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Abstract

In the numerical linear algebra community, it was suggested that to obtain nearly optimal bounds for
various problems such as rank computation, finding a maximal linearly independent subset of columns (a
basis), regression, or low-rank approximation, a natural way would be to resolve the main open question
of Nelson and Nguyen (FOCS, 2013). This question is regarding the logarithmic factors in the sketching
dimension of existing oblivious subspace embeddings that achieve constant-factor approximation. We show
how to bypass this question using a refined sketching technique, and obtain optimal or nearly optimal bounds
for these problems. A key technique we use is an explicit mapping of Indyk based on uncertainty principles and
extractors, which after first applying known oblivious subspace embeddings, allows us to quickly spread out the
mass of the vector so that sampling is now effective. We thereby avoid a logarithmic factor in the sketching
dimension that is standard in bounds proven using the matrix Chernoff inequality. For the fundamental
problems of rank computation and finding a basis, our algorithms improve Cheung, Kwok, and Lau (JACM,
2013), and are optimal to within a constant factor and a poly(log log(n))-factor, respectively. Further, for
constant-factor regression and low-rank approximation we give the first optimal algorithms, for the current
matrix multiplication exponent.

1 Introduction

We obtain several new results for fundamental problems in numerical linear algebra, in many cases removing,
in particular, the last log factor to obtain a running time that is truly linear in the input sparsity, and with
lower-order terms that are close to optimal. We note that the bottleneck in improving prior work, including such
removal of last logarithmic factors, involved well-known conjectures to construct Sparse Johnson-Lindenstrauss
transforms (see Conjecture 14 in [29]).

To sidestep these conjectures we introduce a new simple matrix sketching technique which allows for
multiplication by a random sparse matrix whose randomly chosen nonzero entries are random signs. The key idea
is to compose this matrix with an appropriate Flattening transform based on explicit embeddings of `2 into `1,
together with OSNAP embeddings. Using this, we obtain the first oblivious subspace embedding for k-dimensional
subspaces that has o(k log(k)) rows and that can be applied to a matrix A in time asymptotically less than both
nnz(A) log k and kω log k, where nnz(A) is the number of nonzero entries in the matrix A, and ω ≈ 2.37 is the
exponent of fast matrix multiplication [1]. This scheme removes a log factor that has thus far remained both a
nuisance and an impediment to optimal algorithms. Our main embedding result is as follows:

Theorem 1.1. (Fast Subspace Embedding, informal Theorem 6.3) Given an n × k matrix, there is a
distribution S over matrices with k poly(log log k) rows such that, for S ∼ S, with probability ≥ 99/100, for
all vectors x ∈ Rk

‖Ax‖2 ≤ ‖SAx‖2 ≤ exp(poly(log log k))‖Ax‖2.

For S ∼ S, with probability ≥ 95/100, the matrix SA can be computed in time O(γ−1nnz(A) +k2+γ+o(1)) for any
constant γ > 0.
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Using our subspace embedding, together with additional ideas, we obtain nearly optimal (up to log log factors
in the sub-linear terms) running times for fundamental problems in classical linear algebra including computing
matrix rank, finding a set of linearly independent rows, and linear regression. Further, for regression and low-rank
approximation, we obtain the first optimal algorithms for the current matrix multiplication exponent. We begin
with least-squares regression:

Theorem 1.2. (Least-Squares Regression, informal Theorem 7.3) Given a full rank n × k matrix A,
k ≤ n, and vector b, there exists an algorithm that computes x̂ such that ‖Ax̂ − b‖2 ≤ (1 + ε) minx ‖Ax − b‖2 in
time

O

(
nnz(A)

γ
+ kω poly(log log(k)) +

1

poly(ε)
k2+o(1)nγ+o(1)

)
for any constant γ > 0 small enough.

We note that for constant ε and k = nΩ(1), the running time obtained is within a poly(log log(n)) factor of
optimal, for the current matrix multiplication constant. Further, it improves on prior work [4, 10, 14, 15, 27, 29]
describing algorithms with an additional log(n) factor multiplying either the leading nnz(A) term, or that is
nnz(A) time but has a kω log k additive term or worse. We note that our additive term is only kω poly(log log k),
for the current matrix multiplication exponent ω, when k = nΩ(1). Importantly, up to a poly(log log k) factor,
our bound is best possible, and thus we remove the last logarithmic factor even in the additive term. As we
explain more below, the issue with previous work is that to obtain a sketching dimension of O(k), for constant
ε, one needs either nnz(A)k time to directly perform a multiplication with a dense Sub-Gaussian matrix, or at
least kω log k time to compose a dense Sub-Gaussian sketch with a sparse sketch. We avoid this using our new
subspace embedding, given by Theorem 6.3.

We note that simply sketching on the left with a CountSketch matrix and solving the sketched problem attains
an optimal O(nnz(A)) running time for k = O(nc) for a sufficiently small constant c > 0, and so our theorems
are most interesting when k = Ω(nc).

Next, we show a similar result holds for low-rank approximation (LRA):

Theorem 1.3. (LRA in Current Matrix Multiplication Time, informal Theorem 7.8) Given ε > 0,
an n× d matrix A and k ≤ min(n, d), k = max(n, d)Ω(1), there exists an algorithm that runs in

O

(
nnz(A) +

(n+ d)kω−1

ε
+

(n+ d)k1.01

ε
+ poly(ε−1k)

)
time and outputs two matrices V ∈ Rn×k and X̃ ∈ Rk×d, with V TV = Ik, such that

‖A− V · X̃‖F ≤ (1 + ε)‖A− [A]k‖F.

For the current matrix multiplication exponent, the running time is O(nnz(A) + (n+ d)kω−1) for constant ε. In
contrast, existing low rank approximation algorithms [4, 10, 13, 14, 15, 16, 27, 29] take time at least nnz(A) log n
or dkω−1 log k or worse. Thus, as with least squares regression, we remove the last logarithmic factor in both the
nnz(A) term and the leading additive term.

We also give constructions of 1 + ε subspace embeddings with O(k log(k)/ε2) rows that have better running
times than earlier subspace embeddings with O(k log(k)/ε2) rows, such as approximate leverage score sampling
and OSNAP embeddings.

Theorem 1.4. (Subspace Embeddings, informal Theorem 7.2) Given a matrix A ∈ Rn×k, there is a
non-oblivious subspace embedding S with O(k log(k)/ε2) rows that can be applied to the matrix A in time
O(nnz(A) + kω poly(log log k) + poly(ε−1)k2.1+o(1)) for k = nΩ(1).

Finally, we obtain faster algorithms for computing the rank of a matrix and finding a full-rank set of rows.

Theorem 1.5. (Matrix Rank and Finding a Basis, informal Theorem 7.6 and 7.7) Given an n × d
matrix A, there exists a randomized algorithm to compute k = rank(A) in O(nnz(A) + kω) time, where ω
is the matrix multiplication constant. Further, the algorithm can find a set of k linearly independent rows in
O(nnz(A) + kω log log(n)) time.
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We note that this result improves prior work by Cheung et al. [8], in the case of matrices with real numbers,
who obtain an O(nnz(A) log(k) + kω) time algorithm to compute matrix rank and an O(log(n)(nnz(A) + kω))
time algorithm to find a full-rank set of rows.

The following table lists our running times for k ≤ n and k = nΩ(1), assuming ω > 2, and putting some terms
to constant values (such as 2.1 instead of 2 + γ). See theorem statements for exact running times.

Application Running time (up to constant factors)

ε Subspace Embeddings nnz(A) + ε−3k2.1+o(1) + kω poly(log log(k))
ε approximate linear regression nnz(A) + ε−3k2.1+o(1) + kω poly(log log(k))
Linearly Independent Rows nnz(A) + kω poly(log log(k)) + k2+o(1)

0.01 Low-Rank Approximation nnz(A) + (n+ d)kω−1

2 Related Work

Matrix Sketching. The sketch and solve paradigm [9, 38] was designed to reduce the dimensionality of a
problem, while maintaining enough structure such that a solution to the smaller problem remains an approximate
solution to the original one. This approach has been pivotal in speeding up basic linear algebra primitives such
as least-squares regression [9, 31, 33], `p regression [12, 37], low-rank approximation [16, 26, 29], linear and semi-
definite programming [17, 23, 24], solving non-convex optimization problems such as `p low-rank approximation
[3, 34, 35], and training neural networks [2, 7]. For a comprehensive overview we refer the reader to the
aforementioned papers and citations therein. Several applications use rank computation, finding a full rank subset
of rows/columns, leverage score sampling, and computing subspace embeddings, as key algorithmic primitives. In
addition to being used as a black box, we believe our techniques will be useful in sharpening bounds for several
such applications.

3 Preliminaries

Computational Model Throughout the paper, we work with matrices having real numbers and assume
that all elementary arithmetic operations on real numbers can be computed in O(1) time.

Let A+ denote the Moore-Penrose pseudo-inverse of matrix A ∈ Rn×d, equal to V Σ−1U> when A has “thin”
Singular Value Decomposition (SVD) A = UΣV >, so that Σ is a square invertible matrix. We note that AA+

is the projection matrix onto the column span of the matrix A. Let ‖A‖2 denote the spectral norm (`2 → `2
operator norm) of A and ‖A‖F denote the Frobenius norm (

∑
i,j A

2
ij)

1/2. Let κ(A) = ‖A+‖2‖A‖2 denote the
condition number of A. We write a± b to denote the set {c | |c− a| ≤ |b|}, and c = a± b to denote the condition
that c is in the set a± b. Let [m] = {1 . . .m} for an integer m ≥ 1. For i ∈ [n], Ai∗ denotes the i-th row of A and
for j ∈ [d], A∗j denotes the j-th column of A. We use bold symbols such as A, S to emphasize that these objects
are explicitly sampled from an appropriate distribution.

As mentioned, nnz(A) is the number of nonzero entries of A, and we assume nnz(A) ≥ n, i.e., there are no
rows composed entirely of zeros. We let [A]k denote the best rank-k approximation to A in Frobenius norm and
operator norm. Further, for an n× d matrix A and S ⊆ [n], we use the notation AS to denote the restriction of
the rows of A to the subset indexed by S, and for S ⊆ [d] we use the notation AS to denote the restriction of the
columns of A to the subset indexed by S.

Let nω be the time needed to multiply two n × n matrices. See [18] and references therein for ways of
computing other linear algebra primitives such as QR decomposition, SVD, and a matrix inverse, in O(nω) time.
Given an n× d matrix A, n ≥ d, we can orthogonalize its columns in time O(ndω−1) as follows: first compute the
product ATA in time ndω−1, compute SVD of ATA in time O(dω) to obtain V,Σ such that ATA = V Σ2V T, and
then compute AV Σ−1 in time O(ndω−1) to obtain an orthonormal basis.

For a matrix A, let U be a matrix with orthonormal columns and colspan(A) = colspan(U). The leverage
score of the i-th row of A, `2i , is defined as ‖Ui∗‖22.

Lemma 3.1. (Known constructions of sketching matrices) For a given matrix A ∈ Rn×d with k =
rank(A), these constructions give ε-embeddings with failure probability 1 − c, for given constant c. Here the
sketching matrix S is an ε-embedding if with constant probability, ‖SAx‖2 = (1± ε)‖Ax‖2 simultaneously for all
x ∈ Rd.

