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ABSTRACT
We investigate the adversarial robustness of streaming algorithms.

In this context, an algorithm is considered robust if its performance

guarantees hold even if the stream is chosen adaptively by an ad-

versary that observes the outputs of the algorithm along the stream

and can react in an online manner. While deterministic streaming

algorithms are inherently robust, many central problems in the

streaming literature do not admit sublinear-space deterministic

algorithms; on the other hand, classical space-efficient randomized

algorithms for these problems are generally not adversarially ro-

bust. This raises the natural question of whether there exist efficient

adversarially robust (randomized) streaming algorithms for these

problems.

In this work, we show that the answer is positive for various

important streaming problems in the insertion-only model, includ-

ing distinct elements and more generally Fp -estimation, Fp -heavy
hitters, entropy estimation, and others. For all of these problems,

we develop adversarially robust (1 + ε)-approximation algorithms

whose required space matches that of the best known non-robust al-

gorithms up to a poly(logn, 1/ε) multiplicative factor (and in some

cases even up to a constant factor). Towards this end, we develop

several generic tools allowing one to efficiently transform a non-

robust streaming algorithm into a robust one in various scenarios.
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1 INTRODUCTION
The streaming model of computation is a central and crucial tool

for the analysis of massive datasets, where the sheer size of the

input imposes stringent restrictions on the memory, computation

time, and other resources available to the algorithms. Examples of
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theoretical and practical settings where streaming algorithms are

in need are easy to encounter. These include internet routers and

traffic logs, databases, sensor networks, financial transaction data,

and scientific data streams. Given this wide range of applicability,

there has been significant effort devoted to designing and analyzing

extremely efficient one-pass algorithms. We recommend the survey

of [33] for a comprehensive overview of streaming algorithms and

their applications.

Many central problems in the streaming literature do not ad-

mit sublinear-space deterministic algorithms, and in these cases

randomized solutions are necessary. In other cases, randomized

solutions are more efficient and simpler to implement than their de-

terministic counterparts. While randomized streaming algorithms

are well-studied, the vast majority of them are defined and analyzed

in the static setting, where the stream is worst-case but fixed in

advance, and only then the randomness of the algorithm is chosen.

However, assuming that the stream sequence is independent of

the chosen randomness, and in particular that future elements of

the stream do not depend on previous outputs of the streaming

algorithm, may not be realistic [5, 15, 16, 20, 31, 34], even in non-

adversarial settings. For example, suppose that a user sequentially

makes queries to a database, and receives an immediate response

after each query. Naturally, future queries made by the user in such

a setting may heavily depend on the responses given by the data-

base to previous queries. In other words, the stream updates are

chosen adaptively, and cannot be assumed to be fixed in advance.

A streaming algorithm that works even when the stream is adap-

tively chosen by an adversary (the precise definition given next)

is said to be adversarially robust. Deterministic algorithms are in-

herently adversarially robust, since they are guaranteed to be cor-

rect on all possible inputs. However, the large gap in performance

between deterministic and randomized streaming algorithms for

many problems motivates the need for designing adversarially ro-

bust randomized algorithms, if they even exist. In particular, we

would like to design adversarially robust randomized algorithms

which are as space and time efficient as their static counterparts,

and yet as robust as deterministic algorithms. The study of such

algorithms is the main focus of our work.

The Adversarial Setting. There are several ways to define the ad-

versarial setting, which depends on the information the adversary

(who chooses the stream) can observe from the streaming algo-

rithm, as well as other restrictions imposed on the adversary. For

the most part, we consider a general model, where the adversary is

allowed unbounded computational power and resources, though

we do discuss the case later when the adversary is computationally

bounded. At each point in time, the streaming algorithm publishes

its output to a query for the stream. The adversary observes these
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outputs one-by-one, and can choose the next update to the stream

adaptively, depending on the full history of the outputs and stream

updates. The goal of the adversary is to force the streaming algo-

rithm to eventually produce an incorrect output to the query, as

defined by the specific streaming problem in question.
1

Formally, a data stream of lengthm over a domain [n] is a se-
quence of updates (a1,∆1), (a2,∆2) . . . , (am,∆m ) where at ∈ [n] is
an index and ∆t ∈ Z is an increment or decrement to that index.

The frequency vector f ∈ Rn of the stream is the vector with ith

coordinate fi =
∑
t :at=i ∆t . We write f (t ) to denote the frequency

vector restricted to the first t updates, namely f
(t )
i =

∑
j≤t :aj=i ∆j .

It is assumed at all points t that ∥ f (t )∥∞ ≤ M for someM > 0, and

that log(mM) = O(logn). In the insertion-only model, the updates

are assumed to be positive, meaning ∆t > 0, whereas in the turnstile
model ∆t can be positive or negative.

The general task in streaming is to respond to some query Q

about the frequency vector f (t ) at each point in time t ∈ [m]. Of-
tentimes, this query is to approximate

2
some function д : Rn → R

of f (t ). For example, counting the number of distinct elements in a

data stream is among the most fundamental problems in the stream-

ing literature; here д(f (t )) is the number of non-zero entries in f (t ).
Since exact computation cannot be done in sublinear space [9], the

goal is to approximate the value of д(f (t )) to within a multiplicative

factor of (1±ε). Another important streaming problem (which is not

directly an estimation task) is the Heavy-Hitters problem, where the

algorithm is tasked with finding all the coordinates in f (t ) which
are larger than some threshold τ .

Formally, the adversarial setting ismodeled by a two-player game

between a (randomized) StreamingAlgorithm and an Adversary.

At the beginning, a query Q is fixed, which the StreamingAlgo-

rithm must continually reply to. The game proceeds in rounds,

where in the t-th round:

(1) The Adversary chooses an update ut = (at ,∆t ) for the
stream, which can depend, in particular, on all previous

stream updates and outputs of StreamingAlgorithm.

(2) The StreamingAlgorithm processes the new update ut
and outputs its current response Rt to the query Q.

(3) The Adversary observes Rt (stores it) and proceeds to the

next round.

The goal of the Adversary is to make the StreamingAlgorithm

output an incorrect response Rt to Q at some point t in the stream.

For example, in the distinct elements problem, the adversary’s goal

is that on some step t , the estimate Rt will fail to be a (1 + ε)-
approximation of the true current number of distinct elements

|{i ∈ [n] : f
(t )
i , 0}|.

Streaming algorithms in the adversarial setting. It was shown
by Hardt and Woodruff [20] that linear sketches are inherently

1
In the streaming literature, an algorithm is often required to be correct on a query

made only once, at the end of the stream. This is a one-shot guarantee, as opposed to the
tracking guarantee as defined here. However, the two settings are nearly equivalent.

Indeed, for almost all streaming problems, a one-shot algorithm can be made into a

tracking algorithm with at most anO (logn) blow-up in space, by simply setting the

failure probability small enough to union bound over all points in the stream.

2
Ideally, one might wish to exactly compute the function д; however, in many cases,

and in particular for the problems that we consider here, exact computation cannot be

done with sublinear space.

non-robust in adversarial settings for a large family of problems,

thus demonstrating a major limitation of such sketches. In particu-

lar, their results imply that no linear sketch can approximate the

Euclidean norm of its input to within a polynomial multiplicative

factor in the adversarial (turnstile) setting. Here, a linear sketch

is an algorithm whose output depends only on values Af and A,

for some (usually randomized) sketching matrix A ∈ Rk×n . This
is quite unfortunate, as the vast majority of turnstile streaming

algorithms are in fact linear sketches.

On the positive side, a recent work of Ben-Eliezer and Yogev [5]

showed that random sampling is quite robust in the adaptive ad-

versarial setting, albeit with a slightly larger sample size. While

uniform sampling is a rather generic and important tool, it is not

sufficient for solving many important streaming tasks, such as

estimating frequency moments (Fp -estimation), finding L2 heavy
hitters, and various other central data analysis problems. This raises

the natural question of whether there exist efficient adversarially

robust randomized streaming algorithms for these problems and

others, which is the main focus of this work. Perhaps even more

importantly, we ask the following.

Is there a generic technique to transform a static
streaming algorithm into an adversarially robust

streaming algorithm?

