝑟3 ,𝑔 − 𝐱𝑟4 ,𝑔 − 𝐱𝑟5 ,𝑔), (5b)

𝑖,𝑔+1 = 𝐱𝑖,𝑔 + 𝐹 (𝐱best,𝑔 − 𝐱𝑖,𝑔 + 𝐱𝑟1 ,𝑔 − 𝐱𝑟2 ,𝑔), (5c)

𝑖,𝑔+1 = 𝐱best,𝑔 + 𝐹 (𝐱𝑟1 ,𝑔 − 𝐱𝑟2 ,𝑔), (5d)

𝑖,𝑔+1 = 𝐱best,𝑔 + 𝐹 (𝐱𝑟1 ,𝑔 + 𝐱𝑟2 ,𝑔 − 𝐱𝑟3 ,𝑔 − 𝐱𝑟4 ,𝑔), (5e)

here 𝑟1, 𝑟2,… , 𝑟5 are random integers ∈ {1,… , 𝑁𝑝}, 𝐱best,𝑔 is the target
ector with the lowest objective function value, and F (>0) is a user
efined mutation factor (typically 𝐹 ∈[0,2]).
Each trial vector 𝐮𝑖,𝑔+1 is further diversified by implementing a

inomial crossover step to the mutation vectors and target vectors.

𝑖,𝑔+1 = 𝑢𝑗,𝑖,𝑔+1

{

𝑣𝑗,𝑖,𝑔+1 if 𝑟𝑎𝑛𝑑𝑗 ≤ 𝐶𝑟 or 𝑗 = 𝑗𝑟𝑎𝑛𝑑 ,
𝑥𝑗,𝑖,𝑔 otherwise,

(6)

here 𝑟𝑎𝑛𝑑𝑗 ∈ [0, 1] is a random constant for the 𝑗th evaluation, 𝑗𝑟𝑎𝑛𝑑 ∈
1,… , 𝐷} is a random integer index, and 𝐶𝑟 ∈ [0, 1] is a user defined
rossover probability. Finally, a selection based on objective function
alues of trial vectors and target vectors is performed to obtain the next
eneration of target vectors 𝐱𝑖,𝑔+1.

𝑖,𝑔+1 =

{

𝐮𝑖,𝑔+1 if 𝑓 (𝐮𝑖,𝑔+1) ≤ 𝑓 (𝐱𝑖,𝑔)
𝐱𝑖,𝑔 otherwise.

(7)

n Section 3.2, fine-tuning of the optimization parameters is carried out
o achieve a balance of computational cost and accurate optimization
esults. The effect of employing different mutation strategies has also
een explored by varying the amount of added noise and changing the
ange of search spaces.

.3. Evolutionary algorithm: Particle swarm optimization

Particle swarm optimization is also an evolutionary global search
lgorithm, originally developed by Eberhart and Kennedy [49]. The
mplementation of PSO in this study adopted some modifications sug-
ested by others [50,51]. It was inspired by the foraging behavior
f flocks of birds and schools of fish by formulating a population of
articles each having its own position (𝐱𝑖,𝑔 where 𝑖 ∈ {1,… , 𝑁𝑝}, 𝑔 ∈
,… , 𝑔𝑚𝑎𝑥) and velocity (𝐯𝑖,𝑔); 𝑁𝑝 is the total number of particles and
𝑚𝑎𝑥 is the maximum number of iterations.
The population of particles (𝐱𝑖,𝑔) is first randomly initialized from
uniform probability distribution function within a bounded domain
nd the initial velocity of each particle initialized to zero. During the
ptimization process, the position and the velocity of each particle is
pdated according to information (𝑓 (𝐱𝑖,𝑔): objective function values)
hared among all particles in the current iteration. The velocities to
pdate the position of the current iteration of particles are given by
he following equation:

𝑖,𝑔+1 = 𝑤𝑔𝐯𝑖,𝑔 + 𝑐1𝑟1(𝐱𝑝𝑏,𝑔 − 𝐱𝑖,𝑔) + 𝑐2𝑟2(𝐱𝑔𝑏,𝑔 − 𝐱𝑖,𝑔) (8)

here 𝑤𝑔 = 𝑤0(𝑤damp)𝑔−1 is the inertia weight updated for each
teration, with 𝑤0 being the initial inertia weight and 𝑤damp being the
nertia weight damping coefficient; 𝑐 is the self-cognition acceleration
1
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coefficient, 𝑐2 is the social cognition acceleration coefficient and 𝑟1, 𝑟2
re uniformly distributed random numbers in the range [0, 1]. 𝐱𝑝𝑏,𝑔 is
he personal best particle, i.e., the particle with the lowest personal
bjective function value and the 𝐱𝑔𝑏,𝑔 is the global best particle, i.e., the
article with the lowest global objective function value. The positions
f particles in the next iteration are therefore obtained by

𝑖,𝑔+1 = 𝐱𝑖,𝑔 + 𝐯𝑖,𝑔+1 (9)

o confine the particles in the case when the actual global minimum
s close to the boundary of the search space, particles sitting outside
he defined search space after each iteration are placed exactly on the
orresponding dimension’s boundary.
In the present work, the PSO is used in comparison to the DE
ethod. The default particle swarm optimization parameters in this
tudy are adjusted based on our previous work [44]: 𝑤0 = 1, 𝑤damp =
.9, 𝑐1 = 2, 𝑐2 = 2. While fine-tuning of optimization parameters is also
ossible, it has been found in this work and previous work that the
utation of the velocities based on the best performing personal/global
articles sometimes drive the population towards a local minimum for
arge search spaces.

