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ABSTRACT

Deep learning-based approaches to musical source separation are of-
ten limited to the instrument classes that the models are trained on
and do not generalize to separate unseen instruments. To address
this, we propose a few-shot musical source separation paradigm. We
condition a generic U-Net source separation model using few audio
examples of the target instrument. We train a few-shot conditioning
encoder jointly with the U-Net to encode the audio examples into
a conditioning vector to configure the U-Net via feature-wise linear
modulation (FiLM). We evaluate the trained models on real musical
recordings in the MUSDB18 and MedleyDB datasets. We show that
our proposed few-shot conditioning paradigm outperforms the base-
line one-hot instrument-class conditioned model for both seen and
unseen instruments. To extend the scope of our approach to a wider
variety of real-world scenarios, we also experiment with different
conditioning example characteristics, including examples from dif-
ferent recordings, with multiple sources, or negative conditioning
examples.

Index Terms— few-shot learning, source separation, music,
FiLM conditioning.

1. INTRODUCTION

Musical source separation (MSS) is a well-studied problem which
has seen rapid progress in recent years [1], where the goal is
typically to separate the sound of a particular instrument from a
mixture recording. Systems using various deep learning-based
approaches [2–9] have achieved impressive results, in particular
for singing voice separation. However, these models are typically
trained to separate one particular instrument class (e.g. vocals,
drums). In order to separate more than one instrument, more
than one model is required. More recent models have aimed to
overcome this limitation and support the separation of various in-
struments using a single model via instrument class conditioning
mechanisms [10–14]. However, these models are still limited to
the instrument classes that the models were trained on and do not
generalize to unseen instruments.

A few initial attempts at building deep learning-based query-
by-example MSS have been made, where the model is designed or
has an auxiliary benefit to perform separation based on an audio
query [12,15–17]. However, these models have not been thoroughly
evaluated on how they generalize to unseen classes. A similar re-
cent effort has been made to develop a one-shot source separation
model for general sounds [18]. While this system is evaluated on
how well it separates seen and unseen sound classes given one audio
example from the target, it has not been compared with any baseline,
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Fig. 1. High-level illustration of the few-shot MSS paradigm.

such as an existing class label-conditioning approach. Furthermore,
it is evaluated on random mixtures of two sources, which are both
less realistic and arguably much easier to separate than real musical
recordings. A meta-learning approach was also recently proposed
to achieve one-shot speech separation [19]. However, it has a very
specific task definition of separating two speakers given one audio
example per speaker, which is less applicable to general MSS. In ad-
dition, all of the systems mentioned above are relatively limited in
their flexibility – they consider using only a single query example
which is isolated (single-sourced) and in some cases drawn from the
same recording as the target, which may not always be available in
real-world scenarios.

In this work, we present a few-shot MSS paradigm illustrated
in Figure 1. We condition a generic U-Net separation model using
few audio examples of the target instrument. We first embed the
conditioning audio examples into a set of example-wise condition-
ing vectors using the few-shot conditioning encoder, and aggregate
these vectors into a single conditioning vector by taking the aver-
age. We use Feature-wise Linear Modulation (FiLM) [20] as the
conditioning mechanism, which is inserted at the U-Net bottleneck
layer. This mechanism allows us to incorporate side information,
the conditioning vector, to configure the U-Net to separate different
target instruments. We jointly train the few-shot conditioning en-
coder and the conditioned U-Net. Note that our proposed model is
similar to [18], but we extend it from one-shot to few-shot with a
simpler conditioning mechanism, where we apply the conditioning
to the bottleneck layer only [10, 11], instead of to multiple layers in
both the encoder and decoder of the U-Net.

We systematically compare our few-shot conditioned model
against a class label-conditioned baseline approach. We quanti-
tatively evaluate both approaches on seen and unseen instruments
within real musical recordings. In addition, we explore how much
the constraints on the conditioning scenarios in previous work [18]
can be relaxed. Besides extending from one-shot to few-shot, in par-
ticular, we consider providing (1) examples that are not drawn from
the target recording, (2) examples where the desired target is not
isolated, but is present within a mixture, and (3) negative examples
of what not to separate in addition to positive examples. We show
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that these relaxations result in systems which can be applied in a
wider variety of applications. Audio examples from our few-shot
MSS model are publicly available1.