This work answers the above questions affirmatively for a large

class of algorithms.

1.1 Our Results
We devise adversarially robust algorithms for various fundamental

insertion-only streaming problems, including distinct element esti-

mation, Fp moment estimation, heavy hitters, entropy estimation,

and several others. In addition, we give adversarially robust stream-

ing algorithms which can handle a bounded number of deletions

as well. The required space of our adversarially robust algorithms

matches that of the best known non-robust ones up to a small mul-

tiplicative factor. In contrast, we demonstrate that some classical

randomized algorithms for streaming problems in the static setting,

such as the celebrated Alon-Matias-Szegedy (AMS) sketch [3] for

F2-estimation, are inherently non-robust to adaptive adversarial

attacks in a strong sense.

Our adversarially robust algorithms make use of two generic

robustification frameworks that we develop, allowing one to effi-

ciently transform a non-robust streaming algorithm into a robust

one in various settings. Both of the robustification methods rely on

the fact that functions of interest do not drastically change their

value too many times along the stream. We combine this observa-

tion with a rounding technique so as to avoid leaking information

to the adaptive adversary.

The first method, called sketch switching, maintains multiple

instances of the non-robust algorithm and switches between them

in a way that cannot be exploited by the adversary. The second

technique bounds the number of computation paths possible in the

two-player adversarial game. This technique maintains only one

copy of a non-robust algorithm, albeit with an extremely small

probability of error δ . We show that a carefully rounded sequence

of outputs generates only a small number of possible computa-

tion paths, which can then be used to ensure robustness by union
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Problem Static Randomized Deterministic Adversarial Comments

Distinct elements (F0) Õ(ε−2 + logn) [6] Ω(n) [9]
Õ(ε−3 + logn)
Õ(ε−2 + logn) crypto/random oracle

Fp estimation, p ∈ (0, 2] \ {1}
O(ε−2 logn) [7]

Ω̃(2−1/(1−p) · n) [9]
Õ(ε−3 logn)

O(ε−3 log2 n) [27] Õ(ε−3 log3 n) δ = Θ(n−(1/ε ) logn )

Fp estimation, p > 2

O
(
n
1− 2

p (ε−3 log2 n
Ω(n) [9]

O
(

n
1− 2

p (ε−3 log2 n
δ = Θ(n−(1/ε ) logn )

+ε
− 6

p
log

4

p +1 n)
)
[14] +ε

− 6
p log

4
p +1 n)

)

ℓ2 Heavy Hitters O(ε−2 log2 n) [8] Ω(
√
n) [26] Õ(ε−3 log2 n)

Entropy Estimation

O(ε−2 log3 n) [11]
Ω̃(n)

O(ε−5 log6 n)
Õ(ε−2) [23] O(ε−5 log4 n) crypto/random oracle

Turnstile Fp , p ∈ (0, 2] O(ε−2λ log2 n) [27] Ω(n) [3] O(ε−2λ log2 n) λ-bounded Fp flip

number, δ = Θ(n−λ)

Fp , p ∈ [1, 2], α-bdd. deletions Õ(ε−2 logα logn + log2 n) [22] Ω̃(2−1/(1−p) · n) [9] O(αε−(2+p) log3 n) static only for p = 1

Table 1: A summary of our adversarially robust algorithms (in bold), as compared to the best known upper bounds for random-
ized algorithms in the static setting and lower bounds for deterministic algorithms. Note that all stated algorithms provide
tracking. All results except for the last two (which hold in restricted versions of the turnstile model) are for insertion only
streams. We write Õ, Ω̃ to hide log ε−1 and log logn factors. The lower bound for deterministic entropy estimation follows from
a reduction from estimating Fp for p = 1 + Θ̃( ε

log
2 n
) to entropy estimation [21].

bounding over these paths. The framework is described in Section

3.

The two above methods are incomparable: for some streaming

problems the former is more efficient, while for others, the latter

performs better, and we show examples of each. Specifically, sketch

switching can exploit efficiency gains of strong-tracking, resulting
in particularly good performance for static algorithms that can

respond correctly to queries at each step without having to union

bound over allm steps. In contrast, the computation paths technique

can exploit an algorithm with good dependency on δ (the failure

probability). Namely, algorithms that have small dependency in

update-time or space on δ will benefit from the computation paths

technique.

For each of the problems we consider, we show how to use

the framework, in addition to some further techniques which we

develop along the way, to solve it. Interestingly, we also demon-

strate how cryptographic assumptions (which were not commonly

used before in the streaming context) can be applied to obtain an

adversarially robust algorithm against computationally bounded

adversaries for the distinct elements problem at essentially no ex-

tra cost over the space optimal non-robust one. See Table 1 for

a summary of our results in the adversarial setting compared to

the state-of-the-art in the static setting, as well as to deterministic

algorithms.

Distinct elements and Fp -estimation. Our first suite of results

provides robust streaming algorithms for estimating Fp , the p
th

fre-

quency moment of the frequency vector, defined as Fp = ∥ f ∥
p
p =∑n

i=1 | fi |
p
, where we interpret 0

0 = 0. Estimating frequency mo-

ments has amyriad of applications in databases, computer networks,

data mining, and other contexts. Efficient algorithms for estimating

distinct elements (i.e., estimating F0) are important for databases,

since query optimizers can use them to find the number of unique

values of an attribute without having to perform an expensive sort

on the values. Efficient algorithms for F2 are useful for determining

the output size of self-joins in databases, and for computing the

surprise index of a data sequence [18]. Higher frequency moments

are used to determine data skewness, which is important in parallel

database applications [12].

We remark that for any fixed p , 1,
3
including p = 0, any deter-

ministic insertion-only algorithm for Fp -estimation requires Ω(n)
space [9]. In contrast, we will show that randomized adversarially

robust algorithms exist for all p, whose space complexity either

matches or has a small multiplicative overhead over the best static

randomized algorithms.

We begin with several results concerning the problem of estimat-

ing distinct elements, or F0 estimation. The first of them utilizes

an optimized version of the sketch switching method to derive an

upper bound. The result is an adversarially robust F0 estimation

algorithm whose complexity is only a Θ( 1ε log ε
−1) factor larger

than the optimal static (non-robust) algorithm [6].

Theorem 1.1 (Robust Distinct Elements by Sketch Switch-

ing; see Theorem 5.1). There is an algorithm which, when run
on an adversarial insertion only stream, with probability at least
1 − δ produces at every step t ∈ [m] an estimate Rt such that
Rt = (1 ± ε)∥ f (t )∥0 . The space used by the algorithm is

O

(
log(1/ε)

ε

(
log ε−1 + logδ−1 + log logn

ε2
+ logn

))
.

The second result utilizes a different approach, by applying the

computation paths method. The space complexity is slightly worse,

which is a result of setting the failure probability δ < n−
1

ε logn
for

any given static algorithm. However, we introduce a new static

3
Note that there is a trivialO (logn)-bit insertion only F1 estimation algorithm: one

just keeps a counter for

∑
t ∆t .
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algorithm for F0 estimation which has very small update-time de-

pendency on δ , and nearly optimal space complexity. As a result,

by applying our computation paths method to this new static algo-

rithm, we obtain an adversarially robust F0 estimation algorithm

with extremely fast update time (note that the update time of the

above sketch switching algorithm would be O(ε−1 logn) to obtain

the same result, even for constant δ ).

Theorem 1.2 (Fast Adversarially Robust Distinct Elements,

see Theorem 5.3). There is a streaming algorithm which, with prob-
ability 1 − n−(C/ε ) logn for any constant C ≥ 1, when run on an
adversarial chosen insertion-only data stream, returns a (1 ± ε) mul-
tiplicative estimate of the number of distinct elements at every step in
the stream. The space required isO( 1ε3 log

3 n), and the algorithm runs

in O((log2 log logn
ε ) · (log log log

logn
ε )) worst case time per update.

The third result takes a different approach: it shows that under

certain standard cryptographic assumptions, there exists an adver-

sarially robust algorithm which asymptotically matches the space

complexity of the best non-robust tracking algorithm for distinct

elements. The cryptographic assumption is that an exponentially

secure pseudorandom function exists (in practice one can take, for

instance, AES as such a function). While our other algorithms in

this paper hold even against an adversary which is unbounded com-

putationally, in this particular result we assume that the adversary

runs in polynomial time. See Section 10 for more details.

