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Abstract

Frequency estimation, also known as the Point Query problem, is one of the most fundamental problems in
streaming algorithms. Given a stream S of elements from some universe U = {1 . . . n}, the goal is to compute,
in a single pass, a short “sketch” of S so that for any element i ∈ U , one can estimate the number xi of
times i occurs in S based on the sketch alone. Two state of the art solutions to this problems are Count-Min
and Count-Sketch algorithms. They are based on linear sketches, which means that the data elements can be
deleted as well as inserted and sketches for two different streams can be combined via addition. However, the
guarantees offered by Count-Min and Count-Sketch are incomparable. The frequency estimator x̃ produced by
Count-Min sketch, using O(1/ε · logn) dimensions, guarantees that (i) ‖x̃−x‖∞ ≤ ε‖x‖1 with high probability,
and (ii) x̃ ≥ x holds deterministically. Also, Count-Min works under the assumption that x ≥ 0. On the other
hand, Count-Sketch, using O(1/ε2 · logn) dimensions, guarantees that ‖x̃−x‖∞ ≤ ε‖x‖2 with high probability.
A natural question is whether it is possible to design the “best of both worlds” sketching method, with error
guarantees depending on the `2 norm and space comparable to Count-Sketch, but (like Count-Min) also has
the no-underestimation property.

Our main set of results shows that the answer to the above question is negative. We show this in two
incomparable computational models: linear sketching and streaming algorithms. Specifically, we show that:

• Any linear sketch satisfying the `p norm error guarantee with probability at least 2/3 and having the

no-underestimation property must be of dimension of at least Ω(n1−1/p/ε), even if the sketched vectors

are non-negative. This bound is tight, as we also give a linear sketch of dimension O(n1−1/p/ε) satisfying
these properties.

• Any streaming algorithm satisfying the `p norm error guarantee with probability at least 2/3 and having

the no-underestimation property must use at least Ω(n1−1/p/ε) bits. This holds even for algorithms that
only allow insertions and make any constant number of passes over the stream. This bound is tight up
to a logarithmic factor.

We also study the complementary problem, where the sketch is required to not over-estimate, i.e., x̃ ≤ x
should hold always. We show that any linear sketch satisfying this property and having the `p error guarantee

with probability at least 2/3 must be of dimension at least Ω(n1−1/p/ε). We also show that this bound is tight
up to polylogarithmic factors, by providing an appropriate linear sketch.

1 Introduction

Frequency estimation, also known as the Point Query problem, is one of the most fundamental problems in
streaming algorithms. Given a stream S of elements from some universe U = [n] = {1 . . . n}, the goal is to
compute a short “sketch” of S so that for any element i ∈ U , one can estimate the number xSi of times i occurs
in S based on the sketch alone. Furthermore, the computation should be performed in a “streaming” fashion, by
performing only one pass (or few passes) over the data. Over the last two decades, dozens of algorithms for this
problem have been developed. Some of them, such as Count-Min [CM05] and Count-Sketch [CCFC02], have found
applications in multiple areas, including machine learning, natural language processing, network monitoring and
security, and have been implemented in popular data processing libraries, such as Algebird and DataSketches.
See [CY20], sections 3.4 and 3.5, for further discussion of applications.

Both Count-Min and Count-Sketch are linear sketches. Specifically, the algorithms compute a vector AxS ,
where xS is the frequency vector for the stream S, and A is the sketch matrix defined by the respective algorithm.
The linearity has multiple benefits. First, the data elements can be deleted as well as inserted1. Furthermore,
the sketch is mergeable [ACH+13]: given two data streams S and S′, the sketch of the concatenation of S and S′
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1For Count-Min, this holds under the condition that xS ≥ 0 at the end of the stream - this is often referred to as the strict turnstile

model.
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is equal to the sum of sketches for S and S′, i.e., AxS◦S
′

= A(xS + xS
′
) = AxS +AxS

′
. The linearity of sketches

is also crucial for other applications such as compressed sensing [CRT06, Don06, GI10].
The guarantees offered by Count-Min and Count-Sketch are incomparable. The frequency estimator x̃

produced by Count-Min sketch, using O(1/ε · log n) dimensions, guarantees that (i) ‖x̃− x‖∞ ≤ ε‖x‖1 with high
probability, and (ii) x̃ ≥ x holds always. Also, Count-Min works under the assumption that x ≥ 0. In contrast,
Count-Sketch uses O(1/ε2 · log n) dimensions and guarantees that ‖x̃ − x‖∞ ≤ ε‖x‖2 with high probability.
The `2 norm is typically smaller (and never greater) than the `1 norm, so for constant ε the error guarantee of
Count-Sketch is stronger than the error guarantee of Count-Min. However, Count-Min has the additional “no
underestimation” property (ii), which is quite useful in applications. In particular, if the goal is to identify all
elements i such that xi ≥ T for some threshold T , the no-underestimation property guarantees that the algorithm
reports all such “heavy” elements, i.e., the algorithm has no false negatives. Since in many applications, such
as traffic monitoring, heavy elements indicate the presence of anomalies that need to be investigated further,
preventing false negatives is of paramount importance. In contrast, Count-Sketch can suffer from both false
negatives and false positives, although the probability of either can be made arbitrarily small by increasing
the sketch size. We also note that it is possible to use Count-Min to obtain a non-trivial sketch with `2 error
guarantee and no-underestimation property by setting ε equal to 1/

√
n, which ensures that the error is at most

‖x‖1/
√
n ≤ ‖x‖2. However, this sketch uses O(

√
n log n) dimensions, which is much larger than the space bound

of Count-Sketch. Furthermore, one can simulate Count-Sketch using Count-Min sketch by doubling the sketch
dimension ([CY20], section 3.5), but the resulting estimate only satisfies the guarantees of Count-Sketch; in
particular, it does not have the “no underestimation” property.

This state of affairs leads to a natural question: is it possible to design the “best of both worlds” sketching
or streaming algorithm, with error guarantees depending on the `2 norm and space comparable to Count-Sketch,
but (like Count-Min) also has the no-underestimation property?

Our results: Our main contributions show that the answer to the above question is negative. We consider
this problem in two models: linear sketching and streaming algorithms. We show2 that:

• Any linear sketch satisfying the `2 error guarantee with probability at least 2/3 and having the no-
underestimation property must be of dimension at least Ω(

√
n/ε), even if the sketched vectors are non-

negative. The result can be generalized to any `p norm, yielding a dimension lower bound of Ω(n1−1/p/ε).

• Any streaming algorithm satisfying the `p error guarantee with probability at least 2/3 and having the
no-underestimation property must use at least Ω(n1−1/p/ε) bits. This holds even for algorithms that only
allow insertions (not deletions), and that are allowed O(1) passes.

We complement these lower bounds by showing that they are (almost) tight. Specifically, for any fixed p > 1,
we provide a linear sketch of dimension O(n1−1/p/ε) that works for non-negative vectors satisfying the above
properties. This matches our lower bound for any fixed p > 1. The sketch is obtained by refining the analysis
of Count-Min for `p norms with p > 1, improving (by a logarithmic factor in n) over the näıve bound sketched
above. Furthermore, for insertion-only streams, we can implement this algorithm using O(log n) bit counters
per dimension (as long as the stream length is at most polynomial in n), which yields an O(n1−1/p/ε · log n)
bit space bound for fixed p > 1. Therefore, our streaming lower bound is tight up to a factor of log n. In the
message-passing multi-party communication model, where streaming problems were studied recently in [JW19],
this log n factor can be improved and we obtain tight bounds up to an O(log log n+ log(1/ε)) factor; see Section
4 for details.