• There is a sketching matrix T ∈ RmT×n with sketching dimension mT = O(ε−2k1+µ log k) such that TA can
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be computed in O(µ−1nnz(A)/ε) time (see, e.g., [11]), with 1/µε non-zero entries per column, in this form
called here an OSNAP, and in earlier forms with 1 non-zero per column called a CountSketch [10] matrix, or
sparse embedding. The sparsest version T̂ ∈ RmT̂×n has mT̂ = O(ε−2k2), with T̂A computable in O(nnz(A))

time; T̂ has one nonzero entry per column. A less sparse version T̄ of OSNAP has mT = O(ε−2k log(nd)),
O(log(nd)/ε) entries per column, and failure probability 1/ poly(nd).

• There is a sketching matrix H ∈ RmH×n with mH = O(ε−2k log(nk)) such that HA can be computed in
O(nd log n) time (see e.g. [5]). This is called an SRHT (Sampled Randomized Hadamard Transform) matrix.
The matrix H = ĤD, where the rows of Ĥ are a random subset of the rows of a Hadamard matrix, and D
is a diagonal matrix whose diagonal entries are ±1.

• If matrix L ∈ RmL×n is chosen using leverage score sampling (see Theorem 7.1), then there is mL =
O(ε−2k log k) so that L is an ε-embedding [30, 32].

• If matrix G ∈ RmG×n with mG = O(ε−2k) is an appropriately scaled matrix with i.i.d normal or Sub-
Gaussian random variables, then G is an ε embedding.

These embeddings can be composed, so that for example S = HSTS is a “two-stage” ε-embedding for A,
where TS is an OSNAP matrix, and HS is an SRHT, so that HSTSA can be computed in O(ε−1µnnz(A) +
ε−2nk1+1/µ log2(k/ε)) time, and the sketching dimension is mHS

= O(ε−2k log(k/ε)). The space needed is
O(n+mHS

d).

We also require the following notions of projection cost preserving sketches and affine embeddings.

Definition 3.1. (Projection Cost Preserving Sketch[13]) Given a matrix A ∈ Rn×d, ε > 0 and an
integer k ∈ [d], a sketch SA ∈ Rs×d is a projection-cost preserving sketch of A if for all rank-k projection
matrices P ,

(1− ε)‖A(I − P )‖2F ≤ ‖SA(I − P )‖2F ≤ (1 + ε)‖A(I − P )‖2F

We note that sometimes Projection Cost Preserving Sketches allow an additive scalar in the definition, see, e.g.,
[28]. We do not need such an additive term here.

Definition 3.2. (Affine Embeddings[10]) Given matrices A,B, let X∗ = argminX‖AX − B‖F and B̃ =
AX∗ −B. A matrix S is an affine embedding for (A,B) if for all matrices X,

‖S(AX −B)‖2F − ‖SB̃‖2F = (1± ε)‖AX −B‖2F − ‖B̃‖2F.

Many subspace embedding distributions for the column space of A satisfy the affine embedding property.
Importantly, the number of rows in S depends only on the rank of the matrix A and has no dependence on
number of columns in the matrix B. See [10] for properties required of a distribution to be an affine embedding.

Throughout the paper, we use the following fact numerous times: for any matrices A,B, and C, we have
‖A−BC‖2F ≥ ‖A− AC+C‖2F. This is just the Pythagorean theorem, which says that the best approximation of
A inside the rowspace of C is obtained by projecting each of the rows of A onto the rowspace of matrix C.

4 Technical Overview

The only known oblivious subspace embedding for a k dimensional subspace with o(k log(k)) rows is a dense
matrix of O(k) rows with independent Sub-Gaussian random variables. This embedding can be applied to a
matrix A in time Ω(nnz(A) · k). All other subspace embedding constructions that are faster to apply have at
least Ω(k log(k)) rows. Obtaining a subspace embedding with few rows is important to speed up the further
downstream tasks such as finding a maximal set of linearly independent rows of a matrix, computing approximate
leverage scores, low rank approximation, etc.

We analyze the properties required of a k-dimensional subspace V ⊆ Rd, d = Õ(k), such that a sparse random
sign matrix with o(k log(k)) rows can be a subspace embedding for V . The advantage of the sparsity is that the
embedding can be applied to a vector quickly. Suppose every unit vector in the subspace V has at least a constant
c fraction of coordinates that have a magnitude of at least Ω̃(1/

√
k). Let x be an arbitrary unit vector in the

subspace V . Now consider a random matrix G where each entry is either 0 with probability 1 − p and ±1 with
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probability p/2 each. For p = Θ(1/d), as at least a constant c fraction of the coordinates of the vector x have
a magnitude Ω̃(1/

√
k), each row of the matrix G has Ω(1) probability of hitting one of the large coordinates of

the vector x. Conditioned on a row Gi∗ hitting one of the large coordinates of x, we have |Gi∗x| ≥ Ω̃(1/
√
k)

with probability ≥ 1/2 by using the random signs. Thus, with at least a constant probability, for a row Gi∗,
|Gi∗x|2 ≥ Ω̃(1/k). If the matrix G has Ω(k) rows, using the Chernoff bound, we have that with very high
probability, ‖Gx‖22 ≥ Ω̃(1), which suffices to union bound over a suitable net of unit vectors in a k-dimensional
subspace. On the other hand, showing that ‖G‖2 is small and that it does not increase the norm of any unit
vector by a lot is much easier. For the probability p that we consider, each row and column of the matrix G only
has O(1) nonzero entries with high probability. As all the nonzero entries are at either ±1, we can bound the
operator norm ‖G‖2 by O(1). This implies that for any unit vector x, ‖Gx‖22 ≤ O(1).

The above argument shows that if a subspace has the property that every unit vector in the subspace has a
large number of large coordinates, then a random sparse sign matrix is a subspace embedding with small distortion
for that subspace. We call subspaces having this property flat. But of course, the column space of the matrix
to which we want to apply the embedding may not have this property. Let V1 ⊆ Rn be the column space of the
given matrix A. If we can find a linear map F that maps vectors in the subspace V1 to a flat subspace V2 and if F
preserves the Euclidean norms of the vectors, then we have that ‖GFx‖2 ≈ ‖Fx‖2 ≈ ‖x‖2 for all vectors x ∈ V1.
As we show later, by paying some cost in running time, we can assume that n = O(k log(k)) by first applying a
series of suitable OSNAP embeddings. To obtain such a mapping F , we use the `2 → `1 embedding F of [22]. We
show that recursively applying the linear map F gives a linear map F : n → n1+o(1) with the property that for
all unit vectors x, ‖Fx‖2 ≈ 1 and ‖Fx‖1 ≥ Ω̃(

√
n). This property immediately shows that the vector Fx must

have a large number of large coordinates and therefore that the subspace range(F) is flat. We only obtain that a
1/no(1) fraction of the coordinates are large but it is sufficient for our purposes. We also show that the sequence
of OSNAP, the mapping of [22] which we call Indyk, and the sparse random sign embeddings can be applied to
a matrix A ∈ Rn×k in time O(γ−1nnz(A) + k2+γ+o(1)) for any constant γ > 0.

1 + ε Subspace Embeddings. We use our exp(poly(log log k)) distortion subspace embedding construction
to obtain 1 + ε non-oblivious subspace embeddings using approximate leverage scores obtained by using a
preconditioner. Let A ∈ Rn×k. Earlier algorithms to compute approximate leverage scores can be described
as follows : (i) Compute SA where S is a subspace embedding for the column space of A, (ii) Compute an
orthonormal matrix Q and matrix R−1 such that SA = QR−1, and (iii) Compute the approximate leverage
scores ˜̀2

i = ‖AiR‖22.
Thus, to make computing approximate leverage scores faster, we need a subspace embedding S that can

be quickly applied to matrix A to make step (i) faster while also having a fewer number of rows to make the
computation of the QR-decomposition in step (ii) faster. As discussed, our subspace embedding construction S
has both of these desired properties. In step (iii), instead of computing ‖Ai∗R‖22 exactly, a Gaussian matrix G
with O(log(n)) columns is used so that for all the rows i ∈ [n], ‖Ai∗RG‖22 ≈ ‖Ai∗R‖22, which is a standard idea
[20]. However, computing the matrix ARG takes Ω(nnz(A) log(n)) time. We consider using a Gaussian matrix
with only O(1/γ) columns for an absolute constant γ > 0, which is also a standard idea in this area. Consider
an arbitrary vector v and let g be a vector of i.i.d. normal random variables. Then we have the probability that
|〈v, g〉| ≤ ‖v‖2/nγ is at most 1/nγ . If g1, . . . , gt are independent Gaussian vectors for t = O(1/γ), then at least one
of the values |〈v, gi〉| is at least ‖v‖2/nγ with probability ≥ 1− 1/n2. If G is a matrix with gj as its columns, we
therefore have that ‖Ai∗RG‖22 ≥ ‖Ai∗R‖22/n2γ for all i. We also argue that ‖Ai∗RG‖22 = O(‖Ai∗R‖22 log(n)) for all
i ∈ [n]. Now the matrix ARG and the approximations ‖Ai∗RG‖22 can be computed in time O(γ−1(nnz(A)+k2)).
Therefore we can obtain over-estimates to the leverage scores. Using over-estimates to the leverage score sampling
probabilities, we first sample rows and then compute accurate leverage scores only for the rows that are sampled.
Then we employ a rejection step, in which we reject rows randomly based on the probabilities computed using
accurate leverage scores, and finally we show that we obtain a sample from the leverage score sampling distribution.
As we compute accurate leverage scores only for the rows that are sampled in the first stage, we do not incur the
O(nnz(A) log(n)) factor. We then compose our leverage score embedding with an OSNAP embedding to obtain
a 1 + ε embedding with O(k log(k)/ε2) rows, which is faster than previous constructions.

Computing Linearly Independent Rows. We give an algorithm to compute a maximal set of linearly
independent rows of a matrix A ∈ Rn×d of rank k in time O(nnz(A) + kω poly(log log(n))). Using the rank-
preserving sketches of [8], we can assume without loss of generality that d = ck for a constant c. The
crucial idea here is that a leverage score sample of the matrix A, with high probability, must contain a set
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of k linearly independent rows. Therefore, directly applying the above leverage score sampling algorithm
for constant ε gives, in time O(γ−1nnz(A) + nγk2+o(1) + kω poly(log log(n))), for any constant γ, a set of
O(k exp(poly(log log k))) rows of the matrix A that must contain a set of k linearly independent rows. To
obtain a running time that does not depend on γ, we show that instead of running leverage score sampling on
the matrix A, we can apply reductions as in [8] to reduce the problem to computing linearly independent rows
of a sub-matrix A′ with nnz(A′) ≤ nnz(A)/ poly(log(n)) and with n/poly(log(n)) rows. This reduction can
be performed in time O(nnz(A) + kω log log(n)). After this reduction, we perform leverage score sampling for
the matrix A′ as described above with constant ε and γ = O(1/ log(n)) to obtain a matrix Slev that selects
and scales O(k exp(poly(log log k))) rows randomly according to the leverage score distribution such that for all
x, ‖SlevA

′x‖2 = (1 ± 1/2)‖A′x‖2. In particular, the guarantee implies that rowspace(SlevA
′) = rowspace(A′).

Therefore there are k linearly independent rows among the O(k exp(poly(log log k))) rows sampled by Slev. Now
we can again apply the recursive row reduction procedure mentioned above to the matrix SlevA

′, to finally
obtain, in time O(k2+o(1) + kω poly(log log k)), a set of O(k) rows that, with high probability, contain a set
of k linearly independent rows. These rows can now be identified in time O(kω). Thus, we obtain that in
time O(nnz(A) + kω poly(log log n) + k2+o(1)), we can compute a set of k linearly independent rows of a rank k
matrix A. As discussed above, the subspace embedding having k poly(log log k) rows turns out to be crucial to
obtain a running time that depends on kω poly(log log n) instead of the kω log(n) dependence of earlier algorithms.