Theorem 1.3 (Robust Distinct Elements by Cryptographic

Assumptions; see Theorem 10.1). In the random oracle model, there
is an F0-estimation (tracking) streaming algorithm in the adversarial
setting, that for an approximation parameter ε uses O(ε−2(log 1/ε +
log logn) + logn) bits of memory, and succeeds with probability 3/4.

Moreover, under a suitable cryptographic assumption, assuming
the adversary has bounded running time of nc , wherem is the stream
length and c is a constant, the random oracle can be replaced with a
concrete function and the total memory isO(ε−2(log 1/ε+ log logn)+
c logn).

Here, the random oracle model means that the algorithm is given

read access to an arbitrarily long string of random bits.

Our next set of results provides adversarially robust algorithms

for Fp -estimation withp > 0. The following result concerns the case

0 < p ≤ 2. It was previously shown [9] that for p bounded away

from one, Ω(n) space is required to deterministically estimate ∥ f ∥
p
p ,

even in the insertion only model [9]. On the other hand, space-

efficient non-robust randomized algorithms for Fp -estimation exist.

We leverage these, along with an optimized version of the sketch

switching technique to save a logn factor, and obtain the following.

Theorem 1.4 (Fp -estimation for 0 < p ≤ 2; see Theorem 4.1).

Fix 0 < ε, δ ≤ 1 and 0 < p ≤ 2. There is a streaming algorithm in the
insertion-only adversarial model which outputs at each step a valueRt

such that Rt = (1±ε)∥ f (t )∥p at every step t ∈ [m], and succeeds with
probability 1 − δ . The algorithm uses O(ε−3 logn log ε−1(log ε−1 +
logδ−1 + log logn)) bits of space.

We remark that the space complexity of Theorem 1.4 is within

a Θ(ε−1 log ε−1) factor of the best known static (non-robust) algo-

rithm [7] . While for most values of δ , the above theorem using

sketch switching has better space complexity than the computation

paths reduction, for the regime of very small failure probability δ
it is actually preferable to use the latter, as we now state.

Theorem 1.5 (Fp estimation for small δ ; see Theorem 4.2).

Fix any 0 < ε < 1, 0 < p ≤ 2, and δ < n−C
1

ε logn for a sufficiently
large constantC > 1. There is a streaming algorithm for the insertion-
only adversarial model which, with probability 1 − δ , successfully
outputs at each step t ∈ [m] a value Rt such that Rt = (1± ε)∥ f (t )∥p .

The space used by the algorithm is O
(
1

ε2 logn logδ
−1
)
bits.

In addition, we show that for turnstile streams with bounded Fp
flip number (defined formally in Section 3), efficient adversarially

robust algorithms exist. Roughly speaking, the Fp flip number is

the number of times that the Fp moment changes by a factor of

(1 + ε). Our algorithms have extremely small failure probability of

δ = n−λ , and have optimal space among turnstile algorithms with

this value of δ [25].

Theorem 1.6 (Fp Estimation for λ-flip number turnstile

streams; See Theorem 4.3). LetSλ be the set of all turnstile streams
with Fp flip number at most λ ≥ λε ,m (∥ · ∥

p
p ) for any 0 < p ≤ 2. Then

there is an adversarially robust streaming algorithm for the class Sλ
of streams that, with probability 1 − n−Cλ for any constant C > 0,
outputs at each time step a value Rt such that Rt = (1 ± ε)∥ f ∥pp . The
space used by the algorithm is O(ε−2λ log2 n).

The next result concerns Fp -estimation for p > 2. Here again,

we provide an adversarially robust algorithm which is optimal up

to a small multiplicative factor. This result applies the computation

paths robustification method as a black box. Notably, a classic lower

bound of [4] shows that for p > 2, Ω(n1−2/p ) space is required to

estimate ∥ f ∥
p
p up to a constant factor (improved lower bounds have

been provided since, e.g., [29]). By using our computation paths

technique, we obtain adversarially robust Fp moment estimation

algorithms as well for p > 2.

Theorem 1.7 (Robust Fp estimation for p > 2; see Theorem

4.4). Fix any ε > 0, and fix any p > 2. There is a streaming algorithm
for the insertion-only adversarial model which, with probability 1 −

n−(c logn)/ε for any constant c > 1, successfully outputs at each step
a value Rt such that Rt = (1 ± ε)∥ f (t )∥p at every step t ∈ [m]. The
space used by the algorithm is

O

(
n1−2/p

(
ε−3 log2 n + ε−6/p

(
log

2 n
)
2/p

logn

))
Attack on AMS. On the negative side, we demonstrate that the

classic Alon-Matias-Szegedy sketch (AMS sketch) [3], the first and

perhaps most well-known F2 estimation algorithm (which uses

sub-polynomial space), is not adversarially robust. Specifically, we

demonstrate an adversary which, when run against the AMS sketch,

fools the sketch into outputting a value which is not a (1 ± ε)
estimate of the F2. The non-robustness of standard static streaming

algorithms, even under simple attacks, is a further motivation to

design adversarially robust algorithms.

In what follows, recall that the AMS sketch computes S · f
throughout the stream, where S ∈ Rt×n is a matrix of uniform

{t−1/2,−t−1/2} random variables. The estimate of the F2 is then the

value ∥S f ∥2
2
.
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Theorem 1.8 (Attack on AMS sketch; see Theorem 9.1). Let
S ∈ Rt×n be the AMS sketch, where t = r/ε2 for any c ≤ r ≤ Cn for
constants c,C > 0. Then there is an adversary which, with probability
99/100, succeeds in forcing the estimate ∥S f ∥2

2
of the AMS sketch to

not be a (1 ± ε) approximation of the true norm ∥ f ∥2
2
. Moreover, the

adversary need only make O(r ) stream updates before this occurs.

Heavy Hitters. We also show how our techniques can be used

to solve the popular heavy-hitters problem. Recall that the heavy-

hitters problem tasks the streaming algorithm with returning a set

S containing all coordinates i such that | fi | ≥ τ , and containing no

coordinates j such that | fj | < τ/2, for some threshold τ . Generally,
the threshold τ is set to τ = ε ∥ f ∥p , which is known as the Lp heavy

hitters guarantee.

For L1 heavy hitters in insertion-only streams, a deterministic

O( 1ε logn) space algorithm exists [32]. However, for p > 1, specifi-

cally for the highly popular p = 2, things become more complicated.

Note that since we can have ∥ f ∥2 ≪ ∥ f ∥1, the L2 guarantee is

substantially stronger. For sketching-based turnstile algorithms,

an Ω(n) lower bound for deterministic algorithms was previously

known [13]. Since ∥ f ∥1 ≤
√
n∥ f ∥2, by setting ε = n−1/2, one can

obtain a deterministic O(
√
n logn) space insertion only L2 heavy

hitters algorithm. Recently, a lower bound of Ω(
√
n) for determin-

istic insertion only algorithms was given, demonstrating the near

tightness of this result [26]. Thus, to develop a more efficient ad-

versarially robust L2 heavy hitters algorithm, we must employ

randomness.

Indeed, by utilizing our sketch switching techniques, we demon-

strate an adversarially robust L2 heavy hitters (tracking) algorithm

which uses only an O(ε−1 log ε−1) factor more space than the best

known static L2 heavy hitters tracking algorithm [8].

Theorem 1.9 (Robust L2 heavy hitters: see Theorem 6.5). Fix
any ε > 0. There is a streaming algorithm in the adversarial insertion
only model which solves the L2 heavy hitters problem at every step
t ∈ [m] with probability 1 − n−C (for any constant C > 1). The

algorithm uses O( log ε
−1

ε3 log
2 n) bits of space.

Entropy Estimation. Additionally, we demonstrate how our sketch

switching techniques can be used to obtain robust algorithms for

empirical Shannon Entropy estimation. Here, the Shannon Entropy

H (f ) of the stream is defined viaH (f ) = −
∑
i
|fi |
∥f ∥1

log

(
|fi |
∥f ∥1

)
. Our

results follow from an analysis of the exponential of α-Renyi En-
tropy, which closely approximates the Shannon entropy, showing

that the former cannot rapidly change too often within the stream.