We note that our two lower bounds are incomparable. On the one hand, any linear sketch also yields a
streaming algorithm, so a streaming lower bound can in principle be used to derive a lower bound on linear
sketches as well. On the other hand, the entries of sketching matrices are real numbers with an arbitrary or even
unbounded precision, so translating streaming lower bounds into sketching lower bounds induces an overhead that
depends on the precision. Furthermore, our sketching result lower bounds the number of dimensions, while the
streaming result lower bounds the number of bits. Thus, our sketching lower bound is tight, while the streaming
lower bound is tight up to a logarithmic factor.

2The following statements assume that ε is not “too small” as a function of n. Please see the relevant sections for the complete
result statements.
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Finally, we study the complementary problem, where the sketch is required to not over-estimate, i.e., x̃ ≤ x
should hold always. We show that any linear sketch satisfying this property and having the `p error guarantee
with probability at least 2/3 must be of dimension at least Ω(n1−1/p/ε), even for x ≥ 0. We also show this is
tight up to polylogarithmic factors in n, by giving an appropriate linear sketch.

1.1 Related work To the best our knowledge, the closest prior work is the paper [BW11]. It considers
streaming algorithms for a collection of problems, including norm estimation and heavy hitters, and shows that
when such algorithms are required to output a number that does not underestimate (or overestimate) the true
value, then such algorithms must use linear space Ω(n), unless the error is measured in `p norm for p = 1. Their
lower bound for the heavy hitters problem (motivated, as in our case, by the Count-Min algorithm), is particularly
relevant to the results in this paper. In the heavy hitters problem, the goal is to (i) report all elements i such
that xi ≥ φ‖x‖p, while (ii) not reporting any elements i′ for which xi′ < φ′‖x‖p. Here, 0 < φ′ < φ < 1 are
constants that depend on p but not on n. The paper shows that if either condition (i) or condition (ii) holds with
probability 1, then any streaming algorithm must use Ω(n) space, even for insertions-only streams, unless p = 1.

On the surface, their result might appear to be stronger than our lower bound, and to contradict our upper
bound (which is approximately O(

√
n) for p = 2). This, however, is not the case, because the definition of “heavy

hitters” in [BW11] is relative with respect to the total norm ‖x‖p. This means that estimating the frequencies
by itself (as in Count-Min) is not sufficient to identify heavy elements, and one must also estimate the norm of
the stream to be able to determine which elements have estimates exceeding the threshold of φ‖x‖p. Indeed, the
heavy hitter lower bound in [BW11] crucially relies on the hardness of estimating the norm with one-sided error.
In contrast, our lower bounds apply directly to the frequency estimation problem.

More broadly, communication complexity protocols with one-sided error have been studied extensively in
communication complexity. Indeed, the aforementioned lower bound of [BW11] relies on lower bounds for one-
sided-error communication protocols from the seminal paper of [BCW98]. See [BW11] for a detailed overview of
this line of research.

Deterministic streaming algorithms: Streaming algorithms with one-sided error are generalizations of
deterministic streaming algorithms. In the context of frequency estimation and related problems, deterministic
algorithms have been studied e.g., in [NNW14, LN18]. However, those algorithms work only for the `1 norm.
For the `2 norm, a recent paper [KPW21] showed an Ω(

√
n/ε) lower bound for the deterministic heavy hitters

problem with thresholds φ = ε and φ′ = ε/2. Our streaming lower bound is a strengthening of that result, showing
that the lower bound holds already for algorithms which can be randomized, provided they have one-sided error.

1.2 Preliminaries Notation: We will use [n] to denote the set {1 . . . n}. As stated in the introduction, we
use xS to denote the frequency vector induced by the stream S, i.e., xSi is the number of times i appears in S.
We will often drop the superscript when S is clear from the context.

For a vector x ∈ Rn, we denote it’s `p norm as ‖x‖p = (
∑n
i=1 |xi|p)

1/p
. For a real-valued matrix M , we let

MT denote the transpose of M , rk(M) denote the rank of M , and if M is square, we let tr(M) denote the trace

of M . Finally, we define the Frobenius norm ‖M‖F =
√
MTM =

√∑
M2
ij .

Count-Min Sketch: The sketch is formed by creating t distinct hash functions h` : U → [k] and t arrays
C` of size k each. The total space used is of size tk. The algorithm computes C`’s such that at the end of the
stream we have C`[b] =

∑
i:h`(i)=b

xi for each b ∈ [k]. For each i ∈ U , the frequency estimate x̃i is equal to

min` C`[h`(i)]. Note x̃i ≥ xi holds always as long as x ≥ 0. In the context of streaming algorithms we refer to
the latter assumption as the “strict turnstile model”. We also note that the mapping A : Rn → Rkt that maps x
to C1 . . . Ct as defined above is linear.

1.3 Overview of Techniques
Sketching lower bounds: The existence of a sketching algorithm implies there is a family of k × n-

dimensional matrices A such that given A and Ax for A ∼ A, one can recover an approximation x̂ of x. For all
i ∈ [n], this approximation satisfies x̂i ≥ xi (in the no-underestimation case) or x̂i ≤ xi (in the no-overestimation
case), and with probability at least 2/3, |x̂i−xi| ≤ ε·‖x‖p for all i ∈ [n]. Our goal is to show that such a guarantee
is not possible unless k = Ω(ε−1 · n1−1/p). It is well-known that one can replace the randomness on the matrix
A with randomness over the vector x that we wish to estimate. In other words, if such a guarantee is possible,
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then for any distribution D over vectors x ∈ Rn, there must exist a fixed matrix A such that given Ax, where
x ∼ D, we can recover a good estimate x̂ of x. But due to our deterministic no underestimation/overestimation
assumption, we have that for any x (possibly not drawn from D), x̂i ≥ xi.

In the case of no-underestimation, the distribution D is simply a point mass distribution over v =
(1/n, 1/n, . . . , 1/n) ∈ Rn. We show that for any matrix A, there exists a nonnegative vector x such that
Av = Ax but some component xi is large. Because of our deterministic no-underestimation assumption, we
cannot underestimate xi, so we will grossly overestimate vi. In the case of no-overestimation, we instead consider
the distribution over vectors where all coordinates are 1/T for some properly chosen T , except one uniformly
random coordinate i is chosen to be 1 (call this vector v(i)). This time, we show that for the majority of these
vectors, there is some nonnegative x such that Ax = Av(i), but xi = 0. Because of the deterministic no-

overesimation assumption, we cannot underestimate xi, so we grossly underestimate v
(i)
i for the majority of the

vectors v(i).
To prove that these vectors x exist, we write the claims that Av = Ax, xi is large (or is 0), and x is

nonnegative as a linear program and consider the dual linear program. In both cases, we reduce to two similar
matrix inequalities, both of which can be captured by showing that if a matrix has diagonal entries at least 1
but the sum of the absolute values of each row is less than some T , then the rank must be at least Ω(n/T ). This
generalizes a well-known fact for T = 1, which essentially states that diagonally dominant matrices are invertible
[Tau49]. The rough intuition for the more general matrix inequality comes from assuming that the largest entry
in each row is the diagonal entry. In this case, we can bound the sum of squares of each row by T , meaning that
the Frobenius norm of M is at most T ·n, whereas the trace is n. Some simple inequalities relating the Frobenius
norm, trace, and rank are sufficient to establish an Ω(n/T )-rank lower bound. While we cannot assume that
the largest entry in each row is the diagonal entry, we show how to swap rows and columns accordingly without
affecting the rank, and make the diagonal entries the largest entry in many of the rows, or at least if we restrict
to certain submatrices. This idea will allow us to prove the general rank lower bound.