Low Rank Approximation. Finally, we give an algorithm to compute a (1 + ε)-approximate rank-k
approximation to an arbitrary matrix A. We note that we do not need to utilize our subspace embedding
construction in this algorithm, though we include it as it is also a fundamental problem in linear algebra for which
we remove the last logarithmic factor. We compute a low rank approximation in two stages: (i) we first find a
rank k orthonormal matrix V whose columns span a 1 + ε approximation. (ii) we then find a right factor X̃ such
that V · X̃ is a (1 + ε) rank-k approximation. We obtain the left factor V by using projection-cost preserving
sketches and subspace embeddings along with the CUR decomposition algorithm from [6], to first obtain an
O(k)-dimensional subspace that spans an O(1)-approximate rank-k low rank approximation. We then perform
the residual sampling algorithm of [19] to obtain a set of O(k/ε) columns of the matrix A, which along with the
O(k) dimensional subspace we already found, span a (1 + ε)-approximation. We then use affine embeddings to
compute a left factor V that spans a (1 + ε)-approximation.

After finding a left factor V , the matrix V TA is the optimal right factor but it takes Ω(nnz(A) · k) time to
compute this matrix. We then run the CUR decomposition algorithm of Boutsidis and Woodruff [6] using the
matrix V we found to obtain a right factor X̃ such that ‖V · X̃ −A‖F ≤ (1 + ε)‖A− [A]k‖F.

5 Flattening the vectors

In this section, we argue that there is a linear mapping F : Rn → Rn1+o(1)

such that for any unit vector x ∈ Rn,
the set

Large(Fx) := {i ∈ [n1+o(1)] | |(Fx)i| ≥
1√

n · epll(n)
}

has size |Large(Fx)| = Ω(n).
We show that an explicit `2 → `1 linear embedding construction of Indyk [22] can be used to obtain such a

mapping F . First we define (ε, l) extractors as follows.

Definition 5.1. ((ε, l) extractors) A bipartite graph G = (A,B,E), A = [a] and B = [b], with each left node
having degree d is an (ε, l) extractor if it has the following property. Let P be any distribution over the set A such
that for all i ∈ [a], PrP [i] ≤ 1/l. Consider the distribution over B generated by the following process:

1. Sample i ∈ A from distribution P

2. Sample t ∈ [d] uniformly at random and set j = ΓG(i)t. Here ΓG(i) is the ordered set of neighbors of i in
the graph G and ΓG(i)t is the t-th neighbor in the ordered set.

Let G(P) be the distribution of the element j sampled by the above process and let I be the uniform distribution
over the set B. The graph G is an (ε, l) extractor if

∑
j∈B |PrG(P)[j] − 1/b| ≤ ε. We stress that this property

must hold for every distribution P with PrP [i] ≤ 1/l for all i.
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See [22] and references therein for explicit constructions of extractors. Indyk uses the following extractor:
Fix a δ = Ω(1/

√
n) and let L = O(1/δ2) and s =

√
n. Let G be an (ε, l) extractor with A = [Ln], B = [b] for

b = n1/2−κ, κ > 0, l = (1− δ)2s/L, left degree d = (log a)O(1) = (logLn)O(1) and right degree ∆ = O(nLd/b).
In the following it will be helpful to have an abbreviation.

Definition 5.2. Let epll(n) denote the class of functions in exp(poly(log log(n))) as integer n→∞.

Theorem 5.1. (Theorem 1.1 of [22]) For any ζ, κ > 0, there is an explicit linear mapping F : Rn → Rm,

m = O(nLd) = n logO(1)(n)/ζO(1) and a partitioning of the coordinate set [m] into sets B1, . . . , Bb, for b = n1/2−κ,
each of size at most ∆ = n1/2+κepll(n)/ζO(1), such that for any x ∈ Rn, ‖x‖2 = 1,

(1−O(ζ))
√
Ldb ≤

b∑
j=1

‖(Fx)Bj
‖2 ≤

√
Ldb.

Without loss of generality, we can assume that all the partitions Bj have the same size ∆ by appending 0-valued
coordinates and so we have m = n · epll(n)/ζO(1).

We now prove the following lemma which essentially shows that an application of Indyk’s embedding to a
unit vector shrinks the Euclidean norm by a lot, while keeping the `1 norm Ω(1).

Lemma 5.1. Let n be an arbitrary integer and 0 < ζ, κ < c for a small enough constant c. There is an explicit
linear mapping F : Rn → Rm for m = n · epll(n)/ζO(1) and a partitioning of [m] into equal sized sets B1, . . . , Bb
where b = n1/2−κ and each set Bj satisfies |Bj | = ∆ = n1/2+κepll(n)/ζO(1), such that for any x ∈ Rn, we have

(1−O(ζ))‖x‖2 ≤
b∑
j=1

‖(Fx)Bj
‖2 ≤ ‖x‖2

and

1

b
(1−O(ζ))‖x‖22 ≤ ‖Fx‖22 =

b∑
j=1

‖(Fx)Bj‖22 ≤
1

b
‖x‖22.

Proof. In the proof of the above theorem, Indyk uses the (ε, l) construction specified above with δ = ζ and ε = ζ2.
Indyk also defines (Fx)Bj

:= (Dx)ΓG(j) for j ∈ [b], where D is a concatenation of certain L orthonormal matrices
and ΓG(j) ⊆ A is the set of neighbors of j ∈ B in the graph G. For any unit vector x, we have ‖Dx‖22 = L and as
the left degree of G is exactly equal to d, we have ‖Fx‖22 =

∑
j ‖(Fx)Bj

‖22 =
∑
j ‖(Dx)ΓG(j)‖22 = d‖Dx‖22 = Ld.

Let y = Dx and let S be the set of the s largest magnitude entries of y. Define z = y[a]−S where z is obtained
by zeroing out the coordinates of the set S. Indyk [22] showed that

b∑
j=1

∣∣∣∣ 1

ρ2d
‖zΓG(j)‖22 − 1/b

∣∣∣∣ ≤ ε
where ρ ≥

√
L(1 − δ). The inequality implies that

∑
j ‖zΓG(j)‖22 ≥ ρ2d(1 − ε) ≥ Ld(1 − δ)2(1 − ε). As

‖yΓG(j)‖2 ≥ ‖zΓG(j)‖2, we get
∑
j ‖yΓG(j)‖22 ≥ Ld(1 − δ)2(1 − ε) and plugging in δ = ζ and ε = ζ2, we obtain

Ld(1−O(ζ)) ≤
∑b
j=1 ‖(Fx)Bj

‖22 ≤ Ld. Hence, the matrix F/
√
Ldb satisfies that for any vector x,

1

b
(1−O(ζ))‖x‖22 ≤

b∑
j=1

‖( F√
Ldb

x)Bj
‖22 ≤

1

b
‖x‖22.

From the above theorem, we already have

(1−O(ζ))‖x‖2 ≤
b∑
j=1

‖( F√
Ldb

x)Bj‖2 ≤ ‖x‖2.

Therefore, scaling the matrix F gives the proof.
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We apply the above lemma recursively to each of the partitions Bj for Θ(log log(n)) levels to obtain the
following theorem.

Theorem 5.2. Given any n, there is an explicit map F : Rn → Rm with m = n · epll(n) such that for all unit
vectors x ∈ Rn, we have

‖Fx‖1 ≥
√
n

4

and
1

2
≤ ‖Fx‖22 ≤ 1.

Further, given any vector x, the vector Fx can be computed in n1+o(1) time.

Proof. Let N = Θ(log log(n)) and ζ = Θ(1/ log log(n)). Let B1, . . . , Bb1 be the partitions of the coordinates of
the range of F from the Lemma 5.1. We recursively apply the lemma for each of the partitions for N levels to
obtain F : Rn → Rm for m = n · epll(n). Define n0 = n and let ni be the number of entries in each of the i-th
level partitions. Also, let b0 = 1 and bi be the number of partitions an (i− 1)-th level partition is mapped into.
From Lemma 5.1, we have

bi = n
1/2−κ
i−1

and
ni = n

1/2+κ
i−1 epll(ni−1)/ζO(1).

The following lemma lower bounds the number of partitions in the N -th level.

Lemma 5.2. The total number of partitions in the N -th level is given by B = b0 · b1 · · · bN and

B ≥ n/2.

Proof. We have B = b1 · · · bN = (n0 · · ·nN−1)1/2−κ. As ni ≥ n(1/2+κ)i , we have that n0 · · ·nN−1 ≥ n
∑N−1

i=0 (1/2+κ)i .

Now,
∑N−1
i=0 (1/2 + κ)i = (1− (1/2 + κ)N )/(1/2− κ) which implies B ≥ n1−(1/2+κ)N . For N = Θ(log log(n)),

(1/2 + κ)N ≤ 1/poly(log(n)) and B ≥ n/2.

This lemma implies that the N -th level has the partitions B1, . . . ,BB of [m] with B ≥ n/2 and |Bj | = epll(n)
such that for any unit vector x,

1

2
‖x‖2 ≤ (1−O(ζ))N‖x‖2 ≤

B∑
j=1

‖(Fx)Bj‖2 ≤ ‖x‖2

and

1

2B
‖x‖22 ≤

(1−O(ζ))N

B
‖x‖22 ≤

B∑
j=1

‖(Fx)Bj
‖22 ≤

1

B
‖x‖22.

Finally, for a unit vector x,

1

2
=

1

2
‖x‖2 ≤

B∑
j=1

‖(Fx)Bj
‖2 ≤

B∑
j=1

‖(Fx)Bj
‖1 = ‖Fx‖1

and

1

2B
=

1

2B
‖x‖22 ≤ ‖Fx‖22 =

B∑
j=1

‖(Fx)Bj
‖22 ≤

1

B
‖x‖22 =

1

B
.

By scaling the map F by
√
B, we complete the proof.

We now have the following corollary.
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Corollary 5.1. Given any unit vector x, at least Θ(n) coordinates of the vector Fx ∈ Rm have an absolute
value of at least η = 1/(

√
n · epll(n)).

Proof. Let m′ be the number of coordinates of Fx with an absolute value of at least η. Let T ⊆ [m] be the set
of indices of those coordinates. Then

1

4

√
n ≤ ‖Fx‖1 =

∑
i/∈T

|(Fx)i|+
∑
i∈T
|(Fx)i|

≤ m√
n · epll(n)

+

√∑
i∈T

(Fx)2
i

√
|T |

≤ n · epll(n)√
n · epll(n)

+
√
m′.

Here we use the Cauchy-Schwarz inequality and the fact that ‖Fx‖22 ≤ 1. For appropriate η chosen based on m,
the above inequality implies that √

m′ ≥
√
n/8 =⇒ m′ ≥ n/64

which shows that an Ω(n) fraction of the coordinates of Fx have an absolute value of at least η.

Thus, applying Lemma 5.1 for N = Θ(log log(n)) levels gives an n dimensional subspace of Rm for m = n · epll(n)
such that for every unit vector x, the vector Fx has a large number of large coordinates.