Our result is an adversarially robust algorithm with space complex-

ity only a small polylogarithmic factor larger than the best known

static algorithms [11, 23].

Theorem 1.10 (Robust Entropy Estimation; see Theorem 7.3).

There is an algorithm for ε-additive approximation of the Shan-
non entropy in the insertion-only adversarial streaming model using
O( 1ε5 log

4 n)-bits of space in the random oraclemodel, andO( 1ε5 log
6 n)-

bits of space in the general insertion only model.

We remark that by making the same cryptographic assumption

as in Theorem 1.3, we can remove the random oracle assumption

in [23] for correctness of the entropy algorithm in the static case.

Then, by applying the same techniques which resulted in Theo-

rem 1.10, we can obtain the same stated bound for entropy with a

cryptographic assumption instead of a random oracle assumption.

Bounded Deletion Streams. Lastly, we show that our techniques

for Fp moment estimation can be extended to data streams with a

bounded number of deletions (negative updates). Specifically, we

consider the bounded deletion model of [22]. Formally, given some

α ≥ 1, the model enforces the restriction that at all points t ∈ [m] in

the stream, we have ∥ f (t )∥
p
p ≥

1

α ∥h
(t )∥

p
p , where h is the frequency

vector of the stream with updates u ′i = (ai ,∆
′
i ) where ∆′i = |∆i |

(i.e., the absolute value stream). In other words, the stream does not

delete off an arbitrary amount of the Fp weight that it adds over

the course of the stream.

We demonstrate that bounded deletion streams have the desir-

able property of having a small flip number, which is a measurement

of how often the Fp can change substantially (see Section 3 for a

formal definition). Using this property and our sketch switching

technique, we obtain the following.

Theorem 1.11. Fix p ∈ [1, 2] and any constant C > 1. Then
there is an adversarially robust Fp estimation algorithm which, with
probability 1 − n−C , returns at each time step t ∈ [m] an estimate
Rt such that Rt = (1 ± ε)∥ f (t )∥pp . The space used by the algorithm is

O(αε−(2+p) log3 n).

1.2 Other Related Work
The need for studying adversarially robust streaming and sketching

algorithms has been noted before in the literature. In particular,

[15, 16] motivate the adversarial model by giving applications and

settings where it is impossible to assume that the queries made

to a sketching algorithm are independent of the prior outputs of

the algorithm, and the randomness used by the algorithm. One

particularly important setting noted in [16] is when the privacy of

the underlying data-set is a concern.

In response to this, in [20] the notion of adversarial robustness for

linear sketching algorithms is studied. Namely, it is shown how any

function д : Rn → R, defined by д(x) = f (Ax) for some A ∈ Rk×n

and arbitrary f : Rk → R cannot approximate the F2 moment

∥x ∥2
2
of its input to an arbitrary polynomial factor in the presence

of an adversary who is allowed to query д(xi ) at polynomial many

points (unless k is large). Since one can insert and delete off each

xi in a turnstile stream, this demonstrates a strong lower bound for

adversarially robust turnstile linear sketching algorithms.

We remark that other work has observed the danger inherent

in allowing adversarial queries to a randomized sketch with only

a static guarantee [1, 2]. However, the motivation of these works

is slightly different, and their setting not fully adversarial. Finally,

in [31], adversarial robustness of sketching in a distributed, multi-
player model is considered, which is incomparable to the centralized

streaming problem considered in this work.

2 PRELIMINARIES
For p > 0, the Lp norm

4
of a vector f ∈ Rn is given by ∥ f ∥p =(∑n

i=1 | fi |
p )1/p

. The p-th moment, denoted by Fp , is given by Fp =

4
Note that this is only truly a norm for p ≥ 1.
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L
p
p , or Fp =

∑
i | fi |

p
. For p = 0, we define F0 to be the number of

non-zero coordinates in f , namely F0 = ∥ f ∥0 = |{i : fi , 0}|.

Notice that this coincides with defining 0
0 = 0 in the prior definition

of Fp . The F0 moment is also known as the number of distinct

elements. For reals a,b ∈ R and ε > 0, we write a = (1 ± ε)b to

denote the containment a ∈ [(1 − ε)b, (1 + ε)b]. Throughout, we
will often assume that our error parameter ε > 0 is smaller than

some absolute constant ε0 which does not depend on any of the

other parameters of the problem.

A stream of lengthm over a domain [n] is a sequence of updates
(a1,∆1), (a2,∆2) . . . , (am,∆m ) where at ∈ [n] an ∆t ∈ Z. The fre-
quency vector f ∈ Rn of the stream is the vector with ith coordinate

fi =
∑
t :at=i ∆t . Let f (t ) be the frequency vector restricted to

the first j updates, namely f
(j)
i =

∑
t ≤j :at=i ∆t . It is assumed at

all intermediate points t ∈ [m] in the stream that ∥ f (t )∥∞ ≤ M ,

and log(mM) = Θ(logn). Notice in particular that this bounds

|∆t | ≤ 2M for each t .
The general model as defined above is known as the turnstile

model of streaming. Another commonly studied model of streaming

is the insertion-only model, where it is assumed that ∆t > 0 for

each t = 1, . . . ,m. The insertion-only model is often presented

with the following equivalent and simplified definition: an insertion

only stream is given by a sequence a1,a2, . . . ,am ∈ [n], and the

frequency vector f ∈ Rn is given by the coordinates and fi =
|{j ∈ [m] : aj = i}|. Since we will sometimes consider data streams

with deletions (negative updates), in this work will use the former

definition, where updates are pairs (at ,∆t ) ∈ [n] × Z. In this paper,

the space of a streaming algorithm is measured in bits, and the

update time of a streaming algorithm is measured in the RAM

model, where arithmetic operations on O(logn)-bit integers can be

done in O(1) time.

The random-oracle model of streaming is the model where the

streaming algorithm is allowed random (read-only) access to an

arbitrarily long string of random bits. In other words, the space

complexity of the algorithm is not charged for storing random

bits. We remark that while nearly all lower bounds for streaming

algorithms hold even in the random oracle model, most of our

results (except for one of our results for entropy estimation and

part of our cryptographic results) do not require a random oracle.

Finally, given a vector x ∈ Rn , the empirical Shannon Entropy
H (x) is defined via H (x) = −

∑
i |xi |/∥x ∥1 log (|xi |/∥x ∥1). For α >

0, the α-Renyi Entropy Hα (x) of x is given by the value Hα (x) =
log(∥x ∥αα /∥x ∥

α
1
)/(1 − α).

2.1 Tracking Algorithms
The robust streaming algorithms we design in this paper satisfy

the tracking guarantee. Namely, they must output a response to

a query at every step in time t ∈ [m]. For the case of estimation

queries, this tracking guarantee is known as strong tracking.

Definition 2.1 (Strong tracking). Let f (1), f (2), . . . , f (m) be the

frequency vectors of a stream (a1,∆1), . . . , (am,∆m ), and let д :

Rn → R be a function on frequency vectors. A randomized algo-

rithm A is said to provide (ε, δ )-strong д-tracking if at each time

step t ∈ [m] it outputs an estimate Rt such that

|Rt − д(f
(t ))| ≤ ε |д(f (t ))|

for all t ∈ [m] with probability at least 1 − δ .

In contrast, weak tracking replaces the error term ε |д(f (t ))| by

maxt ′∈[m] ε · |д(f
(t ′))|. However, for the purposes of this paper, we

will not need to consider weak tracking. We now state two results

for strong tracking of Fp moments for p ∈ [0, 2]. Both results are

for the static setting, i.e., for a stream fixed in advance (and not for

the adaptive adversarial setting that we consider).

Lemma 2.2 ([7]). For 0 < p ≤ 2, there is an insertion only
streaming algorithm which provides (ε, δ )-strong Fp -tracking using

O(
logn
ε2 (log ε

−1 + logδ−1 + log logn)) bits of space.