Streaming Lower bound: Our result is based on the lower bound for a k-player communication promise
problem called “Mostly Set-Disjointness”, introduced in [KPW21]. In this problem, denoted by MostlyDISJn,l,k,
each Player j ∈ [k] receives an n-dimensional input vector Xj = (Xj,1, . . . , Xj,n) where Xj,i ∈ {0, 1}. The input
to the protocol falls into either of the following cases. In the NO case, we have that the sets represented by
Xj ’s are disjoint. In the YES case, all sets are disjoint except for a a unique element i ∈ [n] which occurs in
exactly l sets. The paper [KPW21] shows that, for any fixed 0 < c < 1, the conditional information complexity
of MostlyDISJn,cn,k (for an appropriately defined distribution over the inputs) is Ω(n).

The starting point of the proof is a standard reduction between streaming algorithms and multiparty protocols,
where each of the k players in MostlyDISJn,ck,k creates a local stream and runs a streaming algorithm on the
concatenation of its local streams. For an O(1)-pass streaming algorithm, this requires O(1) rounds, where each
player speaks once in a round. The last player then looks at the output of the streaming algorithm, and decides
on a course of action. With probability at least 2/3 and using at most one additional round and O(k) additional
bits of communication with each of the players, Player k declares an answer to the MostlyDISJn,ck,k problem.
With the remaining probability of at most 1/3, Player k asks all players to run an independent execution of the
streaming algorithm again on their local streams. This process repeats until Player k finally declares an answer
to the MostlyDISJn,ck,k problem.

An important fact is that when Player k declares an answer to the MostlyDISJn,ck,k problem, the output is
correct with probability 1. We show this using the properties of a no-underestimation `p-point query algorithm.
However, it may take many independent executions of the streaming algorithm until Player k declares an answer.
We can terminate the protocol after O(k) independent executions, incurring a probability of error for solving
MostlyDISJn,ck,k of at most δ = exp(−Θ(k)), but the total communication for solving MostlyDISJn,ck,k will now
be O(k2s), where s is the space complexity of our streaming algorithm. Indeed, in each of k rounds, each of k
players passes the state of the streaming algorithm (or more precisely, posts it to the blackboard) to the next
player O(1) times (since the streaming algorithm uses O(1) passes). As the randomized communication complexity
of MostlyDISJn,ck,k is Θ(n), this gives us an s = Ω(n/k2) lower bound. For the important setting of p = 2 and
ε = Θ(1), we would set k = Θ(

√
n) and only obtain a trivial Ω(1) lower bound.

The main insight is instead to argue that although there may be up to O(k) rounds of communication,
the expected number of rounds is O(1), and consequently since the conditional information cost is a quantity
measured in expectation, the additional rounds do not degrade the lower bound, since they occur with geometrically
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decreasing probabilities.
Sketching Algorithms: We start with the no-underestimation algorithm. In standard Count-Min sketch

with the `1-guarantee, one can show that for any xi, the sum of the other coordinates that are hashed to the same
bucket as xi does not exceed ε · ‖x‖1 with at least 2/3 probability. Count-Min repeats this hashing procedure
O(log n) times, which ensures high accuracy for every xi. Since ε/n1−1/p · ‖x‖p ≥ ε · ‖x‖1, one can apply the same
Count-Min sketch with a hash table of size ε−1 ·n1−1/p instead of size ε−1. However, if ε/n1−1/p ·‖x‖p and ε ·‖x‖1
were actually close in value, this would mean that most of the coordinates of x were small in absolute value,
which means we can actually obtain strong concentration of the sum of other items hashed to the same bucket
as xi. Indeed, since there are ε−1 · n1−1/p buckets now, for any fixed i, with very small failure probability no
heavy hitter will be mapped to the same bucket as i, and we can use a Chernoff-type argument to bound the sum
of remaining items with 1/poly(n) failure probability. Overall, our final algorithm is very similar to Count-Min,
but we only need O(1) copies of the hash table as opposed to O(log n) copies. This will allow us to obtain an
O(ε−1 · n1−1/p)-length sketch.

For the no-overestimation algorithm, we combine the ideas of Count-Min with known deterministic `1-point
query algorithms, which are able to operate with sketch length O(ε−2 log n) [NNW14]. Since the point query
algorithms are deterministic, they are not hard to modify so that they never overestimate. Unfortunately, we
cannot directly use this, as for the `p-point query, we would only get a Õ(ε−2 · n2−2/p)-length sketch, since in
the worst case, ε/n1−1/p · ‖x‖1 = ε · ‖x‖p. Instead, we will only apply the deterministic point query algorithm
for ε a small constant. Our approach, roughly, is to use a Count-Min-type hashing to split the stream into
buckets. We can keep track of the total mass of each bucket, and run a deterministic point-query algorithm on
the bucket so that every xi is not overestimated, but not underestimated by more than 0.1 · ‖xB‖1, where xB is
the substream generated by the elements mapped to the same bucket B that i is mapped to. By running a small
number of copies of this procedure, we can ensure that for each i, the bucket containing i has small norm in one
of the copies, which will be sufficient for our sketch. Our streaming algorithms are obtained by implementing the
aforementioned sketching methods.

2 No-Underestimation Sketching Lower Bound

Theorem 2.1. Fix 1 ≤ T ≤ n. Let v =
(

1
n ,

1
n , . . . ,

1
n

)
∈ Rn. Then, there exists an absolute constant c > 0 such

that for any k ≤ c · n/T and any real-valued matrix A ∈ Rk×n, there exists some x ∈ Rn such that Ax = Av, x
has only nonnegative entries, and maxxi ≥ T/n.

First, we note the following standard fact. We include a proof in the appendix for completeness.

Lemma 2.1. For any square (possibly non-symmetric) matrix R, rk(R) & tr(R)2/||R||2F .

We next need a key matrix inequality. We recently learned that the following result is known, and follows directly
from Theorem 1.3 of [FH54]. We provide an independent proof in the appendix.

Lemma 2.2. Let 1 ≤ T ≤ n, and suppose that M ∈ Rn×n is such that for all 1 ≤ i ≤ n, |Mii| ≥ 1 and∑
1≤j≤n |Mij | ≤ T . Then, the rank k of M satisfies k = Ω(n/T ).

We now prove Theorem 2.1.

