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Abstract. In this paper we continue investigating the optimal dividend and investment problems
under the Sparre Andersen model. More precisely, we try to give a more complete description of
the optimal strategy when the claim frequency is a renewal process and therefore semi-Markovian,
for which it is well-known that the barrier strategy is no longer optimal (cf. [H. Albrecher and
J. Hartinger, Hermis J. Comp. Math. Appl., 7 (2006), pp. 109-122]). Building on our previous work
[L. Bai, J. Ma, and X. Xing, Ann. Appl. Probab., 27 (2017), pp. 3588-3632], where we established
the dynamic programming principle via a backward Markovization procedure and proved that the
value function is the unique constrained viscosity solution of the Hamilton—Jacobi-Bellman (HJB)
equation, which is a nonlocal, nonlinear, and degenerate parabolic partial integro-differential equation
on an unbounded domain, in this paper we show that the optimal strategy is still of a band type but
in a more complicated dynamic fashion. The main technical obstacles in constructing and validating
the optimal strategy include the regularity of the value function, due to the fundamental degeneracy
of the HJB equation caused by the Markovization procedure, and the well-posedness of the closed-
loop stochastic system, given the “band” nature of the optimal strategy. Some of the technical results
in this paper are purely analytical and therefore interesting in their own right.
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1. Introduction. In this paper we continue our investigation on the optimal
dividend and investment problems under a Sparre Andersen insurance model. More
precisely, we assume that the claim number process is a renewal process instead of
a standard Poisson process; therefore, it is also referred to as a renewal risk model.
Finding the optimal strategy for such a problem has been considered as an intriguing
but challenging open problem for quite some time (cf., e.g., [2] and references cited
therein) mainly due to the semi-Markov nature of the renewal process, as well as
the nonoptimality of the well-known barrier strategy (see [1]). More specifically, for
a general insurance model involving investments, even under the simplest Cramér—
Lundberg form, direct calculation of optimal strategy becomes almost impossible,
and the solution procedure often depends on some more general stochastic control
technique. In particular, the approach of dynamic programming and consequently the
study of the associated Hamilton—Jacobi-Bellman (HJB) equation and its viscosity
solution become a natural way to attack the problem (cf., e.g., [4, 5]). However, as was
pointed out in [2], the non-Markovian nature of Sparre Andersen model drastically
complicated this approach, as it took away the basis of dynamic programming. On the
other hand, since the commonly believed barrier type of dividend strategy was shown
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to be nonoptimal in [1], the structure of the optimal dividend-investment strategy
under a renewal risk model has naturally become an intriguing issue to explore.

To better understand the main difficulties in this effort let us first briefly recall
the “toy” model studied in our recent paper [7], where we assumed that the surplus
process satisfies the following dynamics of Sparre Andersen type, defined on a filtered
probability space (2, F,P;F): for ¢ € [s,T],

(L1)  dX] =pdt +rX7dt + (p—r)nX{dt + onX{dB, — dQ — dL,, X] ==,

S

where T > 0 is a given time horizon, s € [0,7] is the initial time and z is the
initial surplus, p the premium rate, r the interest rate, and (i, o) the appreciation
rate and the volatility of the stock, respectively, all assumed to be positive constants;
B is a (P,F)-Brownian motion representing the market noise, Q; = Zi\il U; is the
(renewal) claim process, and m = (¢, L¢), t > 0, is the investment-dividend pair in
which v = {7y }+>0 represents the proportion of the surplus invested in the stock at
each time ¢ (hence v, € [0,1]) and L = {L;};>¢ is the cumulative dividends process
(hence increasing). Denoting %4 to be all such investment-dividend strategies and
the solution to (1.1) by X; = X[ = X", define 77 = 7% := inf{t > s; X;"" < 0}
to be the ruin time of the insurance company. The goal is to maximize the following
expected cumulated dividends: for (s,z) € [0,7] x Ry,

T

TS UAT TIAT
(1.2) J(s,z;7) :=FE {/ e_c(t_s)st} =FE {/ e_c(t_s)st‘X;r = m} ,

where ¢ > 0 is the discounting factor. We should note that even as the simplest
model, the solution to the problem (1.1)—(1.2) is surprisingly challenging. The first
obstacle is the non-Markovian nature of the renewal claim counting process N; thus
the usual dynamic programming approach does not apply directly. To overcome this
difficulty we invoke a standard “backward Markovization” procedure by adding an
extra state process W = {W,};>0, a random clock measuring the time elapsed since
the last claim (see section 2 for details), so that the model becomes Markovian again.
In [7] we verified the dynamic programming principle and proved that the value
function of problem (1.1)—(1.2) is the unique constrained viscosity solution of the corre-
sponding HJB equation which is a fully nonlinear, nonlocal, and degenerate parabolic
partial integro-differential equation (PIDE) over an unbounded domain. However, in
[7] we did not address the existence and the structure of the optimal control, which
is particularly interesting given the counterexample of Albrecher and Hartinger [1].
The main purpose of this paper is to give a more complete answer to the open
problem suggested in [2], that is, the structure of the optimal strategy of the problem
(1.1)—(1.2), by using the solution (whence the value function) of the HJB equation. In
fact, by simply calculating the maximizer of the Hamiltonian from the HJB equation
(see (2.9) below), one could suspect the following candidate of optimal strategy:
. —r)V, (¢, X[, W,

aj =L; = M1y, 1. xr wo<1y +PLv, e, x7 w)=1}>
where V' is the viscosity solution and M > p > 0 is the given upper bound of the
dividend rate, that is, assuming 0 < a; = L; < M. From (1.3) we immediately

see that the optimal strategy should still have a “barrier type” but with a dynamic
nature. However, there are two major technical issues. First, the validity of (1.3)
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depends on the regularity of the viscosity solution (i.e., the derivatives V, and V),
which seems to be a tall order in this case due to the nonlocal and degenerate nature of
the HJB equation. Second, the optimal dividend rate displays a “band” nature with
the state-dependent switching times, which raises some serious questions about the
well-posedness of the resulting closed-loop system. A natural way to get around these
difficulties is to add some additional Brownian motions to the system so that the
corresponding HJB equation becomes nondegenerate and hence possesses classical
solutions and an argument of “vanishing viscosity” might lead to at least some e-
optimal strategy. Unfortunately, such a method does not work easily in this model,
since the random clock W, the key for the Markovization, cannot be perturbed by
a Brownian motion. Therefore the degeneracy of the HJB in the variable W is not
removable by this approach. To overcome this dilemma we shall take a less standard
route. That is, we shall perturb the HJB equation directly and consider an auxiliary
nondegenerate PIDE and prove that its solution can be used to construct the e-
optimal strategy. The difficulty, however, is that such a PIDE does not correspond to
any control problem, so the analysis will have to be purely analytic without using any
control theoretic arguments. Our discussion benefitted greatly from a recent work on
nonlocal HJB equations (cf. [9]), except that in our case the domain is unbounded.

Finally, we should note that, while this paper still treats only the simplest “toy
model,” as we shall see, the technicality involved is already overwhelming. In order not
to be distracted by the main message of this paper, that is, to understand the structure
of the optimal strategy and the procedure of obtaining the e-optimal strategies, we will
not pursue the generality of the model. We should also note that while the optimal
strategy still has a “barrier” nature, the switching times will depend on not only the
surplus level but also the random clock, and it is possible to have multiple barrier
levels. We shall therefore call it a generalized band strategy.

The rest of the paper is organized as follows. In section 2 we briefly recall the
original problem and introduce all the concepts and notations. In section 3 we prove
the existence and uniqueness of the viscosity solution of our key auxiliary PIDE, keep-
ing in mind that such a PIDE does not corresponding to an actual control problem(!).
In section 4 we prove the desired convergence of the solutions of the approximating
PIDEs to the value function. In section 5 we construct a prospective e-optimal strat-
egy in terms of the solutions to the approximating PIDEs. In section 6 we prove the
well-posedness of the closed-loop system corresponding this strategy, and in section 7
we verify that the constructed strategy does produce the desired ¢ optimality.

2. Preliminaries. Throughout this paper we consider a complete probability
space (2, F,P) on which is defined standard Brownian motion B = {B; : t > 0} and
a renewal counting process N = {N, };>0, independent of B. More precisely, denoting
{on}52,; to be the jump times (o9 := 0) of N and T; = 0; —0;-1, ¢ = 1,2,..., to
be its waiting times, we assume that 7;’s are independent and identically distributed
(ii.d.) with a common distribution F' : Ry +— R;. We shall assume that there
exists an intensity function X : [0,00) +— [0,00) such that F(t) := P{T} > t} =
exp{— fot Au)du}, so that A\(t) = f(t)/F(t), t > 0, where f is the density function of
T;’s. Clearly, if A\(t) = X is a constant, then N becomes a standard Poisson process.

Let T > 0 be a given time horizon, X be a generic Euclidean space, and G C F
be any sub-o-field. We denote C([0,T];X) to be the space of continuous functions
taking values in X with the usual sup-norm; L”(G;X) to be the space of all X-valued,
G-measurable random variables ¢ such that E|£]P < oo, 1 < p < oo; and LE([0,T7]; X)
to be the space of all X-valued, F-progressively measurable processes & satisfying
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IEfOT |€|Pdt < oo, where F = {F, : t > 0} is a given filtration in F and 1 < p < 0.
Here p = oo means that all elements are bounded.

