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Abstract
Fluid injection is one of the major triggering factors of instability in unsaturated
soils. Robust simulation tools are therefore required to examine hydrologic tran-
sients in such a class of inelasticmaterials. In this paper, the governing equations
imposing the balance ofmass andmomentum in deformable unsaturated porous
media are inspected from an analytical perspective. Our main goal is to examine
the role of volume collapse on the stability of suction transients. Distinct sce-
narios are considered in terms of material behavior, distinguishing the case of
elastoplastic and viscoplastic materials. It shows that in elastoplastic materials
the mathematical ill-posedness of the partial differential equations leads to a dif-
fusive instability of the pore pressure field, signaled by the loss of stress control-
lability under water injection. By contrast, the introduction of viscosity restores
themathematical well-posedness and ensures the positive diffusivity. Numerical
implications of these findings have been explored through simulations of water
injection with a 1D finite element solver. It shows that an increase of the soil
hydraulic sensitivity (i.e., a marked deterioration of the yield stress upon suction
removal) can deteriorate the diffusive stability and prevent the computation of
suction changes across a collapsible soil layer. While the incorporation of minor
amounts of viscosity can restore numerical stability by suppressing the constitu-
tive singularity. Such numerical results have been corroborated by the computa-
tion of local stability indicators based on controllability theory, which proved to
be robust diagnostic tools to identify the culprit of runaway instability emerging
from coupled hydro-mechanical processes.
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1 INTRODUCTION

Water level fluctuations due to precipitation or rising phreatic levels are common triggers of ground failure.1,2 The increase
inmoisture content and the consequent decrease in capillary suctionweaken the soil and cause the accumulation of inelas-
tic compaction, a phenomenon referred to as wetting collapse. As illustrated in Figure 1a, wetting may cause the accumu-
lation of compactive strains, which can be replicated through concepts of strain-hardening plasticity.3 Large amounts
of plastic compaction are known to deteriorate both the stability and the serviceability of systems subjected to wetting,
possibly causing rapid ground movements and sudden acceleration (Figure 1b). Due to their detrimental consequences,
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F IGURE 1 Schematic illustrations of wetting processes: (A) wetting collapse in laboratory tests. The schematic illustrates the different
deformation outcomes of wetting simulations based on elastic models (resulting in swelling; black line) and plastic models with
suction-dependent yield surface (which, instead, can replicate collapse mechanisms; red line); (B) rainfall induced landslides of the flow-type.
The schematic illustrates the gradual transition from deceleration to acceleration with the star symbol signaling the emergence of global
acceleration and runaway failure

numerous studies have been carried out to understand the mechanics of saturation-induced plastic deformation.4–6 For
example, second-order work principles specific for unsaturated materials have been developed7 and linked to analytical
tools to detect constitutive singularities in hydro-mechanical constitutive laws.8 In this context, constitutive singularities
were linked to the concept of controllability, which provides indices to identify the onset of instability for very general
combinations of control and response variables.9–11
It is well known that material instability is a source of strain localization of rate-independent solids.12,13 Numerical

implications of the post-failure responses are far-reaching and require the application of regularization strategies, such
as viscoplasticity, gradient theory, and nonlocality.14 Similar concepts have also been explored in the context of fully satu-
rated geomaterials, in which static liquefaction can lead to unstable consolidation processes.15–17 Usually, viscoplasticity
is beneficial also for regularization of such ill-posed coupled hydro-mechanical processes.18,19 It is arguable that similar
considerations remain valid also with reference to unsaturated porous media.6,20 However, to the authors’ knowledge,
no studies have yet documented explicitly the connection between the local instability associated with wetting-induced
constitutive singularities and the numerical ill-posedness due to a vanishing diffusivity coefficient.
To fill this gap, this paper proposes an integrated analytical and numerical inspection of the field equations that govern

coupled flow-deformation processes in collapsible unsaturated soils. By virtue of its known ability to suppress the ill-
posedness caused by material instabilities, here, viscoplasticity is used to stabilize the numerical analyses of water diffu-
sion in collapsible soils subjected to wetting. In the following sections, an analytical inspection of the governing equations
is conducted for both elastoplastic and viscoplastic unsaturated materials, emphasizing the role of material inelasticity on
the diffusive instability of pore pressure transients. It will be shown that although the diffusivity coefficient can be affected
by the nonlinearity of the water retention behavior, viscosity restores its positiveness under very general choices of model
parameters. In addition, such insights will be tested from a numerical standpoint by inspecting the characteristics of the
discretized global stiffness matrix for both elastoplastic and viscoplastic constitutive formulations. More generally, the
goal of the study is to illustrate the possibility to use a unified interpretation framework to track wetting-induced soil
instability in coupled numerical analyses, as well as to suppress the numerical ill-posedness that results from them.

2 DIFFUSIVE INSTABILITY OF UNSATURATED SOILS

2.1 Mass conservation equation

Unsaturated porous media involve a solid phase permeated by two fluids, which are non-miscible and characterized by
different affinity with the solid matrix (i.e., one of them is usually a wetting fluid capable of adhering to the matrix,
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F IGURE 2 Schematic description of constitutive relationships to simulate wetting-induced inelastic deformation: (A) soil water
retention curve (SWRC); (B) elastoplastic behavior in the 𝜎-𝑠 space; (C) viscoplastic behavior with the overstress model in the 𝜎-𝑠 space

while the other is a non-wetting fluid lacking such capability). Their mechanical behavior is governed by the interaction
among these phases. Specifically, the fluids develop interfaces, across which a pressure jump is established. As a result,
the pressure and consequent flow of the two fluids is controlled by independent variables and the interaction between
the fluids and the matrix can be quantified by the pressure jump, here referred to as capillary suction. Although such
conditions apply to multiple solid-fluid mixtures, hereafter emphasis is given to multiphase systems naturally occurring
in the Earth, in which the solid matrix is represented by a quartz-based geomaterial skeleton (s), the wetting phase is pore
water (w) and the non-wetting phase is air (a). The total volume 𝑉𝑡 is then expressed as:

𝑉𝑡 = 𝑉𝑠 + 𝑉𝑤 + 𝑉𝑎 (1)

with the sum of 𝑉𝑤 and 𝑉𝑎 quantifying the volume of the voids, 𝑉𝑣. Void ratio, porosity, and degree of saturation
are defined as 𝑒 = 𝑉𝑣∕𝑉𝑠, 𝑛 = 𝑉𝑣∕𝑉𝑡 and 𝑆𝑟 = 𝑉𝑤∕𝑉𝑣 respectively, and the volume fractions of the three phases with
respect to the total volume are expressed as 1 − 𝑛, 𝑛𝑆𝑟 and 𝑛(1 − 𝑆𝑟), respectively. Moreover, suction quantifies the ten-
dency of the pore water to possess pressure values lower than those prevailing in the air phase (i.e., 𝑢𝑤 < 𝑢𝑎), and
it is expressed as 𝑠 = 𝑢𝑎 − 𝑢𝑤. The relationship between suction, 𝑠, and degree of saturation, 𝑆𝑟, is described through
the water retention behavior. The stress acting on the solid skeleton can be quantified by the so-called Bishop effective
stress:

𝜎′
𝑖𝑗
= 𝜎net

𝑖𝑗
+ 𝜒(𝑆𝑟)𝑠𝛿𝑖𝑗 (2)

where 𝛿𝑖𝑗 is the Kronecker delta, 𝜎net𝑖𝑗
= 𝜎𝑖𝑗 − 𝑢𝑎𝛿𝑖𝑗 is the net stress, 𝜎𝑖𝑗 is the total stress, and 𝜒(𝑆𝑟) is the effective

stress coefficient, being a function of 𝑆𝑟. In addition, the analysis is restricted to moderate values of 𝑆𝑟, reflecting of
materials within the funicular regime21 for which both water and air phases are continuous and the air pressure can
be considered constant (i.e., 𝑢̇𝑎 = 0), as shown in Figure 2a. Therefore, only the mass balance of water is hereafter
considered:

(
𝜌𝑤𝑞

𝑤
𝑖

)
,𝑗
+ (𝜌𝑤𝑛𝑆𝑟),𝑡 = 0 (3)

where commas indicate differentiation with respect to either time (i.e., 𝜕𝑎∕𝜕𝑡 = 𝑎,𝑡) or a spatial coordinate (e.g., 𝜕𝑎∕𝜕𝑥 =
𝑎,𝑥 and 𝜕2𝑎∕𝜕𝑥2 = 𝑎,𝑥𝑥 ). Subscripts 𝑖 and 𝑗 indicate spatial directionswithin aCartesian reference system through indicial
notation and follow the Einstein summation convention. 𝑞𝑤

𝑖
is the water flux following Darcy’s law:

𝑞𝑤
𝑖
= −𝑘𝑤

𝑖𝑗
ℎ,𝑗 = −𝑘𝑤

𝑖𝑗

(
−
𝑠

𝛾𝑤
+ 𝑧

)
,𝑗

(4)

where 𝛾𝑤 is the specific weight of water, ℎ is the hydraulic potential, here contains the contributions of the pressure poten-
tial −𝑠∕𝛾𝑤 and the gravitational potential 𝑧, and 𝑘𝑤𝑖𝑗(𝑆𝑟) is the hydraulic conductivity tensor associated to 𝑆𝑟. Specifically,
under the small strain assumption, the Lagrangian porosity is adopted here22 which implies that 𝑛 = 𝑒∕(1 + 𝑒0), where
𝑒0 is the initial void ratio, and 𝑛,𝑡 = −𝜀𝑣,𝑡, where 𝜀𝑣 is the volumetric strain. By adopting the compression positive sign
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convention typical for geomechanical analyses, it follows:

(𝑛𝑆𝑟),𝑡 = 𝑛𝑆𝑟,𝑡 − 𝑆𝑟𝜀𝑣,𝑡 =
𝑒𝑤,𝑡

1 + 𝑒0
(5)

where 𝑒𝑤 = 𝑒𝑆𝑟 is the specific water ratio, defined as the product of void ratio, e, and degree of saturation, 𝑆𝑟. By treating
the water phase as incompressible (i.e., water density 𝜌𝑤 keeps constant), the governing equation for water mass balance
defined in Equation 3 becomes:

𝑞𝑤
𝑖,𝑗
+

𝑒𝑤,𝑡

1 + 𝑒
= 0 (6)

Combining with Equation (4) leads to:

𝑘𝑤
𝑖𝑗

𝛾𝑤
𝑠,𝑖𝑗 +

1

𝛾𝑤

𝜕𝑘𝑤
𝑖𝑗

𝜕𝑠
𝑠,𝑖𝑠,𝑗 − 𝑘

𝑤
𝑖𝑗,𝑖
𝑧,𝑗 +

𝑒𝑤,𝑡

1 + 𝑒
= 0 (7)

Moreover, the hypothesis of additive strain decomposition enables to express the total strain 𝜀𝑖𝑗 as the sum of elastic and
plastic portions, 𝜀𝑒

𝑖𝑗
and 𝜀𝑝

𝑖𝑗
, respectively. By incorporating an uncoupled water retention curve (i.e., a unique relationship

between suction and degree of saturation), it follows:

𝑒𝑤,𝑡

1 + 𝑒
= 𝑛

𝜕𝑆𝑟
𝜕𝑠

𝑠,𝑡 − 𝑆𝑟

[
𝐶𝑒
𝑖𝑗𝑘𝑙

(
𝜎net
𝑖𝑗,𝑡

+
𝜕𝜎′

𝑖𝑗

𝜕𝑠
𝑠,𝑡

)
𝛿𝑘𝑙 + 𝜀

𝑝

𝑖𝑗,𝑡
𝛿𝑖𝑗

]
(8)

where 𝐶𝑒
𝑖𝑗𝑘𝑙

is the elastic compliance tensor, the inverse of the elastic stiffness matrix 𝐷𝑒
𝑖𝑗𝑘𝑙

. While the derivations above
do not encompass changes of water retention capacity due to volume strains,23,24 it has been shown that the role of
such further coupling effects does not lead to major alterations of the mathematical tools necessary to diagnose wetting
instabilities.10 The formalism of plastic strain increments relies on the adopted flow rule which differentiates between
elastoplasticity and viscoplasticity.