2. MODEL CONFIGURATIONS

We base our separation model on the well-studied U-Net architec-
ture [4, 11, 21] in order to complement related work on conditioned
source separation [10, 11, 15]. While models with better separa-
tion performance exist [13], the purpose of this study is to explore
the effects of different types of conditioning approaches and design
choices, which can generally translate to better performance, rather
than to strive for state-of-the-art results.

2.1. Instrument class-conditioned baseline

We use a U-Net architecture very similar to that described in [11]
as the baseline. The model is conditioned directly on instrument
classes (via one-hot encoding) and can be viewed as a standard su-
pervised learning baseline. Here, we briefly describe our variant of
the model. For the U-Net architecture, each of the 6 encoder layers
consists of ni 5x5 2-D convolutions with a 2x2 stride, followed by
batch normalization and a Leaky ReLU activation, where n0 = 16
and ni = 2ni−1 for each subsequent layer i. The decoder mirrors
the encoder by replacing 2-D convolutions with 2-D transpose con-
volutions. Additional skip connections are added between layers at
the same hierarchical level in the encoder and decoder.

A one-hot vector that directly encodes the target instrument class
is used as the conditioning vector zclass. A FiLM layer is inserted af-
ter the U-Net bottleneck layer to transform the bottleneck feature x
via FiLM(x) = γ(zclass) · x+ β(zclass), where γ and β are learned
parameters that scale and shift x based on the conditioning informa-
tion zclass. In our work, zclass is 18-dimensional to support a wide
variety of instrument classes. The y-axis in Figure 2 shows 14 of
these instrument classes, and the remaining 4 are mallets, pipe or-
gan, bagpipes, and whistling.

The model takes three seconds of mono audio with 22.05 kHz
sample rate as input and first computes a spectrogram with a hop size
of 256 and a FFT size of 1024. The spectrogram is log-compressed,
and input into the U-Net encoder. The output of the decoder is
treated as a two-channel complex mask, where a sigmoid activa-
tion is applied on the magnitude as in [22]. The mask is applied to
the compressed spectrogram via complex multiplication, followed
by decompression. Finally, the Inverse STFT is computed to retrieve
the separated audio signal. The loss is computed as the sum of the
SDR Loss [23] in the time domain and mean absolute error on the
magnitudes in the time-frequency domain.

2.2. Few-shot conditioning

In our proposed few-shot MSS paradigm, the external information
is based on few audio examples of the target instrument instead of
its class label. We train a few-shot conditioning encoder jointly with
the U-Net to generate a learned conditioning vector zfew-shot based on
few target examples.

The conditioning encoder consists of four convolution blocks,
each of which has a 64-filter 3x3 convolution, a batch normaliza-
tion layer, a ReLU activation layer, and a 2x2 max-pooling layer.
To allow our model to handle variable-length input, we apply max-
pooling along the time dimension to the output of the convolution

1https://wangyu.github.io/few-shot-mss/

blocks. Finally, we flatten the feature map to output an embedding
of size 512. When multiple audio examples are used as conditioning
(few-shot instead of one-shot), each example is used to generate a
conditioning vector, and the example-wise vectors are averaged into
a single conditioning vector. We keep the conditioned U-Net archi-
tecture, FiLM conditioning mechanism, and loss terms the same as
in the baseline model to systematically compare the instrument class
conditioning and few-shot conditioning paradigms.

3. EXPERIMENTAL DESIGN

To compare the proposed few-shot MSS with the baseline approach
conditioned on instrument class, we first train the models using a
combination of several datasets, and evaluate the trained models on
real music datasets, MUSDB18 [24] and MedleyDB [25]. For the
few-shot model, we further experiment with different evaluation se-
tups with different conditioning example characteristics as well as
including negative conditioning examples.

3.1. Training Datasets

In order to support a wide variety of instrument classes, we train
the models on a combination of several multitrack datasets consist-
ing of solo-instrument stems that are linearly mixed to create full
song recordings. The first dataset, Dreal, is a private dataset con-
taining 313 real-world multi-tracks, with an instrument bias towards
pop/rock music meaning that vocals, drums, bass, guitars, and syn-
thesizers dominate the distribution. The second, Dsynth, is the public
Slakh2100-redux [26] dataset, containing 1710 multi-tracks synthe-
sized from MIDI with high-quality synthesizers. This dataset con-
tains no vocals, and by its nature only contains synthetic versions
of each instrument. Dsolo is a private dataset of 627 real solo instru-
ment recordings, roughly evenly distributed across the 18 instrument
classes. These recordings are randomly combined to generate multi-
tracks with up to 5 instruments.