Proof. For each 1 ≤ i ≤ n, consider the linear program maxxi : Ax = Av, x ≥ 0 where A ∈ Rk×n and x, v ∈ Rn.
Writing xi = eTi x for ei the ith unit vector, this program’s dual is miny v

TAT y : AT y ≥ ei. If we assume the
theorem is false for some fixed A, then for all i, there is some row vector z(i) = yTA ≥ ei (coordinate-wise) such

that z(i) ∈ RowSpan(A) (since z(i) = yTA) and
∑
j z

(i)
j ≤ T (since vTAT y ≤ T/n). Therefore, letting M be the

matrix such that M ’s ith row is z(i), we have that Mii ≥ 1 for all i, Mij ≥ 0 for all j, and
∑
j |Mij | ≤ T. Finally,

all of M ’s rows are in the rowspan of A, so M ’s rank is at most k.
Therefore, by Lemma 2.2, we have that k = Ω(n/T ).

Corollary 2.1. Any linear sketch that returns x̂ such that x̂i ≥ xi holds deterministically and x̂i ≤ xi+ ε · ||x||p
for all i ∈ U holds with probability at least 2/3 must use Ω(min(n, ε−1 · n1−1/p)) rows.
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Proof. Suppose A is a randomized sketch matrix and the stream has vector v = ( 1
n , . . . ,

1
n ). The sketch is Av,

and the output v̂ must satisfy v̂i ≥ xi for all nonnegative vectors x with Ax = Av by our no underestimation
assumption. Therefore, by Theorem 2.1, if A has k rows, if we choose T = c · n/k, then max v̂i ≥ T/n = c/k.
However, we are assuming that the sketching algorithm returns v̂i ≤ vi + ε · ||v||p = 1/n + ε/n1−1/p. Thus,
c/k ≤ 1/n+ ε/n1−1/p, so k ≥ Ω(min(n, ε−1 · n1−1/p)).

3 Multi-pass Insertion-Only Stream Space Lower Bound

In the multiparty communication model we consider k-ary functions F : L → Z where L ⊆ X1 × X2 × · · · × Xk.
There are k players who receive inputs X1, . . . , Xk, respectively. We consider protocols in the blackboard model
where in a protocol π, the players speak in any order and possibly multiple times, and the player who speaks
next is determined by the protocol transcript. Each player’s message is posted on a blackboard and is seen by all
other players. A message of Player i is a function of the messages on the blackboard thus far, Xi, and the private
randomness of Player i. The k-th player’s final message is the output of the protocol. The communication cost of
a multiparty protocol π is the sum of the lengths of all individual messages. A protocol π is a δ-error protocol for
the function f if for every input x ∈ L, the output of the protocol equals f(x) with probability at least 1− δ. The
randomized communication complexity Rδ(f) of f is the cost of the cheapest randomized protocol that computes
f correctly on every input with error probability at most δ, where the probability is taken only over the private
randomness of the players.

For background on information complexity, see, e.g., [BYJKS04, BY02]. Let H(X) denote the Shannon
entropy of the random variable X. Let H(X | Y ) denote the conditional entropy of X given Y . Let
I(X;Y ) = H(X) − H(X | Y ) denote the mutual information and I(X;Y | Z) denote the conditional mutual
information, for random variables X,Y, and Z.

Proposition 3.1. Let X,Y, Z,W be random variables.

1. If X takes value in {1, 2, . . . ,m}, then H(X) ∈ [0, log2m].

2. H(X) ≥ H(X | Y ) and I(X;Y ) = H(X)−H(X | Y ) ≥ 0.

3. For any random variables X,Y,W,Z, we have I(X;Y | W ) ≤ I(X;Y | Z,W ) +H(Z).

4. For any random variables X1, X2, . . . , Xn, Y , I(X1, . . . , Xn;Y ) =
∑n
i=1 I(Xi;Y | X1, . . . , Xi−1).

We note that part 3 of Proposition 3.1 follows from the fact that, using the chain rule for mutual information and
expanding I((X,Z);Y |W ) in two different ways:

I(X;Y | W ) + I(Z;Y | X,W ) = I(Z;Y | W ) + I(X;Y | Z,W ),

which then implies

I(X;Y | W ) +H(Z | X,W )−H(Z | X,Y,W ) = I(X;Y | Z,W ) +H(Z | W )−H(Z | Y,W ),

and so I(X;Y | W ) = I(X;Y | Z,W ) + H(Z | X,Y,W ) −H(Z | X,W ) −H(Z | Y,W ) + H(Z | W ), and then
using that H(Z | X,Y,W ) ≤ H(Z | X,W ) and H(Z | W ) ≤ H(Z) by Part 2, and that H(Z | Y,W ) ≥ 0.

Fact 3.1. (Example 4.6.1 of [LG94]) Let R be a geometric random variable with success probability p. Then

H(R) = log2

(
1
p

)
+ 1−p

p · log2

(
1

1−p

)
= H(p)

p , where H(p) = p log2

(
1
p

)
+ (1− p) log2

(
1

1−p

)
.

Definition 3.1. Let π be a randomized protocol whose inputs belong to K ⊆ X1 × X2 . . . × Xk. Suppose
((X1, X2, . . . , Xk), D) ∼ η where η is a distribution over K×D for some set D. The conditional information cost
of π with respect to η is defined as: cCostη(π) = I(X1, . . . , Xk;π(X1, . . . , Xk) | D). Here π(X1, . . . , Xk) denotes
the transcript of the protocol π.

Definition 3.2. The δ-error conditional information complexity CICη,δ(f) of f , with respect to η, is the
minimum conditional information cost of a δ-error protocol for f with respect to η.
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Note that in the definition of CICη,δ(f), the protocol is correct on every input with failure probability at most
δ, where the probability is taken only over the private coins of the players, while we measure the information of
the protocol with respect to the distribution η.

Fact 3.2. (See, e.g., Corollary 4.7 of [BYJKS04]) For all distributions η, we have Rδ(f) ≥ CICη,δ(f).

Definition 3.3. Denote by MostlyDISJn,l,k, the multiparty Mostly Set-Disjointness problem in which for each
j ∈ [k], Player j receives an n-dimensional input vector Xj = (Xj,1, . . . , Xj,n) where Xj,i ∈ {0, 1} and the input
to the protocol falls into either of the following cases:

• NO: For all i ∈ [n],
∑
j∈[k]Xj,i ≤ 1

• YES: There is a unique i ∈ [n] with
∑
j∈[k]Xj,i = l, and for all other i′ 6= i,

∑
j∈[k]Xj,i′ ≤ 1

Player k must output 1 if the input is in the YES case and 0 in the NO case.

Let L ⊂ {0, 1}k be the set of elements in x ∈ {0, 1}k with
∑
j∈[k] xj ≤ 1 or

∑
j∈[k] xj = l. Let Ln ⊂ Ln denote

the set of valid inputs to the MostlyDISJn,l,k function. Define distribution η over Ln × [k]n: for each i ∈ [n] pick
Di ∈ [k] uniformly at random and sample XDi,i uniformly from {0, 1} and for all j′ 6= Di set Xj′,i = 0. Let µ0

be the distribution for a given i ∈ [n]. Let η0 = µn0 .

Theorem 3.1. (See the one-line proof of Theorem 3.8 of [KPW21]): For any 0 < δ, c < 1 and 2 ≤ k ≤ log( 1
2eδ )

c log(e/c) ,

CICη0,δ(MostlyDISJn,ck,k) = Ω(n(1− c)2).

