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Abstract
In this work we advance the understanding of the fundamental limits of computation for Binary Polynomial

Optimization (BPO), which is the problem of maximizing a given polynomial function over all binary points.
In our main result we provide a novel class of BPO that can be solved efficiently both from a theoretical
and computational perspective. In fact, we give a strongly polynomial-time algorithm for instances whose
corresponding hypergraph is �-acyclic. We note that the �-acyclicity assumption is natural in several
applications including relational database schemes and the lifted multicut problem on trees. Due to the novelty
of our proving technique, we obtain an algorithm which is interesting also from a practical viewpoint. This is
because our algorithm is very simple to implement and the running time is a polynomial of very low degree in
the number of nodes and edges of the hypergraph. Our result completely settles the computational complexity
of BPO over acyclic hypergraphs, since the problem is NP-hard on ↵-acyclic instances. Our algorithm can
also be applied to any general BPO problem that contains �-cycles. For these problems, the algorithm returns
a smaller instance together with a rule to extend any optimal solution of the smaller instance to an optimal
solution of the original instance.

1 Introduction

In binary polynomial optimization we seek a binary point that maximizes a given polynomial function. This
fundamental problem has a broad range of applications in several areas, including operations research, engineering,
computer science, physics, biology, finance, and economics (see e.g., [8, 39, 21]). The generality of this problem
is highlighted by the fact that the problem of maximizing any given function over all binary points can be
reformulated as a binary polynomial optimization problem.

In order to formalize this optimization problem, a hypergraph representation is often used [17]. A hypergraph

G is a pair (V,E), where V is the node set and E is the edge set, which is a family of non-empty subsets of V .
We remark that the edge set E may contain parallel edges and loops, as opposed to the setting considered in
[17, 19, 20]. In the hypergraph representation, each node represents a variable of the given polynomial function,
whereas every edge represents a monomial. Therefore, any binary polynomial optimization problem can be
formulated as

(BPO)
max

X

v2V

pvxv +
X

e2E

pe

Y

v2e

xv

s.t. x 2 {0, 1}V .

In this formulation, x is the decision vector, and an instance comprises of a hypergraph G = (V,E) together with
a profit vector p 2 ZV [E . We remark that a rational profit vector can be scaled to be integral by multiplying it
by the least common multiple of the denominators and this transformation leads to a polynomial growth of the
instance size (see Remark 1.1 in [12]).

The main goal of this paper is that of advancing the understanding of the fundamental limits of computation
for (BPO). In fact, while there are several known classes of binary quadratic optimization that are polynomially
solvable (see for instance [1, 45, 13, 41, 42]), very few classes of higher degree (BPO) are known to be solvable
in polynomial-time. These are instances that have: (i) incidence graph or co-occurrence graph of fixed treewidth
[14, 41, 5], or (ii) objective function whose restriction to {0, 1}n is supermodular (see Chapter 45 in [48]), or (iii)
a highly acyclic structure [20], which we discuss in detail below.
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Notice that, in the quadratic setting, the hypergraphs representing the instances are actually graphs. It is
known that instances over acyclic graphs can be solved in strongly polynomial time [14]. Motivated by this fact,
it is natural to analyze the computational complexity of (BPO) in the setting in which the hypergraph G does
not contain any cycle. However, for hypergraphs, the definition of cycle is not unique. As a matter of fact, one
can define Berge-cycles, �-cycles, �-cycles, and ↵-cycles [25, 35]. Correspondingly, one obtains Berge-acyclic,
�-acyclic, �-acyclic, and ↵-acyclic hypergraphs, in increasing order of generality. The definitions of �-acyclic and
↵-acyclic hypergraph are given in Sections 1.1 and 1.2, and we refer the reader to [25] for the remaining definitions.

In [20], Del Pia and Khajavirad show that it is possible to solve (BPO) in polynomial-time if the corresponding
hypergraph is kite-free �-acyclic. It should be noted that this class of hypergraphs lies between �-acyclic and
�-acyclic hypergraphs. This result is obtained via linearization, which is a technique that consists in linearizing
the polynomial objective function via the introduction of new variables ye, for e 2 E, defined by ye =

Q
v2e

xv.
This leads to an extended integer linear programming formulation in the space of the (x, y) variables, which is
obtained by replacing the nonlinear constraints ye =

Q
v2e

xv, for all e 2 E, with the inequalities that describe its
convex hull on the unit hypercube [26]. The convex hull of the feasible points is known as the multilinear polytope,
as defined in [17]. The tractability result in [20] is then achieved by providing a linear programming extended
formulation of the multilinear polytope of polynomial size. The linearization technique also led to several other
polyhedral results for (BPO), including [17, 15, 19, 18, 10, 20, 16, 32].

A different approach to study binary polynomial optimization involves quadratization techniques [46, 27, 11,
33, 34]. The common idea in the quadratization approaches is to add additional variables and constraints so
that the original polynomial can be expressed in a higher dimensional space as a new quadratic polynomial. The
reason behind it is that in this way it is possible to exploit the vast literature available for the quadratic case. An
alternative approach is to use a different formalism altogether like pseudo-Boolean optimization [30, 31, 14, 8, 7, 6].
Pseudo-Boolean optimization is a more general framework, as in fact the goal is to optimize set functions that
admit closed algebraic expressions.

1.1 A strongly polynomial-time algorithm for �-acyclic hypergraphs Our main result is an algorithm
that solves (BPO) in strongly polynomial-time whenever the hypergraph corresponding to the instance is �-acyclic.

To formally state our tractability result, we first provide the definition of �-acyclic hypergraph [25]. A
hypergraph is �-acyclic if it does not contain any �-cycle. A �-cycle of length q, for some q � 3, is a sequence
v1, e1, v2, e2, . . . , vq, eq, v1 such that v1, v2, . . . , vq are distinct nodes, e1, e2, . . . , eq are distinct edges, and vi

belongs to ei�1, ei and no other ej for all i = 1, . . . , q, where e0 = eq.
Our algorithm is based on a dynamic programming-type recursion. The idea behind it is to successively remove

a nest point from G, until there is only one node left in the hypergraph. In fact, we observe that optimizing the
problem becomes trivial when there is only one node left. A node u of a hypergraph is a nest point if for every two
edges e, f containing u, either e ✓ f or f ✓ e. Equivalently, the set of the edges containing u is totally ordered.
Observe that, in connected graphs with at least two nodes, nest points coincide with leafs. Therefore, nest points
can be seen as an extension of the concept of leaf in a graph to the hypergraph setting. Before going forward,
we remark that finding a nest point in a hypergraph can be done in strongly polynomial-time by brute force [44].
We denote by ⌧ the number of operations required to find a nest point, which is bounded by a polynomial in |V |
and |E|. We are now ready to state our main result.

Theorem 1.1. There is a strongly polynomial-time algorithm to solve (BPO), provided that the input hypergraph

G = (V,E) is �-acyclic. In particular, the number of arithmetic operations performed is O(|V |(⌧ + |E| +
|V | log |E|)).

