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Abstract: Sensor networks have dynamically expanded our ability to monitor and study the world.
Their presence and need keep increasing, and new hardware configurations expand the range of
physical stimuli that can be accurately recorded. Sensors are also no longer simply recording the
data, they process it and transform into something useful before uploading to the cloud. However,
building sensor networks is costly and very time consuming. It is difficult to build upon other
people’s work and there are only a few open-source solutions for integrating different devices and
sensing modalities. We introduce REIP, a Reconfigurable Environmental Intelligence Platform for fast
sensor network prototyping. REIP’s first and most central tool, implemented in this work, is an open-
source software framework, an SDK, with a flexible modular API for data collection and analysis
using multiple sensing modalities. REIP is developed with the aim of being user-friendly, device-
agnostic, and easily extensible, allowing for fast prototyping of heterogeneous sensor networks.
Furthermore, our software framework is implemented in Python to reduce the entrance barrier for
future contributions. We demonstrate the potential and versatility of REIP in real world applications,
along with performance studies and benchmark REIP SDK against similar systems.

Keywords: heterogeneous sensor networks; open-source; multi-modal; Internet of Things (IoT); SDK;
modular API; Python; multiprocessing

1. Introduction

Sensor networks have expanded our ability to monitor and study the world. They
have been used for a wide range of applications, such as monitoring air pollution [1], urban
noise [2] or energy management of smart buildings [3]. As their use cases expand, sensor
networks become more complex and powerful, enabling a new range of physical stimuli to
be accurately recorded, processed, ingested and analysed. However, implementing sensor
networks is an enormous endeavour with high cost in time and resources. Many decisions
have to be made, from which devices to use to which protocols to employ for connecting
them. In addition, the deployment and upkeep of sensor networks is critical and time
consuming, which requires sophisticated monitoring and alerting tools. Nowadays, it is
difficult to build on top of other people’s work as there are few accessible open-source
solutions suitable for integration into different devices, leading to countless hours of
engineering and software design invested every time.

Of note is the case of high throughput sensor applications that incorporate audio or
video data capture. Multithreading is typically needed to enable concurrent data capture,
processing and writing to disk. If not handled correctly multiple threads accessing hardware
devices or disk locations can lead to race conditions that can result in data corruption or
even hardware freezes. Race conditions and hardware lockups can be incredibly difficult
to identify and diagnose and are usually only addressed by more experienced developers
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rather than domain specific researchers implementing sensors networks. Sensor networks
deployed externally in hard to reach locations have a critical need for stability over long
periods of time and are particularly sensitive to these kinds of thread-borne failures, which
can manifest at arbitrary times, often after many hours, weeks or even months of operation.
The cost of addressing these failures in the field is high; thus, ensuring stable code operation
is key.

REIP is a Reconfigurable Environmental Intelligence Platform for fast sensor network
prototyping, including an efficient and scalable sensor runtime. Given a sensing application
and a set of requirements, REIP aims to alleviate the work of designing a remote sensor
network by providing tools for sensor node design, software and hardware integration,
bandwidth management, and other time-costly aspects.

In this work, we present the first and central tool of REIP referred to as the REIP
SDK (or software framework)—a modular API containing a set of re-usable, plug-and-play
software blocks that integrate solutions for different hardware and software components
by following the best practices. Moreover, we implement this API as a flexible, open-
source software framework in Python, with the goal of it being user-friendly and, most
importantly, to encourage contributions and extensions in the future. Its block libraries
can also serve as a reference on how to implement different aspects of the sensor software
even when users choose/need to build a custom solution. (The repository is hosted at
https://github.com/reip-project/reip-pipelines (updated on 25 April 2022)).

It should be noted that our work is aimed at building sensors with edge computing
capabilities of Linux-based high performance SBCs (Single Board Computers), such as the
NVIDIA Jetson [4] or Raspberry Pi [5,6]. The amount of data generated by modern sensing
platforms (especially those containing video cameras) is such that it is often infeasible to
upload all of it to the cloud for later processing. On-the-edge real time processing of sensor
data is required to filter out the background noise or generate more compact representations
of the data, and in such scenarios an efficient utilisation of the hardware capabilities offered
by the computing platform is key. REIP SDK was designed to have minimal performance
overhead on such platforms and offers the user full control over the execution of data
acquisition of the processing pipelines.

The contributions of this work are listed in the following:

1. A concept of the REIP platform for fast prototyping of heterogeneous sensor networks;
2. An open-source implementation of the REIP SDK for rapid development of multi-

modal sensors with edge computing capabilities;
3. Performance evaluation of the REIP SDK under different configurations, including

comparison with other existing software frameworks;
4. Extensive benchmarking results from different hardware platforms demonstrating

minimal overhead and scalability of the REIP SDK;
5. A case study highlighting the utility of the REIP SDK in designing multimodal sensors.

The structure of the paper is as follows: in Section 2, we discuss how REIP as a
platform and the REIP SDK stand in relation to existing solutions; in Section 3, we describe
the design approach and API of the REIP SDK; in Section 4, we present performance studies
regarding concurrency and overhead, and report the performance of the REIP SDK on
different hardware platforms. Furthermore, we contrast the performance of our SDK to
similar solutions for a representative use case in Section 4.1.5. In Section 5, we present an
example of using REIP in a real world setting and discuss the potential for the platform’s
use in multi-modal sensing applications. Finally, we provide concluding remarks and a
vision of future components of REIP (SDK) in Section 6.

2. Related Work

Sensor networks are being used in a large range of applications, each with varying com-
puting requirements and ranging from sensing a single modality with low data loads (e.g.,
intermittent air quality sensing [7]) to more complex and heterogeneous sensor networks
with larger data flows and computing requirements (e.g., audio-visual traffic monitoring [8]

https://github.com/reip-project/reip-pipelines
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or sports analytics [9]). Existing frameworks for sensor network development are typically
designed to work on a narrow range of requirements, e.g., low data volumes [10] or large
computing resources [11]. As sensor networks become more common, and expand their
sensing modalities, along with the applications they serve, these frameworks fall short
in terms of flexibility and re-usability across different hardware platforms. Table 1 pro-
vides a feature comparison of different existing sensor network development platforms
(top half) as well as software frameworks for building data acquisition and processing
pipelines (bottom half). We emphasise that all these projects have their own, sometimes
opposite, design goals and can often be complementary to what is proposed in our work.
Nonetheless, we try to assess every project on all seven criteria to provide as complete
an overview as possible. When the framework can not be evaluated directly, because it
depends on custom hardware or is not open source, we rely on the results reported in
the corresponding publications materials. In the following section, we describe the most
relevant sensor network platforms, what they excel at, and how they are different from
REIP (top half of Table 1).

Table 1. Related works feature comparison. The features include (from left to right): open source
availability; user-friendly API/low barrier for entry; support of multiple sensing modalities; ability
to easily add new features or sensing modalities (extensible); ability to handle large amounts of data
(scalable); sensor level integration (HW/SW); and whether the framework can be used with various
computing platforms and sensor devices (device-agnostic). The Xand × symbols denote whether the
feature is present or not in each framework. The parenthesis indicate that the feature is present in the
given framework but it does not excel at it, or that the framework could possibly be used but it was
not designed to have such feature. A question mark means no assessment.