Given a renewal counting process N, we shall consider the following claim process
for our reserve mode: @Q; = ZfV;l Ui, t > 0, where {U;}32, is a sequence of random
variables representing the “size” of the incoming claims. We assume that {U;} are
ii.d. with a common distribution function G (and density g), independent of (N, B).
We note that the process ) is non-Markovian in general (unless the counting process
N is Poisson) but can be “Markovized” by the so-called backward Markovization
technique (cf., e.g., [17]). More precisely, if we denote Wy =t — oy, t > 0, that is,
the time elapsed since the last jump, then it is known (see, e.g., [17]) that the process
(t,Q¢, W), t > 0, is a piecewise deterministic Markov process. We note that at each
jump time oy, |[AW,,|=0; — 01 =T; and 0 < W, <t < T, t €[0,T].

Now let us denote {F: : ¢ > 0} to be the natural filtration generated by process
¢ = B,Q,W, respectively, with the usual P-augmentation such that it satisfies the
usual hypotheses (cf., e.g., [16]). Throughout this paper we consider the filtration
F = FBQW) = {F,},50, where F, := FEVFIVFY, t>0. Forany s € [0,T], let us
consider the process (B, Q, W) starting from s € [0,T]. First assume Wy = w, P-a.s,;
let us consider the regular conditional probability distribution Pgy(-) := P[- |Ws = w]
on (9, F), and consider the “shifted” version of processes (B,Q,W) on the space
(Q, F,Pyy; F?), where F* = {F;};>5. Define Bf := B, — B,, t > s. Clearly, since
B is independent of (Q,W), B?® is an F*-Brownian motion under P, defined on
[s,T], with B5 = 0. Next, we restart the clock at time s € [0,7] by defining the
new counting process N7 := Ny — N, t € [s,T]. Then, under Py,,, N*° is a “delayed”
renewal process in the sense that while its waiting times T7’, ¢ > 2, remain i.i.d. as
the original T;’s, its “time-to-first jump,” denoted by 77" := Tn, 41 —w = on, 41 — S,
should have the survival probability

(2.1) Po{T5 >t} = P{Ty > t + w|Ty > w} = e~ Ju" A3,

In what follows we shall denote IV}’ := N;"" 1 > s, to emphasize the dependence

|Ws=w
on w as well. Correspondingly, we shall denote Q;" = Zf\gw U; and W =
w+W =Wy = w+[(t—s)—(on, —0on.)], t > s. Tt is readily seen that (Bf, Q;™", W),
t > s, is an F*-adapted process defined on (2, F, Py, ), and it remains Markovian.

The Markovized optimal investment-dividend problem. Taking the process
W into account, we now reformulate the renewal risk model (1.1)-(1.2) so that it is
Markovian. Similar to our previous work [7], we shall make use of the following
standing hypothesis.

Hypothesis 2.1. (a) The parameters (7, i, o) and premium rate p are all constants.

(b) The distribution functions F' and G are continuous on [0, c0) with densities f
and g, respectively. Furthermore, we assume that A\(t) := f(t)/F(t) > 0, t € [0,T].

(¢) The cumulative dividend process L is absolutely continuous. That is, there
exists a € LZ([0,7];Ry) such that L; = fot asds, t > 0. We assume further that for
some constant M > p > 0, it holds that 0 < a; < M, dt x dP-a.e.

Remark 2.2. (i) The main technical difficulty in this paper is the degeneracy of the
HJB equation, caused by the Markovization procedure, even under Hypothesis 2.1(a).
Our method is applicable to more general models with “nice” coefficients, but this is
not the main point of the paper.

(ii) Hypothesis 2.1(c) is purposely restrictive, which removes the possible “singu-
lar” behavior of the optimal strategy. Such a restriction is due largely to our goal of
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constructing the “c-optimal strategy” in this paper, which essentially eliminates the
need to consider the singular case.

In what follows, given [s,t] C [0, T], we say that a strategy m = (-, a) is admissible
on [s,t] if 7 € L2([s,t]; R?) with (vu,ay) € [0,1] x [0, M], u € [s, ], P-a.s. Moreover,
for any (s, w) € [0, T]?, we denote the set of all admissible strategies on [s, T, defined
on the probability space (2, F, Pg,,) by %,;"'[s,T]. In particular, we denote JZ/aOCiO[O, il
by %.4|0,T| = %.q for simplicity.

Let m = (v,a) € %" [s,T], we now consider the “Markovized” reserve model:

(2.2) dX; = pdt + [r + (n — )y Xedt + 1 XedBy — dQP" — apdt, X5 = x;
’ Wt:’UJ—F(t—S)—(O’Nt—O'NS), tG[S,T],

with the expected cumulated dividends up to ruin and the value function:

TINT
(2.3) J(s,x,w;m) = Egpqy {/ e_c(t_s)atdt} ,
S

(2.4) V(s,z,w):= sup J(s,z,w;m).
TEULY [s,T]

In the above 77 := inf{¢t > s : XJ < 0} is the ruin time, (X7, W) is the solution to
(2.2), and Egpu{-} := B {-|XT = 2}

The HJB equation and its viscosity solution. We now briefly recall the
main result of [7]. We first note that there is a natural domain for the initial state
(s,z,w), denoted by D := {(s,z,w) : 0 < s < T,z > 0,0 <w < s}. Here w < s is
due to the fact that W, <t. We thus assume that the value function V is defined on
D and that V(s,z,w) =0, for (s,z,w) ¢ D. We also define the following two sets:

(2.5) 2 :=intD ={(s,z,w) €D :0<s<T,z>0,0<w< s};
7" ={(s,z,w) €D :0<s<T,2>0,0<w< s}

Clearly 2 C 2* C 9 = D, and 2* does not include boundary at the terminal time
s = T. Furthermore, we denote Cy>"' (D) to be the set of all functions ¢ € C121(2)

such that for n = @, i, Yz, Coz, Pw, it holds that lim ¢.y.v)— 0w Nt y,v) = n(s, T, w)

(t,y,v)€EL

for all (s,z,w) € D and ¢(s,z,w) = 0 for (s,x,w) ¢ D. We note that while a function
RS (C(lJ’Q’l(D) is well-defined on D, it is not necessarily continuous on the boundaries
{(s,z,w) :x=0o0r w=0orw=s}.

Now, for § = (s,z,w) € D, £ = (£1,£?) € R?, y, A,z € R, and (v,a) € [0,1] x
[0, M], we define the following Hamiltonian:

o2
(2.6) H(0,y,6, A, z,7,a) ::7

+ AMw)z + (a — cy),

VarA+p+ (r+ (u—r)y)z —alg’ + ¢

and for ¢ € (C(l)’2’1 (D) we define the second-order partial integro-differential operator:

(2.7) ZLpl(0) = sup H(0,0,Vo, 020, 1(¢),7,a),
v€[0,1],a€[0,M]
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where Vi := (¢4, pw), and I[y] is the integral operator defined by

8 il | lp(s 2 — u,0) — p(0)}dG(u) = / " (5.2 — 1w, 0)dG () — o(6).

Here the last equality is due to the fact that ¢(0) = ¢(s,z,w) = 0 for « < 0.
The main result of [7] is that the value function V' is the unique constrained
viscosity solution of the following HJB equation:

(2.9) {Vs + Z[V]}(0) =0; 0= (s,z,w) € Z; V(T,z,w) = 0.

We end this section by recalling the definition of the “constrained viscosity solu-
tion” to the PIDE (2.9) (cf. [7]).

DEFINITION 2.3. Let O C 2* such that 07O = {(T,y,v) € O} # 0.

(a) v € C(O) is called a viscosity subsolution of (2.9) on O if v(T,y,v) < 0,
(T,y,v) € 07O and if for any (s,z,w) € O and ¢ € Cy>'(O) such that 0 = [v —
©l(s, 2, w) = max , veolv — ¢|(t,y,v), it holds that p,(s,z, w) + L[p](s, 2z, w) > 0.

(b) v € C(O) is called a viscosity supersolution of (2.9) on O if v(T,y,v) > 0
for (T, y,v) € drO and if for any (s,z,w) € O and ¢ € Cy>"(O) such that 0 = [v —
1/)](5735,10) = min(t,y,v)é@[v - cp](t,y,v), it holds that @S(Sawi) + Z[@](Sa z,w) <0.

(¢) v € C(D) is called a “constrained viscosity solution” of (2.9) on Z* if it is
both a viscosity subsolution on Z* and a viscosity supersolution on 2.

3. An auxiliary equation. As we pointed out, in order to construct a sen-
sible approximation of the optimal strategy based on the explicit form (1.3) using
the solution to the HIJB equation (2.9), the main obstacle is the degeneracy of the
Hamiltonian (2.6), especially in the variable w, since the random clock W = {W;}
cannot be perturbed by an extra Brownian noise for it would destroy the Markoviza-
tion procedure. As a remedy we shall introduce an auxiliary nondegenerate PIDE
that is of the same structure as (2.9), with which the approximating strategies will be
constructed. It should be noted, however, that such a PIDE cannot be associated to
any stochastic control problem. As a consequence our argument will be purely ana-
lytical and therefore interesting in its own right. In fact, to the best of our knowledge,
the regularity of the constrained viscosity solution to a nonlocal HJB equation of this
particular type on a unbounded domain is new.

Our plan of attack is quite similar to that of the recent work [14]. More precisely,
we begin with the following extended domain of D: for each d > 0,

(3.1) Ds ={(s,z,w):0<s<T+dx>—-6-0<w<s+0d}.
As before, we denote Zs := intD;s and consider the “truncated” complement” of Dy:
(3.2) 25 = ({T + 6} x R*) U (Uocsers Z5.),
where for 0 < s <T + 9, D55 = {(z,w) : & > —0,—0 < w < s+ I} is the s-section of
Ps, and 75, is the complement of Z; . Clearly, Ds U Z5°° = (0, T + 4] x R*.