.4. Nelder–mead simplex

The Nelder–Mead Simplex algorithm is a widely used derivative free
irect search algorithm first proposed by Nelder and Mead (1965) [52].
simplex is a geometric figure in an 𝑛-dimensional space which has
+ 1 vertices. Based on subsequent reflection, expansion, contraction,
nd shrinkage of the simplex, the shape of the simplex adapts to the
ptimization landscape and converges to a local minimum. Rigorous
roof of the convergence behavior of the Nelder–Mead simplex is still
n active field of research, which in some cases has already been
roven to be non-convergent for standard NMS [53]. In addition,
tandard NMS often becomes stagnant and inefficient in high dimen-
ional problems [54]. In this study, it has also been found that direct
mplementation of standard Nelder–Mean simplex tends to get stuck
extremely slow convergence) within the sloppy part of the optimiza-
ion landscape, i.e., an inefficient convergence. Appropriate parameter
caling could possibly improve the convergence [35] or potentially
sing a more advanced variant of NMS with adaptive parameters [55]
nd a multi-start procedure [33]. In the present work, the standard
MS has been implemented, following O’Neill’s work [56], only as an
ption to further refine the globally optimized solution to circumvent
hese common issues related to NMS.

.5. Objective function and rotation correction

The choice of objective function is crucial to achieve convergence
n any evolutionary algorithm. Indeed, prior-knowledge of the target
roblem to be optimized can inform the selection of an appropriate
bjective function. In this study, the forward model based optimization
emands that the objective function be an effective image similarity
etric between simulated pattern and target pattern. From a previous
tudy by Pang et al. [35], the optimization landscape for pattern center
nd orientation has been found to be very sloppy for the normalized dot
roduct metric, meaning that similar objective function values exist for
wide range of input parameters.
A rotation correction method is proposed here along the orientation

pace in order to form a less sloppy optimization landscape while the
eature space for the pattern center is kept unchanged [34]. For a devia-
ion (△𝑃𝐶𝑥,△𝑃𝐶𝑦) of the pattern center from the initial pattern center
alibration of the EBSD system, assuming that the initial calibration is
recisely known, a rotation correction term given by the axis–angle pair
𝐧, cos𝜔) can be calculated to scale the orientation space according to:

𝐧 = 1 (−△ 𝑃𝐶𝑥 cos 𝛼,△𝑃𝐶𝑦 cos 2𝛼,△𝑃𝐶𝑥 sin 𝛼), (10a)
4

𝜌𝑐
cos𝜔 =
𝐷𝐷 +△𝑃𝐶𝑦

[𝐷𝐷2 + 2 ⋅𝐷𝐷 ⋅ △𝑃𝐶𝑦𝛿 sin 2𝛼 + (△𝑃𝐶𝑥𝛿)2 + (△𝑃𝐶𝑦𝛿)2]1∕2
,

(10b)

here 𝛼 is the tilt angle between the detector screen and sample
urface, 𝐷𝐷 is the detector distance, 𝜌𝑐 ensures that 𝐧 is a unit vector,
nd 𝛿 is the detector pixel size; the rotation correction undoes the
pparent pattern rotation when the pattern center is modified. In
he rotation correction formula, 𝛼, 𝐷𝐷, 𝛿 are fixed constants. The
△𝑃𝐶𝑥,△𝑃𝐶𝑦) values changes during the optimization as defined by
the distance between trial pattern center solution and initial calibration
of PC. The coordinates of a search point 𝑥𝑡𝑟𝑎𝑖𝑙 during the optimization
step is therefore defined by the following equation:

𝑥𝑡𝑟𝑎𝑖𝑙 = [𝐿𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛(𝐬𝐭𝐫𝐢𝐚𝐥), 𝑃𝐶𝑡𝑟𝑖𝑎𝑙] (11)

where the rotation correction operator 𝐿𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 is calculated from
(𝐧, cos𝜔) to rotate the trial stereographic vector. The trial pattern center
𝑃𝐶𝑡𝑟𝑖𝑎𝑙 values do not change in this step. We would like to mention here
again that this correction method assumes that the initial calibration of
pattern center is not significantly off, which leads to some limitations
that will be further discussed.

3. Results

3.1. Optimization landscapes

Simulated patterns are used for the visualization of optimization
landscapes and for the parametric study, noise sensitivity test and
deformation tensor inference accuracy test. Details regarding the sim-
ulation parameter are listed in the supplementary materials.

With the inclusion of rotation correction in the orientation space, as
discussed in Section 2.5, optimization landscapes of four image similar-
ity metrics including normalized dot product (NDP), cross-correlation
coefficient (XCF), root mean square error (RMSE) and mutual infor-
mation (MI) are depicted in Fig. 1. The formal definitions of these
similarity metrics are stated in Appendix A. In these plots, only two
variables, 𝛷 and 𝑃𝐶𝑦, are adjusted to map out a 2D slice of the
image similarity landscape since a six-dimensional space is difficult to
visualize. The pattern shift due to 𝛷 rotation is often confused with the
pattern center shift in the 𝑦 direction. The 𝑥 (△𝛷) and 𝑦 (△𝑃𝐶𝑦) axes
correspond to the differences relative to the ground truth (𝛷 = 0◦ and
𝑃𝐶𝑦 = 0 pixels). These normalized landscapes reveal that the NDP and
XCF landscapes are very similar to each other with and without rotation
correction. This sloppy feature is also observed in the RMSE landscape
but it is narrower compared to NDP and XCF. For the same initial
population, the initial convergence to the sloppy feature is likely faster
than NDP and XCF. The only concern for RMSE is that it is intrinsically
more sensitive to contrast and brightness changes. In addition, the
MI landscape has a very narrow and deep valley close to the ground
truth. The lack of gradient information in general does not favor fast
convergence compared to others.