6 Fast Subspace Embeddings

Algorithm 1: FastEmbedding

Input: A ∈ Rn×k, γ > 0
Output: A subspace embedding SA with O(k · epll(k)) rows

1 S1 ← OSNAP(A, γ) with O(k1+γ+o(1)) rows
2 S2 ← OSNAP(S1A, O(1/ log(n))) with O(k log(k)) rows

3 F ← Indyk Embedding for RO(k log(k)) for Θ(log log(k)) levels with r = k · epll(k) rows
4 m← k · poly(log log k), p← epll(k)/r
5 G← m× r random matrix where each entry is independently 0 with probability 1− p, and ±1 with

probability p/2 each
6 SA← κ ·G · F · S2 · S1A where κ is an appropriate scaling factor
7 return SA

Let A be an arbitrary n × k matrix with nnz(A) nonzero entries. We design a random matrix S with
k · poly(log log(k)) rows such that with probability ≥ 9/10, for all vectors x,

‖x‖2 ≤ ‖SAx‖2 ≤ epll(k)‖x‖2.

The matrix SA can be computed in time nnz(A) + k2.1+o(1). The matrix S is constructed as a composition of
various oblivious subspace embeddings.

We first apply OSNAP S1 with µ = 0.1 to obtain an O(k1.1 log(k))× k matrix S1A in time O(nnz(A)). Now,
nnz(S1A) = O(k2.1 log(k)). Therefore, we can apply OSNAP S2 with µ = 1/ log(k), to obtain an O(k log k) × k
matrix S2S1A in time O(nnz(S1A) · 1/µ) = O(k2.1 log2(k)). We also have with probability ≥ 98/100 that

‖S2S1Ax‖2 ∈ (1± 3/10)‖Ax‖2

for all vectors x ∈ Rk. We then use the flattening transform F to obtain a constant subspace embedding for the
matrix S2 ·S1 ·A which also has the property that every unit vector in the column space of the matrix F ·S2 ·S1 ·A
has a large number of large entries.
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Theorem 6.1. (Indyk Embedding, Theorem 5.2 and Corollary 5.1) Given any n, there is an explicit
linear map/matrix F ∈ Rm×n with m = n · epll(n) such that for any vector x ∈ Rn,

1

2
‖x‖2 ≤ ‖Fx‖2 ≤ ‖x‖2

and for any unit vector x, at least Θ(n) coordinates of the vector Fx have an absolute value of at least
1/(
√
n · epll(n)). Given a vector x ∈ Rn, the explicit map Fx can be computed in time n1+o(1).

Combining F , S2,S1, we obtain that with probability ≥ 98/100, for all vectors x,

1

4
‖Ax‖2 ≤ ‖F · S2 · S1 ·Ax‖2 ≤

3

2
‖Ax‖2.

The matrix F ·S2 ·S1 ·A can be computed in time nnz(A) + k2.1+o(1). As the matrix S2 ·S1 ·A has O(k · log(k))
rows, the matrix F has O(k log(k) · epll(k)) = k · epll(k) rows and we also obtain that for any unit vector
x in the column space of F · S2 · S1 · A, at least Θ(k log k) coordinates have an absolute value of at least
1/(
√
k log k epll(k)) = 1/(

√
k epll(k)). The following theorem shows that a sparse sign matrix is a subspace

embedding for a subspace with every unit vector in the subspace having a large number of large entries.

Theorem 6.2. Let A ∈ Rm×k, with m = k · epll(k), be a matrix such that for all unit vectors x ∈ colspan(A),
the set

Large(x) :=

{
i ∈ [m] | |xi| ≥ η =

1√
k · epll(k)

}
satisfies |Large(x)| ≥ Ck for some constant C. There is a distribution G over matrices with M = k·poly(log log(k))
rows such that for G ∼ G, with probability ≥ 9/10, for all vectors x ∈ Rk,

‖Ax‖2 ≤ ‖GAx‖2 ≤ epll(k)‖Ax‖2.

With probability ≥ 9/10, the matrix GA can be computed in time k2 · epll(k).

Proof. Define the M ×m random matrix G as follows:

Gij =


+1 with probability p/2

−1 with probability p/2

0 with probability 1− p

for some values of M ≤ m and p to be chosen later. The random variables Gij are mutually independent. Let
Xi be the number of nonzero entries in the i-th row of G and let Y j be the number of nonzero entries in the i-th
column of G. By the Chernoff bound, for δ > 1,

Pr[Xi ≥ (1 + δ) ·mp] ≤ exp(−δmp/4) and Pr[Y j ≥ (1 + δ) ·Mp] ≤ exp(−δMp/4).

Let p be such that p|Large(x)| ≥ 10 for all x. As |Large(x)| ≥ Ck, there is a value of p for which pm ≤ epll(k).
By a union bound, we obtain that with probability ≥ 99/100, for all i and j, Xi ≤ epll(k) and Y j ≤ epll(k).
Thus, with probability ≥ 99/100

max
i

∑
j

|Gij | = max
i

Xi ≤ epll(k) and max
j

∑
i

|Gij | = max
j

Y j ≤ epll(k).

We now have that ‖G‖2 ≤
√

(maxi
∑
j |Gij |)(maxj

∑
i |Gij |) ≤ epll(k), which implies that for any vector y,

‖G ·Ay‖2 ≤ epll(k)‖Ay‖2.

Let the event that ‖G‖2 ≤ epll(k) be E .
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We now show a contraction lower bound. Let x be an arbitrary unit vector in the column space of the matrix
A. We say a row Gi∗ is good if Gij is nonzero for some j ∈ Large(x). We say Gi∗ is bad if it is not good. We have

Pr[Gi∗ is bad ] = (1− p)|Large(x)| ≤ exp(−p|Large(x)|) ≤ exp(−10) ≤ 1/100.

Thus, Pr[Gi∗ is good ] ≥ 99/100.
We say a row Gi∗ is large if |Gi∗x| ≥ η. Condition on the event that Gi∗ is good. Let j ∈ Large(x)∩nnz(Gi∗) 6=

∅. Now, Gi∗x =
∑
j′∈nnz(Gi∗)−jGij′xj′ + Gijxj . As entries of the matrix G are mutually independent, with

probability 1/2, Gijxj has the same sign as
∑
j′∈nnz(Gi∗)−jGijxj , which implies that with probability ≥ 1/2,

|Gi∗x| ≥ |xj | ≥ η. Thus,
Pr[Gi∗ is large |Gi∗ is good ] ≥ 1/2

which implies that
Pr[|Gi∗x| ≥ η] = Pr[Gi∗ is large] ≥ (1/2) · (99/100) ≥ 1/4.

Let l denote the number of large rows. As rows of the matrix Gi∗ are independent, largeness of rows is mutually
independent. Thus, by the Chernoff bound,

Pr[l ≤ (1/2) ·M · (1/4)] ≤ exp(−M/32).

We now condition on the event E . We have

Pr[l ≤M/8 | E ] ≤ Pr[l ≤M/8]

Pr[E ]
≤ 2 exp(−M/32).

Therefore, conditioned on the event E , with probability ≥ 1 − 2 exp(−M/32), we have l ≥ M/8 which implies
that

‖Gx‖22 ≥
∑

large i

|Gi∗x|2 ≥ lη2 ≥ l

k epll(k)
≥ M

8k epll(k)
.

In what follows, we condition on the event E . For M = k · poly(log log(k)), we obtain that for a unit vector x,
with probability ≥ 1− exp(−k poly(log log(k))),

‖Gx‖22 ≥
poly(log log(k))

epll(k)
.

By suitably scaling G, we obtain that for all vectors x,

‖Gx‖2 ≤ epll(k)‖x‖2

and for any unit vector x, with probability ≥ 1− exp(−k · poly(log log(k))),

‖Gx‖2 ≥ 2.

The column space of the matrix A has dimension at most k. Let N be a net of the unit vectors in the column
space of A such that for any y ∈ colspace(A), ‖y‖2 = 1, there is an xy ∈ N , ‖xy‖2 = 1 such that

‖xy − y‖2 ≤
1

‖G‖2
.

As ‖G‖2 ≤ epll(k), there exists a net N of size exp(k · poly(log log(k))). We union bound over all the net vectors
to obtain that with probability ≥ 99/100, for all net vectors x ∈ N ,

‖Gx‖2 ≥ 2.

Now conditioning on this event, for an arbitrary y ∈ colspan(A), ‖y‖2 = 1, we have

‖Gy‖2 = ‖G(xy + (y − xy))‖2
≥ ‖Gxy‖2 − ‖G(y − xy)‖2
≥ 2− ‖G‖2‖y − xy‖2
≥ 1
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as the net is chosen so that ‖y − xy‖2 · ‖G‖2 ≤ 1.
Conditioned on the event E , we have that each row of G has at most epll(k) nonzero entries. Thus, each

row of the matrix GA can be computed in k · epll(k) time and hence the matrix GA can be computed in time
k2epll(k). As Pr[E ] ≥ 99/100, the claim follows.

Theorem 6.3. (Subspace Embedding) Given an n× k matrix A, we can compute an m × k matrix SA with
m = k · poly(log log(k)) such that with probability ≥ 9/10, for all vectors x ∈ Rk,

‖Ax‖2 ≤ ‖SAx‖2 ≤ epll(k)‖Ax‖2.

The matrix S·A can be computed in time O(nnz(A)+k2.1+o(1)) or more generally in time O(γ−1nnz(A)+k2+γ+o(1))
for any constant γ > 0. Further, for any matrix M with n rows,

E[‖SM‖2F] ≤ epll(k)‖M‖2F.

Proof. The matrix S is defined as follows

S = 4 ·G · F · S2 · S1

where S1 is OSNAP for k dimensional subspaces with γ = 0.1, S2 is OSNAP for k dimensional subspaces with
γ = 1/ log(k), F is Indyk’s embedding for O(k log(k)) dimensional subspaces as in Theorem 6.1 and G is the
sparse embedding matrix with k · poly(log log(k)) rows as in Theorem 6.2. We have with probability ≥ 9/10, for
any vector x ∈ Rk,

1

2
‖Ax‖2 ≤ ‖S2 · S1 ·Ax‖2 ≤

3

2
‖Ax‖2.

Condition on the above event. From Theorem 6.1, we have

1

4
‖Ax‖2 ≤

1

2
‖S2 · S1 ·Ax‖2 ≤ ‖F · S2 · S1 ·Ax‖2 ≤ ‖S2 · S1 ·Ax‖2 ≤

3

2
‖Ax‖2.

By Theorem 6.1, every unit vector in the span of F has at least Ck coordinates with an absolute value of at
least 1/(

√
k · epll(k)). Thus, the matrix F · S2 · S1 · A satisfies the conditions of Theorem 6.2. Therefore with

probability ≥ 9/10, we have for all vectors x ∈ Rk,

‖G · F · S2 · S1 ·Ax‖2 ≤ epll(k)‖F · S2 · S1 ·Ax‖2 ≤ epll(k)‖Ax‖2

and

‖G · F · S2 · S1 ·Ax‖2 ≥ ‖F · S2 · S1 ·Ax‖2 ≥
1

4
‖Ax‖2.

Thus with probability ≥ 8/10, for all vectors x,

‖Ax‖2 ≤ ‖S ·Ax‖2 ≤ epll(k)‖Ax‖2.

The matrix S ·A can be computed as 4G(F(S2(S1A)))) in time

O(nnz(A) + k2.1 log2(k) + k2+o(1) + k2 · epll(k))

where the last term follows from the fact that each of the k poly(log log(k)) rows of the matrix G has at most
epll(k) nonzero entries.

There is nothing special about γ = 0.1. We can choose any constant 1 > γ > 0 and use OSNAP with the
parameter γ which gives an overall running time of O(γ−1nnz(A) + k2+γ+o(1)).

