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A B S T R A C T   

Accurately partitioning net ecosystem exchange (NEE) into ecosystem respiration (ER) and gross primary pro-
ductivity (GPP) is critical for understanding the terrestrial carbon cycle. The standard partitioning methods rely 
on simplified empirical models, which have inherent structural errors. These structural errors lead to biased GPP 
and ER estimation, especially during extreme events (e.g., drought) and human disturbances (e.g., crop harvest). 
Recently, solar-induced chlorophyll fluorescence (SIF) has been shown to be well correlated to GPP, thus offering 
a path to improve the NEE partitioning by constraining GPP. However, the ecosystem-scale relationship between 
GPP and SIF remains limited. Here, we show that neural networks informed by SIF observations (NNSIF) can be 
successfully used to partition NEE, while simultaneously learning the ecosystem-scale GPP-SIF relationship. 
NNSIF was compared against standard partitioning methods and NN without SIF constraint (NNnoSIF), using field 
data from different ecosystems and synthetic data generated by a coupled fluorescence-photosynthesis model 
(SCOPE). NNSIF showed superior performance as: (1) it effectively improves the ER estimation, especially at high 
temperature, (2) it better captures the moisture limitation on ER, (3) it more accurately estimates LUE variations 
to stress, and (4) it uniquely captures the rapid GPP drop after land management (harvest). Furthermore, NNSIF 
can retrieve the GPP-SIF relationship at the ecosystem scale, and elucidate how this relationship responds to 
environmental conditions. Overall, our algorithm provides the first direct and non-empirical estimate of the 
ecosystem-scale GPP-SIF relationship, without relying on any prior empirical assumptions on the relationships 
between CO2 fluxes, climatic drivers, and SIF. The new knowledge learned by NNSIF can help better estimate 
global-scale GPP using satellite SIF, especially during extreme events and in the presence of land management.   

1. Introduction 

Terrestrial ecosystems approximately absorb one-third of anthropo-
genic CO2 emissions, as gross primary productivity (GPP) outpaces 
ecosystem respiration (ER) and other carbon losses (e.g. disturbances) 
(Keenan et al., 2019; McNicol et al., 2018). Accurate estimation of GPP 
and ER is thus important for future climate projections (Schimel et al., 
2015). However, currently, it is impossible to directly observe daytime 
GPP or ER at the ecosystem scale (Desai et al., 2008; Keenan et al., 
2019). Instead, GPP and ER are typically inferred from measurements of 

net ecosystem exchange (NEE), the net CO2 exchange between an 
ecosystem and the atmosphere, defined as NEE = ER – GPP. Accurately 
partitioning NEE into ER and GPP is critical for understanding the re-
sponses of the terrestrial carbon cycle to a changing climate, especially 
during extreme events (Zscheischler et al., 2014). 

Various NEE partitioning methods have been proposed in recent 
years (Desai et al., 2008; Keenan et al., 2019; Lasslop et al., 2012, 2010; 
Reichstein et al., 2005; Spielmann et al., 2019; Stoy et al., 2006; Tra-
montana et al., 2020). Among all, two methods are widely applied in the 
EC community. The nighttime (NT) method uses night data to 
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parameterize a temperature-driven ER model, by fitting its temperature 
sensitivity (E0) and reference respiration (Rref). Then it extrapolates the 
fitted model to daytime temperatures to retrieve GPP as the residual, 
assuming that the model remains the same during daytime (Reichstein 
et al., 2005). The daytime (DT) method fits a light- and 
temperature-driven model, using both day and night data, to estimate 
GPP and ER (Lasslop et al., 2010). Both NT and DT methods rely on 
simplified empirical models which, inherently, have structural errors. 
One major structural error originates from the simplified ER parame-
terization. For instance, both methods assume that (1) the fitted ER 
parameters, E0 and Rref, remain the same through day and night, and (2) 
ER originates from a single pool driven by either air or soil temperature. 
However, these simplified assumptions have been found to generate 
biased ER and GPP estimates (Keenan et al., 2019; Wohlfahrt and Gal-
vagno, 2017). Furthermore, these empirical models could collapse 
during extreme events (e.g., drought) and human disturbances (e.g., 
harvest), which are critical for the global carbon cycle (Zscheischler 
et al., 2014). Such collapse is partly due to the limited drivers used in 
these empirical models. To account for other unselected drivers (e.g., 
soil moisture, microbial activity, biomass), standard methods adjust the 
parameters of empirical models using a moving window approach. Even 
so, they still fail to capture the responses to fast environmental changes 
(e.g., land management or fast atmospheric forcing) (Riederer et al., 
2014; Tramontana et al., 2020). 

To tackle the limitations of standard partitioning methods, some 
studies have developed machine learning (ML)-based methods, which 
do not rely on empirical models but infer the relationships purely from 
data. Oikawa et al. (2017) trained neural networks (NN) to estimate 
nighttime ER, and then extrapolated the fitted NN to daytime to parti-
tion NEE. However, similar to NT, this method assumes that day and 
night ER are regulated by the same mechanisms. Instead of solely using 
night data, Tramontana et al. (2020) used day and night data to develop 
a new framework, in which NN was constrained by the observed NEE to 
simultaneously estimate GPP and ER. This approach outperforms stan-
dard methods for capturing additional ecological patterns, e.g., hyster-
esis in ER and GPP diurnal cycles. However, the observed NEE is the only 
constraint in their framework, and thus NEE uncertainties could have 
large effects on the GPP and ER estimates (Tramontana et al., 2020). 
Therefore, additional constraints can be imposed to reduce these un-
certainties (Spielmann et al., 2019) and improve the partitioning 
estimates. 

Chlorophyll fluorescence (ChlF), an optical signal emitted from the 
excited chlorophyll, can be a promising constraint on plant photosyn-
thesis (Porcar-Castell et al., 2014). Given that ChlF competes for the 
same excitation energy as the light reactions of photosynthesis, ChlF can 
be an informative indicator of the photosynthetic mechanism (Baker, 
2008). Pulse-amplitude modulation (PAM) can actively measure ChlF 
using controlled excitation light, but it is limited to leaf-level measure-
ments (Magney et al., 2017; Mohammed et al., 2019). Alternatively, 
passive measurements of solar-induced chlorophyll fluorescence (SIF) 
can monitor plant photosynthesis across canopy, regional, and global 
scales without using artificial light (Frankenberg et al., 2011; Joiner 
et al., 2013), but they are impacted by canopy structure, thus deviating 
from the leaf-level physiological response (Guanter et al., 2014; Zeng 
et al., 2019). Compared to traditional vegetation indices that are mainly 
sensitive to vegetation structure, SIF can mechanistically constrain GPP 
through directly informing the actual electron transport rate which links 
the light and dark reactions (Gu et al., 2019; Ryu et al., 2019). This 
unique physiology dependence, in addition to the growing number of 
SIF measurements across multiple spatiotemporal scales (Frankenberg 
et al., 2011; Guan et al., 2016; Joiner et al., 2013, 2011; Sun et al., 2017; 
Yang et al., 2015), demonstrate the great potential of SIF to resolve the 
NEE partitioning problem (Kira et al., 2021). 

However, the ecosystem-level relationship between SIF and GPP still 
remains unclear, especially at shorter time scales. A growing number of 
studies have highlighted a near-linear GPP-SIF relationship over 

different ecosystems across long time scales (weekly to monthly) 
(Frankenberg et al., 2011; Guan et al., 2016; Magney et al., 2019; Sun 
et al., 2018; Yang et al., 2015). But at shorter time scales, the GPP-SIF 
relationship shows stronger responses to physiological factors (e.g., at-
mospheric dryness). Under water-stressed conditions, SIF is found to 
decouple with GPP so that their linear relationship can break down 
(Helm et al., 2020; Kim et al., 2021; Marrs et al., 2020; Wohlfahrt et al., 
2018). Yet, our understanding of this non-linear GPP-SIF relationship 
remains limited, especially at the ecosystem scale where vegetation 
structure and strong microclimate variations can have a large impact on 
the observed SIF and GPP (Dechant et al., 2020; Gentine et al., 2019). 
Furthermore, till now, the ecosystem-scale GPP-SIF relationships are all 
retrieved using GPP partitioned by standard methods, which highly rely 
on empirical models. The structural errors of these empirical models 
could bias the GPP-SIF relationship. Therefore, a non-empirical under-
standing of the ecosystem-scale GPP-SIF relationship is critically 
necessary to better capture GPP using satellite SIF, and also to provide 
constraints for ecosystem models representing SIF (Van der Tol et al., 
2014; van der Tol et al., 2009). 