Project Name Open-Source Simple API Multimodal Extensible Scalable HW/SW Device-Agnostic

FIT-IoT Lab [12] X X X × X X ×
FIESTA IoT [13] × × X × X X X

Signpost [14] X (X) X X × X ×
SensorCentral [15] × ? X X X × X

Array of Things [16,17] X (X) X X × X ×
WaspMote [18] X X X (X) × X ×
The USC [19] × × ? ? X X ?
FIWARE [20] X (X) X (X) × × X
DDFlow [21] X (X) (X) (X) (X) × X

EdgeProg [22] × ? × × (X) (X) (X)
Caesar [23] × ? × × ? × (X)

Waggle [24,25] X X X X × X (X)
Apache Ray [26] X X (X) (X) (X) × (X)

Celery [27] X X (X) X × × X
Spotify Luigi [28] X X × × × × (X)

GStreamer [29] X × (X) (X) X × (X)
NVIDIA DeepStream [30] X × X (X) X (X) ×

FFmpeg [31] X × (X) × (X) × (X)
REIP (SDK) X X X X X X X

2.1. Sensor Network Platforms

Solutions for the sustainable and reusable development of sensor networks have been
explored before in the context of industry as well as in academia. Different alternatives have
been proposed, which tackle common challenges such as hardware/software (HW/SW)
integration and/or the use of heterogeneous devices, being open-source with user-friendly
API, etc.

Among notable platforms with scalable HW/SW integration is FIT-IoT Lab [12], which is
a test-bed available for researchers addressing wireless communications in sensor networks
and low power routing protocols, with embedded and distributed applications. However,
it is not device-agnostic, as only a limited set of sensors are supported with no extensibility.
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Similarly, FIESTA IoT [13] is a meta-testbed IoT/cloud infrastructure designed for the
submission of experiments over interconnected hardware testbeds using a single set of
credentials. Although it is scalable, it still lacks an extensible and open-source API and thus
relies on proprietary testbed deployments associated with the institutions in the FIESTA
IoT Consortium.

Other solutions such as Signpost [14], which is an extensible solar energy-harvesting
modular platform designed to enable city-scale deployments, are not device-agnostic
and only work with the customised sensors they provide. It also requires a considerable
amount of engineering to reproduce a sensor network in this configuration. In contrast,
SensorCentral [15] is a device-agnostic, multimodal sensor platform but it does not consider
HW/SW integration at the sensor level and is not open-source for the research community
to use.

The most similar to the REIP platform is the Array of Things (AoT) [16,17], an urban
sensing system designed to collect real-time data from the environment leveraging a
sensor platform called Waggle [24]. The AoT comprises an open-source API with multiple
sensing modalities; however, it does not meet the device-agnostic criteria, as it depends
heavily on the Waggle platform which itself cannot be easily produced at scale by other
institutions/researchers.

Similarly, WaspMote [18] offers a modular hardware and software architecture integra-
tion, with an open-source API to create its application pipelines. Some popular use cases
for the system include smart cities, water and agriculture applications, most of which utilise
low bandwidth wireless technologies such as LoRa or ZigBee. WaspMote was designed for
low volume IoT applications on constrained and generally battery powered edge devices
such as Micro Controller Units (MCUs), which are not typically suited for processing high
volumes of audio or video data [32]. REIP, in contrast, is targeting higher performance
Linux-based SBCs to tackle such data intensive sensing applications.

The USC test-bed [19] currently under construction is to be a scalable HW/SW inte-
grated sensor network with sensors, actuators and wireless radios to support experimental
research on sensing, processing, algorithms and software for IoT. However, an open-source
codebase and user-friendly API are so far not announced as part of their design goals.

Ultimately, the aim of REIP is to provide a sensor network development platform that
meets all of the before-mentioned criteria in a balanced way. As the first step, we implement
and present in this work the REIP SDK—an open-source device-agnostic SDK/API, that
supports multiple sensing modalities and hardware/software integration, and which is
not only user-friendly but is also scalable and extensible. The following section details
existing software frameworks that are relevant to the creation of data acquisition/process-
ing pipelines such as the ones created using the REIP SDK for sensing platforms with edge
computing capabilities (bottom half of Table 1).

2.2. Software Pipeline Frameworks

It is natural to develop sensor software as a data acquisition/processing pipeline since
they typically contain a data source (e.g., a camera), some form of data processing and,
often, a network layer (although some sensors are standalone devices that store data
locally). There exists a variety of software frameworks for building pipelines in different
application domains but none are out-of-the-box a good fit for building a software stack
with real-time performance on sensors with edge computing capabilities, in particular,
modern SBCs. Internet of Things (IoT) pipeline frameworks (e.g., FIWARE [20]) are mainly
designed to work with multiple streams of small data packets, where the computational
cost of data serialisation is not a major concern. Other big data frameworks, such as
Apache Airflow [33] or Ray [26], are developed for handling large volumes of data across
computing clusters, and are not suitable for running in real-time on IoT devices because
of large performance overhead and non-trivial compilation steps on embedded systems.
Multimedia pipeline frameworks such as GStreamer [29] are designed for highly-efficient
multimedia applications, but their implementation and documentation are difficult to
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understand for anyone who is not an expert, and thus are time consuming or in some cases
not practical to extend to more specialised sensing applications.

We elaborate on different existing software pipeline frameworks in the following:

IoT Frameworks

IoT software frameworks for building sensor runtimes are mainly designed in a light-
weight manner, assuming small packets of data, e.g., sporadic IoT events or low volume
data streams such as temperature measurements [34]. They do not scale well to larger data
streams, such as video processing with machine learning on the edge [35].

FIWARE [20] is an open-source solution with a focus on smart city applications. It
makes use of multiple programming languages, and the community provides docker
images of various implementations with different run-time requirements. Because of this
versatility, extending FIWARE for custom implementation requires full-stack development
knowledge of these languages (e.g., Java, Node.js, C++ and Python), which implies a steep
learning curve [36]. The limitations of FIWARE have been highlighted by performance
evaluations of the platform [37]. Users state a high barrier to entry and the platform shows
high performance with low volume event data but introduces latency when operating over
larger scale wireless sensor networks. DDFlow [21], a visual and declarative programming
abstraction, is a significant contribution to heterogenous IoT networks. Its goal is to provide
a flexible programming framework without burdening users with low level hardware and
network details, such as load balancing. The runtime interface utilises available resources
to dynamically scale and map an IoT application similar to EdgeProg [22]. While DDFlow
can be used for multi-modal sensing, the library is very high level and does not currently
have the capabilities to facilitate high throughput application pipelines [38].

Other solutions, such as Caesar [23], are either not open-source and lack HW/SW
integration, or are simply designed to handle small data loads as is the case with Waggle [25].
In addition, Caesar is limited to activity recognition using cameras as an application only
and, while supporting multiple modalities, Waggle relies on the builtin parallelisation
and data serialisation libraries in Python, which make it impractical to use for high data
throughput applications. The REIP SDK, in contrast, offers multiple parallelisation and
data serialisation strategies to best match the application needs (Section 4).

Big Data Frameworks

Distributed big data frameworks have gained traction and have been under heavy de-
velopment in academia and industry for their ability to concurrently process large amounts
of data. These frameworks, including Apache Ray [26], Spark [39], Celery [27] and Spotify’s
Luigi [28], provide many of the concepts we are looking for with regards to the modular
design of complex pipelines. However, the intended use-case of these frameworks is differ-
ent in that it focuses on task scheduling, tracking, dependency resolution, and coordination
across a cluster of machines. These lead to additional serialisation and increased latency
that are unnecessary on a single local device, causing difficulty in scaling pipelines to fit
constrained devices [40]. Ultimately, they were designed for use on the server-side and are
much better suited for aggregating the data extracted from sensing platforms, rather than
running on them.

The most comparable framework for our target use case is Apache Ray. Ray is a
universal API for building distributed applications that enable end users to parallelise
machine code across multiple CPUs and machines [41]. The foundational library that Ray
is built on is Apache Arrow [42], a data management library focused on the fast movement
and processing of large amounts of data, which includes their own highly efficient array
serialisation formats [43]. Part of Arrow’s offering is a shared memory server called Plasma
Store [44], which supports memory mapping on Unix-based devices to minimise the
overhead of data serialisation in multiprocessing applications. While these tools are very
useful for facilitating multi-tasking applications, Ray and other big data libraries were
designed to run on larger computing clusters and are too heavy to scale to edge devices.
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REIP’s software framework capitalises on parts of these existing solutions (e.g., the Plasma
Store) suitable for efficient sensor development while remaining lightweight and accessible
for lower power embedding platforms.