The description of the algorithm and the proof of Theorem 1.1 can be found in Section 2. Theorem 1.1 provides
a novel class of (BPO) that can be solved efficiently both from a theoretical and computational perspective. In
fact, this class of problems is not contained in the classes (i), (ii), or (iii) for which a polynomial-time algorithm was
already known. This can be seen because a laminar hypergraph G = (V,E) with edges e1 ✓ e2 ✓ · · · ✓ em = V is
�-acyclic and does not satisfy the assumptions in (i). Furthermore, it is simple to see that there exist polynomials
whose restriction to {0, 1}n is not supermodular and the corresponding hypergraph is �-acyclic. Finally, it is well-
known that the class of �-acyclic hypergraphs significantly extends the class of kite-free �-acyclic hypergraphs.

The concept of �-acyclicity is not interesting only in a theoretical context. To the contrary, this assumption
is quite natural in several real world applications. A thorough discussion of this topic is not in the scope of this
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paper, where instead we only mention a couple of examples. In the study of relational database schemes, the
�-acyclicity assumption is renowned to be advantageous [24]. In fact, a number of basic and desirable properties in
database theory turn out to be equivalent to acyclicity. A second example is given by the lifted multicut problem
on trees, where the problem can be equivalently formulated via binary polynomial optimization [40]. The goal of
the lifted multicut problem is to partition a given graph in a way that minimizes the total cost associated with
having different pairs of nodes in different components. This problem has been shown to be very useful in the
field of computer vision, in particular when applied to image segmentation [3], object tracking [49], and motion
segmentation [36]. Even when the underlying graph is a tree, the lifted multicut problem is NP-hard. However
it can be solved in polynomial time when we focus on paths rather than on trees. It is simple to observe that
this special case is formulated with a polynomial whose hypergraph is �-acyclic. Lastly, we observe that these
�-acyclic hypergraphs can exhibit kites, and therefore do not fit into the previous studies [20].

The interest of Theorem 1.1 also lies in the novelty of the proving technique with respect to the other recent
results in the field previously mentioned. In particular, our algorithm does not rely on linear programming,
extended formulations, polyhedral relaxations, or quadratization. This in turn leads to two key advantages.
First, our algorithm it is very simple to implement. Second, we obtain a strongly polynomial time algorithm
(as opposed to a weakly polynomial time algorithm) and the running time is a polynomial of very low degree in
the number of nodes and edges of the hypergraph. These two key points contribute to making our algorithm
interesting also from a practical viewpoint. Furthermore, we remark that it is possible to recognize efficiently
when (BPO) is represented by a �-acyclic hypergraph [25].

Theorem 1.1 has important implications in polyhedral theory as well. In particular, it implies that one can
optimize over the multilinear polytope for �-acyclic hypergraphs in strongly polynomial-time. By the polynomial
equivalence of separation and optimization (see, e.g., [12]), for this class of hypergraphs, the separation problem
over the multilinear polytope can be solved in polynomial-time.

We remark that our algorithm in Theorem 1.1 can be applied also to hypergraphs that are not �-acyclic. In
this case, the algorithm does not return an optimal solution to the given instance. However, it returns a smaller
instance together with a rule to construct an optimal solution to the original instance, given an optimal solution
to the smaller instance. Therefore, our algorithm can be used as a reduction scheme to decrease the size of a
given instance. Via computational experiments, we generate random instances and study the magnitude of this
decrease. In particular, the results of our simulations show that the percentage of removed nodes is on average
50% whenever the number of the edges is half the number of nodes. We discuss this topic in Section 3.

1.2 Settling the complexity of (BPO) over acyclic hypergraphs Theorem 1.1 allows us to completely
settle the computational complexity of (BPO) over acyclic hypergraphs. More specifically, it can be seen that
two hardness results hold for (BPO) when the input hypergraphs belong to the next class of acyclic hypergraphs,
in increasing order of generality, that is the one of ↵-acyclic hypergraphs. Several equivalent definitions of ↵-
acyclic hypergraphs are known (see, e.g., [2, 25, 9]). In the following, we will use the characterization stated in
Theorem 1.2 below. This characterization is based on the concept of removing nodes and edges from a hypergraph.
When we remove a node u from G = (V,E) we are constructing a new hypergraph G

0 = (V 0
, E

0) with V
0 = V \{u}

and E
0 = {e \ {u} : e 2 E, e 6= {u}}. Observe that when we remove a node we might be introducing loops and

parallel edges in the hypergraph. When we remove an edge f from G = (V,E), we construct a new hypergraph
G

0 = (V,E0), where E
0 = E \ {f}.

Theorem 1.2. ([2]) A hypergraph G is ↵-acyclic if and only if the empty hypergraph (;, ;) can be obtained by

applying the following two operations repeatedly, in any order:

1. if a node v belongs to at most one edge, then remove v;

2. if an edge e is contained in another edge f , then remove e.

We claim that both Simple Max-Cut and Max-Cut can be formulated as special cases of (BPO) where the
hypergraphs representing the problems are ↵-acyclic. It is well-known that both these problems can be formulated
as binary quadratic problems [12]. Then, we define the corresponding instance of (BPO) starting from the graph
representing the instance of the binary quadratic problem. Namely, we construct the hypergraph by adding to the
graph one edge of weight zero that contains all the nodes. Theorem 1.2 implies that such hypergraph is ↵-acyclic.
At this point, it can be seen that the corresponding instance of (BPO) is equivalent to the original quadratic
instance. Therefore, the known hardness results of Simple Max-Cut and Max-Cut [28, 50] transfer to this setting,

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited2686

D
ow

nl
oa

de
d 

06
/0

3/
22

 to
 8

0.
11

6.
17

3.
58

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



yielding the following hardness result.

Theorem 1.3. (BPO) over ↵-acyclic hypergraph is strongly NP-hard. Furthermore, it is NP-hard to obtain a

r-approximation for (BPO), with r >
16
17 ⇡ 0.94, unless P = NP.

The reduction just described shows that the statement of Theorem 1.3 holds even if the values of the objective
function belong to a restricted subset. The interested reader can find more details in Appendix B. Together,
Theorem 1.1 and Theorem 1.3 completely settle the computational complexity of binary polynomial optimization
over acyclic hypergraphs.

2 A strongly polynomial-time algorithm for �-acyclic hypergraphs

In this section we present the general algorithm for �-acyclic instances. Our algorithm makes use of a
characterization of �-acyclic hypergraphs, which is based on the concept of removing nest points from the
hypergraph. We remind the reader that the operation of removing a node is explained in Section 1.2. We
are now ready to state this characterization of �-acyclic hypergraphs.

Theorem 2.1. ([22]) A hypergraph G is �-acyclic if and only if after removing nest points one by one we obtain

the empty hypergraph (;, ;).

We observe that Theorem 2.1 does not depend on the particular choice of the nest point to be removed
at each step. Theorem 2.1 implies that, for our purposes, it suffices to understand how to reduce an instance
of the problem to one obtained by removing a nest point u. In particular, realizing how to update the profit
vector is essential. Once we solve the instance of the new problem without u, we decide whether to set the
variable corresponding to u to zero or one depending on the values of the variables of the other nodes in the edges
containing u, which are given by the solution of the smaller problem.