Next, we define a “perturbed” nondegenerate Hamiltonian. Let ¢, > 0, n =

2,... be a sequence such that £, 0, as n — co. We define for § = (s,z,w) € Dy,

L
6 (51762) S RQ) y7A17A2aZ S R7 and (/77a) € [07 1] X [O?M]a

(33)  H™0,5.6, A1, As,2,7,0) == H(0,9.6, A, 2,7,0) + S Ar + s,
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where H is the Hamiltonian defined by (2.6). Consider the following auxiliary PIDE:

(3.4) { vi(s, z,w) + L™ (s,z,w) =0 on Zs,

v(s,z,w) = V(s,z,w), (s,xz,w) € Z5°.

Here, as before, for a smooth function ¢ and Vo = (¢, ¢w),

Lgl(s,x,w) = sup  H™(s,2,0,9, VY, Pus, Puw: I°[¢], 7, a),
~€[0,1],a€[0,M]

(3.5) z+6
I[o](s, z,w) = / o(s,z —u,—0)dG(u) — (s, z,w),

0
and W is a function to be determined later. We shall argue that there exists a unique
classical solution to (3.4), denoted by V™ such that lim, o050 V™° = V, the
value function defined by (2.4), uniformly on compacta.

We should note that since (3.4) does not necessarily correspond to any stochastic
control problem, the existence of the solution, even in the viscosity sense, is not clear.
In the rest of this section we shall first show that there is indeed a viscosity solution
to this equation, and in the next section we shall argue that such a solution is actually
the unique classical solution. To simplify the argument we shall assume 0 < § < 1
throughout our discussion.

The function V. We now give a detailed description of the function ¥, which is
crucial for our construction of the viscosity solution. We first note that once such a
function is chosen, we can modify the PIDE (3.4) to one with homogeneous boundary
condition via the following standard transformation. Assume that ¥ is a (smooth)
boundary condition. Let v = v — ¥; then we have

(3.6) { (5 +W)s + L[5+ W] = vy + L5 [7] = 0,
v

(3,.13,10) = 07 (s,x,w) € -9;’67

where %y 9] := Wy + £™%[ + U] will have the same properties as .£"%. Further-
more, we shall make the following hypotheses. Recall the set Dy and the constants
M > 0 in Hypothesis 2.1.

Hypothesis 3.1. There exists ¥ € C1:3:3(R3) such that

(i) there exists K7 > 0 such that 0 < ¥(0) < Ky, 0 = (s,z,w) € Dy, and
U(0) =0, 6 € Df;

(ii) there exists 0 < Ko < M such that for any 6 € Dy,

M — Ky <O, 4+ H" (0,9, VU, U, Uy, °[¥],0,M), 0<d<1, n>1;
(iii) W(s,z,w) is strictly increasing with respect to x, and for some 0 < dp < 1,

(3.7 inf U, (s, z,w) > 1.

T (s,2,w)€(0,T] X[~ 80,0] X [0,5]

We should note that under Hypothesis 2.1, Hypothesis 3.1(ii) holds if M is large
enough, but (iii) is a special requirement that is important in our convergence analysis.
In the rest of the paper we shall fix a function ¥ satisfying Hypothesis 3.1 and consider
a viscosity solution within a special class of functions associated to ¥. More precisely,
we have the following definition.

DEFINITION 3.2. We say that a function v is of class (V) if it satisfies the fol-
lowing conditions:
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1) v(s,z,w) = ¥(s,z,w), (s,2,w)€ Z5°;

2) v(s,x,w) is increasing with respect to x on Ds;

3) v(s,z,w) is bounded on Ds;

4) v(s,z,w)—v(s,—0,w) > x+d asx | =6 for any0 < s <T+§,—0 < w < s+6.

We shall construct a viscosity solution of (3.4) that is of class (¥) by the well-
known Perron’s method. To begin with, we need the following lemma. Since its proof
is merely computational, we give only a sketch of the proof.

(
(
(
(

LEMMA 3.3. Assume Hypothesis 2.1 and Hypothesis 3.1. There exist both viscos-
ity supersolution v and subsolution 1) of class (V) to (3.4) on Ps. Furthermore, it

holds that ¢ = =¥ on Z;°°.
Proof. We shall argue only the subsolution case; the supersolution case is similar

to [9]. First recall the distance function d(x; D) := inf,cp |z — y|, for z € R™, and
D C R™; and we define dg, (0) := d(6; Z§), 0 = (s, z,w). Then one can check that

(3.8) d%(Q):(x+5)/\(w+5)/\?(eréfw)/\(TJr(;fs)/\s, 0 Ps.

Now consider the function ¥(0) := —kdg, (), 0 = (s,z,w) € (0,T + §) x R?,
where k£ > 0 satisfies the constraint

(39) k<min{b—1, M — Ky, inf W,(6), Mfzwl)ﬁ
oers sup  |c+ 5% — r[(T +40)
wefo,r+1] F(w)

In the above b is the constant defined by (3.7), and I'® := [0, T] x [—6, T + 38] x [0, s].
It is then straightforward, albeit tedious, to check that 1)+ W is a viscosity subsolution
of class (¥) in the sense of Definition 3.2. We leave it to the interested reader. d

Next, for given ¥, we consider the following set:
F ={v:vis a viscosity subsolution of class (¥) to (3.4) on s s.t. ¢ < v < ¢},

where 1) and 1 are the viscosity subsolution and supersolution, respectively, of class
(¥) mentioned in Lemma 3.3. Define

(3.10) u(s, z,w) := sup v(s, z,w), (s,z,w) € Ds,
vEF

and let u* (resp., u.) be the upper semicontinuous envelope (resp., lower semicontin-
uous envelope) of u, defined, respectively, by

u* (s, x,w) =

lim sup {u(t, y, v) : (t,y,0) € Zs, /Tt — P+ Iy —al? + Jo — wP <1},
(3.11) rt0
Uy (8, T, w) =

1ii1(1)inf {u(t,y,v) Dy, v) € Do, /It =SP4y — a2+ v —wf? < r} .

The main result of this section is the following theorem, which obviously implies the
existence of the viscosity solution to (3.4).

THEOREM 3.4. Assume that Hypotheses 2.1 and 3.1 are in force. Then u* (resp.,
U ) s a viscosity subsolution (resp., supersolution) of class (¥) to (3.4) on .
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Proof. The fact that u* is a subsolution is more or less straightforward; we shall
omit the proof and accept it as a fact and prove only that u, is a supersolution of
class (¥). It is easy to verify that wu, is of class (¥). Suppose that u, is not a
supersolution; then there exists 6y = (sg, o, wo) € s and ¢ € Cé72’2(@5) such that
0 = [us — ¢](00) < [usx — ¢](8) for all 0 € D5, but

at@(eo) + sup Hn(e()aU*av@a@mza¢ww716[@]777a) =:g9 > 0.
~€[0,1],a€[0,M]

By continuity, we can then find 7y > 0 such that, for any 6 € B, (6) C s,

(3.12)  Owp(0) + sup H™ (0,1, VO, 0y Prowos I [0], 7, @) > £0/4.
~v€[0,1],a€[0,M]

We shall argue that (3.12) means that one can construct a subsolution ¢* € .%# such
that ¢¥*(6p) > u(fy), which would contradict the definition of w. To this end, note
that being of class (V) u, is increasing in x. Thus for 0 < &3 < %, we can modify ¢
slightly so that on B, (6p) (or choose a smaller ball if necessary) ¢ is increasing in z,
but it is decreasing in = for z sufficiently large such that

3.13 f (8)— (@) > .
( ) GeBgml?eo)mDa{u (0) —p(0)} > &1 >

Note that, by definition of u, we have ¢ < u, < ¥ in Z5. We claim that p(6p) < 1;(970)

Indeed, if p(0p) = u+(0g) = ¥(6p), then 1) — ¢ has a strict minimum at 6. Since ¥ is
a viscosity supersolution (3.4) on %5, we have

6t90(90) + Sup H"(@Q,QD,V(p,azz(p7awwg0,lé[<p],’y,a) <0,
~v€[0,1],a€[0,M]

contradicting (3.12). Therefore, by continuity of ¢ and ¢, we can find 0 < 12 < 19
and €2 > 0 such that ¢(0) < ¥(0) — €2, 8 € B,,(6p). Note that u, — ¢ has a strict
minimum at fy; we have

3.14) Api= inf L(0)—p(®)} = inf L(0) = ()} >0, r>0.
B1) A= im0 eO) = _inf (w.(0) = 6(0)) >0, -

Let us now fix g € (0,72). Recall that we have modified ¢ so that for some & > 0
large enough, it is decreasing in z, for x > . We assume without loss of generality
that & > 9 + ro. Define Es(#) := {0 := (s,#,w) : 0< s <T+08,—0 <w < s+ d}.
Clearly, Es(2) € B, N Ds; thus by (3.14) we have u, () —p(0) > A,, for 6 € Es(%).
Now for fixed 6; = (s1,2,w1) € Es(&), by definition of u, we can choose v; € F

such that 91 (0;) — (6;) > 3A4T° . But since 91 € .# (whence increasing in z) and ¢ is

decreasing in z for x > &, we have

~ ~ N A 3A7’0
(3.15)  v1(s1,x,w1) — p(s1,x,w1) > 01(01) — p(61) > 1

for x > 2.
On the other hand, by continuity of (01 — ¢)(-, &, -), there exists 7; > 0 such that

A,
(3.16) inf o {oi(s, 2,w) — (s, 2,w)} > 2
(s,w)€EBg, (s1,w1)NEs(Z) 2

Note that Fj(#) is compact; there exists a finite set {(s;, w;) o C E5(%), together
with ©; € .Z and constants 7); > 0, j = 1,...,mq, such that Es(&) C U;ZlBﬁj (s5,w;),
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and both (3.15) and (3.16) hold for each j. Now let us define £ (6) = sup; <<, 0;(0),
0 € Z5. Then one can check, as before, that ¢y € F and is increasing with  on %s.
Furthermore, since each 9; satisfies (3.15) and (3.16), it is readily seen that

A
T inf £ [ Rad] - s &y Z 7’07
(3.17) (S,:L’,w)len@(;\D(s,fc{ o(s,,w) = (s, w)} > =

where Ds ;== {(s,z,w) : 0<s<T+4,-0<z<Z-0<w<s+d}.