Multimedia Frameworks

Highly popular multimedia libraries designed to handle large streams of video and
audio data on a variety of devices are GStreamer [29], NVIDIA DeepStream [30] and FFm-
peg [31]. GStreamer is an open-source pipeline/graph-based multimedia framework for
complex data workflows, used in a variety of multimedia applications such as video editing,
transcoding or streaming media. GStreamer is multi-platform and has been used reliably
in pipelines for decades, but it is written in C and requires low-level programming exper-
tise to extend it by implementing custom components outside of the scope of processing
video/audio data types. These characteristics make it fall short to be a viable candidate for
an easily-extensible and generalizable framework for the development of full application
pipelines for sensor networks [45]. Similarly, FFmpeg that was designed for the processing
of video and audio files in a CLI (Command Line Interface) does not offer an API for
extending it to other modalities.

Some of the GStreamer limitations have been partially addressed by NVIDIA Deep-
Stream, a scalable framework for building and deploying AI-powered video analytics on
the edge. DeepStream provides ready-to-use AI components, such as object detection on
video frames, but it follows GStreamer’s API; thus, new components cannot be efficiently
implemented in a high level programming language, such as Python, but rather are only
used through Python bindings. The framework still presents a steep barrier to entry for
beginners and has limited flexibility to extend for applications other than audio-visual.
Unlike GStreamer, NVIDIA DeepStream is not cross-platform and is dependent on NVIDIA
platforms such as the Jetson family [5].

2.3. REIP SDK

Finally, the REIP SDK contributes a unique integration of data-flow programming
abstractions and system implementation components that meet the productivity and per-
formance needs of real-time IoT data collection and analysis applications. Many design
choices in the REIP SDK were made in response to the challenges faced during the design
of sensors and it is intended to accelerate the development of the software and integration
of different components in a sensor network. We describe our design approach in the
following section.

3. Approach

REIP seeks to provide a flexible and versatile environment for users to build, extend,
reconfigure, and share their application code as they move through the rapid development
process of designing sensor networks and other IoT data processing pipelines. In order to
facilitate this, the REIP SDK provides a small number of abstractions so that users can take
their existing code and integrate it seamlessly into a multi-tasking application.

3.1. The REIP SDK as Part of Sensor Network Development

A common workflow for sensor network prototyping using REIP is depicted in Figure 1.
It contains the following typical steps:

1. Define the project requirements, i.e., sensing modalities, sampling frequency, etc.
2. Use the REIP SDK to build the data collection and processing pipeline. Custom blocks

can be defined specific to the project needs, e.g., data processing with machine learning.
3. Evaluate the data collection and processing pipeline and select the optimal edge

compute platform.
4. Implement any custom blocks and carry out the sensor build.
5. Install the REIP SDK runtime on all of the edge sensors and the server.
6. Deploy sensor network for data collection and processing.
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REIP Workf low

Defini tion of
Requir ements

Creation of
a Pipeline

Evaluation of
the Pipeline

Hardware / Software
Integration

Software Instal lation
and Configuration

Sensor  Network
Deployment

Figure 1. Typical steps of the sensor network prototyping process using REIP.

In this paper, we focus on the REIP SDK, its API, performance and design principles.
We discuss in Section 6 other components of the REIP platform that we foresee building in
the future (i.e., a simulator to speed up step 3 in the workflow).

3.2. Benefits of the REIP SDK

When building application code handling data streaming and processing, it is often
beneficial to decouple the program into smaller pieces that can run independently at
their own rates using either multithreading and/or multiprocessing, which will prevent
computationally demanding parts of the program from inhibiting the rest of the program
(e.g., prevent machine learning from blocking video sampling). However, doing so often
requires solving and scaffolding the same problems over and over again: How should the
data be moved around? What serialisation method to use? What about error handling?
and so on. There is a lot to consider when writing parallelised code, and when one has
several applications, re-implementing solutions to the same problem while mixing the
parallelisation logic with the application logic, it creates software that is very difficult to
maintain and reuse in new projects.

The REIP SDK formalises design patterns that emerge repeatedly in many sensing
applications. Typically, one has a collection of workers, each with some initialisation, data
processing logic, and cleanup, where each of these workers communicates with others via
thread-/process-safe queues for data sharing and management. Seemingly simple, such an
approach can quickly result in a difficult to maintain code base for complex applications,
resulting in deadlocks or other issues common to multitasking implementations. It takes
a lot of effort and domain knowledge to structure such code properly. The REIP SDK
offers a unique approach to making the implementation of data acquisition and processing
software fast, easy and reliable in multi-worker contexts.

3.3. Design Principles

The REIP SDK seeks to cater to a wide range of domains, programmer expertise,
and compute constraints. To that end, we sought to follow these four principles:

Accessibility

One of the important goals of the REIP platform is to provide researchers with a broad
range of expertise and backgrounds the capabilities to perform environmental sensing
projects. We thus chose the Python programming language for the REIP SDK because
of its wide adoption, shallow learning curve, and wide ecosystem of libraries spanning
countless domains, including: data science and machine learning. REIP’s API choices also
take design inspiration from popular machine learning frameworks that excel at defining
connections between different components, which are already familiar to many engineers
working with data.

Extensibility

In order to address the requirements of a diverse set of applications, we designed the
REIP SDK in a modular fashion. The atomic component of the framework is a Block, which
represents one computational unit (e.g., acquiring an image from a camera or applying an
object detection model, etc.) with a variable number of inputs and outputs.
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Multimodality

The REIP SDK was designed to make minimal assumptions about the data that is
being processed, allowing it to be used in a multitude of contexts. The primary constraint is
that the data be serialisable for cases where inter-process communication is required. Any
domain-specific implementation details are delegated to custom block implementations,
which promotes a clean and principled separation of concerns between data engineering
and the research problem domain.

Scalability

Python, like many programming languages, provides options for scaling code to run
multiple operations at the same time through concurrent programming, commonly known
as multi-threading and multi-processing. REIP takes advantage of this by executing each
block in its own thread, allowing them to run independently to minimise the latency and
maximise the data throughput. The bottleneck in multi-process Python applications is
often data serialisation, and we leverage Plasma Store [44] for an efficient shared memory
implementation where child blocks can access the read-only version of the data with fixed
memory mapping overhead.

3.4. Programming Interface

The REIP SDK takes much of its API inspiration from graph definition in Keras [46] and
Scanner [47], and its usage consists of two stages. The first is a computational graph/pipeline
definition stage. Here, the user declares all of the blocks that are going to be used in the
pipeline, how they are being distributed in a multiprocessing context, and their inter-
connections, so that they are able to pass data from one to another. An example of this
is shown in Figure 2b. Note that none of the data processing code is being executed at
this stage.

Once the graph is defined, finally, we can execute it. This is done by simply calling
graph.run(), which will spawn all of the graph’s children and begin data processing.
The behaviour of this stage is all controlled within the block class definition. We elaborate
on each of the SDK components in the following sections.

3.4.1. Blocks

A Block is a fundamental component of the REIP SDK, and is implemented as a
Python class that represents one unit of computation (e.g., get audio from the microphone,
compute machine learning outputs, upload data to server etc.). Each Block runs in its own
independent thread and uses Queues to pass data to others.