Before describing the algorithm, we explain some notation that will be used in this section. Let u 2 V be a
nest point contained in k edges. Without loss of generality, we can assume that these edges are e1, e2, . . . , ek
and that e1 ✓ e2 ✓ · · · ✓ ek. For simplicity of notation, we denote by e0 the set {u} and by pe0 the profit pu.
Moreover, we clearly have e0 ✓ e1. We will divide the subcases to consider based on the sequence of the signs of

pe0 , pe0 + pe1 , pe0 + pe1 + pe2 , . . . , pe0 + pe1 + · · ·+ pek .

Note that the number of subcases can be exponential in the number of edges, however we find a compact formula
for the optimality conditions, which in turn yields a compact way to construct the new profit vector p

0 for the
hypergraph G

0 = (V 0
, E

0) obtained by removing u from G. We say that there is a flip in the sign sequence
whenever the sign of the sequence changes. More precisely, a flip is positive if the sign sequence goes from non-
positive to positive and the previous non-zero value of the sequence is negative. Similarly, we say that a flip is
negative if the sequence goes from non-negative to negative and the previous non-zero value of the sequence is
positive. We say that an edge ei corresponds to a flip in the sign sequence, if there is a flip between

P
i�1
j=0 pej and

P
i

j=0 pej .
In order to describe the several cases easily, in a compact way, we partition the indices 0, . . . , k into four sets

P, N , N P, and PN . The first two sets are defined by

P := {i : i = 1, . . . , k, ei corresponds to a positive flip},
N := {i : i = 1, . . . , k, ei corresponds to a negative flip}.

If there is at least one flip, the sets N P, and PN are defined as follows:

N P := {0, . . . , s� 1 : s is the first flip and s 2 P}
[ {i : 9 two consecutive flips s 2 N , t 2 P s.t. s+ 1  i  t� 1}
[ {t+ 1, . . . , k : if t is the last flip and t 2 N },

PN := {0, . . . , s� 1 : s is the first flip and s 2 N }
[ {i : 9 two consecutive flips s 2 P, t 2 N s.t. s+ 1  i  t� 1}
[ {t+ 1, . . . , k : if t is the last flip and t 2 P}.
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Otherwise, if there is no flip, we define

N P := {0, . . . , k : if pe0  0},
PN := {0, . . . , k : if pe0 > 0}.

Remark 1. We observe that the indices {0, 1, . . . , k} cycle between N P, P, PN , N following this order. In

fact, if i 2 P then the following indices must be in PN until we reach an index that belongs to N . Similarly, if

i 2 N the indices after i must belong to N P until there is an index in P. Note that it can happen that there is

an index in P and the next index is in N . If this happens, then there are no indices in PN between these two

indices. Similarly, it may happen that there is an index in N followed immediately by an index in P. Moreover,

the index 0 belongs to either N P or PN . ⇧

Example 1. Let us give an example to clarify the meaning of the sets P, N , N P, and PN . Consider a

nest point u, contained in the edges e1, e2, e3, e4, e5 such that e1 ✓ e2 ✓ e3 ✓ e4 ✓ e5. Assume that pe0 = 3,
pe1 = �3, pe2 = 1, pe3 = �2, pe4 = 3, pe5 = 2. We can check that pe0 = 3 > 0, pe0+ pe1 = 0, pe0+ pe1+
pe2 = 1 > 0, pe0 + pe1 + pe2 + pe3 = �1 < 0, pe0 + pe1 + pe2 + pe3 + pe4 = 2 > 0 and finally pe0+ pe1+ pe2+
pe3+ pe4+ pe5 = 4 > 0. The indices 0, . . . , 5 are partitioned in the sets PN = {0, 1, 2, 5}, N = {3}, N P = ;,
P = {4}. Observe that here there are no indices in N P when we go from the negative flip corresponding to e3

to the next positive flip, which corresponds to e4.

Our algorithm acts differently whether all the edges containing the nest point u are loops or not. Let us
now consider the case where u is contained not only in loops. In this case, for a vector x 2 {0, 1}V 0

, we define
'(x) 2 {0, 1} that will assign the optimal value to the variable corresponding to the nest point u, given the values
of the variables corresponding to the nodes in V

0. We denote by µ = µ(x) the largest index i 2 {0, . . . , k}, such
that xv = 1 for every v 2 ei \ {u}. We then set

'(x) :=

(
1 if µ 2 P [ PN

0 if µ 2 N [ N P.

Note that all the edges e that are loops {u} satisfy trivially the condition xv = 1 for every v 2 e \ {u}, as
e \ {u} = ;. In particular, e0 always satisfies this condition, hence µ is well defined. Given a vector x 2 {0, 1}V ,
we denote by dropu(x) the vector in {0, 1}V 0

obtained from x by dropping its entry corresponding to the node u.
We then define µ(x) := µ(dropu(x)) and '(x) := '(dropu(x)).

In our algorithm we decide to keep loops and parallel edges for ease of exposition. An additional reason is
that we avoid checking for loops and parallel edges at every iteration. Furthermore, in this way there is a bijection
between {e 2 E : e 6= {u}} and E

0, which will be useful in the arguments below. In order to construct the new
profit vector p

0, it is convenient to give a name to the index of the first edge in e0 ✓ e1 ✓ · · · ✓ ek that is not
equal to {u}. We denote this index by �. We remark that when u is not contained only in loops, the index � is
well defined. Next, observe that p0 2 RV

0[E
0
. We will use an abuse of notation for the indices of p0 corresponding

to the edges in E
0 obtained from e�, . . . , ek by removing u. We denote these indices by e�, . . . , ek, even if

these edges belong to E. This abuse of notation does not introduce ambiguity because of the bijection between
{e 2 E : e 6= {u}} and E

0 and the fact that {ei 2 E : i = �, . . . , k} ✓ {e 2 E : e 6= {u}}. We are now ready to
present our algorithm for �-acyclic hypergraphs, which we denote by Acyclic(G, p).

Algorithm 1 Acyclic(G, p)
1: Find a nest point u. Let e1 ✓ e2 ✓ · · · ✓ ek be the edges containing it.
2: Compute P, N , N P, PN .
3: Construct the hypergraph G

0 = (V 0
, E

0) by removing u from G.
4: if ek = {u} then

5: Set x
⇤
u
:=

(
1 if

P
k

i=0 pei � 0

0 if
P

k

i=0 pei < 0 .

6: if |V | > 1 then

7: Set p
0
t
:= pt for all t 2 V

0 [ E
0.
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8: Set x
0 := Acyclic(G0

, p
0).

9: Set x
⇤
w
:= x

0
w

for all w 2 V
0.

10: else

11: Find �.
12: Set p

0
t
:= pt for all t 2 V

0 [ E
0 \ {e1, . . . , ek}.

13: Set p
0
ei

:=

8
>>><

>>>:

0 for every i 2 N P \ {i : i � �}
P

i

r=0 per for every i 2 P \ {i : i � �}
pei for every i 2 PN \ {i : i � �}
�
P

i�1
r=0 per for every i 2 N \ {i : i � �} .

14: Set x
0 := Acyclic(G0

, p
0).