Corollary 3.1. For c = e/4 and 0 ≤ δ ≤ e−ke/2/(2e), CICη0,δ(MostlyDISJn,ck,k) = Ω(n).

The above holds for communication protocols with any number of rounds of communication.

Main Lower Bound: Let p ≥ 1 be any positive real number, which we assume is a constant independent of
n. We now prove our Ω(n1−1/p/ε) bits of space lower bound for any randomized O(1)-pass streaming algorithm
in the insertion-only model, which, given a vector x ∈ {0, 1, 2, . . . ,M}n of insertions to its coordinates, outputs
a vector x̃ with the following two properties: (1) With probability at least 2/3, ‖x̃ − x‖∞ ≤ ε‖x‖p, and (2)
with probability 1, we have x̃ ≥ x. If a streaming algorithm S satisfies the above two properties we call it a
no-underestimation `p-point query algorithm. For the lower bound it will suffice for M to be less than n. Let S
be a no-underestimation `p-point query algorithm. We construct a protocol ΠS to solve MostlyDISJn,ck,k, where

c = e/4 and k = 4εn1/p. The protocol is described in Algorithm 1.

Algorithm 1 Construction of Protocol ΠS from a no-underestimation `p-point query algorithm S

Input: For j ∈ [k], Player j receives the input Xj to the MostlyDISJn,ck,k problem, where c = e/4 and k = 4εn1/p.
Let S be a no-underestimation `p-point query algorithm.
Output: Player k declares whether the input to MostlyDISJn,ck,k is a YES or NO instance.
Procedure:

1: For j = 1, . . . , k, Player j creates a stream T j of insertions of items i for which Xj,i = 1. Player j computes
S(T 1 ◦ · · · ◦ T j), where T 1 ◦ · · · ◦ T j is the concatenation of the first j streams, and Player j posts the state
of the streaming algorithm to the blackboard.

2: Player k computes the output x̃ of S(T 1 ◦ · · · ◦ T k). Let I = {i : x̃i ≥ ck}.
3: If I = ∅, Player k terminates the protocol and outputs “NO instance”.
4: Else if |I| = {i} for an i ∈ [n], Player k posts i to the blackboard, and for j = 1, . . . , k, Player j posts Xj,i to

the blackboard. If xi = ck, Player k terminates the protocol and outputs “YES instance”. Else xi ∈ {0, 1},
and Player k terminates the protocol and outputs “NO instance”.

5: Else |I| > 1, and Player k writes “start over” on the blackboard. Goto Step 1.

Lemma 3.1. (Always Correct) For any 1/(en1/p) < ε < 1, given an O(1)-pass no-underestimation `p-point query
algorithm S, the protocol ΠS solves MostlyDISJn,ck,k with probability 1, where c = e/4 and k = 4εn1/p.
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Proof. Let I = {i : x̃i ≥ ck} be the value of the set I when Player k outputs and terminates the protocol. Then
it must be that |I| = 0 or |I| = 1.

In a YES instance, we have xi = ck for a unique value of i, and since x̃ ≥ x for a no-underestimation algorithm
S with probability 1, we have x̃i ≥ ck and thus i ∈ I. Consequently, I = {i}, and Xi = ck, and so Player k will
terminate and output “YES instance” in Step 4.

In a NO instance, if ‖x̃‖∞ < ck, then I = ∅ and Player k will terminate and output “NO instance” in Step
3. Otherwise, ‖x̃‖∞ ≥ ck and so |I| = {i} for an i ∈ [n]. Since we are in a NO instance, xi ∈ {0, 1}, and
Player k terminates the protocol and outputs “NO instance” in Step 4. This assumes that ck > 1, that is, that
e · εn1/p > 1, or equivalently, ε > 1/(en1/p).

Thus, for both YES and NO instances, ΠS solves MostlyDISJn,ck,k with probability 1.

Lemma 3.2. (Conditional Information Cost) For any ε with 1/((e − 2)n1/p) ≤ ε < 1/4, given an O(1)-pass
no-underestimation `p-point query algorithm S with space s and parameter ε, and for the distribution η0 defined
earlier, the protocol ΠS satisfies the following conditional information cost bound: cCostη0(ΠS) = O(sk), where
k = 4εn1/p.

Proof. First note that regardless of whether we are in a YES instance or a NO instance of MostlyDISJn,ck,k, by
the triangle inequality,

‖x‖p ≤ n1/p + k = n1/p + 4εn1/p < 2n1/p,(3.1)

where we have used ε < 1/4.
Let R ≥ 1 be an integer random variable indicating the total number of times Step 1 is executed. In order

for Step 1 to be executed again after it has completed, we must have |I| > 1, where I = {i : x̃i ≥ ck}. Let
i 6= j be two distinct elements in I. By the promise of MostlyDISJn,ck,k, regardless of whether the input is a NO
instance or a YES instance, there can be at most one index ` for which x` > 1. This fact uses that ck > 1, that is,
e · εn1/p > 1, which holds since ε > 1/(en1/p). Consequently, either xi ≤ 1 or xj ≤ 1. Without loss of generality,
suppose xi ≤ 1. Then

x̃i − xi ≥ ck − 1 = (e/4)4εn1/p − 1 > 2εn1/p,(3.2)

where the last inequality holds if (e− 2)εn1/p > 1, that is, ε > 1/((e− 2)n1/p).
Combining (3.1) and (3.2), it follows that x̃i − xi > ε‖x‖p, which implies that the streaming algorithm S

failed. In each independent execution of Step 1, we can assume that the stream T 1 ◦ T 2 ◦ · · · ◦ T k created is the
same, and thus the probability p of success of the streaming algorithm is the same, and p ≥ 2/3. Thus, R is a
geometric random variable with probability of success p ≥ 2/3. By Fact 3.1, H(R) = O(1).

By definition, cCostη0(ΠS) = I(ΠS ;X|D), where D is as defined in distribution η0, and we abuse notation
and let ΠS denote the transcript of protocol ΠS . Here X = (X1, . . . , Xk), where Xj is the input to Player j. By
part 3 of Proposition 3.1,

I(ΠS ;X|D) ≤ I(ΠS ;X|D,R) +H(R) ≤ I(ΠS ;X|D,R) +O(1).(3.3)

By definition of conditional mutual information,

I(ΠS ;X|D,R) =

∞∑
r=1

I(ΠS ;X|D,R = r)(1− p)r−1p.(3.4)

We bound each summand I(ΠS ;X|D,R = r). Conditioned onR = r, the transcript ΠS is equal to (S1, . . . , Sr,W ),
where S` = (S`,1, . . . , S`,k) and S`,j = S(T 1 ◦ T 2 · · · ◦ T j) is the state of the streaming algorithm S posted to
the blackboard by player j in the `-th execution of Step 1. Here W is either equal to the string “empty”, or
W = (X1,i, . . . , Xk,i), where I = {i} is the final setting of I by ΠS . Note that we do not need to explicitly include
the “start over” messages in the transcript, as they can be inferred given the condition R = r. We also do not
need to include the index i defining W in the transcript, as this can be determined from the other messages in
the transcript.
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By the chain rule for conditional mutual information (part 4 of Proposition 3.1), I(ΠS ;X|D,R =
r) =

[∑r
`=1 I(S`;X|S1, . . . , S`−1, D,R = r)

]
+ I(W ;X|S1, . . . , Sr, D,R = r) ≤

[∑r
`=1H(S`)

]
+

H(W |S1, . . . , Sr, D,R = r) ≤ r · s · k + 1, where the first inequality uses part 2 of Proposition 3.1, while
the second inequality uses part 1 of Proposition 3.1 together with the fact that conditioned on S1, . . . , S`, D,
and R = r, this either fixes W to be the string “empty”, or it fixes i and W is deterministic given XD,i.
In either case, H(W |S1, . . . , Sr, D,R = r) ≤ 1. Since rsk ≥ 1, we have I(ΠS ;X|D,R = r) ≤ 2rsk.
Plugging into (3.4), I(ΠS ;X|D,R) ≤

∑∞
r=1 2rsk · (1/3)r−1(2/3) = O(sk). Plugging this into (3.3), we get

I(ΠS ;X|D) = O(sk) +O(1) = O(sk), which completes the proof.