3.2. Training setup

To generate a training example, we randomly sample a dataset D
from the set {Dreal, Dsynth, Dsolo}, a multi-track M from D, a chunk
from M as the input mixture, and finally an instrument track from
the mixture as the target output. To train the few-shot models, we
additionally sample n random chunks from the original track of the
target instrument as the conditioning examples. Note that we make
sure the random chunks do not overlap with the target output. We
experiment with n between one and five (1-shot to 5-shot) to exam-
ine how this choice correlates with model performance. All models
are trained using a batch size of 16 and a learning rate of 0.001 with
the Adam optimizer and early stopping.

3.3. Evaluation setup

We evaluate the trained MSS models on the 50 test tracks in the
MUSDB18 dataset. For each track, we have its mixture and isolated
tracks of vocals, drums, bass, and other in stereo format with a 44.1k
Hz sample rate. An other track includes all instruments in a mixture
other than vocals, drums, and bass. It can vary greatly over time
with different instruments present at different times, making condi-
tioning using random examples potentially incoherent. Therefore,
we do not evaluate on separating other in this work. Note that we
did not include the training set of MUSDB18 into our training data.
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Method Vocals Drums Bass

Baseline 4.07 4.35 3.06

1-shot 4.23± 0.88 4.34± 0.60 2.71± 0.86
2-shot 4.64± 0.38 4.54± 0.39 3.27 ± 0.41
3-shot 4.80 ± 0.32 4.71 ± 0.38 3.16± 0.45
4-shot 4.58± 0.39 4.61± 0.32 3.08± 0.50
5-shot 4.72± 0.35 4.66± 0.25 3.26± 0.38

Table 1. Mean SDR (dB) on MUSDB18 for the baseline and few-
shot conditioned models with different n. The standard deviation of
the means for few-shot models are computed over 10 test iterations.

The training and testing data are therefore from different distribu-
tions, resulting in a more challenging setup compared to most of the
previous works on MSS.

To evaluate a test track, we downsample the audio to 22 kHz and
divide the mixture into 3-second input segments with 50% overlap.
We sample n random chunks from the target instrument track as the
conditioning examples for the few-shot models, and run inference on
each 3-second chunk. We reconstruct the final signal using overlap-
add, and upsample to 44.1 kHz. We compute the signal-to-distortion
ratio (SDR) [27] per track using the museval package as our eval-
uation metric, and average the SDR across tracks. We repeat this
process 10 times for each track with different random conditioning
examples when evaluating few-shot models, reporting the mean and
standard deviation of means over each of the 10 test iterations.

While MUSDB18 is the most common MSS benchmarking
dataset, it only contains isolated tracks for three instrument classes.
Since our baseline model supports up to 18 instruments, we ad-
ditionally evaluate the baseline and the best performing few-shot
model on the MedleyDB dataset. We filter out multi-tracks with
bleed, map all instruments to the predefined 18-instrument vocab-
ulary, and generate sub-mixes in which we keep only one stem per
instrument class. The resulting MedleyDB evaluation set contains
90 tracks with 14 instrument classes.

3.4. Conditioning example characteristics

In our basic setup of training and evaluating the few-shot model,
the selected conditioning examples have two main constraints: (1)
they are drawn from the target recording, (2) they are single-sourced
audio examples that only contain the target instrument. This is a
relatively ideal scenario when considering real-world applications,
where isolated examples from the target recording may not be avail-
able. To see how a few-shot model generalizes to more challenging
and practical scenarios, we perform a set of experiments where we
evaluate the model with one constraint relaxed at a time.

To relax the first constraint, we draw n conditioning examples
from n different recordings of the same instrument class within the
test data. To relax the second constraint, we allow some condition-
ing examples to contain one additional non-target instrument, where
each example has a 0.5 probability of being multi-sourced. To get
a multi-source example from a multitrack, we randomly choose a
non-target instrument and mix it with the target before we sample an
example chunk. Note that we make sure only one consistent instru-
ment, the target, is present across all conditioning examples.