15: Set x
⇤
w
:= x

0
w

for all w 2 V
0.

16: Set x
⇤
u
:= '(x0).

17: return x
⇤.

An example of the execution of the algorithm is presented in Appendix A. We next show the correctness of
the algorithm.

Proposition 2.1. The algorithm Acyclic(G, p) returns an optimal solution to (BPO), provided that G is �-

acyclic.

Proof. We prove this proposition by induction on the number of nodes. We start from the base case, that is when
|V | = 1. It follows that e = {u} for all e 2 E, since {e1, . . . , ek} = E. In this case the algorithm only performs
lines 1-5 and line 17. There are only two possible solutions: either x

⇤
u
= 0, or x

⇤
u
= 1. The algorithm computes

the objective corresponding to x
⇤
u
= 1. If the objective is non-negative, it sets x

⇤
u
:= 1, otherwise it sets x

⇤
u
:= 0.

The solution provided by the algorithm is optimal, since we are maximizing.
Next we consider the inductive step, and analyze the correctness of Acyclic(G, p) when it removes a nest

point. We define obj(·) to be the objective value of (BPO) yielded by a binary vector in {0, 1}V . Let u be the
nest point to be removed at a given iteration of the algorithm. We denote by (BPO)0 the problem of the form
(BPO) over the hypergraph G

0 and the profits p0, defined by Acyclic(G, p). Likewise, let obj0(·) be the objective
value of (BPO)0 provided by a vector in {0, 1}V 0

. By the inductive hypothesis, the vector x
0 defined in line 8 or

14 is optimal to (BPO)0. Our goal is to show that the returned solution x
⇤ is optimal to (BPO).

We consider first the case in which ek = {u}, i.e., when all the edges that contain u are loops. This implies
that every edge e 2 E is either a loop {u} or does not contain the node u. Therefore, an optimal solution to (BPO)
is obtained by combining an optimal solution to (BPO)0 with an optimal solution to the problem represented by
the hypergraph ({u}, {e1, . . . , ek}) with profits pu and pei , for i = 1, . . . , k. By using the same proof of the base
case, we can see that line 5 provide the optimal value of x⇤

u
. Since the vector x

0 is optimal to (BPO)0, we can
conclude that the vector x

⇤ returned by the algorithm is optimal.
Next, we consider the case in which ek is not a loop.

Claim 1. There exists an optimal solution x̃ to (BPO) such that x̃u = '(x̃).

Proof of Claim 1. To show this, let x̄ be an optimal solution to (BPO). If x̄u = '(x̄), then we are done. Thus,
assume that x̄u = 1�'(x̄), and let x̃ be obtained from x̄ by setting x̃u := '(x̄). Note however that '(x̄) = '(x̃),
since x̄v = x̃v for all nodes v 6= u. Therefore we want to show that x̃ is optimal. The proof splits in two cases:
either '(x̃) = 0, or '(x̃) = 1.

Consider the first case '(x̃) = 0. Hence x̄u = 1 and x̃u = 0. Therefore, it follows that obj(x̄) =
obj(x̃) +

P
µ

i=0 pei . By definition of ', we have µ = µ(x̃) 2 N [ N P, thus
P

µ

i=0 pei  0. Then, we obtain that
obj(x̄)  obj(x̃) and x̃ is optimal to (BPO) as well.

Assume now that we are in the second subcase, i.e., '(x̃) = 1. Therefore we have x̄u = 0, x̃u = 1, and
obj(x̃) = obj(x̄) +

P
µ

i=0 pei . Since µ 2 P [ PN , it follows that
P

µ

i=0 pei � 0, therefore obj(x̃) � obj(x̄). Thus,
we can conclude that also x̃ is optimal to (BPO). ⇧

We remark that, since ek 6= {u}, the index � is well defined and � � 1. From now on let x be any vector
{0, 1}V such that xu = '(x). Let µ = µ(x).
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Our next main goal is to show the equality

(2.1) obj(x) =

(
obj0(dropu(x)), if � 2 N P [ P

obj0(dropu(x)) +
P

��1
i=0 pei , if � 2 PN [ N .

We define the sets A and B as follows. If xu = 0 let A := ;. Otherwise, that is if xu = 1, we define
A := {0, 1, . . . , µ}. In order to define B we observe that either �  µ or µ = � � 1. This is because � � 1
is the index of the last loop {u}. We then define B := {�, . . . , µ} if �  µ, otherwise we set B := ;, if µ = �� 1.
In order to prove (2.1), it suffices to check that

(2.2)
X

i2A

pei =

(P
i2B

p
0
ei
, if � 2 N P [ P

P
i2B

p
0
ei
+
P

��1
i=0 pei , if � 2 PN [ N ,

by the definitions of p0 and dropu(x). In the next claim, we study the value of
P

i2B
p
0
ei

, which is present in (2.2).

Claim 2. Let �  µ. If P \ {�, . . . , µ} = ;, then

(2.3)
X

i2B

p
0
ei

=

8
><

>:

0, if � 2 N P
P

µ

i=�
pei , if � 2 PN and µ 2 PN

�
P

��1
i=0 pei , if � 2 N or if � 2 PN and µ 2 N [ N P.

If P \ {�, . . . , µ} 6= ;, then

(2.4)
X

i2B

p
0
ei

=

8
>>><

>>>:

0, if � 2 N P [ P and µ 2 N [ N P
P

µ

i=0 pei , if � 2 N P [ P and µ 2 P [ PN

�
P

��1
i=0 pei , if � 2 PN [ N and µ 2 N [ N P

P
µ

i=�
pei , if � 2 PN [ N and µ 2 P [ PN .

Proof of Claim 2. Observe that
P

i2B
p
0
ei

is not trivially equal to zero, since �  µ.
First, we assume that P \ {�, . . . , µ} = ;. In this case we can easily compute the value of

P
i2B

p
0
ei

. Assume
first that � 2 N P. By Remark 1 it is easy to see that {�, . . . , µ} must belong to N P. Then, by definition of
p
0, it follows that

P
i2B

p
0
ei

= 0. Next, consider the case in which � 2 PN and µ 2 PN . From Remark 1,
we can conclude that {�, . . . , µ} ✓ PN . By definition of p0, we can observe that

P
i2B

p
0
ei

=
P

µ

i=�
pei . Next,

assume that � 2 N . Since � 2 N , it is easy to see that {� + 1, . . . , µ} ✓ N P by Remark 1. Hence by
definition of p

0, we get that
P

i2B
p
0
ei

= p
0
e�

= �
P

��1
i=0 pei . Lastly, let � 2 PN and µ 2 N [ N P. This

implies that there must be exactly one index q 2 N \ {� + 1, . . . , µ}. By using the definition of p0 we obtainP
i2B

p
0
ei

=
P

q�1
i=�

p
0
ei
+ p

0
q
+
P

µ

i=q+1 p
0
ei

=
P

q�1
i=�

pei �
P

q�1
i=0 pei = �

P
��1
i=0 pei . This ends the proof of (2.3).