It is clear that the rotation correction slightly removes sloppiness
of all the objective functions’ optimization landscapes but the benefit
in terms of accuracy improvement will be limited. It has been found
in this study that the rotation correction does indeed slightly improve
the convergence speed for the global optimization part. However,
the rotation correction needs to be switched off for the NMS in the
hybrid method because it will incorrectly bias the Nelder–Mead simplex
algorithm. In the following test studies, we used the rotation correction
only for the global optimization step.

3.2. Differential evolution: Rules of thumb and hyperparameter tuning

During the global optimization process for DE, a few optimization
parameters are usually set prior to execution: 𝑁𝑝 population size, 𝑔
number of generations, 𝐶 crossover probability, 𝐹 mutation factor.
𝑟
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Fig. 1. Optimization landscapes using objective functions (from left to right) normalized dot product (NDP), cross-correlation coefficient (XCF), root mean square error (RMSE),
mutual information (MI) (top row) without rotation correction (bottom row) with rotation correction.
Fig. 2. Orientation and pattern center errors in relation to the crossover probability and mutation factor for the optimization (mutation scheme: DE/rand/1) performed at 𝑁𝑝 = 70
and 𝑔 = 100 within search space (±20◦, ±10% detector width).
The initial population of size 𝑁𝑝 is randomly selected from a bounded
region of parameter space (the maximum range of interest) with a
uniform probability distribution. For many engineering applications,
𝑁𝑝 is typically equal to 10 times the number of parameters to be opti-
mized (𝐷) to sample a sufficiently large parameter space. The crossover
probability 𝐶𝑟 ∈ [0, 1] is often lower than 0.3 but increasing it to above
0.8 could help diversify the trial vector and achieve convergence. In
addition, the mutation factor 𝐹 is usually ∈ [0.5, 1] to allow sufficient
mutation to cover as much optimization landscape as possible. The
number of generations set the terminating criterion which depends on
the required level of accuracy for a given search space. If the search
space is increased significantly, the number of generations required to
achieve a similar level of accuracy as the smaller search space will
need to be increased or the population size needs to be increased
accordingly.
5

For optimal performance in this particular problem of orientation
and pattern center refinement (𝐷 = 6), the above rules of thumb
provide an enormously large hyperparameter space that could be fine
tuned. Since the convergence accuracy would generally improve with
a sizable population and a large number of generations, the effect
of crossover probability and mutation factor was first tested with a
relatively large population size (𝑁𝑝=70), number of generations (𝑔 =
100) and search space (±20◦, ±10% detector width). For calibrated EBSD
system, the orientation and pattern center accuracy will be at least an
order of magnitude better than the search space used here. The large
range of search space is used here primarily as a proof of concept study
for testing the optimization algorithm. The default mutation scheme
DE/rand/1 was used here and the effect of other mutation schemes
will be discussed in the next section. Due to the stochastic nature
of the optimization, ten different orientations were randomly selected
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Fig. 3. Orientation and pattern center errors in relation to the population size and number of generations (mutation scheme: DE/rand/1) performed at 𝐶𝑟 = 0.9 and 𝐹 = 0.5 within
search space (a) ±0.5◦, ±0.5% detector width and (b) ±10◦, ±5% detector width.
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o run ten times and then their error values were averaged for the
yperparameter tuning. In Fig. 2, the orientation error is represented
s the disorientation with regard to the ground truth orientation, and
he pattern center errors are expressed as percentage of detector width.
ig. 2 indicates that the approximate range for crossover probability
s 𝐶𝑟 ∈ [0.7, 0.9] and the mutation factor 𝐹 ∈ [0.3, 0.5] to reach a
isorientation error < 0.1◦ and all pattern center coordinates error
0.1%.
To test the appropriate number of generations and population size,

𝑟 = 0.9 and 𝐹 = 0.5 were selected from the ranges determined in the
revious test. This test was conducted in two separate search spaces:
1) Hough error space (±0.5◦, ±0.5% detector width), (2) an extended
rror space (±10◦, ±5% detector width), using the default DE/rand/1
utation scheme. In Fig. 3(a), the optimal combination to reach a
isorientation error < 0.1◦ and all pattern center coordinate errors
0.1% has been found to be achieved when 𝑁𝑝 > 30 and 𝑔 > 30 for

he narrower search space. However, Fig. 3(b) suggests that 𝑔 = 70 is
at least required to achieve similar level of accuracy for the extended
search space. In addition, increasing the number of generations has
been found to be more efficient way of improving the convergence.
Overall, the trend in Fig. 3 agrees with the expectation that larger pop-
lation size and generations in general improves convergence accuracy.
n addition, the values for 𝑁𝑝 and 𝑔 are dependent on the range of
earch space in order to achieve a similar level of accuracy. Hence, the
omputational time required to optimize orientation and pattern center
an be adjusted according to the size of the search space.
Additionally, a parameter study has also been carried out for

he PSO method regarding the initial inertia weight 𝑤0 (test range:
0.1, 1.5]), inertia weight damping coefficient 𝑤damp (test range: [0.1, 1]),
elf-cognition acceleration coefficient 𝑐1 (test range: [0.1, 2]), and social
ognition acceleration coefficient 𝑐2 (test range: [0.1, 2]). However, our
test with a search space of ±10◦ and ±5% detector width did not show
clear improvement for the PSO method for all the different combina-
tions of parameters while the population size (80) and the maximum
number of iterations (50) were kept unchanged. The underlying reason
for the relatively poor performance of PSO method will be discussed
later.