2.2 Diffusive instability of elastoplastic materials

Within the framework of elastoplasticity, the flow rule is generalized as:

𝜀
𝑝

𝑖𝑗,𝑡
= Λ

𝜕𝑔

𝜕𝜎′
𝑖𝑗

(9)

where 𝑔 is the plastic potential function; Λ is the plastic multiplier derived from the consistency condition, which guar-
antees the stress state keeping on or within the yield surface as shown in Figure 2(B):

𝜕𝑓

𝜕𝜎′
𝑖𝑗

𝜎′
𝑖𝑗,𝑡

+
𝜕𝑓

𝜕𝜎𝑦
𝜎𝑦,𝑡 = 0 (10)

in which 𝜎𝑦 is the internal variable quantifying the size of yield function 𝑓 and it is normally governed by a hydro-
mechanical hardening law expressing as4,25:

𝜎𝑦,𝑡 =
𝜕𝜎𝑦

𝜕𝜀
𝑝

𝑖𝑗

𝜀
𝑝

𝑖𝑗,𝑡
+
𝜕𝜎𝑦

𝜕𝑠
𝑠,𝑡 (11)

By inserting Equations (2) and (11) into Equation (10), Λ is derived as:

Λ =
1

𝐻

[
𝜕𝑓

𝜕𝜎′
𝑖𝑗

𝜎net
𝑖𝑗,𝑡

+

(
𝜕𝑓

𝜕𝜎′
𝑖𝑗

𝜕𝜎′
𝑖𝑗

𝜕𝑠
+
𝜕𝑓

𝜕𝜎𝑦

𝜕𝜎𝑦

𝜕𝑠

)
𝑠,𝑡

]
, 𝐻 = −

𝜕𝑓

𝜕𝜎𝑦

𝜕𝜎𝑦

𝜕𝜀
p
𝑖𝑗

𝜕𝑔

𝜕𝜎′
𝑖𝑗

, (12)
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(A) (B) (C)

F IGURE 3 Schematics of wetting instability due to water injection: (A) material response in the 𝑠-𝑒𝑤 space; (B) evolution of the
elastoplastic stability index

Combining Equations (7), (8), (9), and (12), the diffusive equation of the transient flow can be compacted into a parabolic
partial differential equation (PDE):

𝑘𝑤
𝑖𝑗

𝛾𝑤
𝑠,𝑖𝑗 − 𝐶1𝑠,𝑡 + 𝐶2

(
𝑠,𝑖 , 𝜎

net
𝑖𝑗,𝑡

)
= 0 (13)

where the coefficient 𝐶1 is expressed as:

𝐶
𝑒𝑝

1
= −

𝐵

𝐻

(
𝐻 −𝐻𝜒

)

𝐵 = 𝑛
𝜕𝑆𝑟
𝜕𝑠

− 𝑆𝑟𝐶
𝑒
𝑖𝑗𝑘𝑙

𝜕𝜎′
𝑖𝑗

𝜕𝑠
𝛿𝑘𝑙, 𝐻𝜒 =

𝑆𝑟
𝐵

(
𝜕𝑓

𝜕𝜎′
𝑖𝑗

𝜕𝜎′
𝑖𝑗

𝜕𝑠
+
𝜕𝑓

𝜕𝜎𝑦

𝜕𝜎𝑦

𝜕𝑠

)
𝜕𝑔

𝜕𝜎′
𝑖𝑗

𝛿𝑖𝑗 (14)

Note that the superscript “𝑒𝑝” in 𝐶1 indicates the use of elastoplasticity and is meant to distinguish the term in Equa-
tion (14) from those which will be derived with reference to viscoplastic constitutive relations (for which the superscript
“𝑣𝑝” will be employed).
From a mathematical standpoint, the stability of the parabolic PDE in Equation (13) is ensured when26:

𝐶1 > 0 (15)

Violations of such condition render the differential problem ill-posed, thus opening the possibility for unstable pore pres-
sure fields.5,19 Specifically, for elastoplastic materials, the positiveness of 𝐶𝑒𝑝

1
is controlled by the sign of terms 𝐵, 𝐻, and

𝐻 −𝐻𝜒 . Term 𝐵 depends on the definition of 𝜒(𝑆𝑟) and the water retention behavior, here, it simply assumes 𝜒(𝑆𝑟) = 𝑆𝑟
although numerous expressions have been suggested for 𝜒(𝑆𝑟).27,28 Then, term 𝐵 can be expressed as:

𝐵 = 𝑆𝑟
𝜕𝑆𝑟
𝜕𝑠

(
𝑛

𝑆𝑟
−
𝑠𝛿𝑖𝑗𝛿𝑘𝑙

𝐷𝑒
𝑖𝑗𝑘𝑙

−
𝑆𝑟𝛿𝑖𝑗𝛿𝑘𝑙

𝐷𝑒
𝑖𝑗𝑘𝑙

𝜕𝑠

𝜕𝑆𝑟

)
(16)

Normally, in geomaterials, the values of porosity and degree of saturation have the same order of magnitude, while capil-
lary suction levels relevant for collapse phenomena are usually a few orders of magnitude lower than the value of elastic
stiffness. This argument implies that the contribution of 𝑠𝛿𝑖𝑗𝛿𝑘𝑙∕𝐷𝑒𝑖𝑗𝑘𝑙 in Equation 16 is negligible compared to term 𝑛∕𝑆𝑟.
Furthermore, according to the water retention characteristics, 𝜕𝑆𝑟∕𝜕𝑠 or 𝜕𝑠∕𝜕𝑆𝑟 always takes negative values, implying
that term 𝐵 can be regarded as negative. By contrast, the signs of𝐻 and 𝐻 −𝐻𝜒 are associated with the loss of controlla-
bility under mixed hydro-mechanical controls.10 Specifically, 𝐻 coincides with the stability index  defined for wetting
tests conducted under constant stress and prescribed suction (i.e., 𝜎net

𝑖𝑗,𝑡
= 0 and the prescribed 𝑠,𝑡), while 𝐻 −𝐻𝜒 being

the stability index  customized for wetting tests conducted under constant stress and prescribed water mass injection
(i.e., 𝜎net

𝑖𝑗,𝑡
= 0 and the prescribed 𝑒𝑤,𝑡), as shown in Appendix A1. As illustrated in Figure 3, the occurrence of non-positive

values of 𝐻 −𝐻𝜒 always precedes non-positive values of 𝐻, which normally remains positive throughout the wetting
stage.29 Therefore, the sign of 𝐶𝑒𝑝

1
would primarily depend on the sign of term 𝐻 −𝐻𝜒 , with its negativeness indicat-

ing a loss of material stability during water injection and the singularity of the constitutive operator. The transition of
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𝐻 −𝐻𝜒 from positive to negative values corresponds to a peak in 𝑒𝑤, which implies a state at which the specimen has
a spontaneous tendency to expel large volumes of fluid through collapse deformation, thus being unable to sustain an
arbitrary volume of injected fluid. Such findings illustrate that wetting-induced instability at the material point level has
the ability to cause diffusive instability, thus leading to potentially detrimental consequences on the robustness of coupled
hydro-mechanical simulations.