In this study, we show that a new NN framework informed by SIF 
observations (NNSIF) can tackle two problems simultaneously: (1) par-
titioning NEE into GPP and ER without prescribed empirical models, and 
(2) unraveling the GPP-SIF relationship at the ecosystem scale. As for the 
first goal, we compared NNSIF-partitioned CO2 fluxes against the results 
of NT, DT, and the method of Tramontana et al. (2020) (i.e., NN without 
SIF information, NNnoSIF). Specifically, we evaluated whether NNSIF can 
reduce the structural errors of standard methods, and whether it can 
alleviate the equifinality issue of NNnoSIF. As for the second goal, we 
evaluated the GPP-SIF relationship retrieved by NNSIF, NT, DT, and 
NNnoSIF, and explored whether NNSIF can better elucidate the physio-
logical controls on the GPP–SIF relationship at the ecosystem scale. To 
the best of our knowledge, this study represents the first direct and 
non-empirical assessment of the ecosystem-scale GPP-SIF relationship, 
as it does not rely on any prior empirical assumptions on the relation-
ships between CO2 fluxes and climatic drivers (e.g., the light response 
curve), nor does it use any empirical formulations on the GPP-SIF rela-
tionship (e.g., linear or hyperbolic equations). 

2. Materials and methods 

2.1. Machine learning algorithms 

We proposed a ML-based framework aiming at 1) more accurately 
partitioning NEE, 2) retrieving the ecosystem-scale GPP-SIF relation-
ship. Similar to the scheme of Tramontana et al. (2020), we used two 
subnetworks to predict ER and GPP respectively. Then we calculated the 
difference between predicted ER and GPP (Eq. (1)) to retrieve the final 
output NEE. The difference is that Tramontana et al. (2020) used NEE as 
the only constraint, while we used both NEE and SIF constraints to better 
partition NEE (our first goal). The SIF constraint was introduced by 
adding another subnetwork following the GPP subnetwork (Fig. 1). This 
additional subnetwork predicted SIF using the previous GPP estimates. 
Then, two final outputs, NEE and SIF, were compared against their ob-
servations to minimize the errors, by which the relationships between 
inputs (climatic drivers), intermediate outputs (ER, GPP), and final 
outputs (NEE, SIF) were learned by NNSIF. In this way, ER and GPP were 
simultaneously constrained by both NEE and SIF observations, as shown 
by the dashed green arrows in Fig. 1. In addition, the proposed frame-
work is also intended to unravel the ecosystem-scale GPP-SIF relation-
ship (our second goal). In our model, SIF is predicted as a function of 
GPP and environmental factors (Eq. (2)). A well-trained NNSIF can learn 
this function, without any empirical assumptions, and thus unravel how 
the GPP-SIF relationship responds to physiological factors at the 
ecosystem scale. Note that NNSIF does not artificially enforce stronger 
linear relationships between GPP and SIF, although it includes the 
observed SIF as a constraint. Indeed, any complicated GPP-SIF 
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relationship can be learned by NNSIF, not only the linear one, according 
to the Universal Approximation Theorem (Hornik et al., 1989). Hence, 
NNSIF can capture complex and non-linear relationships between GPP 
and SIF. 

The schematic of the NNSIF is shown in Fig. 1. The NNSIF framework 
has three subnetworks: one for GPP prediction, one for ER prediction, 
and another one for SIF prediction. The NNSIF inputs are meteorological 
and biotic drivers. To constrain GPP to be zero at night, we multiplied 
the GPP neuron by another input label, which equals zero at night and 
equals one during daytime. Here, nighttime was defined as times when 
PAR was smaller than 50 μmol m−2 s−1. To accelerate the training pro-
cess, we performed data normalization for all inputs except label: we 
subtracted the mean and divided by the standard deviation to ensure 
that input variables have zero mean and unit variance. The optimal 
subnetwork structure here has three layers: (1) an input layer driven by 
input variables, (2) two hidden layers that use rectified linear unit 
(ReLU) as the activation function, (3) an output layer that estimates the 
logarithmic values of GPP and ER to ensure non-negative results. 
Finally, all subnetwork outputs were combined at the last layer, using 
the following Eqs. (1) and (2), to get final NEE and SIF outputs. In Eqs. 
(1) and 2, RH is relative humidity. Tair is air temperature. SWC is soil 
water content, and when SWC measurements is not available, evapo-
rative fraction (fraction of the latent heat flux to available energy, EF) is 
used to indicate the soil moisture variations (Gentine et al., 2007, 2011). 

NEE = ER − GPP (1)  

SIF = f (GPP, RH, Tair, SWC or EF) (2) 

The input variables for NNSIF are summarized in Table 1. As for ER 

Fig. 1. Schematic of the NNSIF architecture. NNSIF consists of three subnetworks. The shaded rectangle in the lower-left panel shows the detailed structure of each 
subnetwork. In the feedforward process (solid gray arrows), NEE and SIF were predicted using the current weights of three subnetworks. Then they were compared 
against observations through the loss function (Eq. (3)). In the backpropagation process (dashed green arrows), weights of each subnetwork were updated together, 
end-to-end, to minimize the loss function, and to make the predicted NEE and SIF closer to their observations. By this means, GPP and ER were simultaneously 
constrained by NEE and SIF observations. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 1 
The input variables of NNSIF to estimate GPP, ER, and SIF.  

Subnetwork Temporal 
resolution 

Input 
variables 

Data source 

ER (Half-)hourly Tair Measured 
SWC Measured 
Ws Measured 
Wd Measured 

Daily NEEnight Calculated from the measured 
NEE 

EF1 Calculated from the measured 
heat fluxes 

4-day LAI MCD15A3H 
GPP (Half-)hourly Tair Measured 

RH Measured 
SWC Measured 
PAR Measured 
Ws Measured 
Wd Measured 

Daily EF1 Calculated from the measured 
heat fluxes 

4-day LAI MCD15A3H 
SIF (Half-)hourly GPP Predicted internally by NNSIF 

Tair Measured 
RH Measured 
SWC Measured  

Daily EF1 Calculated from the measured 
heat fluxes  

1 : EF is only used when the measured SWC is not available. 
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and GPP estimation, Tair was selected due to its effect on the chemical 
reactions in plants. SWC and RH were selected to account for the water 
stress, and the effect of atmospheric dryness on stomatal conductance. 
We selected RH rather than vapor pressure deficit (VPD), given the high 
collinearity between Tair and VPD (Novick et al., 2016; Zhou et al., 
2019a, 2019b). Photosynthetic active radiation (PAR) was selected since 
it is critical for photosynthesis light reactions. To account for the effect 
of substrate availability on ER, we calculated the daily average of 
nighttime NEE (NEEnight) for ER prediction (Tramontana et al., 2020). 
Here, NEEnight was estimated only for days when there were at least 8 h 
nighttime NEE records, and for days with less than 8 h records, we used 
linear interpolation to fill the missing gaps of NEEnight. We also included 
leaf area index (LAI) to account for the biomass effect (Reichstein et al., 
2003), which was found to improve the estimation of ER, GPP, and NEE 
in this study (Table S1). The LAI data were obtained from Moderate 
Resolution Imaging Spectroradiometers (MODIS). We identified 
good-quality LAI (i.e., generated by the main algorithm, no significant 
cloud) based on the quality flag, and filled the missing gaps using the 
multi-year average (2002–2020) of the same day. Wind speed (Ws) and 
wind direction (Wd) were included for ER and GPP estimations due to 
their effects on flux tower footprint, but they were not included for SIF 
prediction, since the footprint of SIF measurements remained invariant. 
SIF was predicted based on the GPP value which was estimated before 
the NNSIF optimization. We used RH, Tair, and SWC to model the phys-
iological controls on the GPP-SIF relationship. We also tested the in-
clusion of the escape ratio, fesc, to reflect the impact of canopy structure 
(Guanter et al., 2014). fesc was calculated using an empirical method 
(Zeng et al., 2019), as NIRv/fPAR, where NIRv is the near-infrared 
reflectance of vegetation (Badgley et al., 2017) and fPAR is the frac-
tion of canopy-absorbed PAR. However, fesc did not significantly 
improve the NNSIF performance (Table S1), and was finally excluded for 
SIF prediction to simplify the NNSIF inputs. 