3.5. Negative conditioning examples

Besides providing target instrument examples to specify the de-
sired output, we further explore if specifying unwanted instruments

through the same conditioning mechanism can help improve the sep-
aration. To do so, we extend our basic few-shot model to leverage
additional negative conditioning examples. During both training and
evaluation, we draw n additional negative examples, each of which
contains a random non-target instrument that also exists in the input
mixture. All conditioning examples are first embedded via the same
few-shot conditioning encoder. Then we average the example-wise
conditioning vectors over positive and negative examples separately.
We concatenate the aggregated positive and negative conditioning
vectors along the feature dimension, and convert the concatenated
vector to a final conditioning vector via a fully-connected layer with
a ReLU activation. The sizes of the resulting conditioning vector
and the conditioned U-Net model are the same as in our basic setup.

4. RESULTS

4.1. Instrument class conditioning vs. few-shot conditioning

In Table 1, we show the performance of the instrument class condi-
tioned baseline and few-shot conditioned models with different num-
bers of conditioning examples n (the number of shots).

First, the 1-shot model, conditioned on only one audio example,
does not show a significant advantage over the baseline. It achieves
higher SDR on vocals, but performs worse on bass. While we can
provide more direct and specific information about the target via au-
dio examples for conditioning, one random example may not be suf-
ficient to capture the variations of the target within the entire song.
On the other hand, as n increases, the few-shot model begins to out-
perform the baseline across all instruments. This shows the advan-
tage of extending existing query-based or one-shot MSS to few-shot
MSS. We can now provide more conditioning examples to better
capture the instrument variations in pitch, timbre, and playing tech-
nique, to achieve better separation. Next, we see a general trend that
as n increases, the performance of the few-shot model initially in-
creases and then stays relatively stable, while the standard deviation
continues to decrease. Since we aggregate example-wise condition-
ing vectors by taking an average, we can expect these diminishing
returns from including more examples once enough representative
examples are present. On the other hand, conditioning on more au-
dio examples can mitigate the randomness from sampling and leads
to more stable results. Therefore, in the remainder of our experi-
ments, we focus on a 5-shot model for more robust performance.

In addition to MUSDB18, we evaluate the baseline and 5-
shot models on MedleyDB, which contains many more instrument
classes. Figure 2 (left) first shows that the 5-shot model outperforms
the baseline on 13 instruments out of the total of 14 with an over-
all SDR of 1.96 dB (0.56 dB for the baseline). Next, we sort the
instruments by their occurrences in the training data based on the
distribution shown in Figure 2 (right). We see that the 5-shot model
can not only effectively separate instruments that are relatively rare
in our training data, but also generally outperforms the baseline by
larger margins on these rare classes, for example, Keyboards, Wood-
winds, and Accordion. This suggests that the advantage of few-shot
MSS is more significant on rare instruments. From these results,
we see that few-shot MSS is applicable to many instruments across
different datasets. In the remainder of our experiments, for brevity
we focus on the MUSDB18 dataset.

4.2. Separating unseen instruments

One of the advantages of the few-shot MSS model is that it is able
to handle new, unseen instruments at inference time without being
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Fig. 2. (Left) Median SDR on MedleyDB dataset for the baseline
and 5-shot models. We report median SDR here due to high variance
between tracks. (Right) Training data distribution.

Method Vocals Drums Bass

Baseline 0.35 0.05 −0.10

1-shot 2.65± 0.74 −0.01± 0.64 1.40± 0.88
5-shot 3.22 ± 0.44 1.18 ± 0.40 2.88 ± 0.35

Table 2. Mean SDR (dB) on MUSDB18 for the baseline and few-
shot conditioned models with n ∈ {1, 5}. Vocals, drums, and bass
are held out from the training data. The standard deviations of the
means for the few-shot models are computed over 10 test iterations.

limited by the training vocabulary. However, our training data has
a large instrument vocabulary while MUSDB18 only contains three
common instruments. To quantitatively evaluate how well models
can separate unseen instruments, we remove all vocals, drums, and
bass target examples from our training data and retrain the baseline
and few-shot models with the updated training set. This ensures that
the model does not see instruments from the test set during training.