Blocks are designed to be easily extendable to suit diverse use cases. A Block consists
of: an initialisation function init() that is called at the start and which can be used to acquire
resources and set initial values; a process function process(. . . ) that is called repeatedly
with data from parent blocks as an input and returns 0 or more outputs to the next block(s);
and a cleanup function f inish() that is called at the end to release any resources acquired.
This general program structure encapsulates a wide family of programs and is fundamental
in Object Oriented Programming and Python context managers. An example block imple-
mentation is shown on Figure 2a. Note that for a custom block, any of these functions can
be omitted if not used.

Blocks can operate in four approximate roles describing how they relate to the data
that they are handling (definitions are not binding):

• Data source (0 inputs, ≥1 outputs, e.g., sensing device such as a microphone);
• Data processing (≥1 inputs, ≥1 outputs, e.g., object detection in an image);
• Data sink (≥1 inputs, 0 outputs, e.g., data storage to disk);
• Operational (0 inputs, 0 outputs, e.g., disk usage monitoring).

Pipelines can be constructed by connecting a data source block to any number of data
processing and/or sink blocks. Operational blocks are typically considered as standalone
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blocks that perform operations without needing to communicate with any other blocks,
e.g., a block that monitors and maintains the network connectivity or available disk space.

Users are also able to customise the rules around when a block will execute. For exam-
ple, a user can customise the strategy used to determine when the framework should call
the process function based on the input queue status. So one can change whether a block
needs to wait for all inputs to have a value or if it should be executed when at least one of
them has a value. A user can also configure the max rate at which a block will run, or the
strategy used to get items from the queue, e.g., should a block process the latest value in
the queue only or process every buffer.

import reip
import random
from tensorflow.keras.models import load_model

class ObjectDetection(reip.Block):
def init(self):

# Initialize the model
self.model = load_model(’path/to/model.h5’)

def process(self, *frames, meta):
# If we have multiple cameras, pick one
i = random.randrange(0, len(frames))
frame = frames[i]
# Preprocess image for model
frame = frame / 255.0 * 2 - 1
# Call the keras model on the image
predictions = self.model.predict(frame)
# Return the model predictions
return predictions, {’frame_index’: i}

def finish(self):
# Free model to be garbage collected
self.model = None

(a)

import reip.blocks as B

# Graph definition
with reip.Graph() as graph:

# Read video from two cameras
with reip.Task(’cam0’):

cam0 = B.video.Camera(device=0)
with reip.Task(’cam1’):

cam1 = B.video.Camera(device=1)

# Perform object detection and write to file
objects = ObjectDetection()(

cam0, cam1, throughput=’large’)

B.JSONWriter(’objects/{time}.json’)(objects)

# Upload files to a server endpoint
B.upload.UploadFiles(

’https://myserver.com/api/upload’,
’objects/*’)

# Graph execution
graph.run()

(b)

Figure 2. Code examples illustrating the usage and extensibility of REIP SDK in video capture and
processing application. (a) Block implementation for a machine learning model. It consists of an
init, process(. . . ) and f inish methods. The process method takes frames from multiple cameras and
chooses one to perform object detection on it. (b) Graph definition showing object detection on a
video stream with the detections saved in JSON files and uploaded to an API endpoint.

In its current state, the REIP SDK offers dozens of blocks covering audio tasks (record-
ing, SPL computation, etc.), video tasks (recording, pose, object or motion detection),
data output, data encryption, data upload and general utilities. They are organised into
corresponding block libraries that serve two main purposes. The first is to speed up the
development of sensing applications by means of reusing pre-existing blocks for common
tasks. The second, more subtle, benefit of having libraries of blocks that follow a standard-
ised design pattern is documentation of how to perform various tasks in the sensor network
building context. We believe that community contributions will greatly extend the range
of supported sensing modalities and operations that can be executed on acquired data.

3.4.2. Graphs

Any interesting application will consist of multiple blocks connected together. In order
to control multiple blocks at once, they can be assigned to a Graph, allowing them to be
spawned, joined and managed together. This joint management of blocks also allows the
framework to coordinate when one block experiences errors, the others can either continue
running, pause or shut down.

Adding blocks to a graph is very easy (see Figure 2b) and involves simply defining the
block inside of the graph’s context (i.e., define them indented under the with statement).
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3.4.3. Tasks

By using Blocks and Graphs, we are able to define a data processing pipeline that
utilises multi-threading in a single process. However, a single Python process is constrained
by Python’s Global Interpreter Lock (GIL), which allows for the parallelisation of the IO-
bound code, but not CPU-bound code. In order to utilise all of the available CPUs efficiently,
we need to use multi-processing to spawn multiple Python processes (with independent
GILs) that can distribute the blocks to run on all of the CPUs. For this, the REIP SDK
provides a special type of a Graph, called Task, that works much like a Graph except that
all blocks added to it will be executed in a subprocess controlled by that Task object. They
have an identical usage as can be observed in Figure 2b.

Blocks are able to detect when their connections are spanning different tasks, meaning
that the end user does not need to worry about the logistics of passing data between
processes. Users have the ability to specify the type of serialisation to use that best suits
their data type and volume, which provides flexibility and the opportunity for optimisa-
tion. Communication with Apache Arrow Plasma Store [44] is built into REIP’s cross-task
data passing and can be enabled by passing throughput = “large” when defining a connec-
tion between blocks. It provides efficient, high-volume data throughput where required
(Figure 2b). Other serialisation options include the standard Python Pickle method (low
throughput) and Apache Arrow’s default serialiser (medium throughput).

Error handling is another problem for multiprocessing and multithreading and, by
default, it is difficult to report errors back to the main process/thread. The REIP SDK
handles this within Blocks and Tasks for the user and will raise unhandled Block and Task
exceptions in the main thread/process.

3.4.4. Data Formats

If a user has a specific sensing problem, they can easily extend the REIP SDK by
following the I/O specifications between blocks. Input and output buffers consist of an
arbitrary data payload and a dictionary with metadata:

buffer = (data, metadata)

Data is the primary data payload, and is commonly (though not necessarily) a Numpy
array. By convention, if an output array contains a temporal dimension, then it should ap-
pear first and channel information should appear last. For example, video clips would have
the dimensions [Time, Height, Width, Channel] and audio data would have the dimensions
[Time, Channel].

3.4.5. User-Defined Blocks

Figure 3a illustrates the process of implementing a data source block in a seismic
sensing application (new modality). The user can focus on the interaction with the sensing
device (sample readout) when implementing this block and, after the conversion of the data
format to comply with the REIP API, can immediately get access to and benefit from the
vast REIP SDK infrastructure (Figure 3b). A generic Rebuffer block is used to aggregate the
samples into batches that can be processed using a re-purposed STFT (Short-Time Fourier
Transform) block from the audio library. The rest of the functionality needed to produce a
fully functional sensor, such as data storage to disk and data upload, is also available in
the REIP SDK. Additionally, with a single line of code, the SeismicSensor block can be put
into the context of a Task to ensure that the computationally intensive STFT block does not
interfere with any data readout operations that need to be performed at a high rate. This is
achieved by means of execution of the SeismicSensor block in a separate process managed
by the task, with data passing between these processes handled transparently by the REIP
SDK. All this functionality is achieved with less than 30 lines of code (comments excluded).
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import reip
import serial
import numpy

class SeismicSensor(reip.Block):
port = "default" # Serial port connection
rate = 100 # 100 Hz sensor sampling rate

def __init__(self, **kw):
# This is a data source block (no inputs)
super().__init__(n_inputs=0, **kw)

def init(self):
# Initialize the connection to sensing device
self.dev = serial.Serial(port=self.port)

def process(self, *xs, meta):
# Acquire sensor reading (xyz @ 16 bit)
raw = self.dev.read(3*2)
# Format the data as per REIP API
data = numpy.frombuffer(raw, dtype=np.int16).

reshape(1, -1) # axis=0 is for time
# Pass the data to the next block
return data, {’sr’: self.rate}

def finish(self):
# Close the connection
self.dev.close()