To optimize NNSIF end-to-end, we minimized the loss function that 
quantifies the differences between observations and predictions of both 
NEE and SIF. In the loss function (Eq. (3)), NEEobs and SIFobs are NEE and 
SIF observations respectively. NEENN and SIFNN are the predictions of 
NEE and SIF respectively. N is the number of data points. J is the total 
loss. This loss function is the weighted sum of the mean squared error of 
NEE and SIF, which is achieved through multi-task learning. 

J = w1
1
N

(NEEobs − NEENN)
2

+ w2
1
N

(SIFobs − SIFNN)
2 (3) 

The weights of NEE task (w1) and SIF task (w2) were inferred purely 
from the data, based on the uncertainties of NEE and SIF (Kendall et al., 
2018). The term with higher uncertainty will be automatically assigned 
with a lower weight. To verify this statement, we injected increasing 
noises to SIF to amplify its uncertainties, while keeping the NEE data 
unchanged. We find that the SIF weight gradually decreases with the 
increasing SIF noise level, however, it does not become zero even when 
the noise is high and the GPP-SIF relationship is hard to recognize 
(Fig. S1), emphasizing that even in this case the SIF information is still 
being used by the algorithm. 

To train and validate NNSIF, we randomly divided data into three 
subsets: 50% for the training set to fit the model, 20% for the validation 
set to assess the model while tuning hyperparameters, and 30% for the 
test set to evaluate the final tuned model. To avoid overtraining, early 
stopping was triggered if the model performance on the validation set 
was not improved for over 10 epochs. Adam gradient descent algorithm 
(Kingma and Ba, 2014) was used to optimize NNSIF. The hyper-
parameters, e.g., the number of hidden layers, were tuned using 
SHERPA Library (Hertel et al., 2018) to identify the minimum size NNSIF 
that can achieve good performance. In the final optimum NNSIF, there 
are two hidden layers with 64 nodes in each subnetwork. Note that 
NNSIF with the same structure (e.g., the same number of layers and 
nodes) can generate slightly different results during each training pro-
cess, as its weight initialization is randomized each time. Hence, we used 

the deep ensembles method to quantify the structural uncertainty of 
NNSIF. Specifically, we retrained the same NNSIF 1000 times with 
different weight initializations. The standard deviation of predictions 
from 1000 models was used as an estimate of the NNSIF structural un-
certainty (Caldeira and Nord, 2020). 

In addition to the NNSIF, we also trained NNnoSIF, a model that has the 
same GPP and ER subnetworks as NNSIF but does not have the SIF sub-
network. Both daytime and nighttime samples were used to train NNSIF 
and NNnoSIF. The difference between NNSIF and NNnoSIF is that when 
processing daytime samples, the GPP retrieval in NNSIF is additionally 
constrained by daytime SIF observations, and this constraint in turn 
indirectly affects the ER estimation. Note that although NNnoSIF shares 
some similarities with the approach of Tramontana et al. (2020) (e.g., 
two subnetworks for GPP and ER estimation), there are distinct differ-
ences between these two approaches (as we aimed to have a fair com-
parison between our model with and without SIF): (1) their input 
predictors are different; (2) NNnoSIF does not use a light use efficiency 
(LUE) equation for the GPP estimation. 

2.2. In-situ datasets 

2.2.1. Tower-based SIF measurements 
We used field SIF observations from three sites with different vege-

tation types. One specific NNSIF was built and trained for each site. 
Overall, NNSIF shows good performance across three sites in predicting 
NEE and SIF (Table 2). The first site is Harvard Forest in Massachusetts, 
USA (42.538◦N, 72.171◦W). SIF was measured by an automated spec-
troscopy system installed 5 m above the canopy (Yang et al., 2018b, 
2015). Canopy reflectance was measured by narrowband photodiode 
sensors which are 10 m above the canopy. Measurements were carried 
out during the growing season (May to October) in 2013 and 2014. SIF 
was retrieved at 760 nm using the spectral fitting method (Meroni et al., 
2009). The second site is a wheat cropland at Montfavet near Avignon, 
France (43.917◦N, 4.879◦E). SIF and canopy reflectance were measured 
by TriFLEX, which was deployed at the height of 21 m to observe from 
nadir. SIF was retrieved at 760 nm using the nFLD method (Daumard 
et al., 2010). Measurements were conducted during the growing season 
in 2010. The growing season is from March 3, 2010 (end of tillering) to 
July 13, 2010 (harvest). The third site is a rice paddy located in 
Cheorwon, Gangwon province, South Korea (38.201◦N, 127.251◦E). SIF 
was observed by an automated spectroscopy system that has a QE 
Pro-spectrometer with very high spectral resolution (Dechant et al., 
2019). SIF was retrieved by the singular vector decomposition (SVD) 
method (Yang et al., 2018a). Canopy reflectance was measured with two 
instruments that simultaneously monitored the incoming and outgoing 

Table 2 
The performance of NNSIF and NNnoSIF in estimating NEE and SIF. We train NNSIF 
1000 times to quantify the model uncertainty. Statistics in this table are the 
mean and the standard deviation (in brackets) of R2 and RMSE from the 1000 
models. The unit for NEE RMSE is μmol m−2 s−1. The unit for SIF RMSE is 
mW m−2 nm−1 for Cheorwon, and is mW m−2 nm−1 sr−1 for other two sites.   

Observed NEE v.s. 
estimated NEE 

Observed SIF v.s. 
estimated SIF 

R2 RMSE R2 RMSE 

Harvard 
Forest 

NNSIF 0.90 (±
0.003) 

2.78 (±
0.04) 

0.78 (±
0.01) 

0.19 (±
0.01) 

NNnoSIF 0.92 (±
0.003) 

2.54 (±
0.11) 

/ / 

Avignon NNSIF 0.92 (±
0.003) 

3.16 (±
0.07) 

0.90 (±
0.01) 

0.16 (±
0.01) 

NNnoSIF 0.93 (±
0.005) 

3.07 (±
0.12) 

/ / 

Cheorwon NNSIF 0.89 (±
0.004) 

2.00 (±
0.05) 

0.85 (±
0.01) 

0.57 (±
0.03) 

NNnoSIF 0.88 (±
0.01) 

2.14 (±
0.10) 

/ /  
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radiation (Dechant et al., 2020). The observations were conducted 
during 2016. The growing season of the Cheorwon rice paddy site is 
from the end of April (Day of Year (DOY), 120) to harvest in early 
September (DOY, 248). Note that Cheorwon observations were made 
with a cosine corrector (as opposed to bare fibers in other two sites), and 
thus have the different SIF unit (mw m−2 nm−1 v.s. mw m−2 nm−1 sr−1). 
For more details on the three sites, the instruments, and SIF retrieval 
methods, the reader is referred to Yang et al. (2015), Goulas et al. 
(2017), and Yang et al. (2018a). 