Lemma 2.3 ([6]). There is an insertion-only streaming algorithm

which provides (ε, δ )-strong F0-tracking using O( log logn+log δ
−1

ε2 +

logn) bits of space.

2.2 Roadmap
In Section 3, we introduce our two general techniques for transform-

ing static streaming algorithms into adversarially robust algorithms.

In Section 4, we give our results on estimation of Fp moments, and

in Section 5 we give our algorithms for adversarially robust distinct

elements estimation. Next, in Section 6, we introduce our robust

L2 heavy hitters algorithm, and in Section 7 we give our entropy

estimation algorithm. In Section 8, we provide our algorithms for

Fp moment estimation in the bounded deletion model. In Section 9,

we give our adversarial attack on the AMS sketch. Finally, in Sec-

tion 10, we give our algorithm for optimal space distinct elements

estimation under cryptographic assumptions.

3 TOOLS FOR ROBUSTNESS
In this section we establish two methods, sketch switching and com-
putation paths, allowing one to convert an approximation algorithm

for any sufficiently well-behaved streaming problem to an adversar-

ially robust one for the same problem. At the core of these methods

is a rounding technique that allows us to leak only a small amount

of information to the adversary. The relevant definitions, of round-

ing and flip number, are given first, and afterward we use them to

develop our robustification methods.

For any x ∈ R and ε > 0, define the real number [x]ε as follows.

If x > 0, then [x]ε is the number y > 0 of the form y = (1 + ε)ℓ

for ℓ ∈ Z which minimizes max{y/x, x/y}. In other words, [x]ε is
the power of (1 + ε) closest (in multiplicative terms) to x . If x < 0,

set [x]ε as −[−x]ε ; and finally, set [0]ε = 0. Note that [x]ε is in all

cases a (1 + ε/2)-multiplicative approximation of x . Furthermore,

in this paper the values of x that we consider are generally in the

range [−nc ,−1/nc ]∪{0}∪[1/nc ,nc ]. The number of possible values

of [x]ε for x in this range is O(ε−1 logn) and thus no more than

O(log logn + log 1/ε) bits are required to store [x]ε .

Definition 3.1 (ε-rounding). Let y1,y2, . . . ,ym ∈ R be a sequence

of non-negative real numbers. An ε-rounding of y1, . . . ,ym is a

sequence y′
1
, . . . ,y′m constructed in the following way. We set y′

1
=

[y1]ε . Given y′i , we construct y′i+1 by setting y′i+1 = y′i if (1 −
ε)yi+1 ≤ y′i ≤ (1 + ε)yi+1, otherwise we set y

′
i+1 = [yi+1]ε .

The notion of ε-rounding is useful as it allows a streaming algo-

rithm to leak less information, without a significant loss in accuracy;
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specifically, this can be done by outputting the ε-rounding of the
output of the algorithm, instead of the raw output.

Typical streaming problems ask one to (1 + ε)-approximate the

value of some function д : Rn → R of the frequency vector. For

example, in the count-distinct problem, д(f (i)) is the number of dis-

tinct elements among (a1,∆1), . . . , (ai ,∆i ). As it turns out, for many

classical problems in the insertion-only model (including count-

distinct), the number of distinct values among the ε-rounding of the

sequence д(f (1)),д(f (2)), . . . ,д(f (m)) is small. The next definition,

of a flip number, captures a closely related quantity.

Definition 3.2 ((ε,m)-flip number). Let ε > 0 and m ∈ N, and
let y0,y1, . . . ,ym be any sequence of real numbers. The (ε,m)-flip
number of y0,y1, . . . ,ym is the maximum k ∈ N for which there

exist 0 ≤ i1 < . . . < ik ≤ m so that yi j−1 < [(1 − ε)yi j , (1 + ε)yi j ]
for every j = 2, 3, . . . ,k .

Given a function д : Rn → R, the (ε,m)-flip number λε ,m (д)
of д is the maximum, over all sequences (a1,∆1), . . . , (am,∆m )
of possible stream updates, of the (ε,m)-flip number of the se-

quence y0,y1, . . . ,ym defined by yi = д(f (i)) for any 0 ≤ i ≤ m,

where as usual f (i) is the frequency vector after stream updates

(a1,∆1), . . . , (ai ,∆i ) (and f (0) is the n-dimensional zeros vector).

Note that flip number is clearly monotone in ε : namely λε ,m (д) ≤
λε ′,m (д) if ε

′ < ε . For our purposes, we will need a robust variant

of this property, requiring that any sequence that approximates the

elements of (д(f (i)))mi=1 to within an error of, say, ε/10, will have
its ε-rounding not change often.

Lemma 3.3. Let д : Rn → R, 0 < ε < c where c is a small
positive absolute constant, andm ∈ N. Suppose that z0, z1, . . . , zm
is a sequence of real numbers satisfying the following: there exists
a stream of updates (a1,∆1), . . . , (am,∆m ) on which the output of
д is y0,y1, . . . ,ym , where (1 − ε/10)yi ≤ zi ≤ (1 + ε/10)yi . Let
z′
0
, z′

1
, . . . , z′m be the ε-rounding of z0, z1, . . . , zm . Then the number

of indices i ∈ [m] for which z′i , z′i−1 is at most λε/10,m (д).

Proof. Consider the collection of all indices i ∈ [m] for which
z′i , z′i−1. Write these indices as 1 ≤ i1 < i2 < . . . < ik ≤ m. We

wish to show that |yi j −yi j−1 | > ε |yi j |/10 for any 2 ≤ j ≤ k , which
will immediately imply by definition that λε/10,m (д) ≥ k .

Indeed, observe that all of the following hold for any 2 ≤ j ≤ k .

• By definition of ε-rounding, we know that z′i j−1 < [(1 −

ε)zi j , (1 + ε)zi j ].
• Again by definition of rounding, z′i j−1 is the power of 1 + ε

closest to zi j−1 , and so z′i j−1 = zi j−1 (1 ± ε/2).

• By the assumption in the statement of the lemma, zi =
yi (1 ± ε/10) for both i = i j−1 and i = i j .

It follows that the difference |yi j − yi j−1 | is at least of the form
5

(3ε/10−O(ε2))|yi j | > ε |yi j |/10, where the inequality holds provided
that ε < c for some absolute constant c > 0. ■

Note that the flip number of a function critically depends on

the model in which we work, as the maximum is taken over all

sequences of possible stream updates; for insertion-only streams,

the set of all such sequences is more limited than in the general

5
Here we think of ε > 0 as a small parameter.

turnstile model, and correspondingly many streaming problems

have much smaller flip number when restricted to the insertion

only model. We now give an example of a class of functions with

bounded flip number.

Proposition 3.4. Let д : Rn → R be any monotone function,
meaning that д(x) ≥ д(y) if xi ≥ yi for each i ∈ [n]. Assume further
that д(0) = 0, д(x) ≥ T−1 for all x > 0, and д(M · ®1) ≤ T , where M
is the bound on the entries of the frequency vector and ®1 is the all
1’s vector. Then the flip number of д in the insertion only streaming
model is λε ,m (д) = O( 1ε logT ).

Proof. To see this, note that д(f (0)) = 0, д(f (1)) ≥ T−1, and

д(f (m)) ≤ д(®1 ·M) ≤ T . Since the stream has only positive updates,

д(f (0)) ≤ д(f (1)) ≤ · · · ≤ д(f (m)). Let y1, . . . ,yk ∈ [m] be any

set of points such that д(f (yi )) < (1 + ε)д(f (yi+1)) for each i . Since
there are at most O( 1ε logT ) powers of (1 + ε) between T

−1
and T ,

by the pigeonhole principle if k > C
ε log(T ) for a sufficiently large

constantC , then at least two valuesmust satisfy (1+ε)j ≤ д(f (yi )) ≤

д(f (yi+1)) ≤ (1 + ε)j+1 for some j, which is a contradiction. ■

Note that a special case of the above are the Fp moments of a

data stream. Recall here ∥x ∥0 = |{i : xi , 0}| is the number of

non-zero elements in a vector x .