(a)

import reip.blocks as B
from seismic import SeismicSensor

# Pipeline definition
with reip.Graph() as graph:

# Capture data in an independent process
# using Task context to prevent data loss
with reip.Task(’Sensor’):

sensor = SeismicSensor(port=’/dev/ttyS0’)

# Process data in 1 sec chunks (uses meta[’sr’])
# (connection throughput=’small’ by default)
seismic_1sec = sensor.to(B.Rebuffer(duration=1))

# Compute signal magnitude (in dB)
magnitutes = seismic_1sec.to(B.audio.Stft())

# Store results in CSV format
B.CSVWriter(’magnitudes/{time}.csv’,

max_rows=100)(magnitutes)

# Upload data to a server endpoint
B.upload.UploadFiles(

’https://myserver.com/api/upload’,
’magnitudes/*’)

# Pipeline execution
graph.run()

(b)

Figure 3. Code example illustrating how to extend REIP SDK to work with new sensing modality.
(a) Block code for capturing seismic sensor readings, formatting them according to REIP API and pass-
ing the data processing pipeline downwards. (b) Graph definition code demonstrating how to capture
a new modality while reusing existing REIP blocks (e.g., Short-Time Fourier Transform (STFT)).

3.4.6. Data Security

There can be many concerns around data security when it comes to IoT devices,
whether it be about remote access to the devices, interception of data upload, or direct
access to data storage cards. Most of these concerns are outside the scope of REIP SDK,
as addressing them requires OS-level handling. Many can be circumvented though by
thoughtful system design, such as protecting outside connections to the devices using
firewalls, SSH keys, VPNs for secure remote access and using HTTPS for data upload.

A harder to remedy issue around IoT (or any unaccompanied computer system for
that matter) is that a hard drive is non-trivial to secure. For IoT devices, they often need the
ability to reboot themselves in the case of system failure or power interruptions. This poses
problems when trying to fully encrypt the hard drives, because a password login would be
required whenever there was a reboot. The other option is physical security, i.e., making
the SD card more difficult to access; however, it also makes it more difficult, and potentially
costly, to repair the sensors. Therefore, encryption of sensitive data using a two-sided
encryption key is important to ensure that the data cannot be directly accessed from the
hard drive itself and can only be decrypted by the main server where the decryption key is
stored securely. REIP SDK provides blocks for this type of encryption, including a two-stage
encryption technique that reduces network bandwidth for decryption on the server by only
needing to transmit a small payload instead of the full data.

4. Evaluation

In this section, we implement a number of benchmarks to evaluate the performance of
the REIP SDK in different application scenarios. First, we implement a video processing
pipeline to understand the performance of the concurrency tools offered by the REIP SDK
(Blocks, Tasks, etc.) under different configurations (Section 4.1). We also take a closer look
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at the serialisation strategies available (Section 4.1.2), and in which configurations they
are the most beneficial, as well as compare the performance of the REIP SDK to existing
frameworks (Section 4.1.5). An audio processing pipeline is then evaluated on different
hardware platforms (Section 4.2) to estimate the performance overhead of the REIP SDK
and to identify the optimal hardware platform (Section 4.2.2) for building a physical sensor
prototype powered by the REIP that will be used in our case study (Section 5).

4.1. Concurrency

One of the typical problems that users face when building sensors is processing data
in real-time. When using Python to create a data processing pipeline, this will inevitably
involve multi-processing and inter-process communication (Section 3.4.3), where serial-
isation to pass objects from one process to another can be incredibly resource intensive,
particularly for large data arrays. With the REIP SDK’s concurrency tools, such as Tasks,
the user can easily implement a pipeline that meets their project’s requirements. The focus
of the following subsection is on the evaluation of these concurrency tools under different
pipeline configurations.

4.1.1. Test Pipeline

We evaluate the concurrency tools of the REIP SDK using a video processing pipeline
(Figure 4a) consisting of data acquisition with two camera blocks (5 MP, 14.4 fps) followed
by real-time object and motion detection blocks, and the corresponding image writer block.

Camera Task 1

Camera 1

Object Detection Task

Object 
Detection Image Wr i ter

Camera Task 0

Camera 0

Motion Detection Task

Motion 
Detection Image Wr i ter

(a)

Audio Capture Task

Microphone(s)

Audio Processing Task

Rebuffer

Sound 
Classi f ication

SPL
Computation

Audio Wr i ter

CSV Wr i ter

CSV Wr i ter

Data upload

Encr yption

(b) (c)

Figure 4. Data processing pipelines used to benchmark REIP SDK (left) and comparison of different
serialisation strategies. (a) Video processing pipeline for investigation of REIP SDK performance
overhead in different configurations (Table 2). (b) Audio processing pipeline for comparison of the
overall performance of REIP SDK on different platforms (Table 3). (c) Data throughput between
two blocks as a function of buffer size and serialisation strategy for inter-process communication
on Jetson Xavier NX. Pickle serialisation has the lowest overhead for small buffers whilst Plasma
method provides the highest data throughput for larger buffers.

Different variations of the video pipeline were executed on the NVIDIA Jetson Xavier
NX platform (up to 6 CPUs with 8 GB of RAM and 384 CUDA cores) for 30 s, and the
number of frames processed by each block were measured (Table 2). Object and motion



Sensors 2022, 22, 3809 13 of 24

detection blocks use the ‘latest’ connection strategy, while image writer blocks process
every frame provided to them by object or motion detection blocks. The motion detection
block is outputting one difference image for every two consecutive input frames. The object
detection block is next overlaying the bounding boxes of the detected objects on every
processed frame and outputs it to the image writer block. We also report the number of
lost frames that have not been pulled by the camera block in time for scenarios were the
system gets overloaded, as well as any frames still left in the input queues of the image
writer blocks. For stereo configurations, object and motion detection blocks are alternating
their input on every call of the process function.

4.1.2. Serialisation

The REIP SDK includes a few serialisation methods for the user to choose from to
meet their bandwidth requirements. The first method is the most common and uses Pickle,
a package in Python’s standard library that is capable of serialising arbitrary Python objects.
Looking at Figure 4c, we can see that Pickle offers the fastest speeds for small buffers
(<0.3 MB, throughput = “small” when connecting blocks), but Apache’s Plasma Store [48]
(“Plasma” in plot) is fastest for larger buffers (throughput = “large”). The Plasma Store is
a shared memory server that uses Apache Arrow to serialise and provide fast, copy-free
memory views of the data that are much more efficient for large data arrays (approaching
the memory speed limit).

The final serialisation method, Pyarrow, uses the same serialisation method as Plasma
Store, but it does not provide shared memory (throughput = “medium”). It has a slight
performance increase over Pickle for buffers greater than 0.5 MB in size. See Table 2 for
comparison of the impact of different serialisation strategies on the overall performance of
the video processing pipeline (REIP Hybrid).

Table 2. Performance of different framework configurations when running a video processing
pipeline (Figure 4a) on Jetson Xavier NX. Values denote number of frames processed by different
blocks in the pipeline during 30 s sampling period. Top half of the table corresponds to the mono
and bottom half to the stereo camera configuration. The system was throttled to use 4 CPU cores
only to be able to measure more subtle performance differences between different configurations.
Negative queued values indicate extra frames processed that have already been in the queue prior to
the sampling interval. Symbol ^ indicates queue overflow (max queue size was set to 100 buffers).