2.2.2. Eddy-covariance flux and meteorological measurements 
The in-situ datasets also include EC flux and meteorological mea-

surements. The Harvard Forest dataset is available from the Harvard 
Forest Data Archive (Munger and Wofsy, 2021). Avignon and Cheorwon 
have half-hourly measurements, while Harvard Forest was recorded 
hourly. The meteorological measurements include Tair, RH, soil tem-
perature (Tsoil), SWC, Ws, Wd, PAR, and diffuse PAR. For Avignon and 
Cheorwon, we calculated the daily-averaged evaporative fraction 
(fraction of latent heat to available energy), to approximate SWC 
changes (Gentine et al., 2007, 2011), because SWC measurements of 
these two sites were not available, or had long-term gaps (more than 2 
months) due to malfunctioning issues. The fraction of the 
canopy-absorbed PAR (fPAR) was quantified using multiple sensors 
under and above the canopy (Goulas et al., 2017; Kim et al., 2019; Yang 
et al., 2015). LAI was acquired from the MCD15A3H dataset through 
Global Subset Tool (https://modis.ornl.gov/globalsubset/), with the 
resolution of 500 m and 4-day. We extracted the LAI data from the pixel 
where the site is located in. NEE was measured by the EC technique and 
went through quality control procedures (Papale et al., 2006). Here, we 
did not fill NEE gaps, but only used good-quality NEE observations to 
avoid any circularities. NEE is gap-filled using its relationship with 
environmental inputs (Aubinet et al., 2012), while here, NNSIF was 
trained to learn this relationship. Thus, using gap-filled NEE to train 
NNSIF causes circularities. We also partitioned NEE using standard NT 
and DT methods by REddyProc (Wutzler et al., 2018). Tair was selected 
as the driving temperature for NT and DT. For details about the instru-
mentation, the reader is referred to Munger and Wofsy (2021), Goulas 
et al. (2017), and Hwang et al. (2020). 

2.3. Synthetic dataset 

In the real world, the true GPP and ER during daytime are unknown. 
Hence, an analysis based on synthetic data, which provides a reference 
for GPP and ER, is used to evaluate NNSIF, NT, DT, and NNnoSIF. We 
generated synthetic data using the Soil-Canopy-Observation of Photo-
synthesis and Energy fluxes (SCOPE). SCOPE is a radiative transfer 
model that simulates ChlF of leaf and canopy, and CO2 fluxes between 
soil, vegetation, and atmosphere (Van der Tol et al., 2014; van der Tol 
et al., 2009). We ran SCOPE (v1.73) at Harvard Forest to simulate GPP, 
ER, NEE, and SIF at the hourly scale. We think that the simulation of one 
site is sufficient to test whether NNSIF can learn the functional re-
lationships implemented in SCOPE, as SCOPE is not structurally 
changing from one site to another (only the climatic inputs and pa-
rameters are changing). The simulation period was the same as the 
observation (growing season in 2013 and 2014). The canopy-scale 
SCOPE outputs were used in this study. We drove SCOPE using meteo-
rological and LAI time series. Details about the inputs and parameters of 
SCOPE simulation are summarized in Table S2. 

The procedure to extract canopy-scale GPP and ER from SCOPE 
outputs is as follows. For the GPP simulation, we extracted the outputs of 
canopy apparent photosynthesis, i.e., carboxylation minus photorespi-
ration (Wohlfahrt and Gu, 2015). For the ER simulation, it was the sum 
of two parts: leaf respiration (Rleaf) and soil respiration (Rs). SCOPE 
simulates Rleaf using the Lloyd and Taylor equation driven by canopy 
temperature (Tcanopy) (Lloyd and Taylor, 1994). The Rref parameter of 
Rleaf was downregulated by the maximum carboxylation rate (Vcmax) 

(Collatz et al., 1991). With regard to the Rs part, the original SCOPE 
model forces Rs to zero. Hence, we used Eq. (4) driven by Tsoil to model 
Rs (Migliavacca et al., 2011). Note that precipitation is used in the 
original model of Migliavacca et al. (2011), but in SCOPE, SWC is 
directly used to downscale Vcmax (Bayat et al., 2019). Thus, we used SWC 
instead to describe the regulation of moisture on Rs, following Zhang 
et al. (2018). In Eq. (4), E0 is temperature sensitivity. Tref is the reference 
temperature (15 ◦C). T0 is constant of −46.02 ◦C. SWC0 is the soil field 
capacity. Here, the stem and root respiration were not included, as 
SCOPE does not explicitly simulate the biochemical processes of plant 
stem and root. 

Rs = Rref × exp
(

E0

(
1

Tref − T0
−

1
Tsoil − T0

))

×

(

1 −

(
SWC
SWC0

− 1
)2

)

(4) 

The SCOPE-simulated ER and GPP have similar magnitudes to the in- 
situ data partitioned by NT (Fig. S2), with an R2 of 0.83 for GPP and an 
R2 of 0.54 for ER. We believe that this agreement is acceptable, as even 
for the in-situ ER and GPP, their estimates still show noticeable differ-
ences among different partitioning methods (Fig. 5). For example, the R2 

between NT and DT is 0.92 for GPP and 0.58 for ER at Harvard Forest 
(Fig. S3 (b, f)), which is similar to the above-mentioned R2 between the 
SCOPE simulations and NT estimates. To imitate in-situ data, we added 
artificial noises to the simulated NEE and SIF. For SIF, we added a 
random Gaussian noise with zero mean and 0.1 mw m−2 nm−1 sr−1 

standard deviation, based on typical SIF retrieval errors. For NEE, the 
noise have two components: (1) a white Gaussian noise with zero mean 
and 0.1 μmol m−2 s−1 standard deviation; (2) a heteroscedastic random 
noise that increases with NEE magnitude (~ 8% of the NEE magnitude) 
(Lasslop et al., 2008; Tramontana et al., 2020). 

We applied NNSIF, NT, DT, and NNnoSIF methods to partition the 
SCOPE-simulated NEE, and then the partitioned ER and GPP were 
compared against the SCOPE simulations. The inputs for these four 
methods were the same as those used to partition in-situ NEE of the three 
sites, except that Wd was not included for NNSIF and NNnoSIF, as Wd was 
not available from SCOPE simulations. We found that NNSIF can suc-
cessfully emulate SCOPE in predicting GPP (R2=0.991), ER (R2=0.858), 
NEE (R2=995), and SIF (R2=0.988) (Fig. S4). 

In addition to normal climate conditions, we also tested the NNSIF 
performance under severe water and heat stress where the GPP-SIF 
relationship can be highly non-linear. We used the SCOPE model to 
run a 3-month extremely drought simulation. The input climatic data are 
visualized and summarized in Fig. S5: Tair was gradually increased from 
20 ◦C to over 40 ◦C, while both SWC and RH gradually decreased over 
time. The air VPD can be extremely high and can even approach 10 kPa. 
As a result, the SCOPE-simulated GPP-SIF relationship is highly non- 
linear, and this relationship is even slightly inverted at the highest 
VPD (Fig. S6 (a)). We found that NNSIF still shows good performance in 
predicting GPP (R2=0.967), ER (R2=0.857), NEE (R2=0.987), and SIF 
(R2=0.977), although the R2 value is slightly lower than the original 
experiment under normal climate simulations (Fig. S7). 

2.4. Statistical analysis 

With regard to the first goal of NNSIF, i.e., partitioning NEE, we 
compared GPP and ER partitioned by NNSIF with those derived by NT, 
DT, and NNnoSIF. The comparison was performed on both synthetic and 
in-situ data. We also compared the ecosystem LUE estimated by all 
methods. LUE was calculated as normalizing GPP by canopy-absorbed 
PAR (APAR). To avoid outliers, we selected LUE within the range of 
1–99th percentiles. Besides, we specifically verified whether these four 
methods can correctly retrieve the functional relationship between cli-
matic drivers and CO2 fluxes (e.g., the GPP-PAR relationship). This 
verification was performed on SCOPE simulations which can provide the 
known (as imposed) reference relationship. To obtain the functional 
relationship, we firstly sorted data into 20 bins according to quantiles of 
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the climatic driver, then we averaged the climatic driver and the CO2 
flux in each bin to get the response curve. 

As for the second goal of NNSIF, i.e., unraveling the ecosystem-scale 
GPP-SIF relationship, we performed linear regression to evaluate the 
GPP-SIF relationship retrieved by NNSIF, NT, DT, and NNnoSIF. Further-
more, we applied Pearson correlation to analyze the relationship be-
tween the GPP/SIF ratio and physiological factors. To avoid outliers, 
GPP/SIF ratio within the range of 1–99th percentile was selected. For 
both linear regression and Pearson correlation, a significant threshold of 
0.05 was used to decide whether to reject a null hypothesis. 