Next, we assume P \ {�, . . . , µ} 6= ;. We divide
P

i2B
p
0
ei

in three parts. Let ◆1 be the first index in
P \ {�, . . . , µ}, and let ◆2 be the last index in P \ {�, . . . , µ}. Note that it is possible that ◆1 = ◆2. Then, we
observe that

(2.5)
X

i2B

p
0
ei

=
◆1�1X

i=�

p
0
ei
+

◆2�1X

i=◆1

p
0
ei
+

µX

i=◆2

p
0
ei

.

Now we study the value of the sums in the right hand side of (2.5).
We start by showing that

(2.6)
◆2�1X

i=◆1

p
0
ei

= 0 .

If it is vacuous, then it is trivially equal to zero. Then we assume that it is not vacuous. Since ◆2 2 P, the last
index in this sum is in N [ N P. Because of the fact that the first index of the sum is in P and by definition
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of p0, we can conclude that all the profits in
P

◆2�1
i=◆1

p
0
ei

cancel each other out. Then, (2.6) holds. From now on, in
the analysis of (2.5), we will only focus on the values of

P
◆1�1
i=�

p
0
ei

and
P

µ

i=◆2
p
0
ei

.
We consider the first of these two sums. We prove that

(2.7)
◆1�1X

i=�

p
0
ei

=

(
0, if � 2 N P [ P

�
P

��1
i=0 pei , if � 2 PN [ N .

We start with analyzing the case in which � 2 N P [ P. If � 2 P, then ◆1 = � and the sum is
trivially equal to 0. Then we assume that � 2 N P. Since ◆1 is the first index in P with ◆1 � �,
Remark 1 implies that all indices {�, . . . , ◆1 � 1} belong to N P. Therefore, by definition of p

0, we conclude
that

P
◆1�1
i=�

p
0
ei

= 0. Next, let � 2 PN [ N . Here, the indices in {�, . . . , ◆1 � 1} can be in PN , N ,
or N P. Moreover, there must be exactly one index q 2 N \ {�, . . . , ◆1 � 1}. Then, we can see thatP

◆1�1
i=�

p
0
ei

=
P

q�1
i=�

p
0
ei

+ p
0
q
+

P
◆1�1
i=q+1 p

0
ei

=
P

q�1
i=�

pei �
P

q�1
i=0 pei = �

P
��1
i=0 pei . This concludes the proof of

(2.7).
It remains to compute

P
µ

i=◆2
p
0
ei

. We show that

(2.8)
µX

i=◆2

p
0
ei

=

(
0, if µ 2 N [ N P
P

µ

i=0 pei , if µ 2 P [ PN .

Assume that µ 2 N [ N P. Since ◆2 2 P, there must be an index q 2 N \ {◆2 + 1, . . . , µ}. Then,P
µ

i=◆2
p
0
ei

= p
0
◆2

+
P

q�1
i=◆2+1 p

0
ei

+ p
0
eq

+
P

µ

i=q+1 p
0
ei

. By using the definition of p
0 we obtain the following:

P
µ

i=◆2
p
0
ei

=
P

◆2

i=0 pei+
P

q�1
i=◆2+1 pei�

P
q�1
i=0 pei = 0. We look at the second case, and we assume that µ 2 P[PN .

Then, by definition of ◆2 and the fact that µ 2 P[PN , it follows that all indices in {◆2+1, . . . , µ} belong to PN .
By the definition of p0, we can conclude that

P
µ

i=◆2
p
0
ei

= p
0
◆2
+
P

µ

i=◆2+1 p
0
ei

=
P

◆2

i=0 pei +
P

µ

i=◆2+1 pei =
P

µ

i=0 pei .
This concludes the proof of (2.8).

We conclude that (2.4) holds, by combining appropriately the different cases of (2.7) and (2.8) into (2.5). ⇧

We are now ready to prove (2.1). This proof is divided in two cases, depending on the value of xu. The
first case that we consider is when xu = '(x) = 0. Therefore, we assume that xu = '(x) = 0. As previously
observed, we only need to show that (2.2) holds. Since xu = 0, it follows that A = ;, hence

P
i2A

pei = 0.
Furthermore, '(x) = 0 implies µ 2 N [N P. We consider the two cases µ = ��1 and �  µ. Consider the case
µ = ��1. Then

P
i2B

p
0
ei

is vacuous and equal to 0. Furthermore, if µ 2 N [N P it means that � 2 N P [P.
Hence (2.2) holds. Next, we assume that �  µ, which implies that B is non-empty. If P \ {�, . . . , µ} = ;,
we get that

P
i2B

p
0
ei

= 0 if � 2 N P by (2.3). Therefore (2.2) is true. Otherwise, if � 2 PN [ N , then
P

i2B
p
0
ei

= �
P

��1
i=0 pei since µ 2 N [ N P. Hence (2.2) holds also in this case. Therefore, we assume that

P \ {�, . . . , µ} 6= ;. We start from the case in which � 2 N P [ P. From (2.4), we see that
P

i2B
p
0
ei

= 0, as
µ 2 N [N P. This concludes the proof of (2.2) when � 2 N P[P. So now consider � 2 PN [N . From (2.4)
we obtain

P
i2B

p
0
ei

= �
P

��1
i=0 pei in this case. Hence, we can conclude that (2.2) holds also if � 2 PN [ N .

The remaining case to consider, in order to prove that (2.1) holds for every x 2 {0, 1}V , is when xu = '(x) = 1.
Similarly to the previous case, we just need to show that (2.2) holds. Assume xu = '(x) = 1. From xu = 1 we
obtain

P
i2A

pei =
P

µ

i=0 pei . Because of '(x) = 1, we know that µ 2 P [ PN . Once again, we consider the
cases µ = � � 1 and �  µ. Assume µ = � � 1. Then, we have that B = ; and

P
i2B

p
0
ei

is equal 0. Moreover,
we have � 2 PN [ N , since µ 2 P [ PN . Then, it is easy to see that (2.2) is true. Next, we consider
the case in which �  µ. We start from situation where � 2 N P [ P. By using Remark 1, we observe that
P \ {�, . . . , µ} 6= ;. Then, we obtain that

P
i2B

p
0
ei

=
P

µ

i=0 pei from (2.4). Hence, (2.2) holds. Assume now
� 2 PN [N . We first observe that it is possible that P \{�, . . . , µ} = ;. This can happen only if �, µ 2 PN .
In this case

P
i2B

p
0
ei

=
P

µ

i=�
pei by (2.3). It is easy to see that (2.2) holds in this case. So assume instead that

P \ {�, . . . , µ} 6= ;. Then,
P

i2B
p
0
ei

=
P

µ

i=�
pei by (2.4). Therefore, (2.2) is true. This concludes the proof

of (2.1).
We are finally ready to show that the solution provided by the algorithm is optimal. Let x̃ be an optimal

solution to (BPO) such that x̃u = '(x̃). We know that it exists by Claim 1. We denote by x
⇤ the solution
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returned by the algorithm, which is defined by

x
⇤
w
:=

(
x
0
w
, if w 6= u

'(x0), if w = u .