3.3. Differential evolution: Mutation schemes and search space

The various mutation schemes can be categorized into three groups:
(1) those that will be attracted towards the best population vector,
6

e.g., DE/best/1, DE/best/2; (2) those that have a completely random a
mutation, e.g., DE/rand/1, DE/rand/2; and (3) one that has a mixed
characteristics from (1) and (2), e.g., DE/rand-to-best/1. Here, five
types of mutations schemes are directly compared with each other
as a function of the number of generations using the optimization
parameters selected in Section 3.2: 𝑁𝑝 = 60, 𝐶𝑟 = 0.9 and 𝐹 = 0.5. To
consider more realistic intensity distribution collected on a commercial
EBSD system, several filters were applied to the simulated patterns:
high-pass filter (0.05), adaptive histogram equalization with 10 regions
and Gaussian white noise with peak signal-to-noise ratio of 11.72 dB.
Tests were done with three different search spaces: Fig. 4(b) ±0.5◦,
0.5% detector width, Fig. 4(c) ±10◦, ±5% detector width and Fig. 4(d)
20◦, ±10% detector width.
Within the Hough error search space, all mutation schemes seem

o perform better than Hough indexing as shown in Fig. 4(b) with
n average accuracy for orientation slightly below 0.01◦ and pattern
enter accuracy in the range between 0.01% to 0.1% detector width.
or the intermediate search space as shown in Fig. 4(c), the accu-
acy starts to become more dependent on the mutation scheme since
he speed at which each method converges while using the same
ptimization parameters varies. Overall, mutation schemes involving
ome component of the best solution converge faster than the random
utation methods. In the largest search space, as shown in Fig. 4(d),
he mutation scheme involving only the best solution (DE/best/1/bin
nd DE/best/2/bin) tend to bias the overall population towards a
ocal minimum whereas the mutation schemes with a certain random
haracter (DE/rand/1/bin, DE/best-to-rand/1/bin) are more likely to
onverge to the correct ground truth, except that the DE/rand/2/bin
utation scheme does not converge within 100 generations. The opti-
al combination according to the test is then DE/best-to-rand/1/bin
ince it converges faster than the DE/rand/1/bin method to the correct
lobal minimum.
Additional insight has also been obtained regarding the effect of

oise on the accuracy of the optimization. As shown in Fig. 5, the
mount of noise present does not affect the accuracy of the DE op-
imization results for both orientation and pattern center, showing
xcellent robustness against noise. From Fig. 5(e), the orientation error
s around 0.02◦ to 0.04◦ and the pattern center errors vary quite sub-
tantially between 0.001% detector width and 0.04% detector width.
n particular, the detector distance has a higher accuracy compared to
he other components. The variation in the accuracy of the results is
ikely due to the random sampling in the initial population as well as
he slight modification introduced to the optimization landscape by the

dded noise.
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Fig. 4. (a) Simulated EBSP for Ni at 10 kV with high pass filter, adaptive histogram equalization and Gaussian white noise with peak signal-to-noise ratio of 11.72 dB; orientation
and pattern center errors using different mutation schemes for the optimization: DE/rand/1, DE/rand/2, DE/best/1, DE/best/2, DE/rand-to-best/1) performed at 𝑁𝑝=60, 𝐶𝑟=0.9
nd 𝐹 = 0.5 within search space (b) ±0.5◦, ±0.5% detector width, (c) ±10◦, ±5% detector width and (d) ±20◦, ±10% detector width.
Fig. 5. (a–d) Simulated EBSPs for Ni at 10 kV with high pass filter, adaptive histogram equalization and Gaussian white noise with peak signal-to-noise ratio varying from 7.2 dB
to 16.02 dB. Other optimization parameters include mutation scheme DE/rand/1, maximum number of iterations = 100, 𝑁𝑝 = 60, 𝐶𝑟 = 0.9 and 𝐹 = 0.5 within search space of
10◦, ±5% detector width; (e) error values for optimized orientation and pattern center.
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.4. Large field of view line scan on single crystal nickel: hybrid optimiza-
ion methods compared

Combining either particle swarm optimization or differential evolu-
ion with the Nelder–Mead simplex, two hybrid optimization methods
7

t

1. PSO + NMS; 2. DE + NMS) can be tested. In this study, the Nelder–
ean simplex allowed restart to improve convergence. Moreover, the
topping criterion for NMS was set to 300 objective function evalu-
tions, which was a relatively early termination to compensate for
he larger computational cost associated with the NMS part not being
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Fig. 6. (a) PSO only with a number of iterations=50; (b) PSO with a number of iterations=50 and solution refinement with NMS; (c) PSO with a number of iterations = 100 and
olution refinement with NMS. Red lines are expected positions of the pattern center using EMsoft convention. (For interpretation of the references to color in this figure legend,
he reader is referred to the web version of this article.)
r
A

arallelized. The convergence of the function evaluations was checked
very 10 iterations to allow early termination of NMS i.e. prior to 300
unction evaluations.
To compare the efficacy of these different hybrid optimization
ethods, a simulated data set was generated from a field of view of
× 3 mm at a sampling step size of 20 μm in both scan directions
ith known orientation and pattern center positions. The pattern center
as updated realistically according to the geometry of the scan whereas
he orientation was fixed; details regarding the simulation of this data
et can be found in [34]. Optimization of the first row of the data
as carried out with the initial pattern center position taken from the
attern at the center of the simulated data set. Hence, the pattern center
ositions of the entire row taken into optimization deviate substantially
rom the pattern center position of the center pattern. To make the
ptimization problem a bit more challenging, the initial orientation was
hanged arbitrarily by 5◦ from the true orientation.
The search space for both hybrid methods was set to be ±10◦, ±5%