Configuration Camera 0 Camera 1 Object Detection Motion Detection

Name Serialisation Pulled Lost Pulled Lost Detected Saved Queued Detected Saved Queued

REIP Hybrid Pickle 433 0 - - 206 206 0 191 95 0
REIP Hybrid Pyarrow 431 0 - - 229 229 0 196 98 0
REIP Hybrid Plasma 431 0 - - 351 204 54 ^ 160 80 0

REIP Multiprocessing Pickle 314 118 - - 101 73 28 104 52 0
REIP Multiprocessing Plasma 402 30 - - 385 184 45 ^ 142 71 0
REIP Multithreading - 432 0 - - 388 293 56 ^ 193 96 1

REIP Backend (Mono) Plasma 431 0 - - 420 318 34 ^ 422 212 0
Waggle Backend (Mono) Pickle 410 22 - - 224 132 52 ^ 202 113 −12

Ray Backend (Mono) Plasma 432 0 - - - - - 146 73 0

REIP Hybrid Pickle 343 89 346 86 126 133 −7 115 57 0
REIP Hybrid Pyarrow 409 23 321 111 123 122 1 134 66 0
REIP Hybrid Plasma 327 105 375 57 294 135 39 ^ 181 90 1

REIP Multiprocessing Pickle 268 164 325 107 79 66 13 82 41 1
REIP Multiprocessing Plasma 306 126 299 133 255 121 60 ^ 208 104 0
REIP Multithreading - 432 0 432 0 401 263 50 ^ 346 173 0

REIP Backend (Stereo) Plasma 433 0 433 0 376 230 64 ^ 318 159 0
Waggle Backend (Stereo) Pickle 374 58 356 76 102 86 16 64 32 0

Ray Backend (Stereo) Plasma 432 0 432 0 - - - 149 75 −2
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4.1.3. Configurations

The following pipeline configurations are being evaluated:

• REIP Hybrid: image writer blocks are executed in the same task as the corresponding
object and motion detection blocks. This is our primary configuration as depicted on
Figure 4a.

• REIP Multiprocessing: each block is executed in an independent task (a full multipro-
cessing configuration).

• REIP Threading: all blocks are being executed in the same (main) process but, by design,
in their own independent threads.

We further customise the configurations by using different serialisation strategies
(Pickle/Pyarrow/Plasma) for inter-process block connections. The system is also intention-
ally throttled by enabling only four CPU cores to measure smaller variations in performance
overhead under these different configurations. For the most fair comparison with other
representative frameworks (Ray and Waggle), we implement a thin wrapper emulating the
REIP API for each framework (more details in Section 4.1.5). We use the same wrapper for
the REIP SDK too (REIP Backend in Table 2), which does not include different connection
strategies or other advanced features of the REIP SDK (hence a slightly better performance
compared to the full REIP SDK).

4.1.4. Performance

The performance metrics in this experiment are the number of frames/buffers pro-
cessed by each block in the pipeline, so the higher the number in Pulled (number of frames
successfully acquired by a Camera block), Detected (number of frames processed by an
Object or Motion detection block), and Saved (number of images written by the respective
ImageWriter blocks) columns in Table 2, the better the performance of the pipeline. Con-
versely, the target values for the Lost (number of frames missed by Camera blocks due to
system overload) and Queued (number of frames processed by Object/Motion detection
blocks but still pending to be saved by the ImageWriter) columns are 0 for optimal per-
formance. It should also be noted that the values in different columns are not directly
comparable in isolation. The pipeline configuration that processed less of the captured
frames but saves more of the processed results can be argued to perform better than the
one processing everything but saving little of the results. We provide a complex analysis of
the measured metrics in the remaining sections.

It is apparent from Table 2 that all stereo multiprocessing configurations are not
capable of processing all camera frames in the throttled scenario, with a clear trend of
higher performance for higher throughput serialisation. Nevertheless, the hybrid approach
does succeed in this task for single camera video. The threading only configuration
shows the highest performance as it does not need to incur any additional performance
overhead due to serialisation, with the maximum CPU resources spent processing and
saving the images (this does not mean that such a configuration is optimal in a general
case). Image writing is largely limited by the maximum disk write speed and the remaining
CPU resources available after object/motion detection. Some configurations (e.g., REIP
Multiprocessing) are less efficient in data management and result in less of the results being
saved (compared to REIP Hybrid) despite high processing rates.

It should be noted that it is only in this specific data acquisition and processing
pipeline (Figure 4a), where both cameras are operating at the same frame rate (14.4 fps)
and object/motion detection blocks are highly optimised (object detection is performed
on GPU), that we do not observe data loss for camera blocks due to the Python GIL in
the threading only configuration. The data loss would be inevitable when using data
sources with significantly different sampling rates. For instance, the microphone block
requires being serviced more often than the camera block and will experience overrun errors
with data loss due to the Python GIL if there is another block (in the same task/process)
performing heavy computation that does not release the GIL in a timely manner. This
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makes the Task feature of the REIP SDK essential for easy decoupling of data source
blocks from data processing blocks by placing them into a dedicated task/process with an
independent Python interpreter.

4.1.5. Comparison with Other Frameworks

To compare the REIP SDK with other existing frameworks, such as Ray or Waggle, we
implemented a thin wrapper layer to interface the blocks’ implementation with different ex-
ecution backends (Table 2). For REIP, we are using a high throughput hybrid configuration
of the video processing pipeline (Figure 4a). For Waggle, we map each task in the pipeline
to a Waggle plugin and since the Waggle framework does not provide concurrency tools
(only a RabbitMQ wrapper for data upload), we use a standard multiprocessing queue to
transfer frames between different plugins. In the Ray backend, we use ray.remote futures
for parallel processing.

Table 2 shows that the performance of the REIP backend is higher than the large
throughput hybrid configuration executed with the REIP runtime, closer to REIP Multipro-
cessing. This is expected because the wrapper layer does not provide all of the features of
the REIP SDK (e.g., detailed statistics and error handling), which introduce extra overhead.

In turn, the performance of the Waggle backend is similar to the REIP Hybrid con-
figuration with small throughput because the same serialisation method (Pickle) is being
used. It is a bit lower though (stereo configuration in particular) because of a lack of
multithreading in the object and motion detection plugins/tasks.

Finally, Ray provides great concurrency tools but they were developed with different
design constraints in mind, which is reflected in its performance. Because Ray uses futures
and lazy/deferred evaluation, we observe an execution pattern, where a number of jobs
are being accumulated and then executed as a batch that effectively halves its performance.
We were also not able to get a GPU accelerated object detection block working with the Ray
backend because the Ray framework does not recognise the Jetson’s GPU.

4.2. Overhead

Another important aspect of any software framework is its performance overhead.
Scalability is one of the design principles of the REIP SDK and for that, its internal routines
have been optimised to minimise the amount of service time and maximise the compu-
tational resources available for the execution of user code. The percentage of time spent
by the framework performing data management and other service routines also depends
on the particular computing platform in use, which can vary in the amount of RAM avail-
able, number of CPU cores and their speed. The focus of this subsection will be on the
performance overhead of the REIP SDK on different hardware platforms.

4.2.1. Test Pipeline

We have implemented an audio processing pipeline (Figure 4b) that resembles a real-
world noise pollution monitoring sensor network (The Sounds Of New York City project or
SONYC [49]), excluding the data encryption and upload functionality (bottom-left blocks
with dashed lines in Figure 4b). In this setup, a mono microphone is recording one second
long audio snippets that are supplied to the sound classification and sound pressure level
(SPL) computation blocks for real-time audio analysis. The results are saved to CSV files
alongside the raw audio data in 10 s intervals after rebuffering. The most computationally
demanding is the sound classification block, where we use a CPU-only implementation of
a neural network-based classification model to make the test pipeline compatible with a
wider range of computing platforms that may not have GPU support. We have also placed
the microphone block in its dedicated audio capture Task to avoid any overrun errors, as
explained in Section 4.1.4.
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4.2.2. Hardware Platforms

The REIP SDK is Unix-platform compatible so it can be installed and executed on a
large variety of single board computers (SBCs) at various price and power points. This
flexibility allows the software to be matched with suitable hardware based on the compu-
tational demands of the blocks used in the pipeline and the project budget. We explore
the performance of a real-time, high-resolution audio processing pipeline (Figure 4b) on
different multi-core CPU SBCs with at least 512 MB of RAM (Table 3).