Now let us consider the set Dj;\ By, (6p). By (3.14) we have u.(0) — ¢(0) > A,,
for all @ € Dsz \ By, (0o). Since Ds;\B,,(fy) is compact, we can repeat the same
argument as before to obtain a ¢; € % so that

A
(3.18) _inf {01 (s, 2, w) — p(s,z,w)} > —2.
(5,2,w)€Ds5,2\ Brg (60) 2
Let 0 < ap < min{ 52 .3}, and define
o max{<p(9) + aoArmfo(Q),gl (9)} it 0 € By, (6‘0),
(3.19)  U(6) := { max{fo(8), £1(8)} if 6 € B (6y) N Z.

Then, by the choice of 7o and ag, we have ) < U < 1 in 95, and
(3.20) U(6o) > ©(00) + aoAr, > ©(00) = us(6p).

We claim that U is a viscosity subsolution of class (¥) to (3.4) in %5, which would
be a contradiction to the the definition of u, and prove the theorem.

To this end, for any 6 := (t,y,v) € %5, suppose that there is a function ¢ €
Cy*?(Zs) such that 0 = U(0) — ¢(0) is a strict maximum over Zs. Consider two

possible cases Case 1: U(0) = £y() or £1(0). We shall only consider the case
U(#) = £o(0), as the other case is similar. Since {op < U < ¢ on %5, fo — ¢ has
a maximum at . Recall again that, as the “sup” of subsolutions, ¢y is a viscosity

subsolution of (3.4) on 5 as well; hence we have

(821) @)+  sup  H™(8.6,V, bras duus I°[68],710) > 0.
76[0,1],@6[0,]\4]

Case 2: U(0) = p(0) +apA,,. In this case we must have § € B, (6p) by definition
of U. But since ¢ + apA,, < U < ¢ in B,,(p) by our choices of 1y and «ag, we have
v+ apAr, — ¢ <0in By, (6p). On the other hand, note that ¢ > U = max{fp,¢;} in
By (6b) N Zs; we conclude that

A,
0+ gy, — ¢ < o+ apl,, — max{flp, {1} < — 2“ + apA,, <0

in BE (60) N 5. That is, ¢ + apA,, — ¢ has a maximum at 6 € B, (6y) C By, (6o).
Then, by (3.12), choosing «q sufficiently small if necessary we have

(3.22)  0i0(0) + sup. H™ 0,6,V ¢, bz, bww, I°[0],7, @)

~€[0,1
a€0,M]

Zaﬂp(e_) + sup Hn(9_7 "2 + O{OAT‘O ) v¢7 Prxs Pww, I(s [90 + QOAT0]7 v CL) Z O

v€[0,1]
a€0,M]

Combining (3.21) and (3.22) we conclude that U is a viscosity subsolution of class
(P) to (3.4) in Z5, and U(0y) > u(by), a contradiction. This proves the theorem. 0O
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Let us now denote the solution to (3.4) by V™% We shall argue that such a
viscosity solution is unique and is actually a classical solution. The proof of uniqueness
will depend on the comparison theorem as usual, and in this case it can be argued
along the same lines of that in [7], except for some slight modifications. We shall only
state the result and omit the proof, so as to keep the paper in a proper length.

THEOREM 3.5 (comparison principle). Let @ be a wviscosity supersolution and u
be a viscosity subsolution of (3.4) on Ds, and both are of class (V). Then u < @ on
Ds. Consequently, u* = u, =: u defined by (3.11) is a unique continuous viscosity
solution of class (¥) to (3.4).

Remark 3.6. We recall that in [7] we proved the existence and uniqueness of
the constrained viscosity solution. But the proof of the existence was essentially
based on verifying that the value function is the desired viscosity solution. This fact
sometimes causes logical confusion, since a “practical” version of the value function
is actually the solution to the HJB equation. Thus is it often desirable, especially
when an optimal strategy is based on the value function, to be able to “construct” a
constrained viscosity solution to the original problem, which we now describe. First
note that by uniqueness we need only show that we can construct a constrained
viscosity subsolution u*. Similar to the viscosity solution of class (¥), we consider
the class of constrained viscosity solution v to (2.9) such that (i) v(T,z,w) = 0; (ii)
x — v(t,z,w) is increasing for § = (¢t,x,w) € D; and (iii) v(¢,x,w) is bounded on
D and —Q2T < v(0) < (24 Q1)T, 0 € D, for some Q1,Q2 > 0. We shall call such
viscosity solutions of class (Q). Now let dg () := inf,c 5 |—0| be the distance between
6 and the set 2. One can easily check that the functions Y(6) = 2d% () + Q1 (T — s)
and Y(0) = dg(0) — Q2(T — s), 0 € D, where

f(w)

(323) Qi=max{2+M,2(p+pT)}; Q2= [c—i— sup ’H T+1,
o<w<T | F'(w)

are, respectively, the viscosity supersolution on 2 and subsolutions on 2* to (2.9) of
class (Q) with constants (Q1,Q>). Furthermore, Y < Y on D. Now let .# be the set
of all viscosity subsolution u of (2.9) on 2* of class (Q) such that ¥ < u < Y, and
define u(s,z,w) = sup,c_y u(s,z,w). Then similar to Theorem 3.4 one can show
that u*, defined by

(3.24)
(s x,w) = T {u(ty,0); (1,9, v) € DVt = o[+ ]y —alP + o —wP <7},

is a (constrained) viscosity subsolution of (2.9) on Z*, of class (Q). In particular, by
uniqueness ([7]), u* = V, the value function of the original optimal dividend problem.

4. The regularity and convergence of {V™%}. We now turn our attention
to the family {V™°},>1 s-0, the solutions to the auxiliary equations (3.4). We shall
argue that each V™? has desired the regularity and that V™° — V, the original
value function in a satisfactory way, as n — oo and § — 0. We first look at the
regularity issue. To begin with, we note that if u is a viscosity solution of (3.4) on
Ds, and we consider the change of variable, y := In(1 + z + ¢), * > —0d, and define
v(s,y,w) = u(s,e¥ —1 — 0, w), then it is easy to verify that v is viscosity solution of
the PIDE:

(4.1) v (0) + sup @ (97v,vy,vmvyy,vww,l‘s[v],'y,a) =0 on Bs,
v€[0,1],a€[0,M]
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where § = (s,y,w), Bs :={0 = (s,y,w) : 0<s<T+0,y>0,—0 <w<s+d}, and
(4.2)

G (0,0, Uy, Vus Vyys Vuo, 1°[0], 7, @)

ene” W 0292 (¥ —§—1 2 €n
2 + 2 < ey ) Vyy (9) + ?’wa (9)

_ En _ o2y [e¥ —6—1 2 ey —0—-1
pe Tt — e 2 _ 5 ( = )+(r+(u—r)v) vy (6)

+

+a(l —e vy (0)) + vy (0) — cv(d) + ;‘((ij))l‘s[v].

It is worth noting that the main difference between (4.1) and (3.4) is that all the
coefficients of (4.1) are bounded and continuous, and for each fixed n > 1 and § > 0,
the function ¥ is uniformly elliptic. Therefore, a straightforward application of a
combination of [8, Lemma 2.9, Corollary 2.12, and Theorem 9.1] (see also [19] and
[20, Theorem 1.1]) leads to the following result.

THEOREM 4.1. Assume Hypothesis 3.1. Let u be the unique viscosily solution
of class (V) to (4.1) with ¥(s,y,w) := U(s,e¥ — 1 — 6, w), (s,y,w) € Ds. Then,
NS (Clzoto‘ (Ds)! in the sense that for any compact set D C Ds, there exists a constant

C > 0 such that ||ul| c2+a(pry < C, where C' > 0 depends on the uniform constants in
Hypothesis 3.1 and the time duration T > 0.

Remark 4.2. A direct consequence of Theorem 4.1 is that the unique viscosity
solution V™9 to the PIDE (3.4) in Theorem 3.5 has the same regularity for each fixed
n > 1 and 6 > 0. This fact will be important for the construction of e-optimal control
in the sections to follow.

In the rest of the section we shall focus on an important and more involved issue:
the convergence of the family {V"%} as n — oo and § — 0. We shall first look at the
limit as n — oo (or as €, — 0). Naturally, let us consider an intermediate PIDE:

(4.3)  Vi(0) + sup H(0,V,VV, Vau, Vi, I°[V],7,0) =0, 0 € s,
~v€[0,1],a€[0,M]

where H is defined by (2.6). Following the same argument as that in section 2, we
now argue that (4.3) admits a unique viscosity solution of class (¥). To see this, for
any (t,y,v) € Dg, let

Vs(t,y,v) == klingo sup{V"°(0) : n > k,0 € By (t,y,v) N D5} and

VO(t,y,v) = Jim inf{V™"°(0) : n > k,0 € By 1.(t,y,v) N D5},

where B,.(t,y,v) is the open ball with radius r centered at (¢,y,v) and V™%’s are the
viscosity solutions of class (¥) to PIDE (3.4).