Theorem 3.2. (Streaming Lower Bound) For any constant p ≥ 1 and any 0 < ε < 1/4, any O(1)-pass no-
underestimation `p-point query insertion-only algorithm uses Ω(min(n, n1−1/p/ε)) space.

Proof. Let S be an O(1)-pass no-underestimation `p-point query algorithm with space s. Let ε′ = max(ε, 1/((e−
2)n1/p)). Note that S is also an O(1)-pass no-underestimation `p-point query algorithm with space s and
parameter ε′. Thus, by Lemma 3.1, there is a protocol ΠS which solves MostlyDISJn,ck,k with probability

1, where c = e/4 and k = 4εn1/p. Consequently, and using 1/((e − 2)n1/p) ≤ ε′ < 1/4, by Lemma 3.2,
we have cCostη0(ΠS) = O(sk). We apply Corollary 3.1 to conclude Ω(n) = cCostη0(ΠS) = O(sk), and thus,
s = Ω(n/k) = Ω(n1−1/p/ε′) = Ω(min(n, n1−1/p/ε)).

4 Optimal No-Underestimation Sketch

Theorem 4.1. Let 1 < p < ∞ be fixed, and suppose there exists some fixed constant c > 0 such that
1 ≤ ε−1 ≤ n(1−c)/p (equivalently, ε−1 ≤ n1/p−Ω(1)). Then, there exists a randomized sketch of dimension
O(ε−1 ·n1−1/p) on any nonnegative vector x ∈ Rn≥0 that never underestimates any xi, but with probability at least
1− 1/n does not overestimate any xi by more than ε · ‖x‖p.

Proof. We analyze Count-Min sketch with t = O(1/(1 − 1/p)) hash tables of size k = 4ε−1 · n1−1/p. The sketch
length will be O(kt) = O(ε−1 · n1−1/p) for a fixed p. Let r = (2ε−1 log n)p. We define headr(x) to be the
set of the r largest (in magnitude) coordinates in x. We also define tailr(x) = U\headr(x). Finally, we define

‖x‖p,tail(r) = ‖xtailr(x)‖p =

( ∑
i∈tailr(x)

xpi

)1/p

. For simplicity, we suppose that ‖x‖∞,tail(r) = 1, i.e., we have

normalized x so that the (r + 1)th largest element of x is 1, unless there are at most r nonzero coordinates of x,
in which case ‖x‖∞,tail(r) = 0.

Consider any coordinate j. We will analyze the estimation error of that coordinate. First, we observe that,
with probability at least 1 − r/k, none of the coordinates in headr(x) − {i} is hashed to the same bucket as i.
Conditioning on this event, if there are at most r nonzero coordinates in x, then there will be no estimation error.
Otherwise, the estimation error of that coordinate is bounded from above by a random variable X = X1+· · ·+Xn,
where if i ∈ tailr(x), Xi equals xi with probability 1/k and 0 otherwise, and if i ∈ headr(x), Xi = 0. Then,

P(X > ε · ‖x‖p) ≤
E[eX ]

eε·‖x‖p
= e−ε·‖x‖p ·

∏
i∈tailr(x)

(
1 +

exi − 1

k

)
≤ exp

(
2

k
· ‖x‖1,tail(r) − ε · ‖x‖p

)
.

Now, we know that ‖x‖1,tail(r) ≤ ‖x‖1 ≤ n1−1/p ·‖x‖p. Therefore, 2
k ·‖x‖1,tail(r) ≤ ε

2 ·‖x‖p, so P(X > ε·‖x‖p) ≤
exp (−ε‖x‖p/2) . But ‖x‖p ≥ ‖x‖p,head(r) ≥ r1/p = 2ε−1 log n by our normalization of x, so P(X > ε‖x‖p) ≤ 1/n.

Thus, we have shown the estimation error of a fixed coordinate j exceeds ε‖x‖p with probability at
most r/k + 1/n = O(ε1−p(log n)p/n1−1/p). Since c, p are fixed and ε ≥ n−(1−c)/p, ε1−p log(n)p/n1−1/p ≤
n−c·(p−1)/p · (log n)p = n−Ω((p−1)/p). Thus, by using t = O(p/(p − 1)) = O(1/(1 − 1/p)) hash tables, we get
that at least one hash table will return an estimate with error at most ε‖x‖p with probability at least 1− 1/n2.
By the union bound it follows that all coordinates have error bounded by ε‖x‖p with probability at least 1− 1/n.

Remark 4.1. This sketching algorithm implies an O(ε−1 ·n1−1/p ·log n)-bit streaming algorithm for strict turnstile
polynomial-length streams. Although we assume full independence of the hash tables, which requires storing Ω(n)
bits of randomness, one can use the pseudorandom generator of Nisan and Zuckerman [NZ96] to produce a
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streaming algorithm using space only O(log n) times the sketch length, since the sketch length, which is O(k · t),
is polynomially related to n.

Remark 4.2. In [JW19] upper bounds in the message-passing multiparty communication were studied. Here each
of m players holds a nonnegative vector xi ∈ {0, 1, 2, . . . ,M}n for some M = poly(n), the players share a common
random string, and their goal is to compute a function of their joint inputs by communicating a small number of
bits. The players correspond to the nodes of a graph of bounded diameter and communicate along the edges. For
the `p-point query problem with no underestimation, applied to the vector

∑m
i=1 x

i, we can improve the O(log n)
bits required to store each coordinate of the sketch of Theorem 4.1, by having each player round each coordinate of
its sketched vector up to the nearest power of (1 + ε). Thus, when communicating the sketch to another player, it
needs only O(log log n + log(1/ε)) bits per sketching dimension. Further, the no-underestimation property holds,
since counters have only been rounded up, and each counter will be at most (1 +O(ε)) times its actual value after
merging the sketches of all players. The latter property follows since sketches need only be merged O(1) times,
using the fact that the diameter is bounded. We note that this is optimal up to an O(log log n+ log(1/ε)) factor,
since the lower bound of Theorem 3.2 holds already in the blackboard communication model, where each player
posts its message and can be seen by all other players, which is a stronger model than the one in [JW19]. We
refer the reader to [JW19] for further details of the model.

5 No-Overestimation

In this section we give matching sketching lower and upper bounds for no-overestimation algorithms.

5.1 No-overestimation lower bound Our main technical result is the following theorem.

Theorem 5.1. Fix 1 ≤ T ≤ n/2. Let v(i) be the vector with ith coordinate 1 and jth coordinate 1
T for all j 6= i.