Table 3. Time spent by different blocks in the audio processing pipeline (Figure 4b) performing data
processing, idle waiting, and servicing the data between blocks. Comparison is given for different
embedded platforms ranging from a low-budget Raspberry-Pi 4B to the high-performance NVIDIA
Jetson AGX Xavier. The service times remain well under 10% for each platform, which indicates
negligible performance overhead introduced by the REIP SDK. No dropped buffers were detected.

Block
Raspberry Pi 4B Jetson Nano Jetson TX2 Jetson AGX Xavier

Process Wait Service Process Wait Service Process Wait Service Process Wait Service

Microphone 0.39% 92.9% 6.68% 0.19% 92.4% 7.28% 0.10% 93.1% 6.72% 0.19% 92.2% 7.33%
Machine Learning 42.1% 50.4% 5.12% 30.0% 61.7% 7.73% 37.7% 56.4% 5.31% 12.2% 78.3% 8.75%
SPL Computation 4.74% 88.5% 6.75% 2.58% 90.0% 7.36% 2.01% 91.1% 6.84% 2.40% 90.0% 7.53%

Audio Writer 1.82% 91.6% 6.58% 0.41% 92.4% 7.20% 0.09% 93.3% 6.63% 0.14% 92.6% 7.25%

4.2.3. Performance

The key performance metrics are the percentage of time spent by each block per-
forming data processing, awaiting the next buffer and the service time of the framework
managing the data delivery between different blocks. We also record the number of
dropped buffers in the sink queues of each block output to identify performance bottle-
necks in the pipeline (if any). The criteria for selecting the computing platform is its ability
to execute all of the included processing blocks at greater than real-time.

Results in Table 3 show that even a low-end embedded platform, such as the Raspberry
Pi 4B, is capable of processing all the data in real time using the REIP SDK without dropping
a single buffer. The service time overhead of REIP SDK remains well under 10% on all
platforms, which is negligible.

4.3. Discussion

Real time data capture and edge processing present many challenges in terms of
managing compute performance and overall data transfer on device. Existing software
frameworks in this domain are often designed with assumptions that data transfer overhead,
as a result of serialisation, is negligible compared to the anticipated computational load or
are designed to be used on large compute clusters without the computational or concurrency
constraints inherent in lower power edge sensors. In this section, we have highlighted
that the REIP SDK can handle complex data processing pipelines that outperform other
approaches, such as Python’s multiprocessing or other frameworks (e.g., Apache Ray).

An important and often overlooked aspect of data processing pipelines is the moving
of data between processing blocks. Serialisation of data so that it can be exchanged
between these blocks can impose significant overhead to complex pipelines, especially
when these data are large in size. REIP’s hybrid approach to serialisation shows comparable
or better performance than other frameworks in the complex video processing pipelines
presented. The ability to define a “small”, “medium”, and “large” throughput flags (defined
in Section 4.1.2) when establishing block connections provides a way to select the optimal
serialisation technique applied for the scale of data being passed between these blocks.

When implementing an audio-based processing pipeline on various embedded com-
pute platforms typically used in sensor networks, service times stayed below 10% when
using the REIP SDK. The consistency of these service times is worth noting, as they stay
relatively steady between hardware platforms, which suggests that the serialisation ap-
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proach of the REIP SDK is agnostic of the platform it is running on. These service times are
likely driven mainly by the memory architecture of the device which impacts serialisation,
rather than its computational power. We consider the service overhead of the REIP SDK
in these examples to have a minimal impact on overall performance and generalise well
to different hardware platforms; however, further work is needed to compare the service
times of other frameworks.

In REIP, we are targeting the design, and more specifically in this paper, the code
implementation and computational challenges that often arise during the design, devel-
opment and deployment of individual sensors as well as sensor networks. The REIP SDK
aims to provide to the user the tools necessary for efficient utilisation of limited computing
resources, while remaining easy to use and flexible in development.

5. Case Study

To showcase this initial implementation of the REIP SDK, we present a real-world
research case study using a custom multimodal sensor design for real-time traffic analytics
with a focus on bicycle accidents. This sensor network is designed for long-term deploy-
ment on light poles at busy urban intersections, where power is available but high speed
Ethernet or Wi-Fi-based internet connectivity is not. Researchers want to understand more
about the frequency of bicycles that pass through the intersection but also want to analyse
video and multi-channel audio of any close interactions between bicycles and other vehicles
on the road to study the circumstances around bicycle accidents and the use of multimodal
sensor systems to detect these events.

This section focuses on the development workflow steps when using the REIP SDK
as described in Section 3.1. In this workflow case study, steps 3 and 5 have already been
addressed through the evaluation of the processing pipeline with hardware selection and
the installation of all the necessary runtime software. Due to budget constraints, we
have chosen the cheapest of NVIDIA’s SBC range with GPU support which, due to the
computational requirements of the presented case study, limits us to using only one of
the two cameras available in the sensor prototype. Since it is also sufficient for this case
study to use one sensor prototype instance, step 5 in the REIP workflow (Figure 1) can be
skipped, but that by no means limits the number of sensors that can be used in a sensor
network powered by the REIP SDK. The more thorough evaluation of sensor hardware and
the experience of researchers is a subject of future studies.

5.1. Definition of Requirements

For this use case, the following functional requirements must be satisfied by the
application pipeline:

1. Video capture with quality higher than 720p at 15 fps;
2. Multichannel audio capture;
3. Object tracking of vehicles;
4. Transmission of traffic analytics and raw multichannel audio and video of accident

near misses via limited cellular plan.

A major constraining factor in this application is the reliance on data limited cellular
connectivity. This excludes the possibility of retrieving continuous video and multichannel
audio data for the post hoc detection of accident events, which would exhaust cellular plan
data limits of ≈50 GB/month very quickly. To alleviate the impacts of this constraint, we
can leverage recent advancements in compact but high-power compute devices to push the
event detection processes to the sensor itself, so only salient events are transmitted over
constrained network. This is a common need in longitudinal sensing research, where in
practice the large majority of collected raw data contains few or no events of interest.

5.2. Implementation of Application Pipeline

To highlight the flexibility of the REIP SDK, we have created an application pipeline
that constitutes a multimodal smart traffic event detector for urban bicycle accident data
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collection. Figure 5 shows the block diagram of this pipeline, where raw video and multi-
channel audio uploads are preserved only when a salient event is detected, which in this
case is the near miss of a cyclist with a motorised vehicle. To ensure that the maximum
amount of useful data is retrieved, both video and audio cues are used to signify a salient
event. For video, object detection block using the MobileNet V2 [50] model is fed with video
frames at 4 fps from the GStreamer [29]-based camera block, which is also recording the full
speed (≈15 fps) video feed into files. An event detector block independently monitors the
output of the object detections and deletes the corresponding video fragments if a bicycle
and motorised vehicle were not captured in the same frame for any frame in the video
fragment. In cases where the camera and object detector block struggle to capture an event,
such as: under low-light conditions, when an event is off-camera, or when it is occluded,
the SPL (Sound Pressure Level) computation block will report a spike in decibel level,
caused, for example by a horn blast, impact, or tire screech from emergency braking. This
information is also used by the event detection block to decide on which data fragments
contain events of interest and should be preserved.

Figure 5. Multimodal smart traffic event detection pipeline. This pipeline handles both audio and
video. It captures video, passes it to an object detection Block, and then writes the detection outputs
to JSON files. It also captures audio at short intervals (1 s) and computes SPL at the 1 s resolution,
as well as accumulates the audio into longer clips and writes them to disk as audio files. Finally, the
salient event detection block is monitoring these files, preserving only those that had an event of
interest detected in them.