etector width with 80 as the population (particle) number and 50 or
00 iterations for the global optimization part. For the PSO, optimiza-
ion parameters were set to be: 𝑤0 = 1, 𝑤damp = 0.9, 𝑐1 = 2, 𝑐2 = 2. The
E used DE/1/best-to-rand/bin mutation scheme, crossover probability
.9 and mutation factor 0.5.
After initial DE global optimization (100 iterations), the deviation

rom the ground truth has been found to be around 0.2% detector width
nd 0.4◦. The deviation after PSO optimization (100 iterations) was
n average 0.5% detector width and 0.8◦ with a much larger standard
eviation due to the presence of outliers. The NMS step began once the
lobal optimization has been completed after a set number of iterations.
n average, the number of restarts was close to four times following
SO and only about one time following the DE optimization. Fig. 6(a–
) indicates that the use of PSO will sometimes bias the population
owards a local minimum in the given search space, as shown by the
8

ocal deviation from the expected red line. These outliers can be slightly
efined with NMS with restarts but cannot be completely eliminated.
n increase in the number of iterations of PSO from 50 to 100 still
cannot completely remove the number of outliers. The hybrid method
involving DE, as shown in Fig. 7(a–c), clearly shows a reduced number
of outliers, particularly when the iterations for DE are increased to 100.
The box plot in Fig. 7(c) shows that the average pattern center error is
around 0.02% and the disorientation is around 0.04◦ with the DE+NMS
hybrid approach for the first row of data from the large single crystal
nickel sample.

3.5. Inference of the deformation state: Simulated patterns

To further explore the usage of the global search method, the
inference of the deformation state has also been tested with the hybrid
DE+NMS method proposed in this study with an objective function
based on the NDP between patterns. Based on the recent study by
Kurniawan et al. the same approximate model for the interpolation of
simulated deformed EBSPs has been adopted [44,57]. The complexity
in the optimization of deformation lies in the simultaneous inclusion
of pattern center coordinates, which flattens out the optimization land-
scape. This has been previously found to lower the accuracy of the
inferred deformation state using the PSO+NMS technique [44]. More
specifically, the previous work suggested that the mapping of the
spatial distribution of deformation field was almost impossible due to
the overwhelmingly large relative error. This means that the sensitivity
of the pattern matching approach for determining the deformation
state from noisy simulated patterns is likely only suitable when a
given deformation is larger than the deformation field surrounding
a single edge dislocation. In this part of the study, a similar edge
dislocation data set from [57] was used (without the Monte Carlo
background intensity) but the overall magnitude of each component
of the distortion has been increased by a factor of 100 and the step size

has also been scaled by 100. Additionally, gamma correction (𝛾 = 0.333)
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Fig. 7. (a) DE only with a number of iterations = 50; (b) DE with a number of iterations = 50 and solution refinement with NMS; (c) DE with a number of iterations = 100 and
olution refinement with NMS. Red lines are expected positions of the pattern center using EMsoft convention. (For interpretation of the references to color in this figure legend,
he reader is referred to the web version of this article.)
nd Gaussian white noise (16.02 dB) were applied to the simulated
atterns. Furthermore, realistic pattern center coordinates have been
ncorporated into the simulation of these diffraction patterns according
o the step size and the spatial coordinates. It is important to realize
hat both the magnitude of the distortion field and the step size are
ot realistic values for a single edge dislocation but these values have
een chosen for the sake of expanding both the numerical range of
eformation state and pattern center in order to obtain a realistic
stimate of the accuracy of the proposed deformation inference method.
etails regarding how the surface dislocation field is generated can be
ound in the supplementary information of a recent publication by Zhu
t al. [57]. The expected strain and rotation field are shown in Fig. 8(a)
where the extra-half plane of atom creates a compressive strain 𝜖11
near the top half of panel. Although the data set was taken from a free
surface (𝑧 = 0), the presence of non-zero 𝜖33 components was indicative
of the specific Poisson effect for the edge dislocation [58].

The DE part uses the DE/1/best-to-rand/bin mutation scheme,
𝑁𝑝=120, 𝐶𝑟 = 0.9, 𝐹 = 0.5, and 𝑔 = 150. In addition, the NMS
refinement limit was set to 300 objective function evaluations. The
search space for the distortion tensor components ranges from −0.05
to 0.05 and the search space for the pattern center varies from ±0.5%
detector width. The traction free boundary condition was applied post-
optimization for the diagonal distortion tensor components, following
Zhu et al. [57]. As shown in Fig. 8(b), the distribution of inferred strain
and rotation field using hybrid optimization closely match the expected
values given in Fig. 8(a). The most accurate components being inferred
are the shear strain components and the rotation components (mean
error ≈ 0.001) whereas the diagonal normal strain terms have rather
poor accuracy (mean error ≈ 0.002). In addition, the accuracy of the
pattern center coordinates is around 0.1% of the detector width.