Furthermore, we analyzed how the NNSIF performance was affected 
by the uncertainties stemming from the input data (i.e., SIF, NEE, and 
LAI). We imposed noises to both NEE and SIF SCOPE simulations, and 
the noise intensity gradually increased from level1 to level10. Gaussian 
noises were added to SIF. The standard deviation of noises ranged 
0.05–0.5 and increased by 0.05 per level, which approximately corre-
sponded to 10–50% of the SCOPE SIF magnitude. Heteroscedastic noises 

were added to NEE. The standard deviation of noises ranged from 4% to 
40% of NEE magnitude, and increased by 4% per level. We then 
explored how the increasing uncertainties from SIF and NEE affected the 
accuracy of NNSIF (Fig. S16). In addition to SIF and NEE, we also 
analyzed the effect of LAI uncertainties (Fig. S17). Gaussian noises were 
added to the input LAI data, and the noise standard deviation gradually 
increased from 0.2 to 2 across 10 levels, which approximately corre-
sponds to 10–50% of the LAI magnitude. 

3. Results 

3.1. Partitioning of CO2 fluxes using machine learning 

3.1.1. Comparisons of ecosystem photosynthesis among different methods 
As for GPP estimation, we find high R2 among NNSIF, NT, DT, and 

NNnoSIF methods (Fig. S8). However, high R2 is not sufficient to indicate 
good performances of these four methods, as high R2 can be mainly due 

Fig. 2. The performance of NNSIF, NT, DT, and NNnoSIF in estimating SCOPE GPP and LUE. Here, the NEE partitioning is based on SCOPE simulations which can provide 
the “truth” LUE. The SCOPE simulations are based on data from the Harvard Forest site. The first and second rows: comparisons of GPP (a-d) and LUE (e-h) between 
SCOPE references and the predictions of four methods. The brown solid lines denote the fitted regression models, and black dashed lines denote the diagonal lines. 
The third and fourth row: the GPP-PAR (i–l) relationship and the LUE-VPD (m–p) relationship retrieved by the four methods. Shaded areas indicate the standard 
deviation of the relationship. Dark dashed lines denote the SCOPE relationship. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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to the strong diurnal and seasonal cycles driven by APAR. The LUE 
comparison, which reduces the effects of the strong diurnal and seasonal 
cycles, can more stringently evaluate the method performance in esti-
mating ecosystem photosynthesis. Among four methods, NNSIF shows 
the highest agreement with the reference SCOPE LUE, with the highest 
R2 and the lowest RMSE (Fig. 2(e)). In addition, we also take only 
midday GPP (11:00–13:00 local time) for comparison, which can reduce 
the diurnal cycle effect. The midday GPP comparison shows that NT and 
NNSIF achieve slightly better agreement with the reference SCOPE GPP 
based on the R2 and RMSE values (Fig. S9). 

Moreover, we evaluate whether different partitioning methods 
correctly learn the functional relationships implemented in SCOPE. All 
four methods can effectively reproduce the GPP-PAR relationship (Fig. 2 
(i, l)) as well as the LUE-VPD relationship (Fig. 2 (m–p)). However, the 
GPP response curve retrieved by NNnoSIF shows relatively large de-
viations at higher PAR conditions (Fig. 2(l)), and the DT method slightly 
underestimates LUE at humid conditions (low VPD, Fig. 2(o)). Overall, 
NNSIF performs well in retrieving the GPP-PAR and LUE-VPD functional 
relationships, across the whole range of PAR and VPD (Fig. 2 (i, m)). 

When compared to standard methods, NNSIF has better agreement 
with DT than with NT for LUE estimation at the (half-)hourly time scale, 
and this trend is consistent for both synthetic (Fig. 3 (a, b)) and in-situ 
(Fig. 3 (d–e, g–h, j–k)) data. One reason for this higher agreement with 
DT is that the DT GPP is estimated directly by the fitted model and thus 
has less noise, while the NT GPP is estimated indirectly by subtracting 
the estimated ER from NEE observations, which is more susceptible to 
the measurement noises especially at the half-hourly time scale. After 
aggregating to daily and weekly scales, NNSIF shows higher correlations 
with NT than with DT (except the Cheorwon site), as most of the high- 
frequency noises are removed by the temporal aggregation. Besides, 
the NNSIF-estimated LUE shows good consistency with NNnoSIF, with an 
R2 no less than 0.64 (Fig. 3 (c, f, i, l)). 

Compared to other methods, NNSIF can better capture the instanta-
neous effect of the harvest on GPP variations. The rice paddy in 
Cheorwon was harvested in early September 2016 (DOY, 248) (Yang 
et al., 2018a). The observed SIF dramatically decreases after the harvest 
(Fig. 4(a)). As for NNSIF-predicted GPP, both its half-hourly value and 
midday average show a sudden drop following the harvest, and the 

Fig. 3. Comparisons of NNSIF-predicted LUE against LUE estimated by NT, DT, and NNnoSIF. The first row (a–c) shows comparisons of SCOPE simulations obtained from 
Harvard Forest. The other rows show comparisons of in-situ data at Harvard Forest (d–f), Avignon (g–i), and Cheorwon (j–l). Different colors denote different time 
scales. White points represent the weekly scale. Light-colored points (light brown, light green, light yellow, and light blue) represent the daily scale. Dark-colored 
points (dark brown, dark green, dark yellow, and dark blue) represent the (half-)hourly scale. Here, daily average was estimated only for days when there were at 
least 8 h LUE records, and weekly average was estimated only for weeks when there were at least 5-day records. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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half-hourly value is no larger than 10 μmol m−2 s−1 (Fig. 4 (c, d)). As for 
the other three methods, their midday average does not show a very 
sharp drop and remains at a similar magnitude to the pre-harvest values 
(Fig. 4(d)), which suggests that NNSIF is more sensitive to the rapid GPP 
variations due to harvest. 

3.1.2. Comparisons of ecosystem respiration among different methods 
As for ER estimation, NNSIF shows different consistency with the 

other three methods. NNSIF shows relatively strong consistency with 
NNnoSIF with an R2 no less than 0.57 (Fig. 5 (c, f, i, l)). When compared to 
standard methods, NNSIF has better agreement with NT than with DT for 
both synthetic (Fig. 5 (a, b)) and in-situ (Fig. 5 (d, e, g-h, j, k)) data. 
Overall, the consistency of ER estimation is evidently weaker than that 
of GPP estimation. However, despite these noticeable ER discrepancies, 
their magnitude is similar to the inherent differences between NT and 
DT methods according to the RMSE values (Fig. S3). 

When tested on SCOPE simulations, NNSIF shows good performance 
in ER estimation, especially at high temperatures (Fig. 6). NNSIF-pre-
dicted ER shows high consistency with SCOPE ER with the highest R2 

and the lowest RMSE (Fig. 6(a)). However, NT and NNnoSIF underesti-
mate ER at high Tair (Fig. 6 (d, j)), while DT underestimates ER at low 
Tair (Fig. 6(g)). The NNSIF outperformance is further corroborated from 
the retrieved ER-Tair relationship. The SCOPE ER keeps increasing with 

Tair, with higher slope (ΔER
ΔTair

) at high Tair (Fig. 6 (b, e, h, k)). Both NT and 
NNnoSIF fail to reproduce the SCOPE relationship when Tair is higher than 
the 95th percentile of nighttime Tair (Fig. 6 (e, k)). The results of NNSIF 
and DT are generally consistent with the SCOPE relationship. However, 
the DT relationship (the green solid line) shows relatively larger de-
viations from the SCOPE relationship (the black dashed line) across the 
whole Tair range (Fig. 6(h)). Overall, NNSIF shows the lowest deviations 
and can most correctly estimate the ER-Tair relationship (Fig. 6 (a, b)). 

The better performance of NNSIF demonstrates the role of the SIF 
constraint in improving daytime ER estimation. There are distinct dif-
ferences between day and night SCOPE ER distributions (Fig. 6 (i, l)). 
The driving temperatures of ER, i.e., Tsoil and Tcanopy, show different 
distributions between day and night (Fig. 6 (c, f)). Consequently, day-
time ER has higher overall values and higher ΔER

ΔTair 
slope than night ER 

(Fig. 6 (i, l)). NNnoSIF shows noticeable biases at high temperatures 
outside the night Tair range (Fig. 6 (d, e, j, k)), while NNSIF, with the 
additional SIF constraint, can better estimate daytime ER especially at 
high Tair (Fig. 6 (a, b)). 