Then, there exists an absolute constant c > 0 such that for any k ≤ c · n/T and real-valued matrix A ∈ Rk×n,
there exists a subset S ⊂ [n] of size n/2 such that for any i ∈ S, there exists x ∈ Rn such that Ax = Av(i), x has
only nonnegative entries, and xi = 0.

Proof. We first prove a weaker version of theorem where we just prove there exists a subset S ⊂ [n] of size 1,
i.e., there exists some i ∈ [n] and x ∈ Rn≥0 such that Ax = Av(i) with xi = 0. However, we relax the assumption
T ≤ n/2 to T ≤ n.

Fix some 1 ≤ T ≤ n. Now, for any fixed matrix A ∈ Rk×n and fixed 1 ≤ i ≤ n, consider the linear
program minxi : Ax = Av(i), x ≥ 0. The optimal objective being 0 is equivalent to there existing x such that
A(x − v(i)) = 0, x ≥ 0, and xi = 0. Now, let B be an n × (n − k) matrix such that the kernel of A equals the
image of B. Then, this is equivalent to saying there exists y ∈ Rn−k such that By can be written as x− v(i), or
equivalently, (By)i = −1 and (By)j ≥ − 1

T . This is equivalent to there being y ∈ Rn−k such that (By)i ≤ −1 and
(By)j ≥ − 1

T for all j 6= i, since if there existed y such that (By)i < −1 and (By)j ≥ − 1
T , we could scale y by a

factor less than 1 so that (By)i = −1, and we would still have (By)j ≥ − 1
T . Finally, if we let B−i be the matrix

where the ith row is negated, these conditions are equivalent to (B−iy)i ≥ 1 and (B−iy)j ≥ − 1
T .

To summarize, we define w(i) as the vector with ith coordinate 1 and jth coordinate − 1
T for all j 6= i. Then,

minxi : Ax = Av(i), x ≥ 0 having objective 0 is equivalent to min 0 · y : B−iy ≥ w(i) having objective 0 (as
opposed to ∞). The dual linear program of this is maxw(i) · z : (B−i)

T z = 0, z ≥ 0. Therefore, if there does
not exist x such that Ax = Av(i), x ≥ 0, and xi = 0, then there exists z(i) ≥ 0 such that (B−i)

T z(i) = 0 and
w(i) · z(i) > 0. Then, if we let m(i) be the vector which is the same as z(i) but with the ith entry negated, then

m
(i)
i ≤ 0, m

(i)
j ≥ 0 for all j 6= i, −m(i)

i > 1
T ·
∑
j 6=im

(i)
j , and perhaps most importantly, BTm(i) = 0. We can

thus scale m(i) so that m
(i)
i = −1, but then

∑
j |m

(i)
j | ≤ 1 + T . Then, if we let M be a matrix with ith row m(i),

we have that BTM = 0 so M has rank at most k = rk(A), but by Lemma 2.2, the rank of M is Ω(n/T ). Thus,
k = Ω(n/T ), or else some v(i) will have its ith coordinate estimated as 0.

We now prove the full version of the theorem, where we show there is a set S of size n/2. Suppose the
contrary, and suppose the maximal such set S has size less than n/2. In this case, the set Sc = [n]\S has size at
least n/2, and for every i ∈ Sc and all x ∈ Rn≥0 with xi = 0, Ax 6= Av(i). Now, let AS ∈ R|S|×n be the matrix

corresponding to the columns of A in S, and let ASc ⊂ R|Sc|×n be the matrix corresponding to the columns of

A in Sc. In addition, for any i ∈ Sc, we define v
(i)
Sc to be the |Sc|-dimensional vector, indexed by entries in Sc,
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where the entry corresponding to i is a 1 and all other entries are 1/T . Now, since Sc ≥ n/2, we can apply the
weaker version of the theorem so say that there exists i ∈ Sc and x′ ∈ RSc , indexed by elements in Sc, such that

AScx
′ = AScv

(i)
Sc , x

′ only has nonnegative entries, and x′i = 0. We can apply the theorem since T ≤ n/2 ≤ |Sc|,
and since k ≤ c/2 · n/T implies k ≤ c · |Sc|/T (we may replace c with c/2). Therefore, by adding back the
remaining entries of v(i) corresponding to entries of S (which are all 1/T ), and making x ∈ Rn such that xi = 1/T
for i ∈ S and xi = x′i for i ∈ Sc, we have that

Ax = AScx
′ +

1

T

∑
i∈S

Ai = AScv
(i)
Sc +

1

T

∑
i∈S

Ai = Av(i).

This contradicts the fact that S is maximal, since we can add i ∈ Sc to it. This proves the full version of the
theorem.

Theorem 5.1 allows us to prove our desired sketching lower bound, which we now state and prove.

Corollary 5.1. A sketching algorithm that returns x̂ such that x̂i ≤ xi deterministically but x̂i ≥ xi − ε · ||x||p
for all i ∈ U holds with probability at least 1/2 must use at least Ω(min(n, ε−1 · n1−1/p)) rows.

Proof. Suppose A is a sketch matrix, let T = max(1, 2ε · n1/p), and suppose the stream has final vector
v(i) = ( 1

T , · · · ,
1
T , 1,

1
T , · · · ,

1
T ) for a uniformly randomly chosen i. The sketch is Av(i), and with probability

at least 1/2 for any fixed A (if i ∈ S for S as defined in Theorem 5.1), the output v̂ must satisfy v̂i = 0
if k ≤ c · n/T , since Av = Ax for some x with xi = 0 and we deterministically cannot overestimate. Also,
note that ||v(i)||p ≤ 1 + n1/p · 1

T ≤ 1 + ε−1/2 < ε−1, so ε · ||v(i)||p < 1. So, for any i ∈ S, if the stream

ends with v(i), we do not satisfy the point query lower bound, and therefore x̂i < xi + ε · ||x||p, unless we use
Ω(n/T ) = Ω(max(n, ε−1 ·n1−1/p)) rows. This assumes that A is a fixed sketch matrix, but even if A is randomized,
the claim still holds because i is chosen randomly, so we still have i ∈ S with at least 1/2 probability where S is
a set of size at least n/2 that may depend on A.

5.2 Near-optimal sketch that does not overestimate In this section we provide a sketching method of
dimension almost matching the lower bound in Corollary 5.1, up to a factor of log n · log ε−1. Specifically, we
show the following theorem.

Theorem 5.2. Let 1 ≤ p <∞. Then, there exists a randomized sketch of dimension O(p·ε−1 log ε−1·n1−1/p log n)
on any nonnegative vector x ∈ Rn≥0 that never overestimates any xi, but with probability at least 9/10 does not
underestimate any xi by more than ε · ‖x‖p.

One important tool we will use in establishing this theorem is the following theorem on deterministic point
query.

Theorem 5.3. [NNW14] There exists a deterministic sketching algorithm which creates a sketch of length
O(ε−2 log n) that, for any x ∈ Rn, can produce a vector x̂ such that ‖x− x̂‖∞ ≤ ε · ‖x−b1/ε2c‖1, where x−b1/ε2c is
the vector with the b1/ε2c largest entries (in absolute value) removed.