2.3 Diffusive instability of viscoplastic materials

Elastoplastic constitutive equations can be readily converted to a viscoplastic form through the strategy proposed by
Perzyna30,31, which enables the state of stress to violate the consistency condition. The amount of such violation is quanti-
fied through the so-called overstress 𝑓, that is, a measure of the distance between the current stress state and yield surface
(Figure 2C). The overstress is directly used to feed a viscoplastic flow rule, defined as:

𝜀
𝑣𝑝

𝑖𝑗,𝑡
= 𝜙(𝑓, 𝜂)

𝜕𝑔

𝜕𝜎′
𝑖𝑗

, (17)

where 𝜂 is the viscosity and 𝜙 is the viscous nucleus function. After combining it with Equations (7) and (8), the coefficient
𝐶1 specified for viscoplastic materials is expressed as:

𝐶
𝑣𝑝

1
= −𝐵 > 0 (18)

The positiveness of the diffusive coefficient 𝐶𝑣𝑝
1
implies that the introduction of viscosity can suppress the diffusive insta-

bility regardless of the material response, thus offering the possibility to develop more robust numerical tools to study
hydro-mechanical coupled processes in the post-instability regime.

3 NUMERICAL IMPLEMENTATION

To numerically inspect the effectiveness of the above findings, field equations governing the coupled hydromechanical
process for elastoplastic and viscoplastic unsaturated porous media are discretized and solved through the finite element
(FE) approach. Following the standard procedure of FE discretization, equation systems describing the hydromechanical
process can be condensed as follows:

𝐀𝑿̇ + 𝐁𝑿 = 𝑹 (19)

in which:

𝐀 =

[
𝐊 𝐋

𝐋′ 𝐖

]
, 𝐁 =

[
𝟎 𝟎

𝟎 𝐇

]
, 𝑹 =

[
𝑭̇ext
𝑸̇ext

]
, 𝑿̇ =

[
𝑼̇

𝑷̇

]
, 𝑿 =

[
𝑼

𝑷

]
(20)

where the coefficient matrices differ between elastoplastic and viscoplastic materials due to the different treatment of
the inelastic effects as detailed in Appendix A2. Specifically, for elastoplasticity, the plastic deformations directly impact
the global stiffness matrix 𝐊, while for viscoplasticity, the global stiffness matrix is affected only by the elastic proper-
ties with the inelastic effects collected into a pseudo-forcing term 𝑭̇

𝑝𝑠
ext contributing to the total forcing agent 𝑭̇ext. Such

major difference provides further insight explainingwhy viscous regularization can be an effective strategy to suppress the
ill-posedness of diffusive equations. To numerically solve the coupled nonlinear system, an explicit integration scheme
enhanced with adaptive time-stepping and automatic error control32,33 has been implemented. In addition, a higher
degree of interpolation for the displacement field was used with respect to the pore pressure field to guarantee further
robustness.34–36 Specifically, in the simulations that follow three-node elements are used for the displacement field and
two-node elements for the pore pressure field. A validation example of the numerical implementation is provided in
Appendix A3 with reference to the Liakopoulos drainage test.37
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(A) (B)

F IGURE 4 Schematic description of the numerical example: (A) model geometry; (B) initial and boundary conditions.𝐻 is the sample
height, t is time, and z is the datum

4 SIMULATION OFWETTING-INDUCED COLLAPSE IN 1D SOIL COLUMNS

4.1 Problem description

A 1D unsaturated soil column is used to illustrate, from a numerical standpoint, the connection between material insta-
bility and the ill-posedness of the diffusive processes caused by water injection. In addition, the analyses are meant to test
the effectiveness of viscoplastic regularization for coupled infiltration-deformation problems involving collapsible unsatu-
rated geomaterials. As detailed in Figure 4, a homogeneous soil columnwith a height of 20 cm is employed. The column is
subjected to a constant axial stress 𝜎 = 300 kPa applied at the top and an initially uniform suction profile with 𝑠 = 70 kPa
(i.e., the contribution of the body force is assumed negligible). Water is injected through the top surface at a constant rate
while fixing the displacement and preventing drainage at the bottom. The simple 1D constitutive model25 detailed in the
following section is used to simulate wetting-induced plastic compaction. Two testing scenarios are performed by using
materials with low and high hydraulic sensitivity (here reflected by the parameter 𝑟𝑠𝑤) to obtain a stable and an unstable
case, respectively.

4.2 Model specification

The simple 1D constitutive relationship is used in this work with the linear elasticity:

𝜎′,𝑡 = 𝐸𝜀𝑒,𝑡 (21)

where 𝐸 represents the Young’s modulus. The yield condition is defined as:

𝑓 = 𝜎′ − 𝜎𝑦 (22)

Given the one-dimensional nature of the selected constitutive description, the flow rule can be regarded as associated
(i.e., 𝑓 = 𝑔). Although this is a strong approximation for geomaterials, the benefit of this simplification is to suppress all
possible sources of material instability other than the suction-induced deterioration of the yielding conditions. The latter
effect is reproduced mathematically through the following hydro-mechanical hardening law4:

𝜎𝑦,𝑡 =
𝜎𝑦

𝐵𝑝
𝜀
𝑝
,𝑡 − 𝑟𝑠𝑤𝜎𝑦𝑆𝑟,𝑡 (23)
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TABLE 1 Summary of model parameters and loading conditions

test type 𝑬 [kPa] 𝑩𝒑 𝒓𝒔𝒘 𝒂𝒗𝒈 𝒎𝒗𝒈 𝒏𝒗𝒈 𝒌sat [cm/h] 𝝁 [1/h] 𝒒̇𝒘 [cm/h]
stable 5000 0.7 1.4 0.17 0.31 1.13 1.0 1000 4.0
unstable 5000 0.7 2.0 0.17 0.31 1.13 1.0 1000 0.52

where 𝐵𝑝 is the hardening parameters and 𝑟𝑠𝑤 quantifies the hydraulic sensitivity, with higher values indicating a stronger
effect of suction on the expansion/contraction of the elastic domain. Here, only one internal variable accounting for the
yielding threshold is considered, a typical assumption used in the constitutive modeling of geomaterials.
According to Equations 12 and 14, the stability index = 𝐻 −𝐻𝜒 can be expressed as:

𝐻 =
𝜎𝑦

𝐵𝑝
, 𝐻𝜒 =

𝑆𝑟
𝐵

(
𝑆𝑟 + 𝑠

𝜕𝑆𝑟
𝜕𝑠

+ 𝑟𝑠𝑤𝜎𝑦
𝜕𝑆𝑟
𝜕𝑠

)

𝐵 = 𝑛
𝜕𝑆𝑟
𝜕𝑠

−
𝑆2𝑟
𝐸
−
𝑠𝑆𝑟
𝐸

𝜕𝑆𝑟
𝜕𝑠

< 0 (24)