Besides, NNSIF shows superior performance in capturing the moisture 
limitation on ER (Fig. 7). The Avignon site is Mediterranean and 
seasonally water-limited. From late June to the end of observation 
period (early July), the daily evaporative fraction (EF) abruptly declined 
with half-hourly VPD higher than 3 kPa (Fig. S10). The four methods 

Fig. 4. Time series of half-hourly (a) SIF and (b) 
GPP at the Cheorwon site. (c) and (d) are the 
zoom-in figure of the gray shadow zone in (a) 
and (b). (c) shows the diurnal variations of SIF 
and GPP partitioned by four methods during the 
7-day window before and after the harvest date. 
(d) shows midday (11:00–13:00 local time) 
average of GPP partitioned by four methods. The 
error bar indicates the standard deviation during 
the midday period. The average was estimated 
only for days without missing datapoints during 
the midday period. (For interpretation of the 
references to colour in this figure legend, the 
reader is referred to the web version of this 
article.)   
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behave differently during this short-term dry period (~20 days), as 
indicated by the dark brown points in Fig. 7. NT-predicted ER remains 
relatively high values even at low EF (Fig. 7(b)). DT-predicted ER is 
suppressed under the water stress, but it still continues the increasing 
trend with Tair under low EF conditions (Fig. 7(c)). In contrast, NNSIF- 
predicted ER slows the increasing trend when Tair approaches 20 ◦C and, 
instead, declines with Tair especially at low EF (Fig. 7(a)), indicating 
moisture limitation on ER. NNnoSIF similarly captures this temperature 
optimum effect, but it generates some abnormally high ER (higher than 
11 μmol m−2 s−1) at medium Tair and EF (Fig. 7(d)). 

3.2. The GPP-SIF relationship retrieved by NNsif 

3.2.1. The GPP-SIF relationship at different ecosystems 
NNSIF can learn any complicated relationship between GPP and SIF, 

not limited to the linear one. Here, the GPP-SIF relationships derived by 
NNSIF show different characteristics across three sites. At the (half-) 
hourly time scale, the GPP-SIF relationship of Harvard Forest is rela-
tively non-linear (Fig. 8(a)). The GPP/SIF slope slightly flattens with the 
increasing SIF, indicating a saturation effect of GPP under high irradi-
ance conditions. Besides, the R2 is improved from 0.86 to 0.87 when we 
switch from linear to hyperbolic model to fit the hourly relationship. As 
for Avignon and Cheorwon, the (half-)hourly GPP-SIF relationships are 
more linear with no obvious saturation effect (Fig. 8 (b, c)). After 
aggregating from (half-)hourly to daily and weekly scales, the NNSIF- 
derived GPP-SIF relationships demonstrate an enhanced linearity with 
increasing R2 across three sites. 

In addition, we compared the NNSIF results against previous in-situ 
studies conducted at the three sites (Goulas et al., 2017; Yang et al., 

2018a, 2015). As for Avignon and Cheorwon sites, the half-hourly 
GPP/SIF slopes predicted by NNSIF (Fig. 8 (a, b)) are close to or even 
the same as half-hourly slopes obtained from previous studies (16.75 
μmol nm sr s−1 mW−1 for Avignon, 6.16 μmol nm s−1 mW−1 for Cheor-
won). The NNSIF slope of Harvard Forest (Fig. 8(c)) is between the in-situ 
slope at 1:30PM (13.71 μmol nm sr s−1 mW−1) and 9:30AM (28.44 
μmol nm sr s−1 mW−1). These in-situ GPP/SIF slopes were obtained 
based on (half-)hourly SIF observations and GPP partitioned by the NT 
method. 

3.2.2. The responses of GPP-SIF relationship to physiological factors 
Using NNSIF, we can infer how the ecosystem-scale GPP-SIF rela-

tionship responds to physiological factors at the (half-)hourly time scale, 
e.g., illumination conditions. At Harvard Forest and Avignon, the (half-) 
hourly GPP-SIF relationship derived by NNSIF shows higher slopes and 
R2 on cloudy days than sunny days (Fig. 9 (a, b)). At Cheorwon, both 
sunny and cloudy days have a very high R2 with similar slope (Fig. 9(c)). 
We also evaluated whether this radiation effect can be observed using 
the observed SIF rather than NNSIF-predicted SIF, and found that Har-
vard Forest and Avignon sites still show higher slopes on cloudy days 
(Fig. S11 (a, b)). In addition, we conducted correlation analysis to 
quantitatively evaluate the relationship between the fraction of diffuse 
PAR (%PARdif) and the GPP/SIF ratio (i.e., the ratio of NNSIF GPP to the 
observed SIF). There are significant positive correlations between% 
PARdif and the (half-)hourly GPP/SIF ratio (p < 0.05), especially for 
Avignon with the highest correlations among three sites (Fig. S12 (d)). 

NNSIF can reveal the responses of the (half-)hourly GPP–SIF rela-
tionship to atmospheric dryness (Fig. 10). At higher VPD (denoted by 

Fig. 5. Comparisons of NNSIF-predicted ER 
against ER partitioned by NT, DT, and NNnoSIF. 
The first row (a–c) shows comparisons of 
SCOPE simulations obtained from Harvard 
Forest. The other rows show comparisons of 
in-situ data at Harvard Forest (d–f), Avignon 
(g–i), and Cheorwon (j–l). Different colors 
denote different time scales. White points 
represent the weekly scale. Light-colored 
points (light brown, light green, light yel-
low, and light blue) represent the daily scale. 
Dark-colored points (dark brown, dark green, 
dark yellow, and dark blue) represent the 
(half-)hourly scale. Here, daily average was 
estimated only for days when there were at 
least 12 h ER records, and weekly average 
was estimated only for weeks when there 
were at least 5-day records. (For interpreta-
tion of the references to colour in this figure 
legend, the reader is referred to the web 
version of this article.)   

W. Zhan et al.                                                                                                                                                                                                                                   



Agricultural and Forest Meteorology 321 (2022) 108980

10

blue points), the (half-)hourly GPP corresponding to the same SIF is 
depressed, i.e., the GPP/SIF ratio exhibits a decreasing trend with the 
increasing VPD (Fig. 10 (a–d)). This trend is consistent for both in-situ 
(Fig. 10 (a–c)) and synthetic data (Fig. 10(d)). Even for the synthetic 
data generated under extremely drought conditions, NNSIF can effec-
tively reproduce the highly non-linear GPP-SIF relationship, and can 
retrieve how this relationship responds to the changing VPD (Fig. 10(e)). 
Similar VPD response is also visible when we replace the NNSIF-pre-
dicted SIF with the observed SIF (Fig. S13), but becomes less prominent 
at Harvard Forest and Cheorwon sites (Fig. S13 (a, c)), which is partly 
due to the measurement noises in SIF observations. Furthermore, there 
are significant negative correlations between VPD and the (half-)hourly 
GPP/SIF ratio (p < 0.05) across the three sites. The correlation strength 
is moderate at Avignon and Harvard Forest, and is relatively lower at 

Cheorwon (Fig. S14 (e)). 

4. Discussion 

In this study, we developed a new framework informed by SIF that 
can partition NEE, while simultaneously retrieving the ecosystem-scale 
GPP-SIF relationship. With regard to GPP estimation, NNSIF can 
correctly learn the functional relationships (GPP-PAR and LUE-VPD 
relationships), and can better capture the rapid GPP drop following 
the harvest. For ER estimation, NNSIF shows better performance in 
retrieving the ER-Tair relationship and capturing the moisture limitation 
on ER, especially at high Tair. Furthermore, NNSIF can retrieve the 
ecosystem-scale GPP-SIF relationship, and elucidate how the GPP-SIF 
relationship responds to radiation and humidity. Overall, we believe 

Fig. 6. Performances of NNSIF, NT, DT, and NNnoSIF in estimating SCOPE ER. The SCOPE simulations are obtained from Harvard Forest. The leftmost column (a, d, g, j): 
comparisons between SCOPE ER and ER estimated by four methods. The colormap indicates the changing Tair. Brown solid lines denote fitted regression models. 
Black dashed lines are diagonal lines. The middle column (b, e, h, k): the ER-Tair relationship retrieved by four methods. Shaded areas indicate the standard deviation of 
the relationship. Dark dashed lines denote the SCOPE relationship. Red vertical dashed lines denote the 95th percentile of night Tair. The rightmost column: (c, f, i) 
show day and night distributions of Tcanopy, Tsoil, and SCOPE ER. (l) shows the SCOPE ER-Tair relationship during day and night. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of this article.) 
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this is the first study that exploits the SIF potential to partition NEE, 
without imposing any empirical assumptions on the GPP-SIF 
relationship. 