LEMMA 4.3. For any U satisfying Hypothesis 3.1, the function Vg (resp., f/‘s) 15
a viscosity subsolution (resp., supersolution) of class (V) on D5 to (4.3).

loc 20, T] x R); u €

C2 ([0, T] x R) means Du € CIF([0,T] x R) and u, D?u € C

loc loc loc

([0,T] x R).
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Proof. We shall discuss only Vs as the proof for V9 is similar. First, it is easy
to see that Vj is of class (W) since all V™®’s are uniformly bounded, uniformly in
n,d. Next, suppose that for some 6y := (to,yo,v0) € Ds, 0 = [V5 — ¢](60) is a (strict)
maximum of Vs — ¢ over Ds, where ¢ € C122(Z;). For any N > yo we define
Dsn = [0,T + 8] x [-0,N] x [=d,s + d] so that 6y € Dsn. Since 6y is the strict
maximum of Vs — ¢, for € > 0, there exists a modulus of continuity w; (-) such that

sup  (Vs(0) — ¢(6)) < —wi(e) < 0.
0€B<(00)NDs, N

Now for § := (t,y,v) € Ds n, by definition of Vs, there exists ko := ko(6) = ko(6;¢)
such that

sup V”’5(9) — f/}(é) < d (6),
OeBl/ko(é)ﬂ@(s 4

77,2]{)0

Let us denote wg;N(-) to be the modulus of continuity of ¢ on Ds n. Then, for € > 0,
there exists o := 1o(g) > 0 such that w2 (o) < wi()/4. Thus, for § € D5 x'\B:(6)

and n > ko(9),

Cosup  (V™(0) — ¢(0))
GGB%/\UO(G)O@(;

= sup  (V™(0) = Vs(0) + Vs(0) — (0)+¢(0) — 0(0))
eeB%MU(G)m@g

wi(e) 5N w1(e) w1 (€) wi(e)
< 1 —wi(e) +wy™ (no) < 1 —wi(e) + 1=
Since BZ(6o) N Ds,n is compact and Ugep, Bk - /\no(é) D B(6o) N Ds,n, there
: o

exist Ny > 0 and 0; € BE(0p)NDs n,4=1,2,3... Ny, such that Uf\fl B_ 1

= To(a) N0

(0;) D

B¢(60p) N Ds n. Hence, for any n > maxi<;<n, ko(6;),

V) - g(0) < 24,

Finally, let {e¢}een be a positive sequence such that ey | 0 as £ — oo. For each £ > 0,
let 0, € B (00) N D5y and ny > max{maxi <<, (,)ko(0i(€e)), 5} be such that

0 S Bg(eo) N D(;,N.

(44) VIS (5) = p(0e) = max(V7 () - p(6) > 2

0eDs 2
Next, denoting ™ () = (0) + ‘{"‘375(@) — (), 0 € Ds, we see that @"°
CY22(Ds) and 0 = V™0 (0,) — " (0;) = maxgep, V™°(0) — " (), and therefore

(4'5) @t(éf) + sSup H™ (éﬁa90”€767V§07‘Pzza%pww716[(pnl75]7'77a) > 0.
76[0,1],(16[0,]\4]

Letting ¢ — oo in (4.4) and (4.5), we have
0< lim V"°(f,)

Tg—>00
1 _ _
< lim sup{V™(s,z,w) : n. > —, (s,z,w) € B:,(6p) N D5} — ©(6o)
g¢—0 Ey
= klim sup{V™ (s, z,w) : n >k, (s, ,w) € B%(Go) N D5}t — p(6o)
— 00

= Vs(6o) — ¢(6o) =0,
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and ©¢(60) + SUp.c(o.11.acio.nr) H (00, 0, Vo, 0o Puw; I°[¢], 7, a) > 0. That is, Vs is a
viscosity subsolution of (4.3). d

We should note that Lemma 4.3 and the comparison principle (Theorem 3.5)
imply that Vs < V9. On the other hand, by definitions of V5 and V¢, we also have
Vs > V7. Thus we have V5 = V¢, and we shall denote it by V9. Clearly, V? € C(Ds).

Next, we recall the value functlon V defined by (2.4). We know from [7] that
it is the unique constrained viscosity solution of (2.9), and from Remark 3.6 we see
that it can be constructed as u* defined by (3.24). In what follows we shall assume
that, modulo a further approximation, we can always find a function ¥ satisfying
Hypothesis 3.1 such that ¥(0) = u*(0) = V(0), § € dD. We should note that if ¥
satisfies Hypothesis 3.1, then ¥ will be smooth and have 9, ¥ > 1 on the boundary
0D. However, these two conditions are not necessarily satisfied by the value function
V. The following lemma is thus useful for our discussion.

LEMMA 4.4. Let V be the value function defined by (2.4). Then there exist a
sequence of functions {U,,}m>1 satisfying Hypothesis 3.1 and continuous viscosity
solutions v™ of

(4.6) { vi(s, z, w) + Z|(s, z,w) = 0, (s,z,w) € D,

v(s,z,w) =V, (s,x,w), (s,z,w) € OD

such that

(1) limy,— 00 SUPgeap [¥m(0) — V(0)| =0 and

(ii) limy, 00 0™ = V|| Loe(py = O.

Proof. Let V be the (viscosity) solution to (2.9) and ¢, : D — R the standard
mollifiers of V. Then, since V' is continuous, we have lim, o [[om — V||L~(p) = 0.
Next, we define

(4.7) U, (0) = o (0) + (2 + Np)d(0,0D,), 0 := (s,2,w) € D,

where Ny, 1= Sup (s w)efo,7]x[0,5] |5‘xcpm(s 0, w)|, and {Dm }m>1is a sequence of smooth
area such that D C D,,, d(D, D,;,) < 0, W’ and D, is parallel to the plane
{(s,z,w), =0m < s <T+p,x = 0 —0m < w < 840, }. It is then easy to check that
SUPgeop |(2 + Nin)d(0,0D,,)| < 2 and 0, W, (s,0,w) = Oy fin(s,0,w) + (2 + Np) >
—N,, +2+ N, = 2. Consequently, one can further check that, by defining ¥,, =0
on Dy, all U,,’s satisfy Hypothesis 3.1. Now let v™ be the unique viscosity solution
of (2.9) on 2 with v™ = W¥,,, on dD. Then by definition (4.7) we can easily check
that a,, := supgeaD [v"™(0) — V()] = supgesp |¥m(0) — V(0)] = 0 as m — oo and
" — Gy <V < 0™+ a,, on OD. Since v™ — a,, and v"™ + a,, are the viscosity
subsolution and supersolution of (2.9) on %, respectively, by the comparison theorem
we can then deduce that lim,, o [[v™ — V| (p) —+ 0, proving the lemma. ad

We can now prove the main result of this section.

THEOREM 4.5. Let V' be the value function defined by (2.4). Then for any e > 0,
there exists n € N, and § > 0, depending only on ¢, such that |V — VllLe(py <,
where V™9 € C*+(Dys) is a (viscosity) solution to (3.4) of class (¥) for some function
U satisfying Hypothesis 3.1.

Proof. In light of Lemma 4.4, we can assume without loss of generality that we
can find ¥ satisfying Hypothesis 3.1 such that ¥ = u* = V on dD. (Otherwise for any
€ > 0 we can first choose ¥, so that it satisfies Hypothesis 3.1, and the corresponding
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viscosity solution v™ satisfies ¥,,, = v™ on 9D, and [[v™ — V||~ (py < £/3, and then
prove the theorem for ¥,, and v™.) For convenience we shall also define u*(6) = ¥(9)
for € Z5°° (see (3.2)).

Now let V™9 be the solutions of (3.4) of class (V). We first show that

- 516 _
Jim. [V =V L (py) = 0.

Indeed, if not, then there exist eg > 0, {ng }ren C N, and {0y := (¢, 2k, wr) tren C Ds
such that ng 1 oo as k — oo and

|Vnk’6(tk,££k,wk) — V‘S(tk,xk,wkﬂ > £g.

By definition of Ds we see that, taking a subsequence if necessary, we can assume that
there exists 0y := (to, 2o, wo) € Ds (allowing o = +00) such that 0 — 6. Now let
k — oo. If gy < 400, then we have Vs(8y) — V9(8y) > g or VO (6y) — V(6y) < —eo,
which contradicts the fact that Vs = V4 = V9 in Ds. If 2y = 400, then we have
‘N/(;(tQ,N, wo) — Vé(to,N, ’U)O) > gg or f/é(to,N, wo) — Vé(to,N, wo) < —¢o for some
N > 0, also a contradiction. This proves the claim.

Next, let us denote as := supye p,\p [V?(0)—V(0)|. Then, noting that ¥ =V =u
on dDs, for 6 = (t,y,v) € ODs, we have

as = sup |VO(O) — p(B) + (@) — VO < sup (V) — V(@) + [(8) — b(0)]

6€D;s\D 0€Ds\D
< sup [w(|0 —0) +[v(0) —¥(0)]] = 05(1) asd— 0.
9€D5\D

Here w(-) is the modulus of continuity of V" (which can be chosen to be independent
of 6(!)). Furthermore, it is easy to verify that V% — as and VO + a5 are viscosity
subsolution and viscosity supersolution of (4.3), respectively, and V% —as <V < Vo4
as on OD. It then follows from the comparison principle that ||V — V|| e (p) = 05(1)
as 0 — 0.