Since𝐵 generally takes a negative value (detailed in Section 2), the increase in 𝑟𝑠𝑤 brings positive contributions to𝐻𝜒 which
deteriorates the stability condition and leads to unstable responses. In other words, higher 𝑟𝑠𝑤 increases the weakening
effect due to an increase of the degree of saturation and causes unstable wetting collapse as illustrated in Figure 3.29
The extension of the constitutive law detailed above to viscoplasticity requires the definition of an additional function

controlling the magnitude of the strain rate, referred to as viscous nucleus:

𝜙 = 𝜇
𝑓

𝜎𝑦
(25)

where 𝜇 is a fluidity (the inverse of viscosity, 𝜂) and 𝑓 quantifies themagnitude of the overstress. The selected formulation
can be regarded as a particular example of Bingham-type model and reduce automatically to its elastoplastic counterpart
for high values of fluidity, 𝜇. As to the hydraulic features, the Van Genuchten water retention curve (SWRC)38 is adopted:

𝑆𝑟 =
[
1 +

(
𝑎𝑣𝑔𝑠

)𝑛𝑣𝑔]−𝑚𝑣𝑔

(26)

where 𝑎𝑣𝑔, 𝑚𝑣𝑔 and 𝑛𝑣𝑔 are shape parameters. And the Mualem’s equation39 is used to describe the impact of 𝑆𝑟 on the
hydraulic conductivity, 𝑘𝑤:

𝑘𝑤 = 𝑘sat𝑤
√
𝑆𝑟

[
1 −

(
1 − 𝑆𝑟

1∕𝑚𝑣𝑔

)𝑚𝑣𝑔
]2

(27)

where 𝑘sat𝑤 is the hydraulic conductivity at saturated conditions. Here, the wetting-collapse simulations are performed
in idealized soil systems characterized by different values of hydraulic sensitivity, thus examining the numerical impli-
cations of various types of wetting-collapse behaviors. Table 1 lists the model parameters and injection rates for the two
proposed cases.

4.3 Model performance

Figure 5 shows the simulation results of the wetting test on a simulated material with low hydraulic sensitivity (i.e.,
𝑟𝑠𝑤 = 1.4). The results are illustrated with reference to both elastoplastic and viscoplastic constitutive laws. Specifically,
although soils generally shows viscous responses,40,41 here, the introduction of viscosity is mainly aimed at regularizing
the numerical analyses and enabling the investigation of the post-instability regime. For this reason, a minor amount of
viscosity (𝜂 = 10−3 h) is used to limit the viscous effect on material responses at the stable regime while restoring the
mathematical well-posedness after instability. As indicated by Figure 5(B), the sample is not saturated instantaneously
throughout the volume, but it displays time-dependent patterns due to the relatively low permeability. The Gauss points
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(A) (B) (C) (D)

F IGURE 5 Simulation of the stable injection test with elastoplastic and viscoplastic models on low hydraulic sensitivity samples
𝑟𝑠𝑤 = 1.4: (A) the 𝑠-𝑒𝑤 relationship at the top Gauss point; (B,C) 6-min isochrones of nodal displacement and suction; (D) 6-min isochrones of
elastoplastic stability index at Gauss points

F IGURE 6 Time evolution of the global stability index for the stable injection test

near the top of the column are saturated first and experience a higher suction drop, while as the water gradually flows
downwards, other parts of the sample start to saturate. For this reason, Figure 5(A) inspects the relationship between 𝑠 and
𝑒𝑤 for the top Gauss point and a stable process without the onset of a peak response is observed. Figure 5(d) shows that the
stability index𝐻 −𝐻𝜒 is positive at all Gauss points during the wetting process. Figure 5(A-C) illustrates a nearly perfect
overlap between the elastoplastic and viscoplastic responses, which verifies that the introduction of slight viscosity has
negligible influence on the model prediction for stable cases. Furthermore, the well-posedness of the numerical problem
is indicated by the positiveness of the determinant of the discretized global operator 𝐀 (i.e., Equation 20) condensed by
taking into account the boundary conditions,42–44 which involves the partition of the coefficient matrix 𝐀 to separate the
components associated to the Dirichlet boundaries, being:

𝐀 =

[
𝐀𝟏𝟏 𝐀12
𝐀21 𝐀22

]
(28)

where𝐀11 corresponds to the nodal fields independent of the Dirichlet boundaries. Thus, numerical stability is quantified
by det𝐀11, which keeps positive for the stable case as displayed in Figure 6.
Figure 7 shows the simulation results of the wetting test on a material with higher hydraulic sensitivity (i.e., 𝑟𝑠𝑤 = 2.0).

The onset of wetting instability, marked by the transition of stability index 𝐻 −𝐻𝜒 from positive to negative values as
shown in Figure 7(d), initially occurs at the top Gauss point and propagates downwards. As proved theoretically, the local
failure of elastoplastic materials is capable to trigger the onset of numerical instability and cause the breakdown of the
FE analysis. Figure 7(A) compares the response at the top Gauss point with a material point simulation under similar
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(A) (B) (C) (D)

F IGURE 7 Simulation of the unstable injection test with the elastoplastic model on high hydraulic sensitivity samples 𝑟𝑠𝑤 = 2.0: (A) the
𝑠-𝑒𝑤 relationship at the top Gauss point; (B,C) 6-minute isochrones of nodal displacement and suction; (D) 6-minute isochrones of material
stability index at Gauss points

(A) (B)

(C) (D) (E)

F IGURE 8 Simulation of the unstable injection test with the viscoplastic model on high hyraulic senstitivity samples 𝑟𝑠𝑤 = 2.0: (A)
comparison of the 𝑠-𝑒𝑤 relationship at the top Gauss point between elastoplastic and viscoplastic model; (B) comparison of surface
displacement between elastoplastic and viscoplastic model; (C,D) 6-min isochrones of nodal displacement and suction; (E) 6-min isochrones
of stability index at Gauss points

constraints (i.e., wetting test under fixed mechanical loading). Such comparison illustrates that prior to instability the
two simulations display close agreement, but the FE analysis with elastoplasticity fails right after the onset of material
instability and prevents the continuation of the numerical analysis within the immediate post-peak regime. It is worth
noting that control conditions imposed at the material point level are chosen in such a way to bypass the constitutive
singularity (i.e., suction is directly controlled, thus guiding the intensity of material deterioration), while the boundary
conditions in the numerical simulation involve directlywater injection, thus implying that the amount of suction variation
throughout the domain is an outcome of both the local material response and the global system response.
To check the effects of viscoplastic regularization, the same analysis is repeatedwith the viscoplasticmodel counterpart.