Corollary 3.5. Let p > 0. Then the (ε,m)-flip number of ∥x ∥pp
in the insertion only streaming model is λε ,m (∥ · ∥

p
p ) = O( 1ε logm)

for p ≤ 2, and λε ,m (∥ · ∥
p
p ) = O(

p
ε logm) for p > 2. For p = 0, we

also have λε ,m (∥ · ∥0) = O( 1ε logm)

Proof. We have ∥®0∥
p
p = 0, ∥z∥

p
p ≥ 1 for any non-zero z ∈ Z,

and ∥ f (m)∥
p
p ≤ Mpn ≤ ncp for some constant c , where the second

to last inequality holds because ∥ f ∥∞ ≤ M for someM = poly(n)
is assumed at all points in the streaming model. Moreover, for

p = 0 we have ∥ f (m)∥0 ≤ n. The result then follows from applying

Proposition 3.4 with T = nc ·max{p,1}
. ■

Another special case of Proposition 3.4 concerns the Cascaded
Norms of insertion-only data streams [24]. Here, the frequency vec-

tor f is replaced with amatrixA ∈ Zn×d , which receives coordinate-
wise updates in the same fashion, and the (p,k) cascaded norm of

A is given by ∥A∥(p,k ) = (
∑
i (
∑
j |Ai , j |

k )p/k )1/p . In other words,

∥A∥(p,k ) is the result of first taking the Lk norm of the rows of A,
and then taking the Lp norm of the result. Proposition 3.4 similarly

holds with T = poly(n) in the insertion only model, and therefore

the black-box reduction techniques introduced in the following

sections are also applicable to these norms (using e.g., the cascaded

algorithms of [24]).

Having a small flip number is very useful for robustness, as our

next two robustification techniques demonstrate.

3.1 The Sketch Switching Technique
Our first technique is called sketch switching, and is described in

Algorithm 1. The technique maintains multiple instances of a static

strong tracking algorithm, where each time step only one of the

instances is “active”. The idea is to change the current output of the

algorithm very rarely. Specifically, as long as the current output

Session 1: Streams - Robustness and Determinism  PODS ’20, June 14–19, 2020, Portland, OR, USA

69



is a good enough multiplicative approximation of the estimate of

the active instance, the estimate we give to the adversary does not

change, and the current instance remains active. As soon as this

approximation guarantee is not satisfied, we update the output

given to the adversary, deactivate our current instance, and activate

the next one in line. By carefully exposing the randomness of our

multiple instances, we show that the strong tracking guarantee

(which a priori holds only in the static setting) can be carried into

the robust setting. The number of instances required is controlled

by the flip number of the problem.

Algorithm 1: Adversarially Robust д-estimation by Sketch

Switching

1 λ← λε/20,m (д)

2 Initialize independent instances A1, . . . ,Aλ of a

(ε/20, δ/λ)-strong д-tracking algorithm.

3 ρ ← 1

4 д̃← д(®0)

5 while new stream update (ak ,∆k ) do
6 Insert update (ak ,∆k ) into each algorithm A1, . . . ,Aλ .

7 y ← current output of Aρ .

8 if д̃ < (1 ± ε
2
)y then

9 д̃← [Aρ (k)]ε/2.

10 ρ ← ρ + 1.

11 Output estimate д̃.

12 end

Lemma 3.6 (Sketch Switching). Fix any function д : Rn →
R and let A be a streaming algorithm that for any ε, δ > 0 uses
space L(ε, δ ), and satisfies the (ε, δ )-strong д-tracking property on
the frequency vectors f (1), . . . , f (m) of any particular fixed stream.
Then Algorithm 1 is an adversarially robust algorithm for (1 + ε)-
approximating д(f (t )) at every step t ∈ [m] with success probability
1 − δ , whose space is O

(
L(ε0, δ0) · λε0,m (д)

)
, where ε0 = Θ(ε), δ0 =

Θ(δ/λε0,m (д)).

Proof. Note that for a fixed randomized algorithm A, we can

assume the adversary against A is deterministic without loss of

generality. This is because given a randomized adversary and algo-

rithm, if the adversary succeeds with probability greater than δ in

fooling the algorithm, then by a simple averaging argument there

must exist a fixing of the random bits of the adversary which fools

A with probability greater than δ over the coin flips of A. Note

also here that conditioned on a fixing of the randomness for both

the algorithm and adversary, the entire stream and behavior of both

parties is fixed. We thus start by fixing such a string of randomness

for the adversary, which makes it deterministic. As a result, suppose

that yi is the output of the streaming algorithm on step i . Then
given y1,y2, . . . ,yk and the stream updates (a1,∆1), . . . , (ak ,∆k )
so far, the next stream update (ak+1,∆k+1) is deterministically fixed.

We stress that the randomness of the algorithm is not fixed at this

point; we will gradually reveal it along the proof.

We may assume that ε > 0 is small enough, in particular smaller

than the positive absolute constant dictated by Lemma 3.3. Now let

ε0 = ε/20 and λ = λε0,m , and fix a set of λ independent instances

A1,A2, . . . ,Aλ of the streaming algorithmAwith the (ε0, δ0)-strong
д-tracking property. Since δ0 = O(δ/λ), later on we will be able to

union bound over the assumption that for all ρ ∈ [λ], Ai satisfies
strong tracking on some fixed stream (to be revealed along the

proof); the stream corresponding to Aρ will generally be different

than that corresponding to ρ ′ for ρ , ρ ′.
First, let us fix the randomness of the first instance, A1. Let

u1
1
,u1

2
, . . . ,u1m be the updates u1j = (aj ,∆j ) that the adversary

would make if A were to output y0 = д(®0) at every time step, and

let f (t ),1 be the stream vector after updates u1
1
, . . . ,u1t . Let A1(t) be

the output of algorithmA1 at time t of the streamu1
1
,u1

2
, . . . ,u1t . Let

t1 ∈ [m] be the first time step such that |A1(t1) − y0 | > ε |A1(t1)|/2,
if it (if not we can set, say, t1 =m + 1). At this point, we change our
output to y1 = [A1(t1)]ε/2. Assuming that A1 satisfies strong track-

ing for д with approximation parameter ε0 with respect to the fixed

stream of updates u1
1
, . . . ,u1m , we know that A1(t) = (1± ε0)д(f

(t ))

for each t < t1 and that y0 = (1 ± ε/2)|A1(t1)|, from which we

conclude that y0 = (1 ± ε)д(f
(t )) for any t < t1. Similarly, since

y1 = [A1(t1)]ε/2 we know that y1 = (1 ± /ε/2)A1(t1) and so

y1 = (1 ± ε)д(f
(t1)) holds as well, that is, the new output of our

algorithm y1 is still a valid approximation at time t = t1.
At this point, the algorithm “switches” to the instance A2, and

presents y1 as its output as long as A2(t) = (1 ± ε/2)y1. Recall
that randomness of the adversary is already fixed, and consider

the sequence of updates obtained by concatenating u1
1
, . . . ,u1t1 as

defined above (these are the updates already sent by the adversary)

with the sequence u2t1+1, . . . ,u
2

m to be sent by the adversary if

the output from time t = t1 onwards would always be y1. We

condition on the ε0-strong д-tracking guarantee on A2 holding for

this fixed sequence of updates, noting that this is the point where

the randomness of A2 is revealed. Set t = t2 as the first value of
t (if exists) for which A2(t) = (1 ± ε/2)y1 does not hold. We now

have, similarly to above, y1 = (1± ε)д(f
(t )) for any t1 ≤ t < t2, and

y2 = (1 ± ε)д(f
(t2)).

The same reasoning can be applied inductively for Aρ , for any

ρ ∈ [λε0,m ], to get that the output of our algorithm yρ is within a

(1 ± ε)-multiplicative factor for any of the time steps t = tρ , tρ +
1, . . . ,min{tρ+1 − 1,m}. It remains to verify that this strategy will

succeed in handling all m elements of the stream (and will not

exhaust its pool of algorithm instances before then). Indeed, this

follows immediately from Lemma 3.3, applied with the parameters

д, ε/2,m; since our instances of the algorithm employ (ε/20)-strong
tracking for д, and our actual output is an (ε/2)-rounding of these
instances, the conditions of Lemma 3.3 hold as required. ■

3.2 The Bounded Computation Paths
Technique

With our sketch switching technique, we showed that maintaining

multiple instances of a non-robust algorithm to estimate a function

д, and switching between them when the rounded output changes,

is a recipe for a robust algorithm to estimate д. We next provide

another recipe, which keeps only one instance, whose success prob-

ability for any fixed stream is very high; it relies on the fact that if

the flip number is small, then the total number of fixed streams that

we should need to handle is also relatively small, and we will be

Session 1: Streams - Robustness and Determinism  PODS ’20, June 14–19, 2020, Portland, OR, USA

70



able to union bound over all of them. Specifically, we show that any

non-robust algorithm for a function with bounded flip number can

be modified into an adversarially robust one by setting the failure

probability δ small enough.