We now bound ES [‖SM‖2F] for an arbitrary matrix M . We have

E
S

[‖SM‖2F] = 16 E
G,S2,S1

[‖G · F · S1 · S2M‖2F]

≤ 16 · E
S1

[E
S2

[E
G

[‖G · F · S2 · S1M‖2F |S1,S2] |S1]].
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First, EG[‖G·F ·S2 ·S1M‖2F |S1,S2] ≤Mp·(scale)·‖F ·S2 ·S1M‖2F, where M is the number of rows of G, p is the
probability of an entry of G being nonzero and scale = epll(k) is the scaling factor for the random sign matrix. As
M = k ·poly(log log(k)) and p = epll(k)/k, we have EG[‖G ·F ·S2 ·S1M‖2F |S1,S2] ≤ epll(k) · ‖F ·S2 ·S1M‖2F ≤
epll(k)‖S2 · S1M‖2F as the matrix F does not increase the Euclidean norm of any vector. Thus,

E
S

[‖SM‖2F] ≤ epll(k) E
S1

[E
S2

[‖S2 · S1M‖2F |S1]] ≤ epll(k)‖M‖2F,

where the last inequality follows from the fact that ‖SiM‖2F is an unbiased estimator to ‖M‖2F if Si is an OSNAP.

7 Applications

Algorithm 2: LeverageScoreSampling

Input: A ∈ Rn×k, ε, γ > 0
Output: An ε subspace embedding SlevA

1 SA← SparseEmbedding(A)
2 [Q,R−1]← QR-Decomposition(SA) // QR−1 = SA
3 s← k exp(poly(log log k)/ε2

4 S1 ⊆ [n], fi for i ∈ [S1]← SampleFromProduct(A,R, s, γ) // Lemma 7.2

5 For i ∈ S1, set (Slev)ii to be equal to 1/
√
fi

6 return SlevA after removing 0-value rows

7.1 Subspace Embeddings We use the fast subspace embedding construction from previous sections to
compute approximate leverage scores and then sample rows using the approximate leverage scores to compute
1 + ε subspace embeddings in time O(γ−1nnz(A) + ε−3nγk2+o(1) + kω poly(log log(k))) for any constant γ. We
then compose with an OSNAP to obtain a subspace embedding with O(ε−2k log(k)) rows.

Theorem 7.1. (Leverage Score Sampling) Given a full column rank matrix A ∈ Rn×k, let `2i for i ∈ [n]
be the leverage score of the i-th row. Let p ∈ [0, 1]n be a vector of probabilities such that for all i ∈ [n],
min(1, r · (`2i /k)) ≥ pi ≥ min(1, r · β · (`2i /k)) for some β < 1, and let the n × n diagonal random matrix
Slev be defined as follows: for each i ∈ [n], the entry (Slev)ii is set to be equal to 1/

√
pi with probability pi, and is

set to be 0 with probability 1−pi. If r ≥ Ck log(k)/βε2 for an absolute constant C, then with probability ≥ 99/100,
for all vectors x ∈ Rd

‖SlevAx‖22 ∈ (1± ε)‖Ax‖22.

With probability ≥ 1− exp(−Θ(k)), the matrix Slev has at most Θ(Ck log(k)/βε2) nonzero entries.

The following lemma shows that a subspace embedding S for the column space of a matrix A can be used to
compute approximate leverage scores which can be used to perform leverage score sampling as described above
to obtain a 1 + ε subspace embedding.

Lemma 7.1. If S is a β subspace embedding for the column space of a full rank matrix A ∈ Rn×k i.e., for any
vector x,

‖Ax‖2 ≤ ‖SAx‖2 ≤ β‖Ax‖2
and if SA = QR−1 for an orthonormal matrix Q, then for all i ∈ [n],

`2i /β
2 ≤ ‖Ai∗R‖22 ≤ `2i ,

where `i is the leverage score of the i-th row of A.

The proof of the lemma is in Appendix A.1. Using our fast subspace embedding with k poly(log log(k)) rows
and β = epll(k), the above lemma shows that if we can compute the values ‖Ai∗R‖22, then we can obtain a 1 + ε
subspace embedding with k · epll(k)/ε2 rows.
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Often, the row norms ‖Ai∗R‖22 are approximated with ‖Ai∗RG‖22, where G is a Gaussian matrix with O(log n)
columns using the fact that for an arbitrary vector x, ‖xTG‖22 ∈ (1/2, 2)‖x‖22 with probability 1 − 1/poly(n).
However, computing the matrix ARG takes O((nnz(A) + k2) log(n)) time.

The following simple lemma shows that instead of obtaining constant approximations to ‖Ai∗R‖22 for all
the rows by using a Gaussian matrix G with O(log(n)) columns, we can use a Gaussian matrix G′ with only
O(1/γ) columns to obtain O(nγ log(n)) factor approximations to ‖Ai∗R‖22. We sample the rows using these coarse
approximations and then compute constant-factor approximations to ‖Ai∗R‖22 only for the rows that are sampled
in the first stage and then reject each of the sampled rows with appropriate probabilities to obtain a leverage
score sample.

Lemma 7.2. Let A ∈ Rn×d and R ∈ Rd×d be such that for any vector x ∈ Rd, the matrix-vector products
ARx,Rx can be computed in time at most T1 and T2 respectively. Given parameters γ and s, there is an algorithm
conditioned on an event E, Pr[E ] ≥ 95/100, that samples indices i ∈ [n] to obtain a random subset S ⊆ [n], such
that each i ∈ [n] is in the set S independently with probability fi, where

min(1, s
‖Ai∗R‖22
‖AR‖2F

) ≥ fi ≥ min(1, (s/16)
‖Ai∗R‖22
‖AR‖2F

).

The algorithm returns the random subset S along with the probabilities fi for i ∈ S. The algorithm runs in time
O(γ−1T1 + T2 log(n) + sdnγ log2(n)).

Proof. Let pi := ‖Ai∗R‖22/‖AR‖2F for i ∈ [n]. Let G1 be a Gaussian matrix with O(1) rows and n columns and
G2 be a Gaussian matrix with d rows and O(1) columns. We have

1

2
‖AR‖2F ≤ ‖G1ARG2‖2F ≤ 2‖AR‖2F (Event E1)

with probability ≥ 99/100. The matrix G1ARG2 can be computed in O(T1 + n) time. Let G3 be a Gaussian
matrix with O(log(n)) columns. With probability ≥ 99/100,

for all i ∈ [n],
1

2
‖Ai∗R‖22 ≤ ‖Ai∗RG3‖22 ≤ 2‖Ai∗R‖22 (Event E2).

We note that we do not compute the matrix ARG3 but we only compute the matrix RG3 which can be done in
time O(T2 log(n)).

Now, let G4 be a Gaussian matrix with t = O(1/γ) columns. Let g1, g2, . . . , gt be the columns of the matrix
G4. For each i ∈ [n], with probability ≥ 1 − 1/100n2, maxj∈[t] |〈Ai∗R, gj〉| ≥ ‖Ai∗R‖2/nγ/2 using the fact
that |〈Ai∗R, gj〉|j∈[t] are independent half-Gaussians with standard deviation ‖Ai∗R‖2. By a union bound, with
probability ≥ 1− 1/100n, for all i ∈ [n], we have ‖Ai∗RG4‖22 ≥ maxj∈[t]〈Ai∗R, gj〉2 ≥ ‖Ai∗R‖22/nγ . By Lemma 1
of [25], we also obtain that with probability ≥ 1− 1/100n, for all i ∈ [n], ‖Ai∗RG4‖22 ≤ O(log(n))‖Ai∗R‖22. Thus,
with probability ≥ 1− 2/100n, for all i ∈ [n]:

‖Ai∗R‖22
nγ

≤ ‖Ai∗RG4‖22 ≤ C log(n)‖Ai∗R‖22 (Event E3).

We compute ARG4 and all squared row norms ‖Ai∗RG4‖22 in time O(T1γ
−1). Condition on the event

E := E1 ∩ E2 ∩ E3. We have Pr[E ] ≥ 95/100.
Define zi := 2nγ‖Ai∗RG4‖22/‖G1ARG2‖2F. We have 4Cnγ log(n)pi ≥ zi ≥ pi and define qi := min(1, szi).

Sample i ∈ [n] independently, each with probability qi to obtain a random subset S1 ⊆ [n]. If i ∈ S1, compute the
value ‖Ai∗(RG3)‖22 in time O(d log(n)) and reject i with probability 1−min(1, (s/4)‖Ai∗RG3‖22/‖G1ARG2‖2F)/qi.

We need to show that this procedure is well-defined. We have (s/4)‖Ai∗RG3‖22/‖G1ARG2‖22 ≤ (s/4)(4pi) =
spi ≤ szi which implies that min(1, (s/4)‖Ai∗RG3‖22/‖G1ARG2‖2F) ≤ qi and therefore the rejection probability
as defined is valid. Let S2 be the subset obtained after performing the rejection step on S1. The probability that
a row i ∈ S2 is

fi = qi ·
min(1, (s/4)‖Ai∗RG3‖22/‖G1ARG2‖2F)

qi
≥ min(1, (s/4)(pi/4)) = min(1, (s/16)pi).
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We also have that fi ≤ min(1, spi). Thus with probability exp(−s) only O(s) rows survive the rejection.
Now, with probability ≥ 1 − exp(−s), |S1| = O(

∑
i qi) = O(snγ log(n)) and therefore the squared row

norm ‖AiRG3‖22 has to be computed only for O(snγ log(n)) rows. Therefore the time complexity of sampling is
O(γ−1T1 +T2 log(n)+O(sdnγ log2(n))). Thus, conditioned on the event E , the algorithm returns a subset S ⊆ [n]
sampled from the desired probability distribution in time O(γ−1T1 + T2 log(n) + sdnγ log2(n)).

Using these lemmas, the following theorem shows that Algorithm 2 gives a 1 + ε subspace embedding by
sampling using approximate leverage scores.

Theorem 7.2. Given a full rank matrix A ∈ Rn×k, a constant γ and a parameter ε > 0, we have the following:

1. Algorithm 2 computes a matrix SlevA with Θ(ε−2k · epll(k)) rows such that with probability ≥ 9/10, for all
vectors x,

‖SlevAx‖22 ∈ (1± ε)‖Ax‖22.

This matrix SlevA can be computed in time

O(γ−1nnz(A) + ε−2nγk2+o(1) + kω poly(log log(k))).

2. Composing Slev with the matrix SOSNAP, an OSNAP with O(ε−2k log(k)) and at most O(ε−1 log(k)) nonzero
entries in each column, we obtain that with probability ≥ 9/10, for all vectors x,

‖SOSNAP · Slev ·Ax‖22 ∈ (1±O(ε))‖Ax‖22.

The matrix SOSNAP · (SlevA) can be computed in time O(ε−3k2+o(1)) and hence, overall, the matrix
SOSNAP · Slev ·A can be computed in time

O(γ−1nnz(A) + kω poly(log log(k)) + ε−3k2+o(1) + ε−2nγ+o(1)k2+o(1))

for any constant γ.

Proof. From Theorem 6.2, we have a subspace embedding Sfast with O(k poly(log log k)) rows and distortion
epll(k) that can be applied to matrix A in time O(γ−1nnz(A) + k2+γ+o(1)) for any constant γ > 0. Compute
the matrices Q,R−1 such that Q has orthonormal columns and SfastA = QR−1 which can be done in time
O(kω poly(log log(k))). By Lemma 7.1, we have

`2i
epll(k)

≤ ‖Ai∗R‖22 ≤ `2i

which implies, using the fact
∑
i `

2
i = k, that

`2i
k · epll(k)

≤ ‖Ai∗R‖
2
2

‖AR‖2F
.