Figure 8(A) and (B) compare the simulation results of elastoplastic and viscoplastic models, while Figure 8(c) and (d)
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(A) (B)

F IGURE 9 Simulation of the unstable injection test with the viscoplastic model: (A) time history of the viscous nucleus function 𝜙 at
the top Gauss point; (B) time history of the pseudo-loading term at the top node 𝐹𝑝𝑠ext

F IGURE 10 Simulation of the unstable injection test: (A) 𝑠-𝑒𝑤 relationship at the top Gauss point simulated with the viscoplastic model
before and after the onset of instability; (B) time history of the global stability index for both elastoplastic and viscolpastic models

present the nodal displacement and suction profile of the viscoplastic simulation. The results readily show that prior to
instability the computations obtained with the two models match perfectly. However, the introduction of viscosity can
effectively suppress the numerical instability and continue the simulation within the post-peak regime. The initial stages
leading to an impending runaway response are signaled by the abrupt displacement acceleration and rapid suction loss,
which ismathematically quantified by the vanishing of the viscous stability index,𝐴, proposed by25 for suction-dependent
viscoplastic models as shown in Figure 8(e) (see Appendix A4 for more details). It implies that although the constitutive
instability of the viscoplastic material does not lead to a numerical ill-posedness, it still represents a precursor of the
unstable temporal evolution of suction and strain across the domain, which is another form to express the occurrence of a
system instability triggered by a rapidly growing forcing agent 𝑭vpext, whose sharp evolution is a direct consequence of the
values of the viscous nucleus function (Figure 9).
Figure 10(A) further details the stable and unstable portion of the 𝑠-𝑒𝑤 relationship for viscoplastic modeling on high

hydraulic sensitivity samples, where it is shown that suction changes more rapidly during the unstable process. Fig-
ure 10(B) examines instead the evolution of numerical stability index marked by det𝐀11 for elastoplastic and viscoplas-
tic models, for which the transition from positive to negative indicates the potential occurrence of numerical instability
for boundary value problems due to the singularity of the discretized global operator.45 As indicated in Figure 10(B), it
decreases steadily to zero until the elastoplastic analysis stops abruptly, while contrarily, it increases during the viscoplas-
tic simulation. This provides additional evidence to mathematically support how viscosity contributes to regularize the
numerical instability.
Furthermore, the introduction of viscosity also brings time-dependency to the material response in addition to per-

meability, which is crucial to enrich the understanding of delayed failures widely observed in nature46 and explore the
system evolution after the occurrence of wetting-induced instability. In this context, a suction-controlled creep phase is
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F IGURE 11 Isochrones of creep responses every 0.05 h under constant suction at the top surface: (A) suction; (B) displacement; (C)
stability index; (D) viscous nucleus

(A)

(B)

(C)

(D)

(E)

F IGURE 1 2 Creep responses under constant suction at the top surface: (A–C) relationship between suction and water ratio at selected
Gauss points (#1, #20, and #40); (D,E) time histories of displacement and spatially averaged viscous nucleus of all Gauss points

introduced after water injection in the simulation based on a material with high hydraulic sensitivity. For this purpose,
the nodal suction at the top of the column is fixed to a constant value after the end of the water injection stage (i.e., a
stage of the analysis at which the sample is already undergoing post-instability conditions involving strain acceleration).
As shown in Figures 11(A) and 12(A–C), after switching to suction control at the top surface, the water gradually perme-
ates downwards, which saturates the underlying material but slightly dewaters the top surface. The advancing wetting
front drives the propagation of the unstable zone since the saturation process causes more material elements to surpass
the peak of 𝑒𝑤. Delayed plasticity sustained through viscous nucleus has the capacity to maintain the system accelera-
tion right after the cessation of water injection until the spatially averaged viscous nucleus reaching its maximum value
(Figures 12(D–E) and 13). However, without a continuous recharge of water flux through injection, time effects due to vis-
cosity gradually fade away and the consolidation process starts to dominate the process bringing it to a new equilibrium
condition. Consequently, the stabilizing effect of consolidation decelerates the system response and brings the unstable
tertiary creep back to a stable primary creep. This example clearly illustrates the feedbacks controlling the global system
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F IGURE 13 Time history of the global response: (A) displacement; (B) spatially averaged viscous nucleus

response, in which the local instability causes capillary suction loss and strain rate growth while competing with pore
pressure diffusion, which mitigates the detrimental impacts of the wetting-induced instability, eventually suppressing
them. It can therefore be concluded that the fate of a wet, collapsible soil mass in terms of post-failure movements can
only be assessed by accounting for both the timescale of local material instability and the non-local diffusion of the result-
ing pore pressure transients.

5 CONCLUSION

In this work, the field equation governing the fluidmass conservation of unsaturated soils has beenmathematically exam-
ined to identify the connection between the criteria defining the loss of numerical stability and material failure due to
wetting-induced weakening. By applying Darcy’s law, the mass balance equation in terms of fluid pressure was formu-
lated into a parabolic partial differential equation. Conditions defining the stability of the resulting PDE signify the ill-
posedness of the coupled hydromechanical equations leading to a diffusive instability of the pore pressure transients. It
was shown that such criterion shares similarities with the loss of controllability during water injection promoted by con-
stitutive singularities. Consequently, it poses challenges to the numerical solution of coupled hydro-mechanical problems
targeting unsaturated collapsible soils. Indeed, it has been shown that the onset of local failure of elastoplastic materials
can trigger numerical ill-posedness, here manifested by the singularity of the discretized global operator of the coupled
hydro-mechanical problem. To circumvent this problem, it was shown that a small amount of viscosity is sufficient to
regularize the analysis and enhance the robustness of the algorithm, while maintaining a similar material response prior
to failure. The difference in the treatment of plastic effects between elastoplasticity and viscoplasticity eventually modifies
themathematical characteristics of the governing equations. Unlike elastoplasticity, viscoplasticity treats the plastic effects
as an additional source term contributing to the external forcing, thus removing its detrimental effects from the global
stiffness matrix and suppressing the global singularity. These benefits enable material instability to be tracked through
suitable indices specialized to unsaturated viscoplastic materials, which serve as a precursor of the rapid displacement
accumulation and suction drop. Results from this work can therefore provide guidance to future investigations based on
more general system configurations, hydro-mechanical forcing scenarios, and constitutive descriptions of soil inelasticity,
that is, all essential factors for an accurate prediction of wetting-induced geohazards.
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APPENDIX A
A.1 Loss of controllability of wetting paths in elastoplastic materials
According to the controllability theory, the stability index  for elastoplastic materials for a given testing condition can
be derived from the consistency function by replacing the unknowns with the controlled variables. Specifically, for the
wetting test under prescribed suction and constant stress, the stability index can be customized by replacing 𝜎′