5.3. Hardware and Software Integration

Using the block design, each data source block has a corresponding physical sensing
device (e.g., a camera or a microphone) that connects to the computing platform. Here,
we define our customised sensing devices (that are compatible with REIP’s default data
source blocks), and implement any custom blocks required. The prototypical sensor
system shown in Figure 6 uses two 5 MP USB cameras providing a 160° horizontal field
of view (85° max per camera) and 15 fps recording, satisfying our video capture use case
requirement. The compute core is the NVIDIA Jetson Nano Developer Kit [5], which offers
edge intelligence capabilities from its 128-core GPU, quad-core 1.43 GHz CPU and 4 GB
of LPDDR4 RAM. The majority of the sensor’s hardware is enclosed within an aluminum
weatherproof housing.

The custom acoustic front-end has been designed to capture synchronised 12 channel
audio from its 4 × 3 array of digital pulse density modulated (PDM) Micro Electro Me-
chanical Systems (MEMS) microphones. It uses the USB MCHStreamer [51] as an audio
interface, so the same Microphone block from the REIP audio library can be reused to read
data from this USB audio class compliant device. In the given application pipeline, a single
microphone channel is used as input to the audio processing blocks. For data transmission,
a USB LTE modem is integrated containing a SIM card providing a bandwidth limited
cellular plan.
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Figure 6. Multimodal sensor built for the real-world case study. It includes two 5 MP cameras,
a 12 channel microphone array (4 × 3) and a cellular modem. The sensor is waterproof for outdoor
operation and powered by the NVIDIA Jetson Nano, which is thermally coupled to the aluminum
enclosure for passive/silent cooling.

5.4. Experimental Deployment

A single sensor was mounted on a tripod at 1.8 meters above the ground facing a
roadway in a quiet urban parking lot. This location was chosen to allow for sustained
data capture in more controlled conditions than a busy urban intersection. The application
pipeline was executed prior to multiple runs of vehicle passes, including: (1) motorised ve-
hicle (car, truck or motorcycle) passes with and without horn use, (2) bicycle and pedestrian
passes and (3) various combinations of simultaneous passes. A total of ≈1 h of continuous
data collection was performed, which would equate to ≈53 GB/h of dual 5 MP video with
MJPEG compression and 12 channel audio if all data were to be captured and uploaded.
These amounts of data would overwhelm the majority of cellular data plans, requiring at
least 15 MB/s of bandwidth to transmit these data from edge sensor to server, regardless of
the inevitable saturation of monthly data plan limits.

Figure 7 shows one frame captured from the left video camera for illustration purposes.
At this instance, a cyclist was passing by the sensor with two cars driving in the opposite
direction while honking their horns. The object detection block has returned confident
detections including their bounding boxes around the car, person and bicycle. The event
detection block raised an event flag, as there was the combination of a cyclist and motorised
vehicle within the frame, which resulted in the successful upload of 10 s of video and
multichannel audio of the event via the cellular modem. At the figure bottom, time vs. SPL
is plotted with the green region showing the portion of time that the object detector block
is able to confidently identify the motorised vehicle passby, mainly due to the limited field
of view of the camera setup. Of note is the much wider red region showing the extent over
which the SPL computation block is able to detect the elevated sound level of the car horn,
highlighting the advantages of this multimodal approach.
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Figure 7. Car and bicycle pass-by frame from sensor’s camera overlaid with bounding boxes and
labels from object detection block for illustration. Green region on inset audio amplitude plot shows
time period where car is detectable within video frames, with red region showing longer periods
of audio-based detection of a car horn. The blue portions signify periods when no audio event was
detected.

5.5. Discussion

Practically, this smart traffic event detection sensor dramatically reduces data through-
put requirements for research projects looking to analyse urban phenomena. The rapid
implementation of this real-world application following REIP’s workflow and using the
REIP SDK shows promise for its use across diverse applications of sensor networks. With a
given set of application requirements, a pipeline can be designed that abstracts away a
large amount of technical detail typically required to develop software that could perform
this set of complex, interacting operations.

A particularly challenging aspect of real-time sensing is moving data between pro-
cesses that operate on different schedules. This is commonly addressed with ad hoc
solutions and application-specific code that are not generalisable or re-configurable. When
projects are under tight deadlines, it often does not make sense to do more than that;
the project just needs code that will perform the required task, and re-usability and portabil-
ity are not the primary motivators. The REIP SDK addresses these common computational
problems in a general sense so that when a research problem comes along, an experiment
can be up and running as quickly as possible using pre-existing functional blocks. Indeed,
we were able to reuse many of the blocks used during evaluation in Section 4 to build the
data acquisition and processing pipeline of the given case study (Figure 5).

Another significant challenge in remote sensing is hardware and software integra-
tion, which is subject to a number of constraints including: compute resources available,
hardware I/O offered, sensing options, inter-process data rates and available remote con-
nectivity options. With an application pipeline defined using the REIP SDK, this integration
process becomes less of a challenge, as the blocks chosen dictate the minimal hardware
platform that can support it. The presented process of manually benchmarking possible
hardware platforms (Section 4.2.2) is not ideal but is a precursor to our planned simulation
and optimisation tool for a pipeline evaluation stage, where optimal hardware platforms
will be matched to an application pipeline in an automatic way subject to user constraints,
such as maximum memory usage, data output rate, etc.
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6. Conclusions and Future Work

The case study in Section 5 highlights the use of the REIP SDK in the design of an
application pipeline for a multimodal smart filter for urban bicycle accident data collection.
A finding from this case study was that the REIP workflow (see Section 3) allows the
sensor architect to design the data pipeline from an abstract, top-down view and have it
translate directly into software components without the extraneous complications caused
by software and hardware-specific details. The modular blocks that were combined to
make up the case study’s functionality abstracted a lot of the complexity away from the
traditional software development process. Moreover, it allows hardware decisions to be
pushed to a later stage in the process which, if made too early, can unnecessarily constrain
the application.

The REIP SDK includes dozens of blocks for the commonly required tasks of: data
acquisition, processing and storage. Advanced data serialisation and block connection
strategies (Sections 4.1.2 and 3.4.3) offered by the REIP SDK can then be used to quickly find
the right balance between multi-threading and multi-processing for optimal performance,
which is crucial for real-time data processing at high rates with minimal loss of samples.
It is also important to note that the REIP SDK can handle data of varying structure and
size, and does not add any significant overhead (Section 4.2.2) so the user application can
maximise the utilisation of available computational resources.

To further increase the usability and accessibility of the REIP platform, we are currently
working on a Graphical User Interface (GUI) for application pipeline creation using the
Node-RED [52] platform. This browser-based interface will provide a visual representation
of the functional blocks. It will be used to wire-up blocks and create application pipelines for
less technical users. This GUI can take into account the constraints of the proposed system,
as well as allow users to define custom application-specific hardware/software constraints.
The resulting application pipeline can then be exported in the form of a deployable script
that is ready to be executed on sensor nodes with our run-time installed. In addition,
for embedded devices such as the Raspberry Pi and NVIDIA Jetson, the compilation steps
for dependency libraries can be long, difficult and error prone. In order to ease this pain
(for ourselves and others) we also plan to provide working Docker images that already
contain the core library dependencies of the REIP SDK, such as PyArrow, and others that
are typically difficult/time-consuming to build on resource constrained devices.

The REIP SDK was designed to facilitate and streamline the process of environmental
sensing deployments, providing researchers of varying experience levels with tools and
best practices for designing and building sensor networks (Section 3.2). Implementing
sensor networks can end up being an enormous engineering burden and often takes away
valuable time from the actual research that the researchers are seeking to perform. We hope
that the REIP SDK presented can alleviate this burden.

7. Patents

The work resulted in a utility patent application number US20210287336A1.
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