It is easy to see that x
⇤
u
= '(x0). By the previous argument, it follows that (2.1) holds for both x̃ and x

⇤.
Therefore, obj(x⇤) = obj0(x0) and obj(x̃) = obj0(dropu(x̃)), if � 2 N P [ P. Similarly, if � 2 PN [ N ,
we obtain that obj(x⇤) = obj0(x0) +

P
��1
i=0 pei and obj(x̃) = obj0(dropu(x̃)) +

P
��1
i=0 pei . We are now ready to

prove that x
⇤ is optimal to (BPO). The optimality of x0 to (BPO)0 implies that obj0(x0) � obj0(dropu(x̃)). This

inequality implies obj(x⇤) � obj(x̃) in both cases. Note that if � 2 PN [N it suffices to add
P

��1
i=0 pei on both

sides of the inequality to see this. Hence, we can conclude that x
⇤ is an optimal solution to (BPO).

We remark that our algorithm is correct even if the profits are allowed to be real numbers. However, for
the purposes of the analysis of the algorithm, we chose to consider only the setting in which the profits are all
integers.

Next, we show that Acyclic(G, p) runs in strongly polynomial time. We remark that in this paper we use
standard complexity notions in Discrete Optimization, and we refer the reader to the book [47] for a thorough
introduction. Our analysis is admittedly crude and provides a loose upper bound of the running time. It could
be further improved by paying particular attention to the data structure and to the exact number of operations
performed in each step. In our analysis, we choose to store the hypergraph G = (V,E) by its node-edge incidence
matrix.

The running time that we exhibit below is in terms of the time needed to find one nest point in G, which is
denoted by ⌧ . As mentioned in [44], nest points can be found in polynomial-time by brute force. Once we find
one nest point, we also explicitly know the edges that contain it and their order under set inclusion.

Proposition 2.2. The algorithm Acyclic(G, p) is strongly polynomial, provided that G = (V,E) is a �-acyclic

hypergraph. In particular, the number of arithmetic operations performed is O(|V |(⌧ + |E|+ |V | log |E|)).

Proof. We first examine the number of arithmetic operations performed by the algorithm. In line 1, there are at
most ⌧ operations to find a nest point u and the ordered sequence of edges it belongs to, that is, e1 ✓ e2 ✓ · · · ✓ ek.
Line 2 requires O(|E|) operations, between sums and comparisons, to compute the sets P, N , N P, PN . In
line 3, there are other O(|E|) operations to remove u from G in order to construct the hypergraph G

0, since it
suffices to drop the u-th row from the incidence matrix. We observe that we do not remove the columns of edges
that might have become empty. So, the incidence matrix could have some zero columns. Line 4 takes O(|V |)
operations. Next, there are O(|E|) sums in the if condition in line 5. Line 6 can be performed in constant time.
Then, line 7 requires O(|V | + |E|) operations, and line 9 takes O(|V |) operations. Next, finding � in line 11
requires O(|V | log |E|) operations, by performing binary search on the ordered edges and checking the nodes they
contain. Consider now the construction of p0 in lines 12-13. Line 12 takes O(|V | + |E|) operations. The profits
p
0 for the edges e�, . . . , ek can be constructed with a total number of O(|E|) operations. It remains to consider

the operations needed to construct x⇤ from x
0, see lines 15-16. Line 15 requires O(|V |) operations. Now consider

line 16. Using the definition of the quantity '(x), it can be seen that the definition of x⇤
u

requires O(|V | log |E|)
operations. In fact it suffices to find µ(x0).

Therefore, each iteration of algorithm performs at most ⌧ + O(|E| + |V | log |E|) arithmetic operations.
Moreover, we observe that Acyclic(G, p) performs |V | iterations, thanks to Theorem 2.1. We hence obtain
that the total number of arithmetic operations performed by Acyclic(G, p) is O(|V |(⌧ + |E|+ |V | log |E|)).

To prove that the algorithm Acyclic(G, p) is strongly polynomial, it remains to show that any integer
produced in the course of the execution of the algorithm has size bounded by a polynomial in |V |+ |E|+ logU ,
where U is the largest absolute value of the profits in the instance (see page 362 in [4]). The numbers that
are produced by the execution of the algorithm are the profits of the smaller instances. The only arithmetic
operations involving the profits are addition and subtraction of the original profits. In particular, this implies
that the numbers produced are integers. Moreover, only a polynomial number of operations p(|V |, |E|) occur in
the algorithm since its arithmetic running time is polynomial in |V | and |E|. Then, any integer obtained at the
end of the algorithm must have absolute value less than or equal to 2p(|V |,|E|)

U . Its bit size therefore is less than
or equal to p(|V |, |E|) + logU .
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We close this section by observing that the overarching structure of our algorithm, where nodes are removed
one at a time, resembles that of the basic algorithm for pseudo-Boolean optimization, which was first defined
in the sixties [30, 31]. Except for this similarity, the two algorithms are entirely different. For example, in the
basic algorithm nodes can be removed in any order, but the running time can be exponential. On the other
hand, in our algorithm the node to be removed must be a nest point in order for the algorithm to be correct. In
particular, this allows us to define the updated profits and it is key in achieving a polynomial running time. In [14]
the authors show that, if nodes are removed according to a “k-perfect elimination scheme”, the basic algorithm
runs in polynomial time for hypergraphs whose co-occurrence graph has fixed treewidth. However, analyzing
the laminar hypergraph discussed after the statement of Theorem 1.1 in Section 1.1, it is simple to see that the
basic algorithm does not run in polynomial time over �-acyclic hypergraphs, under any choice of the node to be
removed.

3 Reduction scheme for general hypergraphs

Figure 1: Percentage of removed nodes in hypergraphs as a function of |V | and |E|.

We observe that, even if our algorithm is not able to solve instances over hypergraphs that contain �-cycles,
it is still possible to use it as a reduction scheme. In particular, we can iteratively remove nest points, which leads
to a decrease in the number of nodes, and possibly edges, of the hypergraph until there are no nest points left.
If we are able to obtain an optimal solution to the smaller problem, we can then use the rules outlined in the
algorithm to construct an optimal solution to the original problem.

In order to better assess if our reduction scheme could be useful in practice, we ran some computational
experiments. We studied the reduction scheme on random instances, as it is commonly done in the literature
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Figure 2: Percentage of removed nodes as a function of |E| when n = 300.

[11, 15, 21]. For every instance, we computed the percentage of removed nodes. First, we explain the setting of
our experiments. We chose the setting of [15], i.e., we decide the number of nodes |V | and of edges |E| of the
hypergraph representing the instance, but we do not make any restriction on the rank of the hypergraph. We
recall that the rank of a hypergraph is the maximum cardinality of any of its edges. For every edge, its cardinality
c is chosen from {2, . . . , |V |} with probability equal to 21�c. As explained in [15], the purpose of this choice is to
model the fact that a random hypergraph is expected to have more edges of low cardinality than high cardinality.
Then, once c is fixed, the nodes of the edge are chosen uniformly at random in V with no repetitions. We also
make sure that there are no parallel edges in the produced hypergraph. This will be useful in the interpretations
of the results, as we explain later in the section. The parameters |V | and |E| have values in the set {25, 50,
75, . . . , 600}. For every pair (|V |, |E|) we made 250 repetitions and computed the percentage of removed nodes.
Then, we took the average of these percentages. The results of our simulations are shown in Figure 1. The values
on the x axis correspond to the number of nodes of the hypergraph, whereas the values on the y axis represent
the number of edges. The lighter the cell, the more nodes are removed for instances with those values of n and
m. A legend can be found to the right of the grid.