3.6. Inference of deformation state: Experimental patterns

The experimental data set was collected at an accelerating voltage
of 20 kV from a TRIP steel with composition Fe–17Mn-1.5Al-0.3C after
9

fatigue cycling [59]. The elastic constants used in this study correspond
to austenite with 𝐶11 = 206 GPa, 𝐶12 = 133 GPa and 𝐶44 = 119
GPa when we imposed the traction free boundary condition [59]. The
experimental patterns were background corrected high quality patterns
with a pattern size of 956 by 956 pixels. The scan was specifically
focused on a large grain with clear dislocation structures, as shown in
Fig. 11(b), which was then analyzed in this work with conventional
HR-EBSD method using in-house code [57,60]. To address the problem
of the unknown deformation state of the reference pattern, a three-
step procedure is proposed to overcome this challenge: (1) optimization
of Euler angles and pattern center determined from Hough indexing
for the selected reference pattern; (2) inference of deformation state
and pattern center with fixed Euler angles from (1) for the selected
reference pattern; (3) application of cross-correlation based HR-EBSD to
determine the deformation state of all the other points with respect to
the reference pattern used in (2) and application of the corresponding
strain state correction.

Since only the variation of lattice rotation represents useful de-
formation information, e.g., geometrically necessary dislocations, the
lattice rotation field can be determined entirely from the HR-EBSD
analysis in (3) without further refinement from the optimization rou-
tine. Therefore, the correction is only applied to the strain field in
which the absolute values of the strain maps are unavailable with
the conventional HR-EBSD technique. Prior to the three-step proce-
dure, appropriate pattern filtering parameters have been determined,
including adaptive histogram equalization parameter and high pass
filter parameter. The high pass filter parameter removes low frequency
background intensity gradients and enhances the band features. The
adaptive histogram equalization routine adjusts the overall contrast of
experimental to match with the simulated pattern in order to prevent
spurious effect in the similarity metric. The filtering parameters can be
selected with the EMEBSDDIpreview function implemented in EMsoft as
part of the utility functions for dictionary indexing, shown in Fig. 9(a).
An example of the simulated pattern of reference pattern 𝑃 is given
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Fig. 8. Deformation tensor extraction and pattern center optimization accuracy test on a set of simulated diffraction patterns around a surface edge dislocation. (a) Expected
urface (𝑧 = 0) strain and rotation field around the right-handed positive edge dislocation. Schematic of the dislocation configuration is overlaid on top of the 𝜖13 component; (b)
inferred surface (𝑧 = 0) strain and rotation field using hybrid optimization (DE+NMS); (c) absolute error of the strain, rotation, pattern center coordinates.
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in Fig. 9(c) with optimized orientation and pattern center coordinates.
In Fig. 9(c), 20 kV of primary beam energy is used for the Monte
Carlo simulation of the backscattering energy spectrum, as described
in more details by Callahan and DeGraef [22]. The agreement of the
intensity distribution of simulated Kikuchi pattern to the experimental
pattern shown in Fig. 9(c) is clear. The optimized parameters are used
to re-simulate the same pattern P with an improved similarity metric
compared to the unrefined simulated pattern (NDP improves from 0.89
to 0.93).

To further validate this approach, the following test has been carried
out. The idea is that if the strain correction for the reference pattern
were applied correctly, then the strain field determined from different
reference patterns would be similar. Hence, the same TRIP steel data set
was analyzed using the proposed three-step approach with two different
reference patterns P and Q as shown in Fig. 10. In comparison, the
uncorrected strain fields determined from reference patterns P and Q
are relatively uniform across the grain, indicating rather small plastic
deformation incurred during fatigue testing (hence smaller elastic strain
to maintain compatibility). One specific component that is obviously
different is 𝜖12. After strain state correction for the reference patterns,
the 𝜖12 components highlighted in Fig. 10 match up. This indicates that
he inference of the deformation state of reference pattern will bring the
train maps determined from different reference patterns closer to the
bsolute strain states. However, this does not mean that these strain
aps are equivalent to absolute strain maps since the deviation of the
etermined value to the ground truth is still impossible to determine.
ue to this reason, the validation method is still prone to systemic error
.e. an unknown amount of shift to the true values.
Furthermore, the inference of the deformation states at P and Q

oth reveal non-zero surface shear strain 𝜖13, which is likely associated
ith the uncertainty in the geometry of the scan. Furthermore, the
attice rotation fields obtained based on two different reference patterns
re clearly different in terms of their absolute values but their corre-
ponding gradients in the lattice rotation fields are almost identical,
.e., identical distributions of geometrically necessary dislocations. In
ig. 11(c), the dislocation structures has been clearly mapped using the
rientation gradients computation with significantly better sensitivity.
o test the precision of the orientation mapping of experimental data in
omparison of other techniques, grain reference orientation distribution
GROD: deviation of the local misorientation angle to the mean orienta-
ion in the grain) maps can be calculated and compared. Compared with
he GROD maps generated by EDAX and refined dictionary indexing
ethod, as shown in Fig. 12, the smoothly varying spatial distribution
f GROD and the histogram of the global optimization based GROD
ap shows better precision compared to Hough transform and similar
erformance to the refined dictionary indexing method.
10

b

. Discussion

In this study, a rotation correction step has been implemented to
mprove the optimization landscape along the orientation space. With
he implementation of the rotation correction method, it was found
hat this rotation correction approach only slightly improves the rate
f convergence with limited benefits for the accuracy of both DE and
SO methods. In addition, it also seems to incorrectly bias NMS away
rom the ground truth when the initial pattern center is far away from
he ground truth. Therefore, inclusion of the rotation correction should
nly be applied within the global optimization part.
While the global optimization does not require explicit knowledge

egarding the computation of derivatives in the optimization landscape,
he convergence behavior heavily relies on the combination of opti-
ization parameters. In this study, we have explored some important
spects of using global optimization that have not bee previously stud-
es by Tanaka et al.[36]: (1) effect of changing optimization parameters
n the global optimization, (2) the use of different mutation schemes,
3) direct inference of the deformation tensor. While the performance
f refinement results largely depend on many factors such as the
ptimization parameters, the amount of noise level added, the accuracy
f the initial estimate, etc, the overall orientation and pattern center
esults showed similar accuracy compared with other studies [33–36].
More specifically, larger search spaces require a larger population