Using Lemma 7.2, conditioned on the event E , we can sample a random subset S along with probabilities fi for
i ∈ S such that each i ∈ [n] is independently in the subset S with probability fi,

fi ≥ min(1, (s/4) · ‖Ai∗R‖
2
2

‖AR‖2F
) ≥ min(1, (s/4) · `2i

k · epll(k)
).

For s = Θ(k log(k) exp(poly(log log k))/ε2), we have fi ≥ min(1, C`2i log(k)/ε2) which implies that the matrix
Slev constructed by Algorithm 2 is a 1 + ε subspace embedding, with probability ≥ 9/10, for the column space
of A by Theorem 7.1. In the notation of Lemma 7.2, for the matrices A and R, T1 = nnz(A) + k2 and T2 = k2.
Thus, the sampling process runs in time

O(γ−1nnz(A) + k2 log(n) + ε−2nγk2 exp(poly(log log k))) = O(γ−1nnz(A) + ε−2nγ+o(1)k2+o(1)).

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited3057

D
ow

nl
oa

de
d 

06
/0

3/
22

 to
 7

1.
60

.1
80

.2
08

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



Thus, overall, in time O(γ−1nnz(A) + ε−2nγ+o(1)k2+o(1) + kω poly(log log k)), we can compute a leverage score
sampling matrix Slev with O(ε−2k exp(log log k)) rows such that for all x ∈ Rk,

‖SlevAx‖22 ∈ (1± ε)‖Ax‖22.

As nnz(SlevA) ≤ (ε−1k)2epll(k), the OSNAP embedding SOSNAP can be applied to SlevA in O(ε−3k2epll(k))
time and the fact that SOSNAP·Slev is a subspace embedding follows from the composability. Thus, we can compute
SOSNAP ·Slev ·A which has O(ε−2k log k) rows in O(γ−1nnz(A)+kω poly(log log k)+ε−3k2+o(1)+ε−2nγ+o(1)k2+o(1))
time.

7.2 Linear Regression Let A ∈ Rn×k and b ∈ Rn. By the linear regression problem (A, b), we mean
minx ‖Ax− b‖2 and OPT(A, b) denotes the optimum value of this problem. We prove the following theorem.

Theorem 7.3. Given a full-rank matrix A ∈ Rn×k and b ∈ Rn, we obtain a solution x∗ such that

‖Ax∗ − b‖2 ≤ (1 + ε)OPT(A, b)

in time O(γ−1nnz(A) + ε−3nγ+o(1)k2+o(1) + kω poly(log log k)) for any constant γ.

Proof. We first find a 1 + ε subspace embedding S for the column space of [A, b]. From Theorem 7.2, SA and Sb
can be computed in at most O(γ−1nnz(A) + ε−3nγ+o(1)k2+o(1) + kω poly(log log k)) time. We can also compute
a preconditioner R using the fast subspace embedding from Theorem 6.2 such that

κ(AR) = epll(k)

by first computing SfastA = QR−1 and then inverting R−1 to obtain R. The matrix R can be computed in time
O(γ−1nnz(A) + k2+γ+o(1) + kω poly(log log(k))) for any constant γ. We also have that

κ(SAR) = epll(k).

Let x∗ be a solution such that ‖SARx∗ − Sb‖2 ≤ (1 + ε) minx ‖SARx− Sb‖2. Then, we have

‖ARx∗ − b‖2 ≤
1

1− ε
‖SARx∗ − Sb‖2 ≤

1 + ε

1− ε
‖SAxopt − Sb‖2 ≤

(1 + ε)2

1− ε
‖Axopt − b‖2.

Thus, Rx∗ is a 1+O(ε) approximate solution for the linear regression problem (A, b). Now, we focus on obtaining
a 1 + ε approximate solution for the regression problem (SAR,Sb).

We first compute an approximate solution for the regression problem as follows: let Sfast be the subspace
embedding with k poly(log log(k)) rows for the column space of [A, b]. Let x(0) = (SfastA)+(Sfastb). This solution
can be computed in time O(nnz(A) + k2+γ+o(1) + kω poly(log log(k))). Let xstart = R−1x(0) which can also be
computed in time O(k2). Now, we have

‖SARxstart − Sb‖2 ≤ (1 + ε)‖ARxstart − b‖2 = (1 + ε)‖Ax(0) − b‖2 ≤ (1 + ε)‖SfastAx
(0) − Sfastb‖2.

Let xS be the optimal solution for the regression problem (SA,Sb). By optimality of x(0) for the regression
problem (SfastA,Sfastb), we have

‖SARxstart − Sb‖2 ≤ (1 + ε)‖SfastAx
(0) − Sfastb‖2

≤ (1 + ε)‖SfastAxS − Sfastb‖2
≤ (1 + ε) · epll(k) · ‖AxS − b‖2
≤ epll(k) ·OPT((SA,Sb)).

Thus, xstart is an epll(k) approximate solution for the linear regression problem (SAR,Sb). Using the solution
xstart, we can obtain a 1 + ε approximate solution in O(epll(k)/ε) iterations of gradient descent where each
iteration can be performed in time O(k2 log(k)/ε2). Thus, overall, in time

O(γ−1nnz(A) + ε−3nγ+o(1)k2+o(1) + kω poly(log log k)),

we can compute a 1 +O(ε) approximate solution for the linear regression problem (A, b).
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7.3 Rank Computation and Independent Row Selection We give an algorithm to compute a maximal set
of independent rows of an n×n matrix A of rank k = nΩ(1) in time O(γ−1nnz(A)+k2+γ+o(1) +kω poly(log log(k)))
for any constant γ > 0, improving upon the earlier running time of O((nnz(A) + kω) log(k)) from Cheung et al.
[8] for any constant ω > 2.

Definition 7.1. (Rank Preserving Sketches) A distribution S over zS × n matrices is a rank preserving
sketch if there exists a constant c such that for S ∼ S, with high probability, for a given matrix A ∈ Rn×d,
min (rank(SA), zS/c) = min (rank(A), zS/c) i.e., multiplying A with the matrix S preserves the rank if rank(A) ≤
zS/c.

Theorem 7.4. ([8]) There are rank-preserving sketching distributions as above with c = 11 such that

• SA can be computed in O(nnz(A)) time

• S has at most 2 nonzero entries in a column

• S has at most 2n/zS nonzero entries in a row

They use rank preserving sketches to give an algorithm to compute the rank of an arbitrary matrix and an
algorithm to compute a maximal set of linearly independent rows of the matrix.

Theorem 7.5. (Theorem 2.6 of [8]) Let A ∈ Rn×d be an arbitrary matrix with n ≥ d. There is a randomized
algorithm to compute k = rank(A) in time O(nnz(A) log(k) + min(kω, k · nnz(A))) with failure probability at
most O(1/n1/3). There is also an algorithm to find k linearly independent rows of the matrix A in time
O((nnz(A) + kω) log(n)) with failure probability at most O(log(n)/n1/3).

We show that the log(k) factor can be removed from the time required to compute the rank of the matrix.

Theorem 7.6. (Rank computation) Given A ∈ Rn×d, let k = rank(A). Let ω be the matrix multiplication
constant and assume ω > 2. Consider two cases:

1. If k ≤ log(n)2/(ω−2), k can be computed in time O(nnz(A) + log(n)6/(ω−2)) = O(nnz(A)).

2. If k ≥ log(n)2/(ω−2), k can be computed using Algorithm 3 (Rank) in time O(nnz(A)+min(kω, k ·nnz(A))).

Proof. If k ≤ log(n)2/(ω−2), then we have rank preserving sketches S,R such that SAR can be computed in time
nnz(A), SAR is an O(log(n)2/(ω−2))×O(log(n)2/(ω−2)) matrix and rank(SAR) = rank(A). Now the rank of SAR
can be computed in time O(log(n)6/(ω−2)). Thus, rank(A) can be computed in time O(nnz(A) + log(n)6/(ω−2)).

In the case k ≥ log(n)2/(ω−2), consider Algorithm 3. As z ≥ Θ(
√
n/ log(n)), with failure probability

≤ Θ(
√

log(n)/n), the sketch SAR is rank preserving. As SAR is a z × z matrix, we have nnz(SAR) ≤ z2 ≤
O(nnz(A)/ log(n)). So, the rank k1 of SAR can be computed in time O(nnz(SAR) log(k1)+min(kω1 , k1·nnz(SAR))
by Theorem 7.5. As k1 ≤ k, we have that the rank k1 can be computed in time O(nnz(A) + min(kω, k · nnz(A))).

We now have two cases. In the case that k1 < (nnz(A)/ log(n))1/2, as we have

min(rank(A), (nnz(A)/ log(n))1/2) = min(rank(S1AR1), (nnz(A)/ log(n))1/2),

we obtain that rank(A) = rank(SAR) = k1.
If (nnz(A)/ log(n))1/2 ≤ k1, we have k = rank(A) ≥ k1 ≥ (nnz(A)/ log n)1/2 which shows that

nnz(A) log(n) ≤ k2 log2(n) ≤ kω for any ω > 2 and k ≥ log(n)2/(ω−2). We can now compute rank(A) in
time O(nnz(A) log(k) + min(kω, k · nnz(A))) by Theorem 7.5. As nnz(A) log(k) = O(min(nnz(A) · k, kω)), we
obtain that the running time is O(nnz(A) + min(kω, k · nnz(A))).
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Algorithm 3: Rank(A)

Input: A ∈ Rn×d, rank(A) ≥ (log(n))6/(ω−2)

Output: k := rank(A)
// CKL-RE, the algorithm of Theorem 2.6 of [8]

1 z ← c · (nnz(A)/ log n)1/2 // c ≥ 1 is a constant

2 Generate rank-preserving sketches S ∈ Rz×n and RT ∈ Rz×d
3 Compute SAR // using Theorem 7.4

4 k1 ← rank(SAR) // using CKL-RE

5 if k1 < z/c then
6 return k1

7 end
8 k2 ← rank(A) // using CKL-RE

9 return k2

We now describe an algorithm to compute k linearly independent rows of a matrix A ∈ Rn×d of rank k in
time O(nnz(A) + kω poly(log log(n))), replacing the log(n) factor in the running time of [8] with poly(log log(n)).
Thus for matrices A with kω−1 ≤ nnz(A) ≤ kω/ log(n), we can now compute the rank k and a set of k linearly
independent rows in time O(kω poly(log log(k))) instead of O(kω log(k)) time.

Without loss of generality, using the rank-preserving sketch, we can assume that d = ck for a constant c. The
following lemma describes a reduction to a sparse sub-matrix of A which also has rank equal to rank(A).