The results in Table 2 first show that the baseline model condi-
tioned on instrument classes, unsurprisingly, does not perform well
on unseen instruments as it is effectively untrained for these classes.
On the other hand, both few-shot models with n ∈ {1, 5} outper-
form the baseline by large margins across all instruments (except the
1-shot model for drums). Note that the performance on drums is
significantly lower than the other two instruments. We conjecture
that the high variance of drum sounds makes it harder for the model
to separate based on just one or few examples at inference time. In
addition, if we compare Table 2 to Table 1, first, we see the drops
in SDR resulting from not seeing the testing classes during training.
Next, we see that the 5-shot model outperforms both the baseline
and the 1-shot model more significantly on unseen instruments. This
aligns with our observations in Section 4.1 that the advantage of few-
shot MSS is more significant on rare and even unseen instruments.

4.3. Conditioning examples

In the previous experiments, we provided few-shot models with
single-sourced conditioning examples drawn from the target record-
ing. To see if few-shot models are able to generalize to more prac-
tical scenarios, we evaluate a 5-shot model with relaxed constraints
on conditioning examples as discussed in Section 3.4.

Table 3 first shows the performance of the basic 5-shot model
where (as before) we apply both constraints to the conditioning
examples. Then, if we draw conditioning examples from different
tracks instead of the target track, SDR drops between ≈0.4 to 1.1
dB across instruments. Even with this drop, the model still achieves

Test conditioning constraints Model
variant

Vocals Drums Bass

Single-sourced Same track

� � 4.72 4.66 3.26

� 4.34 4.16 2.20
� 1.00 2.03 -0.63
� MS 1.63 3.52 2.21

� � +Neg 4.73 5.21 3.63

Table 3. Mean SDR (dB) on MUSDB18 for the 5-shot model with
different constraints applied to the conditioning examples at test
time. MS: Model trained with multi-sourced conditioning examples.
+Neg: Model trained with both positive and negative single-sourced
conditioning examples.

comparable and in some cases better SDRs compared to the base-
line model (shown in Table 1). On the other hand, if we provide
multi-sourced conditioning examples with additional non-target in-
struments instead of single-sourced ones, the model performance
drops significantly. This is not surprising given that the model is
trained only on isolated audio. To see if changing the training condi-
tions would make this scenario possible, we retrain the 5-shot model
with multi-sourced conditioning examples. The retrained model
(shown as MS in Table 3), while still performing worse than both
the basic 5-shot model and the baseline, achieves about 0.6 to 2.8
dB SDR improvement by matching the training and testing scenar-
ios. These results indicate that the proposed few-shot MSS model
can adapt to a wide variety of applications where the conditioning
examples can be drawn from different recordings. The model has
a harder time generalizing to multi-sourced conditioning examples,
but if that is the desired scenario, we can match the training and
inference objectives to achieve better results.

Next, we experiment with including five additional negative con-
ditioning examples, each containing a random non-target instrument,
as discussed in Section 3.5. The results at the bottom of Table 3
show that providing additional information about what not to sepa-
rate during training and inference helps to further improve the sep-
aration compared to the basic 5-shot model conditioned on positive
examples only. This setup could be particularly useful when labeling
non-target instruments is much easier than labeling the target one.

5. CONCLUSION

In this work, we proposed a few-shot MSS paradigm where we con-
dition a generic U-Net source separation model on few audio exam-
ples of the target instrument. We evaluated the trained models on
real musical recordings in MUSDB18 and MedleyDB datasets. We
first quantitatively show that our proposed few-shot MSS model out-
performed the baseline model, conditioned on the instrument class
labels, on both seen and unseen instruments. Additionally, we saw a
more significant advantage of few-shot MSS on rare and unseen in-
struments. Next, we further experimented with different characteris-
tics of the conditioning examples, including relaxing the constraints
for examples and providing additional negative conditioning. The
results indicate the potential of applying few-shot MSS to a wider va-
riety of real-world scenarios, where the conditioning examples may
come from different recordings or contain non-target sounds. Fu-
ture work could explore the structure of the conditioning embedding
space and ways to further improve model performance such as differ-
ent conditioning mechanisms, additional loss terms, and pre-training
the conditioning encoder on few-shot classification tasks.



6. REFERENCES

[1] Estefania Cano, Derry FitzGerald, Antoine Liutkus, Mark D
Plumbley, and Fabian-Robert Stöter, “Musical source separa-
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