Combining the above, for ¢ > 0, we can first choose § = d(¢) > 0 so that
[Ve—=V||L=(p) < £/2 and then choose n = n(§(¢)) € N such that [V —=V?| 1 py <
[V — V| 1o (py) < €/2. We note that V™0 € C?T*(Dj), thanks to Theorem 4.1

loc
and Remark 4.2. The proof is now complete. ]

5. Construction of e-optimal strategy. We are now ready to construct
the desired e-optimal strategy. The idea is simple: for each € > 0, we choose an
approximating solution V™ guaranteed by Theorem 4.5, and define a strategy in
the form of (1.3). It is then reasonable to believe that such a strategy should be
e-optimal.

To be more precise, let {e} be any sequence such that e; ] 0 as k — oo, and let
Vk = Vo € C2 (Ds,) be the corresponding solutions of (3.4) as those in Theorem
4.5. That is,

(5.1) ank’ak’ — V||L°°(D) <ep—0 as k — oo.
Since V() = 0 for § € D¢, we can and shall assume that V*(0) = 0 for § € D¢ for all

k. Furthermore, since each V" is of class (V) for some ¥ satisfying Hypothesis 3.1,
we can assume Vx"_;‘;(s, —6,w) > 1. Therefore V', (s,0,w) > 1 for large k.
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We now make the candidate optimal strategy (1.3) more specific. Consider the
sequence of strategies { (7", a*)}ren:

(5.2) { = Ly x,wozop + (T8 Xe, W) A DLy 1. x, w,) <o)
af = Ek(thta Wt)a

where for each k € N and (¢, z,w) € D,

—r)\VE(s,z,w)
Fk — (/L T) x ad] .
(5.3) (5,2, w) o2z VE (s, z,w)

=" (t, T, w) ::Ml{Vf(s,ar,w)<1} + pl{Vf(s,a:,w):l}a

and (X* W) is the, say, weak solution to the closed-loop dynamics of the reserve
(recall (2.2)), defined on some probability space (2, F,P,F):

( 4) { dXt = bk(t,Xt,Wt)dt + O'k(t,Xt,Wt)dBt - de,w, Xs =T,
d.

Wy=w+ (t—s)— (on, —onN.), 0<s<t<T.

Here, denoting 6 := (s, z,w) € D, we have (noting that V.*(6) > 0 for 6§ € D)

p+rz— (u—r)TF0)z — =¢(0), 0<T*0) <1,
(5.5) b(0) :=
p+ px — =F(0) otherwise;
oxT*(6), 0<TkH) <1,
(5.6) o*(0) := ©) ©)
ox otherwise.

We observe that the function I'* in (5.3) is continuous. In fact, by a further ap-
proximation (cf. [13]) if necessary, we can even assume further that T'* is Lipschitz
continuous (with Lipschitz constant depending on k). The function =¥, on the other
hand, presents some “barrier” nature, and its discontinuity in the state variable x
causes some main difficulties in the closed-loop analysis.

In the rest of the paper we shall verify two main results: (i) the closed-loop system
(5.4) is well-posed, and (ii) (7*,a*) provides an e-optimal strategy for k large. We
note that the discontinuous nature of the function Z*, as well as the presence of jumps,
makes finding the strong solution to SDE (5.4) a rather involved task. Our plan of
attack is the following. We shall begin by looking at the weak solution to (5.4). Then
using the fact that the SDE is one-dimensional, we shall argue that the weak solution
is actually strong and is pathwise unique, up to the ruin time 7 = inf{t > 0, X; < 0},
following a scheme initiated by [10] (see also [6, 15]).

To this end, let us modify the function o” slightly: for m € N, we consider
©"™(x) = L Vo Am and define 0™ *(0) := g™ (x)'*(6), 6 € D. Since both ¢™ and
I'* are bounded and Lipschitz, so is ¢™". Furthermore, it is readily seen that for
some constant ¢, > 0, one has

(5.7) 0<cm<o™FB) <o(xAm), 6:=(s,x,w)€D.

To continue our discussion we shall now consider the canonical space. Let Q' =
C([0,T7), the space of all continuous functions, null at zero, and endowed with the

usual sup-norm. Let F} 2 o{w(-At)|we Q) t >0, F 2 Fr, F' = {F!}icpo,r), and

P? be the Wiener measure on (Q!, F1) so that the canonical process By(w) 2 wl(t),
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(t,wh) € [0,T] x Q! is a (P, F')-Brownian motion. Let Q2 = D([0, 7)), the space of
all real-valued, cadlag (right-continuous with left limit) functions, endowed with the
Skorohod topology, and similarly define F? = {ff}te[o,ﬂ and F2 2 F2. Let P9 be
the law of the renewal claim process @ on D(]0,7]) so that the coordinate process
Qi (w?) = W3(t), (t,w?) € [0,T] x Q2. Now we consider the product space:

(58) N2Q'x 0% FEF@F;PEP P FEF @F2 te,T).
We now consider the following SDE on the canonical space (Q1, F1,P0;F!):
(59) { dXy = o™ (t, Xy, Wy)dBy — dQy, X = ;

€ 1[0,T].
Wt = t—O']\/‘t7

We have the following result.
PROPOSITION 5.1. Under Hypothesis 2.1, the SDE (5.9) has a strong solution.

Proof. We write the element of Q as w = (w!,w?) € Q Then, the two marginal
coordinate processes are defined by B;(w) 2y L), Qi (w) 2w 2(t), (t,w) x [0,T] x Q.
Then under our hypotheses B and @ are independent, and the process Q(w) = w?(t)
is piecewise constant jumping at 0 < o1(w?) < -+ < Ony(w2)(W?) < T, where Ny(w?)
denotes the number of jumps of @ up to time ¢ and hence is a renewal counting
process. We then define Wy (w) =t — o, (2)(w?), t > 0.

Now on the canonical process, for P?-a.s. w? € Q2 we define

(5.10) gk’ (t,x) :== o™ (t,x — W2(t), t — ony w2y (W?)), (t,z) €[0,T] xR,
and consider the SDE on the space (Q!, F1, PY; F!):
(5.11) dX, =6 ™k, X,)dB,, Xo=uaz, tel0,T).

Clearly, by definition (5.10) and the facts (5.7) and that o™ is Lipschitz, SDE (5.11)
has a unique strong solution X"’ = X, (-, w 2) on (@', F1,P% F') for PP-as. w? € Q2.
Consequently, by (5.10), if we deﬁne X:=X-Qand W, =t — on,, then (X, W)
satisfies (5.9).

The uniqueness of the solution (X, W) follows from that of X as Q is a coordinate
process, completing the proof. O

Now let (X,W) be a strong solution of (5.9) on (£, F,P), and denote it by
(X™k W) if the dependence on m,k is important. Clearly, for fixed w? € Q2
X"F(w) = X¢ —w?(t). Tt is well-known (cf., e.g., [3] and [11]) that the solution X«
of (5.11) has a transition density, denoted by p“’2 (t,y; s,x) to indicate its dependence
on w?, and it satisfies

—A(y — x)?

(5.12) pw2(t,y;s,x) < Mo|tséexp{ ”
-5

} b S S t’ x’ y G R’
where constants Mo and A depend only on m, k but are 1ndependent of w?. Conse-
quently, for fixed w? € 02, X™*(-,w?) has the density function p* (ty + wi(t); 8, x)

under P°. Furthermore, by renewal theory (see, e.g., [18]), the random variable oy,
has a density function

(5.13) fon, () = F(t —uw)m/(u) = Ft —u) Y falu), t>u>0,
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where m(t) = E[Ny| = Y77 | F,.(t), F is the law of the waiting time T}’s, F,, is the n-

n=1
fold convolution of F' with itself, and f,, is corresponding density function. Therefore,

we can write down the joint distribution of (X", o, ):
P(X{™* € A,on, € B) = /Q 1 /Q 1 (X wtyeay Hon, (w2 emy PO (dw )P (dw?)

(5.14) =/ U Pty + w3 ()5, 2)dy | 1oy, e p) P2(dw?).
Q2 A

In what follows we shall make use of an extra assumption on the jump times oy;,.

Hypothesis 5.2. There exists a constant *y, > 1 such that

(5.15) / /

Remark 5.3. We remark that the Assumption 5.2 is merely technical, but it covers
a large class of cases that are commonly seen in applications. In particular, we

u)dudt < +00.

> —1, then ’yl < 5. Furthermore, if T; is of exponential
distribution with A (that is, the renewal process N becomes Poisson), then m(t) =
EN(t) = Xt and foy, (u) = Ae M=) Then,

T ot

//t2 w)dudt = //

o Jo o Jo

T 1t o

g// IT‘T.
o Jo 5—7

Also, if T; ~ Erlang(k,\), that is, F(u,k,\) = 1 — 22 011, e (A\z)i, as we often see
in the Sparre Andersen models, then ZW 1 f(u, k, )\) <> falu,1,0) = A, and
one can check that

(Ae )Y qudt

’

2l 5—~'
// w)dudt < 2277
5—7

In both cases Hypothesis 5.2 holds.