ize to sample enough optimization landscape and more iterations
o converge to the global minimum. Similarly, the performance of
utation schemes also depends on the range of the search space.
or a small search space, ±0.5◦ and ±0.5% detector width, these five
utation schemes have similar convergence rates. With large search
paces, the mutation scheme involving the best performing vector
ecome noticeably faster than other schemes. However, these faster
utation schemes, i.e., DE/best/1/bin and DE/best/2/bin, are more
rone to get stuck in local minima, as shown clearly in Fig. 4. There-
ore, the DE/rand-to-best/1/bin is likely the most efficient mutation
cheme compared to the others with regard to the convergence rate
nd accuracy.
For the PSO method, our hyperparameter tuning did not reveal clear

mprovement of the results. In addition, it was found that if the random
nitialization of the initial population was re-seeded several times, the
lobal minimum can sometimes be obtained but not always guaran-
eed. Based on these observations, the PSO method for a large search
pace potentially requires a much larger population size to efficiently
onverge to the global minimum. This drawback of the PSO method is
ikely related to the velocity formulation which heavily weights the best
erforming particles. Based on our studies of the different evolutionary

ased global optimization algorithms, we have found that care must
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Fig. 9. (a) A matrix array of pre-processed patterns for the reference pattern P selected from the TRIP steel data set; the high-pass parameter varies from left to right, the number
of regions in the adaptive histogram equalization from bottom to top. (b) Filtered experimental pattern, outlined by the white box in (a). (c) Simulated pattern for TRIP steel at
20 kV of P based on the filtering parameters from (b) with orientation and pattern center valued optimized using hybrid optimization (DE+NMS).
Fig. 10. HR-EBSD analysis of TRIP steel sample directly using reference pattern P and Q (strain state uncorrected) or combined with hybrid optimization for reference pattern’s
eformation state correction (strain state corrected).
w
i
l
r
a
t

T

e taken to select the optimization parameters, preferably via some
yperparameter tuning, as well as the appropriate choice of heuristic
ules. A comprehensive understanding of how these global optimization
lgorithms perform for specific problems of interest will help to more
ffectively navigate the search points.
For enhanced performance, hybrid optimization of orientation and

attern center using DE+NMS and PSO+NMS within a search space
f ±10◦ and ±5% detector width with the same population size (80)
and number of iterations (50 or 100) have been tested on a line scan
from a simulated single crystal nickel data set with realistic pattern
center variation across the large field of view. The outliers in the
PSO+NMS, shown in Fig. 6(c), are due to the random trapping of the
entire population into local minima during the PSO step. In comparison,
DE+NMS can achieve an average accuracy of 0.02% detector width
and orientation error of 0.04◦ without any outliers. Therefore, the
efficient convergence of global optimization is crucial prior to the NMS
refinement step, which demands an accurate initial simplex.
11

c

For the determination of deformation tensor, the accuracy of the
optimization tested on the simulated YSH dislocation data set indicates
a clear discrepancy in the accuracy of different components of the
deformation tensor. For example, the shear strain and rotation compo-
nents show much a higher accuracy ≈0.001 compared to the normal
strains ≈0.002 when the search space of pattern center is around
±0.5% detector width. In a previous study, we have shown that direct
inference of deformation can achieve extremely high accuracy (≈ 10−4)
ithout the inclusion of a pattern center refinement [44]. Clearly, the
nclusion of a pattern center results in an extremely sloppy optimization
andscape that is challenging even for the global optimization algo-
ithm. Therefore, an additional optimization step for the pattern center
nd orientation prior to extraction of the deformation state is added in
he test for the experimental data set.
Moreover, we have tested the hybrid optimization method on a

RIP steel experimental data set. The optimization method has been
ombined with the HR-EBSD method. It involved first optimizing the
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Fig. 11. (a) EBSD orientation map (IPF-Z), (b) image quality map, (c) HR-EBSD based GND density map (unit: log10 GND density).
Fig. 12. Grain Reference Orientation Deviation (GROD) maps generated from (a) EDAX Hough indexing, (b) global optimization, (c) refined dictionary indexing.
orientation and pattern center of a reference pattern. Then, optimized
Euler angles were fixed in the process when we inferred the defor-
mation tensor and pattern center. Note that the deformation tensor
contains a rotational part that also changes the orientation of the
crystal. Therefore, the first step can probably be skipped for most
well-calibrated system, which has accurate initial values of the pattern
center and orientation. The second step is the crucial step to reduce
error associated with pattern center due to elastic strain. The inferred
strain state could then be used to correct HR-EBSD derived data with
respect to the inferred reference pattern. Using the DE+NMS hybrid
method to infer the strain states from different reference patterns P and
Q in the TRIP steel data set, reference pattern strain states corrected
strain maps indicate clear agreement in the shear strain 𝜖 component,
12

12
as shown in Fig. 10. Nevertheless, future work is still required to further
improve the sensitivity of the pattern matching approach to simultane-
ous deformation state extraction and pattern center refinement since
the elastic strain limit of most metallic materials is about 0.002 [61].
Moreover, the experimental data used here had an unknown strain
state so the demonstration here only served as an indirect approach
to assess the accuracy of this ‘‘absolute’’ strain method. The difference
between the strain state corrected strain maps using reference patterns
P and Q showed mean strain errors about 0.001. Testing the efficacy
of this method on a sample with known strain states, e.g., an epitaxial
𝑆𝑖𝑥𝐺𝑒1−𝑥 thin film deposited on Si substrate, is currently in progress,

which will help to understand the accuracy of the inferred deformation
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state and the variation of inferred pattern center across a large field of
view.