Algorithm 4: RowReduction(A, k)

Input: A ∈ Rn×ck, rank(A) = k
Output: AQ ∈ Rm×ck,m ≤ (3n/11)k, nnz(AQ) ≤ max((2/5)nnz(A),Θ(k2)), rank(AQ) = k

1 S ← Rck×n be a rank-preserving sketch
2 Compute SA
3 Compute P ⊆ [ck], |P | = k such that (SA)P has k linearly independent rows
4 Let Q← {i ∈ [m] |Sji 6= 0 for some j ∈ P}
5 return AQ

Algorithm 5: IndependentRows(A, k)

Input: A ∈ Rn×d, rank(A) = k
Output: AQ ∈ Rk×d, rank(AQ) = k

1 S ← Rck×d be a rank preserving sketch

2 B ← AST

3 Compute B′ by applying RowReduction Θ(log log(n)) times
4 Compute Slev, a leverage score subspace embedding for B′ using Theorem 7.2 with γ = 1/ log(n) and

ε = 0.1
5 Compute B′′ with O(k) rows by applying RowReduction to the matrix SlevA, Θ(log log(k)) times
6 Compute k linearly independent rows of B′′ and return AQ corresponding to these k rows

Lemma 7.3. Let A ∈ Rn×ck be an arbitrary matrix of rank k. There is a submatrix AQ ∈ Rm×ck that can be
computed in time O(nnz(A) + kω) such that

• m = |Q| ≤ (3n/11),

• nnz(AQ) ≤ max((2/5) · nnz(A),Θ(k2)), and

• rank(AQ) = k.
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Proof. Let S ∈ Rck×n be a rank-preserving sketch for c = 11. We have rank(SA) = rank(A) = k with probability
≥ 1 − O(1/k). Consider a set L of k linearly independent rows of the matrix SA which can be determined in
O(kω) time. Let Q ⊆ [n] be the set of rows of A that contribute to the construction of the submatrix (SA)L which
implies that k ≥ rank(AQ) ≥ rank((SA)L) = k and hence rank(AQ) = k. We therefore have that the sub-matrix
AQ consists of k linearly independent rows. The reduction A → AQ can be performed in O(nnz(A) + kω) time.
As each row of the matrix S has at most 2n/11k nonzero entries, we have |Q| ≤ (2n/11k) · k ≤ 2n/11. We now
bound nnz(AQ).

Let P ⊆ [ck] be an arbitrary subset of size k. We show that if QP ⊆ [n] is the subset of rows of A that
contribute to the construction of the sub-matrix (SA)P , then nnz(AQP

) ≤ (2/5) · nnz(A) with high probability.
Let Xi be the random variable that indicates if Ai∗ contributes to the construction of (SA)P i.e., if i ∈ QP .

By inspecting the proof of Theorem 7.4, we obtain that Pr[Xi = 0] = (1 − 1/c)2. Thus, for c = 11, we obtain
that Pr[Xi = 1] = 1− (1− 1/11)2 = 21/121. We also note that the random variables X1, . . . ,Xn are negatively
associated [36]. Let ai denote the number of nonzero entries of the row Ai∗ which implies that

∑
i ai = nnz(A).

Now, we have nnz(AQP
) =

∑
i aiXi. Using the Chernoff-Hoeffding bound for negatively associated random

variables [21],

Pr[nnz(AQP
) =

∑
i

aiXi ≥ nnz(A) · 21/121 + t] ≤ 2 exp

(
− 2t2∑

i a
2
i

)
.

By a union bound over all
(

11k
k

)
≤ (11e)k subsets P , we obtain that for a constant C,

Pr[There is a subset P ⊆ [11k], |P | = k with nnz(AQP
) ≥ nnz(A)/5 + t] ≤ 2 exp

(
Ck − 2t2∑

i a
2
i

)
.

Now, we have
∑
i a

2
i ≤ maxi ai ·

∑
i ai ≤ 11k · (nnz(A)) since the matrix A is assumed to have only ck = 11k

columns. For t ≥ Θ(k
√
nnz(A)), we obtain that with probability ≥ 1 − exp(−Θ(k)), for all P ⊆ [11k], |P | = k,

we have that nnz(AQP
) ≤ nnz(A)/5 + t. For nnz(A) ≥ Θ(k2), we have nnz(A)/5 ≥ Θ(k

√
nnz(A)) which implies

that for all P , nnz(AQP
) ≤ (2/5)nnz(A). This, in particular, implies that for M = QL, that corresponds to

the set of rows contributing to a linearly independent set of rows of (SA), we have nnz(AM ) ≤ (2/5) · nnz(A) if
nnz(A) ≥ Θ(k2).

Recursively applying the above lemma, we obtain the following.

Corollary 7.1. Let A ∈ Rn×d be an arbitrary matrix of rank k. There is a matrix A′ ∈ Rm×ck with either
nnz(A′) ≤ nnz(A)/ log(n) or nnz(A′) ≤ Θ(k2) such that

• rank(A′) = rank(A) = k, and

• m ≤ n/poly(log(n))

• linearly independent rows of A′ correspond to linearly independent rows of A.

The reduction A→ A′ can be performed in O(nnz(A) + kω log log(n)) time.

Proof. Let N = Θ(log log(n)) and A(0) = A. Starting with i = 0, we apply the above reduction A(i) → A(i+1) to
obtain a matrix with nnz(A(i+1)) ≤ (2/5) · nnz(A(i)). Then

nnz(A(N)) ≤ max((2/5)Nnnz(A),Θ(k2)) ≤ max(nnz(A)/ log(n),Θ(k2)).

The time complexity is O(
∑N
i=1(nnz(A(i)) + kω)) = O(nnz(A) + kω log log(n)).

We have now reduced the general problem of computing k linearly independent rows of a rank-k n × d
matrix A to computing k linearly independent rows of a rank-k m× ck matrix A′ with m ≤ n/ poly(log(n)) and
nnz(A′) ≤ O(max(k2, nnz(A)/ log(n))). Using these reductions, we have the following theorem.

Theorem 7.7. Given an arbitrary matrix A ∈ Rn×d of rank k, Algorithm 5 computes a set of k linearly
independent rows of the matrix A in time O(nnz(A) + kω poly(log log(n)) + k2+o(1)).
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Proof. Let S ∈ Rck×d be a rank preserving sketch which implies rank(AST) = rank(A) = k with probability
1 − O(1/k). Condition on this event. Let M ⊆ [n], |M | = k be such that rows of the sub-matrix
(AST)M = AMST are linearly independent. Then, k ≥ rank(AM ) ≥ rank(AMST) = k which implies
rank(AM ) = k. Thus, we only have to find k linearly independent rows of the n × ck matrix B = AST.
We also have nnz(B) = O(nnz(A)). Using the above corollary, we can find an m × ck sub-matrix B′ such that
rank(B′) = k, nnz(B′) ≤ O(max(nnz(B)/ poly(log(n)),Θ(k2)) and m = n/ poly(log(n)).

From Theorem 7.2, using γ = 1/ log(n), in time O(nnz(B′) log(n) + kω poly(log log(n)) + k2+o(1) +mγ−1) =
O(nnz(A)+kω poly(log log(n))+k2+o(1)), we can compute a row sampling matrix Slev that samples O(k ·epll(k))
rows such that

‖SlevB
′x‖22 ∈ (1± 1/10)‖B′x‖22

for all vectors x. This, implies that the matrix SlevB
′ has rank k and hence has k linearly independent rows.

As Slev is a leverage score sampling matrix, the rows of SlevB
′ are multiples of rows of the matrix B′. Thus,

a set of k linearly independent rows of the matrix SlevB
′ directly corresponds to a set of k linearly independent

rows of B which corresponds to a set of k linearly independent rows of the matrix A.
Applying the row reduction poly(log log(k)) times to the matrix SlevB

′, we obtain a matrix B′′ of dimension
O(k) × k from which we can determine a set of k linearly independent rows in time O(kω). This concludes the
proof.

7.4 Low-Rank Approximation Let A ∈ Rn×d be an arbitrary matrix. We want to compute a matrix B of
rank at most k such that

‖A−B‖2F ≤ (1 + ε)‖A− [A]k‖2F.
Let OPTA denote ‖A− [A]k‖2F. Our main theorem for Low-Rank Approximation (LRA) is as follows.

Theorem 7.8. Let A ∈ Rn×d, k < min(n, d) be a rank parameter and ε > 0 be an accuracy parameter. There is
an algorithm that outputs matrices V ∈ Rn×k and X ∈ Rk×d, V TV = Ik, such that with Ω(1) probability,

‖A− V X‖2F ≤ (1 + ε)‖A− [A]k‖2F.

The algorithm runs in time O(γ−1nnz(A) + ε−1(n + d)kω−1 + ε−1k(ndγ+o(1) + dnγ+o(1)) + poly(ε−1k)) for any
constant γ > 0.

In the following sections, we will describe how to compute the left factor V and the right factor X. We are not
very careful with probabilities, as we only have to condition over the success of O(1) events, and all these events
can be chosen to have a success probability 1 − c for any absolute constant c > 0 without affecting the time
complexity.

We start with a residual sampling algorithm that lets us obtain a subspace containing a 1 + ε approximation
given a subspace that is only O(1) approximate.

7.4.1 Residual Sampling Suppose we have a subspace V ∈ Rd such that

‖A−APV ‖2F ≤ K‖A− [A]k‖2F.

The following theorem of [19] shows that sampling O(K ·k/ε) rows of the matrix A with probabilities proportional
to the squared distances of the rows to the subspace V gives a subspace that along with V contains a 1 + ε rank-k
approximation to the matrix A.

Theorem 7.9. (Theorem 2.1 of [19]) Let A ∈ Rn×d and V ∈ Rd be a subspace. Let E = A−APV , the matrix
formed by projecting each row of A away from the subspace V . Let S be a random sample of s rows of A from a
distribution D such that row i is chosen with probability pi ≥ α‖Ei∗‖22/‖E‖2F. Then for any non-negative integer
k,

E
S

[ min
rank-kB

rowspan(B)⊆V+rowspan(AS)

‖A−B‖2F] ≤ ‖A−Ak‖2F +
k

sα
‖E‖2F.

Instead of sampling s rows independently from the distribution p, we can also sample each i ∈ [n] with probability
qi := min(1, spi) and obtain the same result for the resulting random subset of rows. Sampling each i ∈ [n]
independently with probability qi lets us use the sampling framework from Lemma 7.2.
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Lemma 7.4. (Sampling each row independently) Let A ∈ Rn×d and V be a subspace in Rd and let
E = A−APV . Sample each i ∈ [n] independently with a probability qi := min(1, spi), with pi ≥ α‖Ei∗‖22/‖E‖2F to
obtain a random subset S ⊆ [n]. For any nonnegative integer k,

E
S

[ min
rank-kB

rowspan(B)⊆V+rowspan(AS)

‖A−B‖2F] ≤ ‖A−Ak‖2F +
k

sα
‖E‖2F.

The proof of this lemma is in Appendix A.2

7.4.2 Computing the left factor of an approximation Let T be a CountSketch matrix with Θ(k2) columns.
In [13], the authors show that T is a projection cost preserving sketch, i.e., with probability 9/10, for all projection
matrices P of rank at most O(k),

‖(I − P )AT ‖2F = (1± 1/10)‖(I − P )A‖2F.

Let S be a CountSketch matrix with Θ(k4) rows. Then, with probability ≥ 99/100, S is a subspace embedding
for the matrix AT and therefore for any matrix X,

‖SATX − SAT ‖2F = (1± 1/10)‖ATX −AT ‖2F.

We can relate OPTA and OPTSAT as follows:

OPTSAT = ‖SAT − [SAT ]k‖2F = min
rank-kX

‖SAT − SATX‖2F ≤
11

10
min

rank-kX
‖AT −ATX‖2F =

11

10
OPTAT

where the inequality follows from the subspace embedding property of S for the column space of AT . Now,

OPTAT = min
rank-k projectionsP

‖(I − P )AT ‖2F ≤
10

9
min

rank-k projectionsP
‖(I − P )A‖2F =

10

9
OPTA.

Here, the inequality follows as T is a projection cost preserving sketch for k dimensional projections. Thus,
OPTSAT ≤ (11/9)OPTA.