Definition 3.7 (ε-rounding for algorithms). The ε-rounding of a
(possibly randomized) streaming algorithm A is an algorithm A′

which simulates an instance of A and runs as follows: after the first

received element, A′ return z′
1
= [z1]ε , where z1 is the output of A.

When the i-th stream element is received, for i ≥ 2, the algorithm

A′ feeds this element to its instance of A and receives an output

zi . if (1 − ε)zi ≤ z′i−1 ≤ (1 + ε)zi then the algorithm sets z′i = z′i−1.
Otherwise, it sets z′i = [zi ]ε . In both cases, the output of A′ is z′i .

Note that for any fixed stream of updates (a1,∆1), . . . , (am,∆m ),
the output sequence z′

1
, . . . , z′m of the ε-rounding algorithm A′ is

simply the ε-rounding for the output sequence z1, . . . , zm of its

internally maintained A-instance.

Lemma 3.8 (Computation Paths). Fix д : Rn → R and suppose
that the output of д over any possible stream of updates is in the range
[−T ,−1/T ] ∪ {0} ∪ [1/T ,T ] for some T > 1. Let A be a streaming
algorithm that for any ε, δ > 0 satisfies the (ε, δ )-strong д-tracking
property on the frequency vectors f (1), . . . , f (m) of any particular
fixed stream. Then the ε0-rounding algorithm A′ for A, where A is
instantiated with approximation parameter ε0 = Θ(ε) and failure

probability δ0 = δ/
( ( m
λε

0
,m (д)

)
·
(
Θ(ε−1 logT )

)λε
0
,m (д)

)
, is an adver-

sarially robust algorithm for (1+ε)-approximating д(f (t )) in all steps
t ∈ [m], with success probability 1 − δ .

Proof. As in the proof of Lemma 3.6, we may assume the ad-

versary to be deterministic. This means, in particular, that the

output sequence we provide to the adversary fully determines its

stream of updates (a1,∆1), . . . , (am,∆m ). Take ε0 = ε/20 and take

λ = λε0,m (д). Now consider all sequences s0, s1, . . . , sm where each

si is either zero, or a power of 1+ε between 1/T (1+ε) andT (1+ε), or
the negation of such a number; andmoreover, the number of i ∈ [m]
for which si , si−1 is at most λ. By a standard counting argument,

the number of such sequences is

( m
λε

0
,m (д)

)
·
(
O(ε−1 logT )

)λε
0
,m (д)

.

Each such output sequence uniquely determines a corresponding

stream of updates for the deterministic adversary; let S be the

collection of all such streams.

Pick δ0 = δ/|S|. Taking a union bound, we conclude that with

probability 1 − δ , A (instantiated with parameters ε0 and δ0) pro-
vides an ε0-strong д-tracking guarantee for all streams in S. We

now fix the randomness of A, and assume the last event holds. For

any stream of updates ((a1,∆1), . . . , (am,∆m )) ∈ S this fixes a cor-

responding output sequence (z0, . . . , zm ) of the algorithm A. Let O
be the collection of all such output sequences. Each such sequence

satisfies the conditions of Lemma 3.3, and so its ε/2-rounding is

a sequence z′
0
, . . . , z′m where z′i , z′i−1 for at most λ values of

i ∈ [m]. Thus, if the above event holds, then the output provided to

the adversary has at most λ distinct values (which are powers of

1 + ε in the relevant range). Thus, conditioning on this event, the

stream of updates which the adversary creates upon observing the

rounded outputs (z′
0
, . . . , z′m ) of the algorithmA′must by definition

be in S. It follows by the ε0-strong tracking guarantee given by

this event that the ε/2-rounding z′
0
, . . . , z′m of the output of A is a

(1 ± ε)-approximation for д on all possible adversarial streams in

this setting, i.e., all streams in S. ■

4 Fp ESTIMATION
In this section, we introduce our adversarially robust Fp moment

estimation algorithms. Recall that Fp is given by ∥ f ∥
p
p =

∑
i | fi |

p

for p > 0. For p = 0, the F0 moment, or the number of distinct

elements, is the number of non-zero coordinates in f , that is, ∥ f ∥0 =
|{i ∈ [n] : fi , 0}|. Recall that in Corollary 3.5, we bounded the flip

number of the Fp moment in insertion only streams for any fixed

p > 0 by O(pε−1 logn). By using our sketch switching argument,

the strong Fp tracking guarantees of [7] as stated in Lemma 2.2, we

obtain our first result for 0 < p ≤ 2.

Theorem 4.1 (Fp estimation by sketch switching). Fix any
0 < ε, δ ≤ 1 and 0 < p ≤ 2. There is a streaming algorithm for
the insertion-only adversarial model which, with probability 1 − δ ,
successfully outputs at each step t ∈ [m] a value Rt such that Rt =
(1 ± ε)∥ f (t )∥p . The space used by the algorithm is

O

(
1

ε3
logn log ε−1(log ε−1 + logδ−1 + log logn)

)
Proof. By an application of Lemma 3.6 along with the flip num-

ber bound of Corollary 3.5 and the strong tracking algorithm of

Lemma 2.2, we immediately obtain a space complexity of

O

(
1

ε3
log

2 n(log ε−1 + logδ−1 + log logn)

)
We now describe how the factor of

1

ε logn, coming from running

λε ,m = Θ( 1ε logn) independent sketches in Lemma 3.6, can be

improved to
1

ε log ε
−1
.

To see this, we change Algorithm 1 in the following way. Instead

of Θ( 1ε logn) independent sketches, we use λ← Θ( 1ε log ε
−1) inde-

pendent sketches, and change line 10 to state ρ ← ρ + 1 (mod λ).
Each time we change ρ to ρ + 1 and begin using the new sketch

Aρ+1, we completely restart the algorithmAρ with new randomness,

and run it on the remainder of the stream. The proof of correctness

in Lemma 3.6 is completely unchanged, except for the fact that

now Aρ is run only on a suffix aj ,aj+1, . . . , of the stream, if j is
the time step where Aρ is reinitialized. Specifically, at each time

step t ≥ j, Aρ will produce a (1 ± ε) estimate of ∥ f (t ) − f (j−1)∥p
instead of ∥ f (t )∥p . However, since the sketch will not be used again

until a time step t ′ where ∥ f (t )∥p ≥ (1 + ε)
λ ∥ f (j)∥p =

100

ε ∥ f
(j)∥p ,

it follows that only an ε fraction of the ℓp mass was missed by Aρ .

In particular, ∥ f (t
′) − f (j−1)∥p = (1 ± ε/100)∥ f

(t ′)∥p , and thus by

giving a (1±ε/10) approximation of ∥ f (t
′)− f (j−1)∥p , the algorithm

Aρ gives the desired (1 ± ε) approximation of the underlying ℓp
norm, which is the desired result after a constant factor rescaling

of ε . Note that this argument could be used for the L0 norm, or

any p norm for p ≥ 0, using a Fp strong tracking algorithm for the

relevant p. ■

While for most values of δ , the above theorem has better space

complexity than the computation paths reduction, for the regime

of very small failure probability it is actually preferable to use

the latter, as we now state. The proof is a direct application of
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Lemma 3.8, along with the flip number bound of Corollary 3.5, and

the O(ε−2 logn logδ−1) static Fp estimation algorithm of [27]. We

remark that the below complexity is optimal up to a logn term for

insertion only streams. The reason is that the O(1/ε2 logn log 1/δ )
lower bound of [25] degrades toO(1/ε2 log 1/δ )when deletions are

not allowed.
6

Theorem 4.2 (Fp estimation for small δ ). Fix any 0 < ε < 1,

0 < p ≤ 2, and δ < n−C
1

ε logn for a sufficiently large constantC > 1.
There is a streaming algorithm for the insertion-only adversarial
model which, with probability 1 − δ , successfully outputs at each step
t ∈ [m] a value Rt such that Rt = (1 ± ε)∥ f (t )∥p . The required space

is O
(
1

ε2 logn logδ
−1
)
bits.