From the results, we noticed that the percentage of the removed nodes is related to the value of the ratio
|E|/|V |, where G = (V,E) is the hypergraph representing the instance. From Figure 1, it is apparent that the
smaller is the ratio |E|/|V |, the more effective our algorithm is. In particular, we observe that if |E|/|V | = 1,
then the average of nodes removed is 16.72%. However, when |E|/|V | = 1/2, this percentage is roughly 50%, and
if |E|/|V | = 1/4 our algorithm removes on average 86% of the original nodes. Additional values can be extracted
from Figure 2, which captures the trend of this percentage as a function of |E|. In this figure, the number of
nodes |V | is set to 300. We see that the reduction scheme is particularly useful whenever |E|/|V |  1, i.e., when
the number of edges is bounded by the number of nodes. Furthermore, we observe that a large subset of the
hypergraphs with |E|/|V |  1 have a highly non-trivial structure, since they have a huge connected component
with high probability. In fact, the largest connected component of G is of order |V | whenever the fraction |E|/|V |
is asymptotic to a constant c such that c > 1/2. This follows from [23] once we observe that each edge of a
hypergraph connects at least as many nodes as an edge in a graph. We remark that the authors in [23] do not
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allow parallel edges, and this is why we introduced this requirement for our instances.
For denser hypergraphs, i.e., hypergraphs with |E|/|V | > 1, our procedure does not work as well, and this can

be explained by the fact that, for these hypergraphs, it is more unlikely that a node would be able to satisfy the
definition of nest point. For non-random instances, it should be noted that the outcome of our reduction scheme
depends heavily on the structure of the specific instance.

Lastly, we remark that the reduction scheme can be applied also to quadratic instances, where the
corresponding hypergraph is simply a graph. We found that the behavior of the percentages of removed nodes is
similar to the one in the hypergraph setting, even if the values of the percentages of removed nodes are generally
higher than in the more general case.
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Appendices
A Example of an execution of Acyclic(G, p)
In this appendix we show how Acyclic(G, p) works, by running it on an example. We choose a �-acyclic
hypergraph G that is not kite-free (see [20]), since no other polynomial-time algorithm is known for instances of
this type. We use the notation defined in Section 2. The input hypergraph G, together with the hypergraphs
produced by the algorithm throughout its execution, is represented in the Figure 3. The profits of the edges are
written next to the label of the corresponding edge. Labels are always outside their edges. For ease of exposition,
we will keep the same names for the edges throughout the execution of the algorithm. For example, in G

(3) we
do not change the names of e3 and e4 to e1 and e2 respectively.

Figure 3: The input hypergraph, and the hypergraphs produced at each iteration by Acyclic(G, p).

We define the profit vector as follows: pv1 = 1, pv2 = 3, pv3 = 2, pv4 = �1, pv5 = 1, pe1 = 2, pe2 = �1,
pe3 = �6, pe4 = 3.
Iteration 1: observe that v1 is a nest point of G, as it belongs only to e1, e4, and these edges are such that
e1 ✓ e4. Moreover, � = 1. First of all we need to compute the sets P, N , N P, PN . In order to do so,
observe that pv1 is non-negative, as well as pv1 + pe1 and pv1 + pe1 + pe4 . This means that PN = {0, 1, 4}. The
node v1 is removed from G, and the result is the hypergraph G

(1) showed in Figure 3. We denote the profits
corresponding to G

(1) by p
(1). Therefore, at this step p

(1)
v := pv for every v 2 {v2, v3, v4, v5} and p

(1)
e := pe for

every e 2 {e1, e2, e3, e4}.
Iteration 2: here Acyclic(G(1)

, p
(1)) removes v2. We remark that v2 is now a nest point for G

(1), even if not
for G. In fact, in G

(1) we have e1 ✓ e2 ✓ e3 ✓ e4. Furthermore, � = 1. Here, p(1)v2 , p(1)v2 + p
(1)
e1 , p(1)v2 + p

(1)
e1 + p

(1)
e2 ,

are non-negative, while p
(1)
v2 + p

(1)
e1 + p

(1)
e2 + p

(1)
e3 is negative, and p

(1)
v2 + p

(1)
e1 + p

(1)
e2 + p

(1)
e3 + p

(1)
e4 is positive. Thus,

PN = {0, 1, 2}, N = {3}, P = {4}, PN = ;. Next, we construct G
(2). We define the profits p

(2) as
follows: p

(2)
e1 := p

(1)
e1 = 2, and p

(2)
e2 := p

(1)
e2 = �1, however we define p

(2)
e3 := �p

(1)
v2 � p

(1)
e1 � p

(1)
e2 = �4 and

p
(2)
e4 := p

(1)
v2 +p

(1)
e1 +p

(1)
e2 +p

(1)
e3 +p

(1)
e4 = 1. Moreover, p(2)v := p

(1)
v for every node v of G(2), this means that p(2)v3 := 2,

p
(2)
v4 := �1, p(2)v5 := 1.

Iteration 3: now it’s the turn of v3, which is a nest point of G(2). Here � = 3. It is easy to check that all sums p(2)v3 ,
p
(2)
v3 +p

(2)
e1 , p(2)v3 +p

(2)
e1 +p

(2)
e2 are positive, whereas p(2)v3 +p

(2)
e1 +p

(2)
e2 +p

(2)
e3 is negative, and p

(2)
v3 +p

(2)
e1 +p

(2)
e2 +p

(2)
e3 +p

(2)
e4

is equal to zero. Therefore PN = {0, 1, 2}, N = {3}, N P = {4}, P = ;. The hypergraph G
(3) is constructed

by removing v3 from G
(2). Observe that, as we remove v3, we are also removing e1 and e2, since e1 = e2 = {v3}.

Then, we set p
(3)
e3 := �p

(2)
u � p

(2)
e1 � p

(2)
e2 = �3, p(3)e4 := 0. Finally, p(3)v4 := �1, p(3)v5 := 1. We then iterate on the
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smaller hypergraph.
Iteration 4: next, v4 is a nest point of G

(3). Observe that now we have that � = 4. Here, p
(3)
v4 , p

(3)
v4 + p

(3)
e3 ,

p
(3)
v4 + p

(3)
e3 + p

(3)
e4 are all negative. Hence, N P = {0, 3, 4}. We construct G

(4). It is easy to see that p
(4)
e4 is set

equal to zero. Therefore, we define p
(4)
v5 := p

(3)
v5 = 1.

Iteration 5: we have arrived at the last step of the algorithm. Indeed, v5 is the only node in G
(4). Observe

that it is useless to compute P, N , N P, PN , and G
(5) in this last iteration. So, we skip it. We introduce

e0 = {v5} and let p
(4)
v5 := p

(4)
v5 , p(4)v5 := 0. We check that p

(4)
v5 + p

(4)
e4 = p

(4)
v5 > 0. So, we set xv5 := 1.