6. Strong well-posedness of the closed-loop system. We now ready to
study the existence and (pathwise) uniqueness of the closed-loop system (5.4). Again,
for each m € N we consider the “truncated” version of b*: b"™*(t, z,w) := p*(t, —mV
x Am,w). Then b™* is a bounded and measurable function. Let (X™* W) be the
strong solution of (5.9) on (2!, F! P%), and for w? € OQ?, define

B, X (- w?), = o, (w2) (@)

6.1 0, (-, w?) = :
( ) t ( ) O'm’k(t7Xtml7k('aw2)vt - UNt(wz)(WQ))

Since b™* is bounded, by (5.7) we see that, modulo a P?-null set N2 C Q2, 7% (., w?)
is a bounded, F!-adapted process, for all w? € Q2 \ N2. We can then define the
following exponential martingale on (Q!, 71, P%; F!):

t
(6.2) LF(-,w?) = exp{/ 07" (-, w?)dB; — f/ 1075 (-, w?)] ds} ? ¢ N?,
0
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and a new probability measure P"™* on (9, F) by

(6.3) I@m’k(Al x Ag) = / / L?’k(wl,wQ‘)IP’O(doJl)PQ(dwz),Al e Fl A, e F2
As J A

Then, it is readily seen that, under P™*, B{n’k = B, — fot mkds, t € [0,T], is a
Brownian motion, still independent of @, and on the space (Q, F,P"™F), (X™k W)
satisfies, for ¢ € [0, 7],

{ AXF = bk (¢, XTF W)t + o™k (8 X W) B — dQy, XU =
(6.4)
Wt =1t— ON.

In other words, (€, F,P"™* B™k X"k W) is a weak solution to a truncated version
of (5.4). Our task in this subsection is to show that this weak solution can actually be
strong and that it is pathwise unique. Furthermore, we shall argue that, as m — oo,
the sequence {X"*} would converge to a process X*, which satisfies the SDE (5.4)
on the interval [0, 7y), where 7 := inf{t > 0 : X} < 0}. This is clearly sufficient for
our purpose.

We should note that since the coefficient b™* is discontinuous, the pathwise
unique strong solution is only possible because the SDE (5.4) is one-dimensional. Our
argument borrows the idea initiated in [10] (see also, e.g., [6]), using the so-called
Krylov estimate (cf. [12]). To this end, let us begin with some observations. Let
(X™* W, B) be any weak solution of SDE (6.4) defined on some filtered probability
space (2, F,P;F); we may assume that (2, F) is the canonical space defined before,
except that P is any probability measure, and F is augmented by all the P-null sets.
Recalling # and M defined by (6.1) and (6.2), respectively, define § := —6 and L :=
L~'. Note that the process # actually depends on w?; namely, we should have 8 = o’
for w? € Q2 and hence L = L*" as well. We now define, for fixed w?, a new probability

w? - —
B0 = L% on (Q', F'), so that BY := B, — fg@fg’st, t>0,isa

measure P |]__71“

Brownian motion on (Q!, F1, IP’O’“Q). We next define a new probability measure P on
(9, F) such that for A € F!, B € F?,

(6.5) P(A x B) //IE”O“’ (dw' )PP (dw?) //L“ P(dw! @ dw?).

Then it is readily seen that Li(w) = Li(wh, w?) := [L“’ |71 (wh), t € [0,T] is a martin-
gale under P, & |}_ = Ly, and (X™* W, B%) solves SDE (5.9) on the space (2, F,P).
We are now ready to prove the followmg Krylov estimate.

LEMMA 6.1. Assume Hypothesis 2.1 and Hypothesis 5.2. Let X™F be a weak
solution of SDE (6.4). Then, for any bounded and measurable function g : [0,T] x
[0,400) x [0,T] — Ry, it holds that

T T t
(6.6) ]E/ g(t, Xy, Wy)dt < G{/ // gBW(t,y,t—u)dydudt}
0 0 R JO

Here in the above G is a constant defined by

1/Bv

(6.7) G = C(My, A, ~', B){EL;*}/ V / )dudt] W,

where E = IEP, and Ly = %, 1 % =1, and ' is given in Hypothesis 5.2.

«
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Proof. Throughout this proof we fix m and k£ and thus omit them in the notation
for simplicity. For any bounded, nonnegative measurable function g : [0, 7] x [0, +00) X
[0,7] = R, and any 8 > 1 we have

T
E / g, Xt — aNt)dt]

0
68 = [ [ [t om@nr e+ 0.0.000] Pt

! B 2 _1 —Awte?(n)-m)? O/ 2
< g (tayat*UNt(w ))M0|t‘ 2e T dy P (dw )dt
0 02 R

Note that, by Holder’s inequality again, we have
(6.9)

t

< {/Rgﬂ”(t,%t—am(w?))dyr [/R<1\40t|5exp{_A(Z“Lw:(t)_9(”)2})V dy} o

where 1/ +1/4" = 1. By the direct calculation, we have

— 2 —_ 2 V/ ’ 1—'y/
(6.10) /(Moltléexp{ Ay twt) o) }) dy < C(Mo, A,y )t 7,
R

[t = o) ol exp{‘A(y“’Q(t) ‘x>2}dy

t

where C(My, A,~') is some constant depending only on My, A, and +'. Keeping (6.8),
(6.9), and (6.10) in mind, we have

E{/OTg(t,Xt,Wt)dt} :E{E;l/ng(t,Xt,Wt)dt}
< {EL;*}= {E [/OT 9Pt X, t — aNt)dt} }é

1
B

T 1 L
< {BL;°}% { J R ) ] N T S e PQ<dw2>dt}
0

1
B

1 T t % 1—+/
< O(Mo, A+, B){EL7") 5 { / / [/ gﬁ%t,y,t—u)dy} T fmw)dudt}

- L
gc[/ I/ g‘”(t,y,tw)dydudt} ,
0 0 R

where C'(My, A, ', B) == C%(MO,A,M) and G is defined by (6.7). This proves (6.6),
whence the lemma. O

We are now ready to prove that, for fixed m, k, SDE (6.4) actually has a pathwise
unique strong solution on the interval [0, 7, 1), where T, 1 := inf{t > 0 : X;™* < 0}.
For notational simplicity, we again fix m and k and denote b = b™* and o = o™,
so that (6.4) now reads

(6 11) dXt = b(t,Xt,Wt)dt + O'(t,Xt,Wt)dBt - th, Xo = x;
’ Wt:t—O'Nt, t€[07T]
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Recalling from (5.3) and (5.5) that the function b = b™* is discontinuous but has a
linear growth,

(6.12) b(t,z,w)|] < C(1+ |z]), (t,z,w) € [0,T] x R x [0,T]

for some constant C' > 0 depending only on the coefficients but independent of m, k.
In what follows we shall allow such generic constant to vary from line to line.

The scheme for constructing the strong solution for (6.11) goes as follows (see,
e.g., [10, 15] or [6]). For any N > 0 define by (t,z,w) = b(t,z ANV (—=N),w). Then
(6.12) implies that by is a bounded measurable function. Let p be a smooth mollifier
with compact support in R such that fR p(z)dz =1. For n=1,2..., define

bustw) =7 [ bt w)pli(o ~ )

then by ;’s are smooth functions, having the same bound N, and satisfying the lin-
ear growth condition (6.12) with the same constant C' > 0, and by ; — by almost
everywhere on [0, 7] x R x [0,7T] as j — oo.

Next, for any K € N and j < K we define by j x = /\f:j by and by 2
/\ZO:]- bn,j, where a A b = min{a,b}. Then clearly, each l;N,j’K is continuous, and
uniformly Lipschitz in x, uniformly in (¢,w). Furthermore, for almost all x, for any
(t,w), it holds that by j x | bn,;j as K — oo and by,; T by as j — co. Now let us fix
N, j, and K and consider the following SDE:

(6.13) { dY; = by ik (t, Yy, Wy)dt + o (t, Yy, Wy)dBy, Yo = a3

Wy=t—oun,, t>0.

Clearly, (6.13) has a unique strong solution; denote it by Y N:9-K By the standard
comparison theorem, we see that {Y~75} is decreasing with K, and thus we can

define YQN’j = lim g o0 f’tN’j’K, t € [0,T], P-a.s. Since b+’ and o are bounded, one

can easily check that YQN’j < 00, P-a.s. We shall argue that the limiting process YN+
solves the SDE:

Wt =t — O‘Nt7

To see this, we first need the following crucial lemma.

LEMMA 6.2. Suppose that Hypothesis 2.1 and Hypothesis 5.2 are in force. Assume
also that {bx}52, are measurable functions defined on [0,T] x R x [0,T], bounded
uniformly in K, and there exists a measurable function b such that

lim f)K(s,x,w) = I;(s,a:,w) for a.e. (s,z,w) €[0,T] xR x [0,T].
K—oo
Suppose that for each K, (YE W) is a strong solution of (6.13) with drift being

replaced by bx and that there exists Y such that for everyt € [0,T), limg o, Y, =Y,
P-a.s. Then, it holds that

T
(6.15) lim El/ b (t, V., W,) — b(t, Yy, Wy)|ds | = 0.
0

K—oo
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Proof. The proof of lemma follows the almost identical arguments of those in [15]
or [6], with the help of the Krylov estimate established in Lemma 6.1. We leave it to
the interested reader. |

Let us fix NV, j and denote b = 5N7j,K, YE = yNiK K e N, and b= BNJ,
Y = Y™J. Then Lemma 6.1 shows that, possibly along a subsequence and may
assume itself, we have

t t
(6.16) lim bN7j7K(s,}zN’j’K,Ws)ds:/ by (s, YNNI Wy)ds,t € [0,T], P-a.s.
0

K—oo Jg

Furthermore, since ¢ is bounded and continuous, the bounded convergence theorem
yields that limg o0 E[| fOT[a(s, YNIE W) —o(s, YN, VVS)dBS|2] = 0; thus along a
subsequence we have

t t
(6.17) lim [ o(s, YN9E W,)dB, = / o(s, YN W,)dBs, t€0,T], P-as.
0

K—oo Jg

Since YN7K solves SDE (6.13) and Y95 | YN:d | we conclude that YN solves the
SDE (6.14).