𝑖𝑗,𝑡
in Equa-

tion 10 by 𝜎net
𝑖𝑗,𝑡
, which comes:

Λ =
1

𝐻

[
𝜕𝑓

𝜕𝜎′
𝑖𝑗

𝜎net
𝑖𝑗,𝑡

+

(
𝜕𝑓

𝜕𝜎′
𝑖𝑗

𝜕𝜎′
𝑖𝑗

𝜕𝑠
+
𝜕𝑓

𝜕𝜎𝑦

𝜕𝜎𝑦

𝜕𝑠

)
𝑠,𝑡

]
(A.1)

In this context, the stability index for suction-controlled wetting test is defined as:

 = 𝐻 (A.2)

While for the wetting test under prescribed water injection and constant stress, the stability index can be customized
by replacing 𝜎′

𝑖𝑗,𝑡
and 𝑠,𝑡 in Equation (10) by 𝜎net𝑖𝑗,𝑡

and 𝑒𝑤,𝑡. For this purpose, it first combines Equations (8) with (9) to

https://doi.org/10.1002/nag.3214
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formulate the suction increment 𝑠,𝑡 in terms of the controlled variables:

𝑠,𝑡 =
1

𝐵

(
𝑒𝑤,𝑡

1 + 𝑒
+ 𝑆𝑟𝐶

𝑒
𝑖𝑗𝑘𝑙
𝜎net
𝑖𝑗,𝑡
𝛿𝑘𝑙 + 𝑆𝑟Λ

𝜕𝑔

𝜕𝜎′
𝑖𝑗

𝛿𝑖𝑗

)
(A.3)

And then, inserting Equations 2 and A.3 into Equation 10, it obtains:

Λ =
1

𝐻 −𝐻𝜒

[
𝜕𝑓

𝜕𝜎′
𝑖𝑗

𝜎net
𝑖𝑗,𝑡

+
1

𝐵

(
𝜕𝑓

𝜕𝜎′
𝑖𝑗

𝜕𝜎′
𝑖𝑗

𝜕𝑠
+
𝜕𝑓

𝜕𝜎𝑦

𝜕𝜎𝑦

𝜕𝑠

)(
𝑒𝑤,𝑡

1 + 𝑒
+ 𝑆𝑟𝐶

𝑒
𝑖𝑗𝑘𝑙
𝜎net
𝑖𝑗,𝑡
𝛿𝑘𝑙

)]
(A.4)

Therefore, the stability index for water injection tests under constant stress is proved to be:

 = 𝐻 −𝐻𝜒 (A.5)

where𝐻 and𝐻𝜒 take the same form as defined in Equations 12 and 14, respectively.

A.2 Numerical discretization of the field equations
The field equations governing the coupled hydromechanical process for elastoplastic and viscoplastic unsaturated porous
media are discretized and solved through a finite element (FE) method. Based on the standard FE approach,47 the conti-
nuity equation of the fluid flow formulated in Equation (3) can be converted as:

𝐋′𝑼̇ +𝐖𝑷̇ +𝐇𝑷 = 𝑸̇ext (A.6)

with:

𝐋′ =
∑

∫
𝑉

𝐍T
𝑤𝑆𝑟𝜹

𝑇𝐁𝑢d𝑉

𝐖 =
∑

∫
𝑉

𝐍T
𝑤𝑛

𝜕𝑆𝑟
𝜕𝑠

𝜹𝐍𝑤d𝑉

𝐇 =
∑

∫
𝑉

𝐁T𝑤
𝒌𝑤

𝛾𝑤
𝐁𝑤d𝑉

𝑸̇ext = −
∑

∫
𝑆

𝐍T
𝑤𝒒

𝑤d𝑆 −
∑

∫
𝑉

𝐁T𝑤
𝒌𝑤

𝛾𝑤
𝒃𝑤d𝑉 (A.7)

where 𝑉 is the volume of the domain, 𝑆 is the area of the prescribed traction boundary, 𝒒𝑤 is a vector of the prescribed
fluid flux, 𝒃𝑤 is the body force vector for the fluid phase, 𝐍𝑤 is the shape function for the pore fluid pressure field, 𝑷
is the vector of nodal pore pressures, and 𝐍𝑢 and 𝐁𝑢 are the matrices of shape function and its time derivative in the
displacement field, defined as:

𝑢̇ = 𝐍T
𝑢𝑼̇, 𝜀̇ = 𝐁T𝑢𝑼̇ (A.8)

in which𝑼 denotes the vector of the nodal displacement and 𝑢 and 𝜀 are the displacement and strain field at a given loca-
tion. Without consideration of the dynamic effect due to slow loading rate, the momentum equilibrium can be expressed
as47:

∫
𝑉

𝐁T𝑢𝝈̇d𝑉 − ∫
𝑆

𝐍T
𝑢𝒕̇d𝑆 − ∫

𝑉

𝐍T
𝑢𝒃̇d𝑉 = 𝟎 (A.9)

where 𝒃 is the body force vector, 𝒕 is a vector of external surface traction. The different mathematical structure of elasto-
plasticity and viscoplasticity requires separate treatments of constitutive lawswhich eventually impacts the property of the
coupled hydro-mechanical solver. Specifically, for elastoplastic materials, the constitutive relationship under unsaturated
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conditions can be generalized as4:

𝝈̇′ = 𝐃𝜎𝜎𝜺̇ − 𝐃𝜎𝑤𝑠̇

𝐃𝜎𝜎 = 𝐃𝑒 −
1

𝐻 − 𝐻𝑐

(
𝐃𝑒

𝜕𝑔

𝜕𝝈′

)
⊗

(
𝜕𝑓

𝜕𝝈′
𝐃𝑒

)

𝐃𝜎𝑤 =
1

𝐻 −𝐻𝑐

𝜕𝑓

𝜕𝜎𝑦

𝜕𝜎𝑦

𝜕𝑠
𝐃𝑒

𝜕𝑔

𝜕𝝈′
(A.10)

where the critical hardening modulus𝐻𝑐 is expressed as:

𝐻𝑐 = −
𝜕𝑓

𝜕𝝈′
𝐃𝑒

𝜕𝑔

𝜕𝝈′
(A.11)

By inserting Equations (2) and (A.10) into (A.9), it obtains:

𝐊𝑒𝑝𝑼̇ + 𝐋𝑒𝑝𝑷̇ = 𝑭̇
𝑒𝑝
ext (A.12)

with

𝐊𝑒𝑝 =
∑

∫
𝑉

𝐁T𝑢𝐃
𝜎𝜎𝐁𝑢d𝑉,

𝐋𝑒𝑝 =
∑

∫
𝑉

𝐁T𝑢

[
𝐃𝜎𝑤 +

(
𝑆𝑟 + 𝑠

𝜕𝑆𝑟
𝜕𝑠

)
𝜹

]
𝐍𝑤d𝑉

𝑭̇
𝑒𝑝
ext =

∑
∫
𝑆

𝐍T
𝑢𝒕̇d𝑆 +

∑
∫
𝑉

𝐍T
𝑢𝒃̇d𝑉 (A.13)

While unlike elastoplastic materials, the use of a viscoplastic flow rule based on the overstress implies:

𝝈̇′ = 𝐃𝑒𝜺̇ − 𝜙𝐃𝑒
𝜕𝑔

𝜕𝝈′
(A.14)

By inserting Equation (A.14) into Equation (A.9), it follows48:

𝐊𝑣𝑝𝑼̇ + 𝐋𝑣𝑝𝑷̇ = 𝑭̇
𝑣𝑝
ext (A.15)

with

𝐊𝑣𝑝 =
∑

∫
𝑉

𝐁T𝑢𝐃
𝑒𝐁𝑢d𝑉

𝐋𝑣𝑝 =
∑

∫
𝑉

𝐁T𝑢

(
𝑆𝑟 + 𝑠

𝜕𝑆𝑟
𝜕𝑠

)
𝜹𝐍𝑤d𝑉

𝑭̇
𝑣𝑝
ext = 𝑭̇

𝑒𝑝
ext + 𝑭̇

𝑝𝑠
ext , 𝑭̇

𝑝𝑠
ext =

∑
∫
𝑉

𝐁T𝑢𝜙𝐃
𝑒 𝜕𝑔

𝜕𝝈′
d𝑉 (A.16)

A.3 Validation of the numerical implementation
The numerical implementation can be validated through the Liakopoulos drainage test,37 a benchmark widely used for
the verification of multi-phase coupled models. In the experiment, a fully saturated sand column with 1 m in height was
tested and a high-permeability sandstone was placed at the bottom of the soil column to allow vertical drainage under
gravity, while an impermeable cylinder was used on the lateral surface. Such a drainage process is here simulated with the
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TABLE A . 1 Model parameters of the Liakopoulos
drainage test

𝑬 [kPa] 𝒂𝒗𝒈 𝒎𝒗𝒈 𝒏𝒗𝒈 𝒌sat [m/s]
13000 0.04 1.03 2.5 4.4e-6

(A)

(B) (C)

F IGURE A . 1 Pore water pressure distribution of the Liakoupoulos drainage test: (A) Boundary condition (B.C.); (B) experiment; (C)
simulation

numerical model discussed in this paper. Due to the lack of measurements of mechanical properties, linear elasticity is
used in conjunction with a Young’s modulus of 13,000 kPa,20 while the soil water retention characteristics are calibrated
based on reported data. Themodel parameters are listed in Table A.1 and the initial and boundary conditions are described
in Figure A.1(a). Specifically, an initial degree of saturation of 99% is applied uniformly throughout the sample to avoid
numerical problems caused by the transition from full to partial saturation.49 As shown in Figure A.1(b) and (c), the
simulations satisfactorily capture the evolution of the pore water pressure across the column. Minor mismatches exist
due to the simplified nature of the model, but can in principle be mitigated through an explicit simulation of the pore
air phase.50,51 Nevertheless, the example shows that the performance of the selected numerical approach is satisfactory
both in terms of its numerical accuracy and of its realistic representation of fundamental hydro-mechanical processes in
unsaturated soils.

A.4 Loss of controllability of wetting paths in viscoplastic materials
Since viscoplastic models do not enforce plastic consistency conditions,52 standard controllability criteria based on tan-
gent constitutive operators cannot be used. Recent work by Pisano and di Prisco53 offered a theoretical framework to
interpret the viscoplastic stability, which requires the second-order time derivative of response variables summarized by
the following ordinary differential equations:

𝐗̇ = 𝐀𝐗 + 𝐅 (A.17)

where vectors 𝐗 and 𝐗̇ contain the rates of response variables and their acceleration, 𝐅 is a forcing term related to the
imposed controls being zero during creeping, and 𝐀 is a constitutive operator. The presence of positive eigenvalues of 𝐀
signifies a diverging response and the system tends to accelerate. Particularly, stability condition of wetting processes can
be mathematically represented by the strain acceleration,25 formulated as:

𝜀𝑖𝑗 = 𝐴𝜀̇𝑖𝑗 + 𝐹𝑖𝑗 (A.18)

and the stability index is expressed as:

𝐴 = −
𝜕𝜙

𝜕𝑓
𝑣 𝐵

𝑛

𝜕𝑠

𝜕𝑆𝑟
+ 𝜙

𝜕2𝑔

𝜕𝜎′
𝑖𝑗
𝜕𝜎′

𝑘𝑙

𝜕𝜎′
𝑖𝑗

𝜕𝑆𝑟

𝑆𝑟
𝑛
𝛿𝑘𝑙 (A.19)
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in which:

 = 𝐻 −𝐻𝜒 −

𝐻𝜎net
𝑖𝑗
+ 𝐻𝑒𝑤

𝜙

𝐻𝜎net
𝑖𝑗
=

[
𝜕𝑓

𝜕𝜎′
𝑖𝑗

+
𝑆𝑟
𝐵

(
𝜕𝑓

𝜕𝜎′
𝑖𝑗

𝜕𝜎′
𝑖𝑗

𝜕𝑠
+
𝜕𝑓

𝜕𝜎𝑦

𝜕𝜎𝑦

𝜕𝑠

)
𝐶𝑒
𝑖𝑗𝑘𝑙
𝛿𝑘𝑙

]
𝜎net
𝑖𝑗,𝑡

𝐻𝑒𝑤
=
1

𝐵

(
𝜕𝑓

𝜕𝜎′
𝑖𝑗

𝜕𝜎′
𝑖𝑗

𝜕𝑠
+
𝜕𝑓

𝜕𝜎𝑦

𝜕𝜎𝑦

𝜕𝑠

)
𝑒𝑤,𝑡

1 + 𝑒
(A.20)

It is apparent that during water-undrained creep (i.e., 𝜎̇net = 0 and 𝑒̇𝑤 = 0), 𝐻𝜎net
𝑖𝑗
and 𝐻𝑒𝑤

approach zero. For relatively
simple constitutive laws (i.e., those characterized by a homothetic plastic potential, such as Cam-clay model), the second-
order terms in𝐴 vanishes and the stability condition is solely governed by the term𝐻 −𝐻𝜒 , leading to the transition from
stable to unstable creep always being located in the proximity of the underlying rate-independent failure.
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