4.1. The role of SIF in CO2 flux partitioning 

One direct effect of the SIF inclusion is to improve the GPP estima-
tion. Compared to other methods, NNSIF can better capture the rapid 
GPP variations following harvest (Fig. 4) due to two reasons. First, NNSIF 
incorporates the observed SIF which is directly informative on the rapid 
variations of vegetation. The second reason is related to the model 
structure by which SIF is incorporated in NNSIF. Here, SIF is not included 
as an input for GPP estimation, but as an extra sub-module and also as 
one part of the loss function, which can more directly affect the NN 

optimization by joining the backpropagation process, i.e., the errors 
between SIF predictions and observations are used to update the NN 
weights. Indeed, we also improve NNnoSIF by including SIF as an addi-
tional input for GPP estimation. The new NNnoSIF shows improved skills 
but is still less sensitive than NNSIF in detecting the sharp drop, espe-
cially on the harvest day (DOY 248) (Fig. S15 (d)), suggesting that the 
model structure of NNSIF can better exploit the SIF information to 
constrain the GPP estimation. As for standard methods, the relatively 
coarse resolutions of the typical moving windows (NT uses 15-day 
windows, DT uses a combination of 4-day and 12-day windows) limit 
their ability to capture the instantaneous effect of harvest. However, this 
issue can be potentially alleviated in the future, by fitting parameters 
before and after the event separately. 

Another indirect but important effect of the SIF inclusion is to 

Fig. 7. The half-hourly relationship between ER and Tair at Avignon retrieved by (a) NNSIF, (b) NT, (c) DT, (d) NNnoSIF methods. The colormap indicates the changing 
evaporative fraction, a proxy for soil moisture. A quadratic polynomial model is used to fit the ER-Tair relationship. The shaded area indicates the 95% confidence 
interval. Here, Tair is used to indicate the overall temperature, as soil temperature measurements are not available at the Avignon site. 

Fig. 8. GPP-SIF relationships retrieved by NNSIF at (a) Harvard Forest, (b) Avignon, and (c) Cheorwon during the growing season. Hyperbolic (dashed lines) and linear 
models (solid lines) are used to fit the (half-)hourly relationship. The superscript ‘*’ indicates statistical significance (p < 0.05). The R2 of hyperbolic models is 0.87, 
0.87, and 0.89 for Harvard Forest, Avignon, and Cheorwon respectively. Data points, R2, and slope values are annotated in different colors for different time scales. 
White points and black fonts represent the weekly scale. Light-colored points and fonts (light green, light yellow, and light blue) represent the daily scale. Dark- 
colored points and fonts (dark green, dark yellow, and dark blue) represent the (half-)hourly scale. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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improve ER estimation, especially during daytime. NNSIF can more 
accurately retrieve the ER-Tair relationship, in particular for high Tair 
(Fig. 6). Both NT and DT assume that the fitted parameters (E0 and Rref) 
and the ER-Tair relationship remain invariant through day and night, 
which is the main reason for their deviations in the ER estimation (Fig. 6 
(l)). NT fits E0 and Rref using night data and then extrapolates to day-
time, leading to ER underestimation during daytime and at high Tair 
(Fig. 6 (d, e)). DT fits Rref using daytime data, which alleviates daytime 
ER biases. However, it applies the daytime Rref to nighttime period, 
leading to larger ER biases at night and at low Tair (Fig. 6 (g, h)). Both 
NNSIF and NNnoSIF do not rely on the prescribed empirical relationships 
of ER, and their difference is that when processing daytime samples, the 
GPP retrieval in NNSIF is additionally constrained by daytime SIF ob-
servations, and this constraint in turn indirectly affects the ER estima-
tion, especially at high temperatures. NNnoSIF underestimates ER at high 
Tair which is outside the night Tair range (Fig. 6 (j, k)). This suggests that 
when there are relatively large differences between daytime and 
nighttime Tair distributions, the only NEE constraint shows weakened 
skills in accurately estimating GPP and ER. As for NNSIF, SIF indirectly 
constrains the daytime ER through its constraint on GPP. More 

specifically, SIF can better constrain GPP, and then the estimated ER 
covaries to ensure that ER – GPP = NEE still holds true. The SIF inclusion 
enables NNSIF to substantially reduce the structural errors of standard 
methods, and to improve the accuracy of NNnoSIF, especially for high Tair 
during daytime. This advantage makes NNSIF promising to investigate 
the responses of CO2 fluxes to extreme events. 

Another advantage of NNSIF is that it can better capture the effect of 
water stress on ER. Standard methods indirectly consider the soil 
moisture effect by adjusting parameters (Rref, E0) using moving win-
dows, and they can capture the moisture limitation on ER at long time 
scales (Tramontana et al., 2020). However, for the Avignon site, the 
observed water-stressed period is relatively abrupt and short (~20 days, 
Fig. S10). The moving window-based parameterization shows limited 
skills in capturing the instantaneous effect of such short-term water 
stress. In particular, within each time window where the fitted param-
eters cannot be adjusted greatly, NT- and DT-estimated ER would simply 
increase with Tair (Fig. 7 (b, c)), as assumed by the Lloyd and Taylor 
equation used in NT and DT methods. While for NNSIF and NNnoSIF, they 
directly include the soil moisture as an input, and thus can more effec-
tively capture the decline of ER with Tair under water stress (Fig. 7 (a, 

Fig. 9. The (half-)hourly GPP-SIF relationship derived by NNSIF on sunny and cloudy days during the growing season at (a) Harvard Forest, (b) Avignon, and (c) Cheorwon. 
Cloudy days are defined as daily mean%PARdif > 50%. Linear models are fitted for sunny (solid lines) and cloudy (dashed lines) days separately. 

Fig. 10. The (half-)hourly GPP-SIF relationships derived by NNSIF under different VPD conditions during the growing season. The colormap in (a-e) indicates the changing 
VPD. (a–c) show NNSIF results obtained from in-situ data at (a) Harvard Forest, (b) Avignon, and (c) Cheorwon. (d) The NNSIF results obtained from SCOPE sim-
ulations at Harvard Forest. (e) The NNSIF results obtained from SCOPE simulations under extremely drought conditions. Solid lines denote the fitted linear models, 
and the dashed line denotes the fitted hyperbolic model. 
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d)). Besides, NNSIF improves the accuracy of NNnoSIF and avoids the 
abnormally high ER estimates (Fig. 7 (a, d)). The better performance of 
NNSIF suggests that the ML approach, combined with SIF information, 
can better estimate moisture dependences of the NEE partitioning. 

4.2. Physiological controls on the ecosystem-scale GPP-SIF relationship 

The objectives of NNSIF are not limited to better partitioning NEE, but 
also to derive the ecosystem-scale GPP-SIF relationship. We believe that 
NNSIF does not artificially enforce stronger linear relationships between 
GPP and SIF. This statement can be supported by two examples. First, 
when tested on synthetic data generated under extremely drought 
conditions, NNSIF can correctly reproduce the highly non-linear GPP-SIF 
relationship (Figs. S6 and 10(e)), suggesting that it goes beyond the 
simple linear GPP-SIF scaling. Second, when tested on in-situ data, NNSIF 
can derive either linear or non-linear GPP-SIF relationships across 
different ecosystems (Fig. 8). Hence, we believe that the NNSIF-retrieved 
GPP-SIF relationship is unbiased and informative. 