Next, since YN’j’K < YNAEK for j < i < K, we see that YNJ increases as j
increases; thus }N/tN’J 1YN, t €[0,T], P-almost surely, where Y is some process with
YN < oo, t € [0,T], P-a.s. By the same argument as before, using Lemma 6.2 with
l;j =bnj, b= by, and Y7 = Y N7, we can show that YV solves the SDE:

(618) { dY;g = bN(t7Y't7 Wt)dt + O-(tvifta Wt)dBta Yo= €Z; te [O,T]
Wt =t — JN“

Moreover, we can show, as in [6], that YN is pathwise unique. Let us now define 7y =
inf{t : [YN| > N} AT. Then on the interval [0,7n], bn(t, YN, W) = b(t, YN, W);
thus YV is a unique strong solution to the SDE

(6.19) { v =0 Yo Wa)di oY W)dBe Yo=m5 g oy
Wt = t_UN”

Now observe that if N; > Na, we have 7n, > 7n,. Thus by uniqueness we have
YtN2 = YltN1 on the interval [0, 7,]. We can now define a process Y such that Y; = Y,V
t € [0,7n]. Then Y is well-defined on the interval [0, 7), where 7 = limy 4 oo 7. Since
bis of linear growth and o is bounded, it is not hard to show that E[sup;c(o 7 VN2 <
oo, which implies that P{|Y;| < oo,t € [0,7)} = 1 and hence 7 = T, P-a.s. In other
words, Y is a unique strong solution to (6.19) on [0, T].

We can now prove the main result of this section.

THEOREM 6.3. Assume that the Hypothesis 2.1 and Hypothesis 5.2 are in force.
Then, for each k > 0, the closed-loop system (5.4) possesses a unique strong solution
(Xk, W) on the random interval [0, 7x), where 7 = inf{t > 0: X* <0} AT.

Proof. We begin by recalling the SDE (6.4). Without loss of generality we con-
sider only the case s = 0; that is, we write SDE (6.4) as

te[0,T].

(6 20) dXt = bm,k(tth’ Wt)dt + O'm’k(t, Xt, Wt)dBt - thaXO = X
’ Wt :t_UN”
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We shall follow the same argument as that in Proposition 5.1 to construct the strong
solution on the canonical space (Q!, F!,P%;F!) defined by (5.8). For any w =
(wl,w?) € O, we write the coordinate processes as B;(w) 2 wi(t), Q¢(w) 2 w2(t),
(t,w) x [0,T] x Q. Assuming that the process Q¢(w) = w?(t) jumps at 0 < o1 (w?) <
RS (TNT(w2)(w2) < T, where N;(w?) denotes the number of jumps of Q up to time
t, we define Wy(w) =t — o, (w2)(w?), t > 0.

Now for PR-a.s. w? € Q2 we define b™*«” and 5k’ by (5.10), respectively,
and consider the SDE on the space (Q!, F1, PY; F!):

(6.21) dX, = b ™kt X,)ds + 67k, X)dB,, Xo=ax;  te0,T),

Clearly, this equation is the same as (6.19), and we have shown that it has a unique
strong solution on (Q*, F!,P%;F'); denote it by X;n’k’w2 = X™F(,w?) for PR-as.
w? € Q2. We then define X™F* := X™k — Q and W; =t — oy,; then (X™F W) is
the unique strong solution to (6.20).

To complete the proof, let us define 7, = inf{t > 0, X" ¢ (L, m]} A
T. Again, observe that b™F(t, X"F W) = bk (t, X% W) and o™*(t, X" W) =
o (t, X" W). Thus (X™* W) is the unique strong solution of (5.4) on [0, T.x].
Furthermore, note that if m; > mao, then 7, > T, k. Thus by uniqueness we have
X% = X"k on the interval [0, 7,,,]. Thus the process X* defined by XF = X%,
t € [0, Tyn.k], is well-defined, and with the linear growth of b* and o*, we see that
E[supeo, 1 |X™*|2] < 0. We can then conclude that X* is the unique strong solu-
tion of SDE (5.4) on the interval [0, 7%), where 7, = limy, 1 0o Tk = inf{t > 0: X* <
0} AT. O

7. Verification of the e-optimality. Having proved the well-posedness of the
closed-loop system (5.4), we now verify that the strategy defined by (5.2) is indeed
e-optimal. That is, it does produce the cost functional V"*% as desired. We should
note that the auxiliary PIDE (3.4) actually does not correspond to any variation of
the original control problem (2.2)—(2.4); the verification is not automatic.

Recall that our e-optimal strategy is based on the approximating solution V™9,
guaranteed by Theorem 4.5. More precisely, let V¥ := V"% ¢ C2 ([0,T] x R) be

loc

the solutions of (3.4) as those in Theorem 4.5 such that (5.1) holds. Namely,
[VF = VLo (p)y < ek 0 as k — oo.

Now let us define V¥(s, 2z, w) = V¥(s, 2, w)1p(s,z,w). Then V¥ € C121(D), and it
follows from (5.1) that ||V* —V|pee(py — 0 as k — oo. Furthermore, by the construc-
tion of V¥, we see that V¥, (s, —d,w) > 1, and hence V}, (s,0,w) = V¥, (5,0,w) > 1
for k large enough. We should note that Vf(s, z,w) = VF(s,z,w) > 0for (s,z,w) € D
always holds.

We now recall the strategy m* = (7%, a*) defined by (5.2) and denote X* as the
corresponding strong solution to (2.2), which exists on [0, 7%), where 7% := inf{t >
0:XF ¢[0,00)}. It is useful to remember that 7% is actually the maximizer of the
Hamiltonian (2.6), namely, it holds that

1 ) .
(7.1) = argmax —o? VP (XEVPVE G XE W) + (= r)V XFVE( XF, W)
~€l0,
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In the rest of the section we shall consider, for s € [0,T7], the closed-loop system (5.4)
on the interval [s,T] and write it as

(7.2) { dX; = (8, X)dt + 0% (t, X)dB, - dQ}™; X, =

Wy=w+(t—s)— (on, —onN.), t€ls 1],

where b¥(t,x) = (p — af) + [r + (u — r)VF]z; 0¥ (t,2) = vFx, and 7% = (4%, a*) is the
aforementioned approximating strategy. We denote the solution by X* = X**7 and
W = W*"¥ when the context is clear. For given (s,x,w) € D we define 7% := inf{t >
s: XF ¢[0,00)} and denote Eqypyp[-] :=E[- | X} = 2, W, = w)].

To show that the strategy 7" = (v*,a*) does satisfy the e-optimality we shall
argue that J(s,z,w; %) satisfies, for § = (s, z,w) € D, that J(8;7%) — V(0) as k —
oo. But note that J(0; %) = E [fOT‘fAT e~t=9)afdt] and limy o0 |[VE =V || 1o (py = 0;
the following theorem would suffice.

THEOREM 7.1. Assume that Hypothesis 2.1and Hypothesis 5.2 are in force. Then,
uniformly for (s,x,w) € D, it holds that

T;"’/\T .
(7.3) lim |Espw / e = gkdt — VF(s,z,w)|| = 0.

k—oc0

Proof. The proof is straightforward. Applying It6’s formula from s to TR AT to
e—clt=s)yk (t, X¥,W;) and then taking expectation on both sides we can easily derive

E e—c(‘rf/\T—S) V’C (Tf AT, Xff/\T’ WT;c/\T):I

’T';"/\T . . .
= Vk(s, z,w)+E / e c(t=9) [ — VP VE VR

~ 1 ~
+1p—af) + (r+ (u = r)E) XFIVE 4+ 50 ()2 (XF)P Vi | (8, XF, Wt)dt]

2
AT
N et—sy S(WY)
e {/ © Fwy

X7 .
/ VR, XF —u,0)g(u)du — V*(t, XEF, Wt)] dt} :
0

Since f/k(s,@,w) satisfies the HJB equation (4.3) and 7% = (7%, a¥) is the maximizer
in terms of V¥, a simple calculation shows that (suppressing variables)
—eVEL VE+ Vi [(p = ap) + (r + (= )y XFVE
L oo eiyryepk S W) o
+ =0 X V: ————=V
9 (’Yt ) ( t ) xT F(Wt)

kis
v f(W) /Xt+k k k €k vk Ckirk
= —af - L VE(t, XE —u, =6 du— Eyk — Zkyk
ai F(Wt) 0 (’ t u, k)g(u) u 9 xx 9 ww

Then we have

. . R T;C/\T
E [e*C“fAT*”V’“(Tf AT, X5 WT;CAT)] —V*(s,z,w) + E / e°<”>a§dt]
AT xp o
_ IE{/ e—ett= JWo) o [/ L0 XE = w,0) — VG XE — u,—50)]g(u)du
s 0

F(Wy)
XFEys, . AT )
- / VR, XE —u, —6k)g(u)du| b — S E / e UmIVE (¢ XE W)dt

k
Xt
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€k Tf/\T R
- SE / e VR (X, Wy)dt
S

TLC/\T R R
<08 - SE [ / e I VE (6, XE, W) + Vik (t, X, Wt)]dt} :

Finally, letting k¥ — oo and noting that dx,ex — 0, (7.3) follows from the fact that

kli)n;l() ]ESIw I:Vk (’7—5 A\ CZ-‘7 Xf_?/\j” WT;"/\T)] = kll{go ]Esxu) I:]-{T;V ZT}Vk (T7 X%? WT)]

= k]l)nolo Eqzw [I{T;CZT}V(T, Xféc—v, WT)] = 0.

This proves the theorem. 0
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