Boutsidis and Woodruff [6] show that for any matrix M , there exists a sub-matrix M ′ of M , with O(k/ε)
columns such that there is a rank k matrix B, colspan(B) ⊆ colspan(M ′), and ‖M −B‖2F ≤ (1 + ε)‖M − [M ]k‖2F.
They also give an algorithm to find such a subset of columns. As SAT is a O(k4) × O(k2) matrix, using their
algorithm, we can compute in time poly(k), a column selection matrix Ω that selects O(k) columns of SAT such
that

min
rank-kX

‖SAT − SATΩX‖2F ≤
3

2
OPTSAT ≤ 2OPTA.

We now have ‖(SATΩ)(SATΩ)+SAT−SAT ‖2F ≤ minrank-kX ‖SAT−SATΩX‖2F ≤ 2OPTA. Using the property
that S is a subspace embedding for the column space of AT , we have

‖ATΩ(SAT )+SAT −AT ‖2F ≤
20

11
OPTA.

Let U be a matrix with orthonormal columns such that colspan(ATΩ) = colspan(U). Therefore,

‖UUTAT −AT ‖2F ≤ ‖(ATΩ)(SATΩ)+SAT −AT ‖2F ≤
20

11
OPTA

which finally implies, as T is a projection cost preserving sketch for O(k) dimensional projections, that
‖UUTA − A‖2F ≤ (10/9)(20/11)OPTA ≤ 3OPTA. Thus, colspan(U) is an O(k) dimensional subspace with
‖(I −UUT)A‖2F ≤ 3OPTA. As, T and S are CountSketch matrices, the matrices AT and SAT can be computed
in time nnz(A). The matrix Ω can be computed in time poly(k) and the matrix ATΩ is obtained by selecting
the appropriate columns of matrix AT . The orthonormal matrix U can be computed in time O(nkω−1). Using
U , we now obtain a larger subspace of dimension O(k/ε) that spans a 1 + ε approximation.
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Using Lemma 7.4, we have that if columns of the matrix A are sampled independently to obtain a subset
Sres ⊆ [d] such that Pr[j ∈ Sres] ≥ min(1, spj) for s = O(k/ε), pj = ‖(I−UUT)A∗j‖22/‖(I−UUT)A‖2F, then with
probability ≥ 99/100, the subspace colspan(U) + colspan(ASres) spans columns of a k dimensional matrix that is
a (1 + ε) rank-k approximation for A.

Lemma 7.2 shows how to sample Sres from such a distribution. In the notation of Lemma 7.2, we have
T1 = O(nnz(A) + nk) and T2 = nk. Therefore, with probability ≥ 95/100, we can obtain a sample Sres

from a distribution over subsets of [d] such that independently, Pr[j ∈ Sres] ≥ min(1, O(k/ε)pj) in time
O(γ−1(nnz(A) + nk) + nk log(d) + ε−1dγnk log2(d)) = O(γ−1nnz(A) + ε−1nkdγ+o(1)) for any small constant
γ. Let M = [U ASres ]. We have with probability ≥ 9/10, that

min
rank-kX

‖MX −A‖2F ≤ (1 + ε)OPTA.

To obtain a good k-dimensional subspace within the column space of M , we can sketch and solve the above
problem. Let T 1 be a CountSketch matrix with O((k/ε)2/ε2) rows. Then with probability ≥ 99/100, T 1 is an
affine embedding for (M,A) and therefore for any matrix X, ‖T 1MX−T 1A‖2F ∈ (1±ε)‖MX−A‖2F. Let XT 1

be
the optimal solution for minrank-kX ‖T 1MX − T 1A‖F. As XT 1

is optimal, the rows of the matrix XT 1
must be

spanned by the rows of the matrix T 1A, which implies that minrank-kX ‖MXT 1A−A‖2F ≤ (1+O(ε))OPTA. This
problem can now be solved by sketching on the left and the right with T 1 and T 2, where T 2 is a CountSketch
matrix with poly(k/ε) rows, and then solving the sketched problem optimally. The time complexity of sketching
is O(nnz(M) + nnz(A)) = O(nnz(A) + nk/ε), and the sketched problem can be solved in time poly(k/ε). Thus
in time O(nnz(A) + nk/ε+ poly(k/ε)), we can compute a rank k matrix X such that

‖MXT 1A−A‖2F ≤ (1 +O(ε))OPTA.

We can also compute a decomposition of X = X1 · X2 where X1 has k columns in time poly(k/ε), which
implies that the k dimensional column span of MX1 is a 1 + O(ε) approximate rank k singular subspace i.e.,
‖(MX1)(MX1)+A − A‖2F ≤ (1 + O(ε))OPTA. The matrix MX1 can be computed in time O(nkω−1/ε) and a
matrix V which is an orthonormal basis for the column space of the n× k matrix MX1 can be computed in time
O(nkω−1). Thus, in time O(γ−1nnz(A) + ε−1nkdγ+o(1) + ε−1nkω−1 + poly(ε−1k)), we can compute a left factor
for a 1 + ε rank-k approximation of A. Thus, we have the following lemma.

Lemma 7.5. Given a matrix A ∈ Rn×d, a rank parameter k and accuracy parameter ε, we can compute a matrix
V with k orthonormal columns in time O(γ−1nnz(A) + ε−1nkdγ+o(1) + ε−(ω−1)nkω−1 + poly(ε−1k)) such that

‖A− V V TA‖2F ≤ (1 + ε)‖A− [A]k‖2F.

7.4.3 Computing a right factor given a left factor Given a matrix V with k orthonormal columns such
that

min
X
‖V X −A‖2F ≤ (1 +O(ε))‖A− [A]k‖2F,

we want to compute a rank k matrix X̃ that satisfies ‖V X̃ −A‖2F ≤ (1 +O(ε))‖A− [A]k‖2F.
For i ∈ [n], let pi = ‖V∗i‖22/k. Suppose Slev is a sampling matrix with s = O(k log(k)) rows such that each

row of Slev is independently equal to eTi /
√
spi with a probability pi. Then we have

for all vectors x, ‖SlevV x‖22 ∈ (1± 1/2)‖V x‖22.

Let M2 = V TST
lev and let VM2 be a matrix with k orthonormal columns such that colspan(VM2) = rowspan(M2).

Let S2 be the BSS-Sampling matrix returned by the dual set spectral sparsification algorithm of [6] on the inputs
VM2

,Slev(I − V V T)AT with a parameter 4k, where T is a CountSketch matrix with O(k2) columns. The matrix
S2 selects 4k rows of the matrix SlevA. Let R1 = S2SlevA. Lemma 6.7 of [6] shows that

‖A−AR+
1 R1‖2F ≤ O(1)‖A− [A]k‖2F.

As the matrix R1 has 4k rows, an orthonormal basis U for the rowspace of R1, with 4k orthonormal columns,
can be computed in time dkω−1. We can then perform residual sampling of rows of A with respect to the
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subspace U using the Lemma 7.2. Here T1 = nnz(A) + dk and T2 = dk. Thus, we can sample rows from a
distribution defined by the probabilities min(1, (s/16)‖Ai∗(I − UUT)‖22/‖A(I − UUT)‖2F), for s = O(k/ε) in time

O(γ−1nnz(A) + ε−1dknγ+o(1)). Let S′res ⊆ [n] be the rows sampled. Let R =

[
UT

AS′res

]
. The matrix R has O(k/ε)

rows.
Now, as in proof of the Theorem 5.1 of [6], we have with proabability ≥ 9/10,

‖A− V V TAR+R‖2F ≤ (1 +O(ε))‖A− [A]k‖2F,

which implies minX ‖A − V XR‖2F ≤ (1 + O(ε))‖A − [A]k‖2F. By sketching the problem on the left and the right
with CountSketch matrices T 1 and T 2 with poly(k/ε) rows and columns respectively, the optimal solution XT

for the sketched problem satisfies

‖A− V XTR‖2F ≤ (1 +O(ε))‖A− [A]k‖2F.

Finally, the product XT ·R can be computed in time O(dkω−1/ε) to obtain a matrix X̃ such that

‖A− V X̃‖2F ≤ (1 +O(ε))‖A− [A]k‖2F.

Thus, we can compute two matrices V, X̃ with k columns and k rows respectively, such that the product V · X̃ is
a 1 + ε approximate rank-k Frobenius norm approximation to the matrix A, in time

O(γ−1nnz(A) + ε−1(n+ d)kω−1 + ε−1k(ndγ+o(1) + dnγ+o(1)) + poly(ε−1k)).
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A Missing proofs from Section 7

A.1 Proof of Lemma 7.1

Proof. [Proof of Lemma 7.1] Let AR = UT where U is an orthonormal matrix. As colspan(AR) = colspan(A),
we have that `2i = ‖Ui∗‖22. We first have for any vector x,

‖Tx‖2 = ‖UTx‖2 = ‖ARx‖2 ≤ ‖SARx‖2 = ‖Qx‖2 = ‖x‖2

and

‖Tx‖2 = ‖UTx‖2 = ‖ARx‖2 ≥ (1/β)‖SARx‖2 = (1/β)‖Qx‖2 = (1/β)‖x‖2.

Here we repeatedly used the facts that Q and U are orthonormal matrices. Thus, we obtain ‖T‖2 ≤ 1 and
σmin(T ) ≥ 1/β. As Ai∗R = Ui∗T , we obtain that

‖Ai∗R‖2 = ‖Ui∗T‖2 ≤ ‖Ui∗‖2‖T‖2 ≤ ‖Ui∗‖2

and

‖Ai∗R‖2 = ‖Ui∗T‖2 ≥ ‖Ui∗‖2σmin(T ) ≥ (1/β)‖Ui∗‖2.

Thus, `i
2/β2 ≤ ‖Ai∗R‖22 ≤ `2i .
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A.2 Proof of Lemma 7.4

Proof. [Proof of Lemma 7.4] Let u(1), . . . , u(d) be the left singular vectors and v(1), . . . , v(d) be the right singular
vectors. For j = 1, . . . , k, let

X(j) =
∑
i:qi<1

u
(j)
i

qi
(Ei∗)

TI[i is sampled]

and w(j) = X(j) +
∑
i:qi=1 u

(j)
i (Ei∗)

T + PVATu(j). We have E[w(j)] = ATu(j) = σjv
(j). Now,

E[‖w(j) − σjv(j)‖22] = E[‖X(j) −
∑
i:qi<1

u
(j)
i (Ei∗)

T‖22] = E[‖X(j)‖22]− ‖
∑
i:qi<1

u
(j)
i (Ei∗)

T‖22.

Now,

E[‖X(j)‖22] = E[‖
∑
i:qi<1

u
(j)
i

qi
(Ei∗)

TI[i is sampled]‖22]

=
∑
i:qi<1

(u
(j)
i )2

q2
i

‖Ei∗‖22qi +
∑

i 6=i′:qi,qi′<1

u
(j)
i u

(j)
i′ 〈Ei∗, Ei′∗〉

As the values pi used to define probabilities qi are such that pi ≥ α‖Ei∗‖22/‖E‖2F, then we have

E[‖X(j)‖22] ≤ 1

sα
‖E‖2F + ‖

∑
i:qi<1

u
(j)
i (Ei∗)

T‖22 −
∑
i:qi<1

‖u(j)
i (Ei∗)

T‖22.

Thus, E[‖w(j) − σjv(j)‖22] ≤ (1/sα)‖E‖2F −
∑
i:qi<1 ‖u

(j)
i (Ei∗)

T‖22. From here, using the same proof as [19], we
obtain that the subspace V + span(AS) spans rows of a rank k matrix B such that

‖A−B‖2F ≤ ‖A−Ak‖2F +
k

sα
‖E‖2F.
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