NNSIF can not only retrieve the GPP-SIF relationship, but also unravel 
how this relationship responds to physiological factors. The GPP/SIF 
ratio predicted by NNSIF increases at higher%PARdif conditions (Fig. 9). 
This illumination effect has also been reported across different ecosys-
tems (Chen et al., 2020; Kim et al., 2021; Li et al., 2020; Magney et al., 
2019), which is associated with different responses of LUE and effective 
fluorescence yield (SIFyield, i.e., SIF

APAR). Higher%PARdif allows for deeper 
light penetration into the canopy, which enhances the overall canopy 
LUE and thus increases the GPP/SIF ratio. Additionally, LUE can be 
enhanced due to the NPQ suppression under lower irradiance of cloudy 
days (Maguire et al., 2020; Porcar-Castell et al., 2014). Oppositely, 
canopy NIR reflectance is enhanced by higher%PARdif around the solar 
noon (Ryu et al., 2010), which likely increases fesc according to the 
empirical fesc equation (Zeng et al., 2019). This can further increase 
SIFyield and decrease the GPP/SIF ratio. Here, NNSIF shows that LUE 
responses dominate over SIFyield responses, and the GPP/SIF ratio in-
creases on cloudy days. 

The NNSIF-retrieved GPP/SIF ratio exhibits a significant decreasing 
trend with the increasing VPD (Fig. 10). Similarly, the Cheorwon in-situ 
study reported such responses to RH (Yang et al., 2018a). This moisture 
effect is associated with the stomatal responses to atmospheric dryness. 
Under water stress, plants decrease the stomatal conductance to alle-
viate water loss, thereby decreasing GPP and LUE (Ball et al., 1987; 
Collatz et al., 1991; Katul et al., 2010; Medlyn et al., 2011). In parallel, 
SIFyield is relatively insensitive to stomatal variations and shows only 
moderate changes (Gu et al., 2019; He et al., 2020). As a result, the 
GPP/SIF ratio decreases under water stress. This stomatal effect has been 
reported by in-situ studies at the leaf, canopy, and ecosystem scales 
(Flexas et al., 2002; Helm et al., 2020; Marrs et al., 2020; Wohlfahrt 
et al., 2018), suggesting that the linear GPP-SIF scaling, as typically 
imposed in satellite studies, may collapse under water stress. Here, 
NNSIF can effectively retrieve the moisture dependence of the GPP-SIF 
relationship, whether tested under normal climates or extremely 
drought conditions (Fig. 10 (a–e)). 

4.3. Uncertainties and advantages of this study 

The uncertainties from the input data (e.g., SIF) potentially affect the 
accuracy of the NNSIF model. Hence, we impose noises with increasing 
levels to the SIF and NEE in the SCOPE simulations, and examine their 
effects on the NNSIF performance. At the highest noise level, the GPP, 
NEE, and SIF predictions still show good accuracy, with R2 higher than 
0.9 (Fig. S16). The ER prediction is more susceptible to noises, but still 
shows acceptable accuracy (R2=0.6, RMSE=1.1 μmol m−2 s−1) at the 
highest noise level (Fig. S16 (a, c)). In particular, we find that NNSIF- 
predicted SIF and NEE are actually much closer to the “true” values, 
compared to the original noisy SIF and NEE that are used to train NNSIF 

(Fig. S16 (b, d)). This suggests that NNSIF can filter out most of the 
noises, and extract the meaningful deterministic signal from the highly 
noisy data. This advantage implies the potential of NNSIF to be imple-
mented at larger spatial scales using satellite SIF, which typically has 
higher noise levels than field observations used here. Similarly, we also 
impose increasing Gaussian noises to the input LAI data, and find that 
NNSIF shows good robustness to the LAI uncertainty (Fig. S17). In 
addition to the uncertainties stemming from input data, the NNSIF model 
itself still has structural uncertainty due to the randomness in its weight 
initializations and in the training process. We quantified the structural 
uncertainty by training an ensemble of models. The standard deviation 
in most cases is smaller than 0.6 μmol m−2 s−1 for GPP (Fig. S18 (b)), and 
smaller than 0.25 μmol m−2 s−1 for ER (Fig. S18 (d)), which is lower 
than the NNnoSIF structural uncertainty (Fig. S19), and can be considered 
negligible compared to the errors due to input noises. 

There are still some limitations in NNSIF despite its promising results. 
First, we think our current model cannot explicitly simulate the light 
inhibition on ER (Kok effect) (Keenan et al., 2019; Wehr et al., 2016; 
Wohlfahrt et al., 2005). In the current version of NNSIF, light intensity is 
not included as a predictor for ER estimation, as the direct inclusion 
would make the estimated ER replicate the strong diurnal cycle of PAR, 
which is unrealistic, as there is some equifinality in the entire model 
when PAR is used for both GPP and ER estimation. Future studies could 
include the radiation effect via a more subtle way, so as to further exploit 
the SIF potential in detecting the Kok effect. Second, although NNSIF is 
robust to the random Gaussian noises of LAI data, the model perfor-
mance could still be potentially compromised if the LAI bias is varying 
seasonally, e.g., the maximum of the estimated GPP and ER could be 
flawed if the LAI bias only occurs during the peak growing season. Also, 
some ecosystems have different phenological changes between over-
story and understory species. In this case, the satellite LAI potentially 
biases the estimated GPP and ER of the whole ecosystem, as it mainly 
reflects the phenological changes of the overstory. Hence, the quality of 
LAI data should be carefully examined when applying NNSIF in future 
studies, especially for sites with heterogeneous species. Finally, 
although NNSIF outperforms other methods when testing on SCOPE 
simulations, the quality of these results is dependent on how realistic our 
synthetic simulations are in representing the functional relationships of 
the real-world ecosystem (e.g., GPP-SIF and ER-Tair relationships). Also, 
among the tested methods, NNSIF has the structure most similar to 
SCOPE as they both simultaneously simulate GPP and SIF. It requires 
further investigation to evaluate whether NNSIF holds similar out-
performance when tested on other ecosystem models. 

A recent study also used SIF observations to partition NEE (Kira et al., 
2021). However, there are distinct differences between that method and 
NNSIF. Firstly, similar to standard partitioning methods, their method 
also relies on empirical models which have structural errors, while NNSIF 
learns purely from data without empirical models. This can be a major 
advantage during extreme events and human disturbances where these 
empirical models could collapse. Secondly, contrary to Kira et al. 
(2021), we imposed no empirical formulations on the GPP-SIF rela-
tionship, but let NNSIF learn this relationship and its physiological re-
sponses. These learned functions can be then leveraged with satellite SIF 
to achieve a better global-scale GPP estimation. 

5. Conclusions 

In this study, we developed a novel framework, NNSIF, to tackle two 
problems simultaneously: (1) partitioning NEE, while (2) learning the 
GPP-SIF relationship at the ecosystem scale. NNSIF was compared 
against standard partitioning methods and NNnoSIF, using synthetic and 
field data. Due to the SIF inclusion, NNSIF shows better performance in 
four aspects: (1) it more accurately retrieves the ER-Tair relationship, 
especially at high Tair, (2) it more effectively captures the moisture 
limitation on ER, (3) it better estimates the LUE variations to stress and 

W. Zhan et al.                                                                                                                                                                                                                                   



Agricultural and Forest Meteorology 321 (2022) 108980

14

(4) it uniquely captures the sudden GPP drop after harvest. Furthermore, 
NNSIF can retrieve the ecosystem-scale GPP-SIF relationship, and eluci-
date how this relationship responds to radiation and humidity. 

As far as we know, this is the first effort to exploit the potential of SIF 
for NEE partitioning, without an empirical formulation of the GPP-SIF 
relationship. The learned insights are expected to be useful for 
achieving a better global-scale GPP estimation with satellite SIF. The 
superior performance of NNSIF suggests that the ML approach, combined 
with SIF information, holds promising ability to solve the longstanding 
NEE partitioning problem. Future studies could further exploit the 
power of ML and SIF by incorporating physical knowledge, e.g., using a 
hybrid physics-machine learning approach (Reichstein et al., 2019), in 
order to achieve more accurate NEE partitioning. 
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