While this result may not seem sufficient to get a nearly linear dependence in the sketch length of ε−1 (in
fact, the ε−2 dependence is known to be necessary), we in fact avoid this issue by only applying theorem 5.3 when
ε is a constant. Indeed, as a direct corollary, we have the following result.

Corollary 5.2. There exists a deterministic sketching algorithm which creates a sketch of length O(log n) that,
for any x ∈ Rn≥0, creates a vector x̂ such that for all i ∈ [n], xi − 2

9 · (‖x‖1 − xi) ≤ x̂i ≤ xi.

Proof. Note that ‖x−100‖1 ≤ ‖x‖1 − xi for any i. Thus, by Theorem 5.3, there exists a deterministic O(log n)-
length sketch that can find a vector x̃ such that

1.1xi − 0.1‖x‖1 = xi − 0.1(‖x‖1 − xi) ≤ x̃i ≤ xi + 0.1(‖x‖1 − xi) = 0.9xi + 0.1‖x‖1.
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By increasing the length of the sketch by 1, we can also keep track of ‖x‖1 =
∑n
i=1 xi, since the coordinates of x

are nonnegative. Therefore, by letting x̂i = 10
9 · (x̃i − 0.1‖x‖1) , we have that for all i ∈ [n],

(5.5)
10

9
(1.1xi − 0.1‖x‖1 − 0.1‖x‖1) ≤ x̂i ≤

10

9
· (0.9xi + 0.1‖x‖1 − 0.1‖x‖1) .

However, we can lower bound the left hand side of Equation (5.5) by xi − 2
9 (‖x‖1 − xi), and simplify the right

hand side of Equation (5.5) as xi. Overall, we have that xi − 2
9 · (‖x‖1 − xi) ≤ x̂i ≤ xi, as desired.

We are now ready to prove Theorem 5.2. Our sketching algorithm works as a combination of the deterministic
sketch based on Corollary 5.2 along with hashing-based ideas similar to Count-Min.

Proof. [Proof of Theorem 5.2] First, we hash U = [n] uniformly into k = 4ε−1 · n1−1/p buckets B1, B2, . . . , Bk.
For the set of indices mapped to some bucket Bj , we use Corollary 5.2 to estimate xi for each i ∈ Bj . Indeed, we
obtain an estimate x̂i for each i ∈ [n] such that for all i, if b(i) is index of the bucket that i is mapped to, then
deterministically,

xi −
2

9
·
∑
i′ 6=i

b(i)=b(i′)

xi′ ≤ x̂i ≤ xi.

In addition, we know that for any fixed i, the expectation of the sum of xi′ over b(i) = b(i′), i′ 6= i is at most
1
k ·‖x‖1 ≤

ε
4 ·‖x‖p, since each xi′ is hashed to the same bucket as xi with 1/k probability and ‖x‖1 ≤ ‖x‖p ·n1−1/p.

So, for any fixed i, with probability at least 3/4, xi − 2
9 · ε · ‖x‖p ≤ x̂i, and deterministically, x̂i ≤ xi.

Our final estimate will be to run t = O(p · log ε−1) independent copies of this algorithm. If x̂
(`)
i represents

the estimate by the `th copy of this algorithm, our final estimate for each xi will be x̄i = max(0,max1≤`≤t x̂
(`)
i ).

Note that x̄i is never an overestimate, and for any i such that xi ≤ ε · ‖x‖p, x̄i ≥ 0, so with probability 1, it
does not underestimate by more than ε · ‖x‖p. Finally, if we define S ⊂ [n] to be the set of indices i such that
x̂i ≥ ε · ‖x‖p, it is immediate that |S| ≤ ε−p. For each i ∈ S, we know that xi− 2

9 ·ε · ‖x‖p ≤ x̄i with probability at
least 1− (3/4)t ≤ 1− εp/10, which means by a union bound over i ∈ S, we have that x̄i does not underestimate
by more than ε · ‖x‖p for all i ∈ S with probability at least 9/10.

The length of the sketch is O(k · t · log n) = O(p · ε−1 log ε−1 · n1−1/p log n), since we hash t times into k
buckets, and use a sketch of length O(log n) on each one.

Remark 5.1. We note that this procedure is indeed a sketching algorithm for the same reason that Count-Min
sketch is, and since the composition of two linear sketches is a linear sketch.
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6 Appendix

Proof. (of Lemma 2.1): Note that if R is symmetric, this is trivial since tr(R) =
∑
λi(R) and ||R||2F =

∑
λ2
i (R).

Now, for an arbitrary R, let S = (R + RT )/2. Then, rk(S) ≥ tr(S)2/||S||2F . However, it is clear that rk(S) ≤
2 · rk(R), tr(S) = tr(R), and ||S||2F ≤ ||R||2F . Therefore, 2 · rk(R) ≥ rk(S) ≥ tr(S)2/||S||2F ≥ tr(R)2/||R||2F .

Proof. (of Lemma 2.2): First, we pick the following set of elements of M . Let i1, j1 be such that |Mi1,j1 | is
maximized (if there is a tie, choose any maximal i1, j1). Then, for all 2 ≤ k ≤ n, in that order, we choose
ik ∈ [n]\{i1, . . . , ik−1} and jk ∈ [n]\{j1, . . . , jk−1} that maximizes |Mikjk |. This creates two permutations
i1, i2, . . . , in and j1, j2, . . . , jn of [n].

Now, let r be some power of 2 between 1 and T and consider the interval T ⊂ [n] such that t ∈ T if
|Mit,jt | ∈ [r, 2r]. Let cr be the size of this interval. Now, consider the matrix restricted to rows it for t ∈ T and
columns jt for t ∈ T . Then, all of the diagonal terms (where Mitjt are the new diagonals) are between r and
2r in magnitude, and all of the terms in the matrix are also at most 2r (or else we would have found a different
maximum). Call this restricted matrix R, and let R′ be the matrix created when each row of R is either preserved
or negated so that the diagonal entries are all positive. Then, the diagonal entries are between r and 2r, which
means that tr(R′) = Θ(r · cr). Also, since all entries of R′ are at most 2r in magnitude and the sum of the
absolute values of the entries of each row is at most T, we have that ||R′||2F = O(r · T · cr). Therefore, by Lemma
2.1, rk(R′) & (r · cr)2/(r · T · cr) = rcr/T, and it is clear that rk(R) = rk(R′).

Now observe that there exists some r = 2i, 0 ≤ i ≤ blog2 T c, such that rcr ≥ 0.25n. If not, then for all r = 2i

with 0 ≤ i ≤ blog2 T c, we have that c2i < 0.25n/2i. Adding these together we get that
∑blog2 Tc
r=2i:i=0 cr < 0.5n.

However, we have
∑blog2 Tc
r=2i:i=0 cr ≥ 0.5n. This is because (by the assumption) all of the diagonal entries of M are at

least 1, which means that after any n′ < 0.5n steps of picking (i, j), there must be some diagonal entry left in the

submatrix. Therefore, the number of k such that |Mik,jk | ≥ 1 is at least 0.5, so
∑blog2 Tc
r=2i:i=0 cr ≥ 0.5n. Therefore,

there is some r such that rcr/T ≥ 0.25 · n/T , so there is some submatrix R of M such that rk(R) = Ω(n/T ).
Since rk(M) ≥ rk(R), this concludes the proof.
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