At this point, we are ready to compute xv1 , xv2 , xv3 , and xv4 . We start from computing xv4 . Since xv5 = 1,
it follows that µ = 4. Recall that 4 2 N P in iteration number 4. Then, by the definition of ', we set xv4 := 0.
Now we look at xv3 . In this case µ = 2. Since 2 2 PN in iteration number 3, we set xv3 := 1. Next, consider
xv2 . Similarly to before, µ = 2, since xv4 = 0. Again, we have that 2 2 PN in iteration number 2. Hence, we
define xv2 := 1. It remains to compute xv1 . We find that µ = 1. Therefore we set xv1 := 1, since in 1 2 PN in
the first iteration. Then, an optimal solution of the problem is x = (xv1 , xv2 , xv3 , xv4 , xv5) = (1, 1, 1, 0, 1).

B Hardness for ↵-acyclic hypergraphs

In this section we describe the intractability results for (BPO) over ↵-acyclic instances, thereby showing
Theorem 1.3. In order to prove these results, we will use polynomial reductions from Max-Cut and Simple
Max-Cut to (BPO). We recall that Max-Cut can be formulated as

max
X

{u,v}2E

w{u,v}(xu + xv � 2xuxv)

s.t. x 2 {0, 1}V ,

where G = (V,E) is the graph representing the instance of Max-Cut and w 2 ZE
+ [12].

Similarly to the �-acyclic case, we apply the idea of removing nodes and edges from a hypergraph. Here, we
will use it to show that the instances obtained via the polynomial reductions from Max-Cut and Simple Max-Cut
to (BPO) are represented by ↵-acyclic hypergraphs. Now, we are ready to describe a simple polynomial reduction
of Max-Cut to (BPO).

Proposition B.1. Assume that an instance of Max-Cut is represented by a graph G
0 = (V,E0) and a weight

vector w 2 ZE
0

+ . Then, there exists a polynomial-time reduction from Max-Cut to (BPO), where the instance of

(BPO) is represented by a hypergraph G = (V,E) with profit vector p 2 ZV [E
such that:

(c1) G is ↵-acyclic;

(c2) all edges in E have cardinality either two or |V |;
(c3) all edges e 2 E such that |e| = 2 have profit pe = �2we, all edges e 2 E such that |e| = |V | have profit

pe = 0, and all nodes v 2 V have profit pv =
P

u2V : {u,v}2E
w{u,v};

(c4) every vector in {0, 1}V yields the same objective value in the two problems.

Proof. Let I be an instance of Max-Cut. We denote by G
0 = (V,E0) its associated graph, and by w the weight

vector for the edges in E
0. Let ē be a new edge defined as ē := V . At this point, we construct an instance J of

(BPO). The hypergraph representing the instance is G = (V,E), where E := E
0 [ {ē}. It is easy to see that it

satisfies (c2) by construction. The profit vector of J is p 2 ZV [E , which is defined as

pi :=

8
>>><

>>>:

X

u2V : {u,v}2E

w{u,v}, if i = v 2 V

�2w{u,v}, if i = {u, v} 2 E
0

0, if i = ē .

Clearly the vector p satisfies condition (c3). Furthermore, it is immediate to see that solving I is equivalent to J .
In particular, the set of feasible solutions is {0, 1}V for both Max-Cut and (BPO). Moreover, the objective value
obtained by any binary vector in J coincides with the objective value yielded by the same vector in I. This shows
that (c4) holds. It remains to prove that also (c1) is satisfied. Hence, we show that G is ↵-acyclic. We observe
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that we obtain the empty hypergraph (;, ;) from G by first removing all edges e 2 E
0, and then by removing all

nodes. Therefore, by Theorem 1.2 we can conclude that the hypergraph G is ↵-acyclic.

Next, we show the first hardness result, by reducing Simple Max-Cut to (BPO). Simple Max-Cut is the special
case of Max-Cut, in which the weight vector w is restricted to be the vector of all ones. This problem has been
shown to be strongly NP-hard in [28]. We observe that the polynomial reduction of Max-Cut to (BPO) works
also for Simple Max-Cut, since this is a special case. The following theorem follows from using the polynomial
reduction presented in Proposition B.1 applied to Simple Max-Cut.

Theorem B.1. Solving (BPO) is strongly NP-hard, even if G = (V,E) is a hypergraph that satisfies conditions

(c1), (c2), and

(c3’) all edges e 2 E such that |e| = 2 have profit pe = �2, all edges e 2 E such that |e| = |V | have profit pe = 0,
and all nodes v 2 V have profit pv = |{e 2 E : v 2 e, |e| = 2}|.

Observe that condition (c3’) coincides with condition (c3), when we adjust the latter to Simple Max-Cut.
Next, we move on to describing the inapproximability result. We start by defining the concept of r-

approximation, for any maximization problem P , where r 2 [0, 1]. Let ALG be an algorithm that returns a
feasible solution to P yielding objective value ALG(I), for every instance I of P . Now, let us fix I. We denote
by l(I) the minimum value that the objective function of I can achieve on all feasible points, and by OPT(I) the
optimum value of that instance. Then, we say that an algorithm ALG is a r-approximation for P if, for every
instance I of P , we have that ALG(I)�l(I)

OPT (I)�l(I) � r. In particular, when P is Max-Cut, we have that l(I) = 0 for all
instances I.

Theorem B.2. If P 6= NP, then it is NP-hard to obtain a r-approximation for (BPO), with r >
16
17 , even if the

instance of (BPO) satisfies conditions (c1), (c2), (c3), for some vector w 2 ZE
+.

Proof. In [50] the authors show that if there is an r-approximation algorithm for Max-Cut, for r >
16
17 , then P

= NP. Next, assume P 6= NP. For the sake of contradiction let us assume that there exists a r-approximation,
with r >

16
17 , for the instances of (BPO) that satisfy conditions (c1), (c2), (c3), for some vector w 2 ZE

+. Let this
algorithm be denoted by ALG

0. We claim that ALG
0 is an r-approximation for Max-Cut. In fact, consider an

instance I of Max-Cut. Then, we can construct an instance J of (BPO) using Proposition B.1, and apply ALG
0

to it, since J satisfies conditions (c1), (c2), (c3) by construction. Thanks to condition (c4), it follows that this
procedure provides a r-approximation for Max-Cut, with r >

16
17 . However, this is a contradiction, given that we

are assuming that P 6= NP.

We observe that the bound on r can be further strengthened if we assume the validity of the Unique Games
conjecture, first formulated in [37]. In fact, [38] tells that it is NP-hard to approximate Max-Cut to within a factor
greater than ↵GW ⇡ 0.878, granted that the conjectures P 6= NP, Unique Games and the Majority is Stablest
are true. The constant ↵GW was originally defined in [29], where the authors provide an ↵GW-approximation
algorithm for Max-Cut. Lastly, we observe that the Majority is Stablest conjecture was proved to be correct in
[43], and therefore this stronger inapproximability result now only relies on the P 6= NP and the Unique Games
conjectures.
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