Last but not least, the absolute orientation error of this technique
has not been tested experimentally since perfect setup geometrically is a
non-trivial exercise. Simultaneous optimization of orientation and pat-
tern center using the incorrect sample-detector orientation relationship
results in inaccurate orientation matrix with disorientation error equal
to the tilt error, as shown in Fig. A.1 in the Appendix A. The pattern
center remains quite accurate i.e. less than 0.05% detector with this
level of uncertainty in the tilt angle, which is generally acceptable for
elastic strain measurement [30,62]. In addition, the uncertainty in the
ilt will also slightly bias the traction free boundary condition but the
ffect of such bias will be generally small on the elastic strain tensor
iven that the tilt error is not significant and only the normal stress is
et to zero [63]. An additional complexity arose when we tested the
rientation dependency of the error in the deformation tensor using
imulated patterns; it is not clear why certain orientations had a slightly
arger error in the deformation tensor. Future work is needed to further
xplore and address these issues.

. Summary

In this study, global optimization methods such as DE and PSO
ave been implemented to refine orientation and pattern center for
BSD data so as to address the sloppy optimization problem. The
irect inference of the deformation state is also made possible with the
ntroduction of an approximate model for deformation tensor inclusion
n the pattern simulation. It has been found that the DE algorithm is
more efficient algorithm compared to PSO based on hyperparameter
uning studies. In Section 3.2, it has been found that the reasonable
anges for the optimization parameters of DE are crossover probability
𝑟 ∈ [0.7, 0.9] and mutation factor 𝐹 ∈ [0.3, 0.5]. In addition, the effect
f using different mutation schemes and search spaces on DE has also
een explored, which suggests that DE/best-to-rand/1/bin is the opti-
al strategy. As a general rule of thumb, a population size 𝑁𝑝 = 10𝐷
𝐷 being the dimension of the problem) and a number of generations or
terations 𝑔=100 are sufficiently large for deformation tensor inference.
or orientation and pattern center refinement, validation test on a
et of realistically simulated undeformed single crystal nickel patterns
ndicates a mean accuracy of ≈ 0.03◦ and ≈0.01% detector width across
large field of view. For deformation inference, a hybrid strategy has
een adopted by adding the NMS step after the global optimization
o further refine our solution. The validation using noisy simulated
eformed patterns with known deformation state and pattern center
hows that the mean accuracy of shear strain and rotation components
s ≈0.001 and for the normal strain ≈0.002. An indirect experimental
alidation of the deformation tensor was conducted on the TRIP steel
ample undergone low cycle fatigue test, showing nice agreement of
lastic strain fields from HR-EBSD after strain state correction.
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Fig. A.1. Effect of detector tilt error on the accuracy of (left) pattern center error
(right) orientation error.

Appendix A

Definition of similarity metrics

The four types of image similarity metrics used in 3.1 are defined in
he following. Suppose we have an image 𝐀 and an image 𝐁 with the
ame dimensions of i by j.
The normalized dot product (NDP) is defined as:

𝐷𝑃 =
∑

𝑖,𝑗 𝐴𝑖,𝑗𝐵𝑖,𝑗

‖𝐀‖‖𝐁‖
, (12)

here ‖𝐀‖ =
√

∑

𝑖,𝑗 𝐴
2
𝑖,𝑗 .

The cross-correlation coefficient (XCF) is defined as:

𝑋𝐶𝐹 =
∑

𝑖,𝑗 (𝐴𝑖,𝑗 − 𝐀)(𝐵𝑖,𝑗 − 𝐁)

‖𝐀 − 𝐀‖‖𝐁 − 𝐁‖
, (13)

where ‖𝐀 − 𝐀‖ =
√

∑

𝑖,𝑗 (𝐴𝑖,𝑗 − 𝐀)2 and 𝐀 is the mean of 𝐀.
The root-mean-square-error (RMSE) is defined as:

𝑅𝑀𝑆𝐸 =

√

∑

𝑖,𝑗 (𝐴𝑖,𝑗 − 𝐵𝑖,𝑗 )2

𝑁
, (14)

here 𝑁 is the number of pixels of image 𝐀 or 𝐁.
The mutual information involves the use of Shannon entropy:

= −
∑

𝑖
𝑝𝑖 log 𝑝𝑖, (15)

where 𝑝𝑖 is the probability distribution of the intensity 𝑖 ∈ [0,… , 255] of
a gray-scale image between. Similarly, the Shannon entropy of a joint
distribution (a measure of image registration) is defined as:

𝐻 = −
∑

𝑖,𝑗
𝑝𝑖,𝑗 log 𝑝𝑖,𝑗 . (16)

The mutual information MI(A,B) between images A and B can be
established as the sum of Shannon entropy values of the two images
minus the joint entropy.

𝑀𝐼(𝐴,𝐵) = 𝐻(𝐴) +𝐻(𝐵) −𝐻(𝐴,𝐵). (17)

It is clear that the optimization of these objective function values
require either maximizing (NDP, XCF, MI) or minimizing (RMSE) the
corresponding metric for the pattern matching problem.

Effect of tilt error on pattern center and orientation

See Fig. A.1.

Appendix B. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.ultramic.2021.113407. Brief introduction
about how to use the global optimization program implemented in
EMsoft. A new Python interface (pyEMsoft) has also been developed

to allow easier access to some of the EMsoft’s Fortran routines.

https://doi.org/10.1016/j.ultramic.2021.113407
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