Next, we show that for turnstile streams with Fp flip number

λ, we can estimate Fp with error probability δ = n−λ . The space
requirement of the algorithm is optimal for algorithms with such

failure probability δ , which follows by an Ω(ε−2 logn logδ−1) lower
bound for turnstile algorithms [25], where the hard instance in

question has small Fp flip number.
7

Theorem 4.3 (Fp Estimation for λ-flip number turnstile

streams). Let Sλ be the set of all turnstile streams with Fp flip
number at most λ ≥ λε ,m (∥ · ∥

p
p ) for any 0 < p ≤ 2. Then there is an

adversarially robust streaming algorithm for the class Sλ of streams
that, with probability 1 − n−Cλ for any constant C > 0, outputs at
each time step a value Rt such that Rt = (1± ε)∥ f ∥pp . The space used
by the algorithm is O(ε−2λ log2 n).

Proof. The proof follows from a simple application of Lemma

3.8, along with the O(ε−2 logn logδ−1) bit turnstile algorithm of

[27]. ■

In addition, we show that the Fp moment can also be robustly

estimated for p > 2. In this case, it is preferable to use our compu-

tation paths reduction, because the upper bounds for Fp moment

estimation for large p yield efficiency gains when setting δ to be

small.

Theorem 4.4 (Fp estimation, p > 2, by Computation Paths).

Fix any ε, δ > 0, and any constant p > 2. Then there is a streaming al-
gorithm for the insertion-only adversarial model which, with probabil-
ity 1−n−(c logn)/ε for any constant c > 1, successfully outputs at every
step t ∈ [m] a value Rt such that Rt = (1± ε)∥ f (t )∥p . The space used
by the algorithm is O(n1−2/p (ε−3 log2 n + ε−6/p (log2 n)2/p logn)).

Proof. We use the insertion only Fp estimation algorithm of

[14], which achieves(
n1−2/p

(
ε−2 logδ−1 + ε−4/p log2/p δ−1 logn

))
bits of space in the turnstile (and therefore insertion only) model.

We can set δ = δ/m to union bound over all steps, making it a

6
Specifically, one may not apply the augmented indexing step in the reduction of [25]

to delete off coordinates in logn levels, which loses this factor in the lower bound.

7
The hard instance in [25] is a stream where O (n) updates are first inserted and then

deleted, thus the flip number is at most twice the Fp flip number of an insertion only

stream.

strong Fp tracking algorithm with

O
(
n1−2/p

(
ε−2 log(nδ−1) + ε−4/p log2/p (nδ−1) logn

))
bits of space. Then by Lemma 3.8 along with the flip number bound

of Corollary 3.5, the claimed space complexity follows. ■

5 DISTINCT ELEMENTS ESTIMATION
We now demonstrate how our sketch switching technique can be

used to estimate the number of distinct elements, also known as F0
estimation, in an adversarial stream. In this case, since there exist

static F0 strong tracking algorithms [6] which are more efficient

than repeating the sketch logδ−1 times, it will be preferable to use

our sketch switching technique.

Theorem 5.1 (Robust Distinct Elements by Sketch Switch-

ing). There is an algorithm which, when run on an adversarial inser-
tion only stream, produces at each step t ∈ [m] an estimate Rt such
that Rt = (1 ± ε)∥ f (t )∥0 with probability at least 1 − δ . The space

used by the algorithm is O( log ε
−1

ε (
log ε−1+log δ−1+log logn

ε2 + logn))
bits.

Proof. We use the insertion only distinct elements strong track-

ing algorithm of [6]. Specifically, the algorithm of [6] uses space

O(
log δ−1

0
+log logn
ε2 + logn), and with probability 1 − δ0, success-

fully returns an estimate Rt for every step t ∈ [m] such that

Rt = (1 ± ε)∥ f (t )∥0 in the non-adversarial setting. Then by applica-

tion of Lemma 3.6, along with the flip number bound of O(logn/ε)
from Corollary 3.5, we obtain the space complexity with a factor

of
logn
ε blow-up after setting δ0 = Θ(δ ε

logn ). This gives a complex-

ity of O(
logn
ε (

log ε−1+log δ−1+log logn
ε2 + logn)). To reduce the extra

logn-factor to a log ε−1 factor, we just apply the same argument

used in the proof of Theorem 4.1, which shows that by restarting

sketches it suffices to keep only O(ε−1 log ε−1) copies. ■

5.1 Fast Distinct Elements Estimation
As noted earlier, there are many reasons why one may prefer one of

the reductions from Section 3 to the other. In this section, wewill see

such a motivation. Specifically, we show that adversarially robust

L0 estimation can be accomplished with extremely fast update time

using the computation paths reduction of Lemma 3.8.

First note that the standard approach to obtaining failure prob-

ability δ is to repeat the estimation algorithm logδ−1 times inde-

pendently, and take the median output. However, this blows up the

update time by a factor of logδ−1. Thus black-box applying Lemma

3.8 by setting δ to be small can result in a larger update time. To

improve upon this, we will introduce an insertion only distinct

elements estimation algorithm, with the property that the runtime

dependency on δ−1 is extremely small (roughly log
2
log logδ−1).

Thus applying Lemma 3.8 on this algorithm results in a very fast

robust streaming algorithm. The proof of the correctness of Lemma

5.2, along with a detailed discussion of the proposed algorithm, can

be found in Appendix A.1.

Lemma 5.2. There is a streaming algorithm which, with proba-
bility 1 − δ , returns a (1 ± ε) multiplicative estimate of the number

Session 1: Streams - Robustness and Determinism  PODS ’20, June 14–19, 2020, Portland, OR, USA

72



of distinct elements in an insertion only data stream. The space re-
quired isO( 1ε2 logn(log logn + logδ

−1)),8 and the algorithm runs in

O
((
log

2
log

logn
δ

)
·

(
log log log

logn
δ

))
worst case time per update.

We can use the prior result of Lemma 5.2, along with our ar-

gument for union bounding over adversarial computation paths

of Lemma 3.8 and the flip number bound of Corollary 3.5, which

results in an adversarially robust streaming algorithm for distinct

elements estimation with extremely fast update time.

Theorem 5.3. There is a streaming algorithm which, with prob-
ability 1 − n−(C/ε ) logn for any constant C ≥ 1, when run on an
adversarial chosen insertion-only data stream, returns a (1 ± ε) mul-
tiplicative estimate of the number of distinct elements at every step
in the stream. The space required is O( 1ε3 log

3 n), and the worst case

running time is O
((
log

2
log

logn
ε

)
·

(
log log log

logn
ε

))
per update.

6 HEAVY HITTERS
In this section, we study the popular heavy-hitters problem in data

streams. The heavy hitters problem tasks the algorithm with recov-

ering the largest items in a data-set. Stated simply, the goal is to

report a list S of items fi that appear least τ times, meaning fi ≥ τ ,
for a given threshold τ . Generally, τ is parameterized in terms of

the Lp norm of the frequency vector f , so that τ = ε ∥ f ∥p . For
p > 2, this problem is known to take polynomial space [29]. Thus,

the strongest such guarantee that can be given in sub-polynomial

space is known as the L2 guarantee:

Definition 6.1. A streaming algorithm is said to solve the (ε, δ )-
heavy hitters problem with the L2 guarantee if the algorithm, when

run on a streamwith frequency vector f ∈ Rn , outputs a set S ⊂ [n]
such that with probability 1−δ the following holds: for every i ∈ [n]
if | fi | ≥ ε ∥ f ∥2 then i ∈ S , and if | fi | ≤ (ε/2)∥ f ∥2 then i < S .

We will also introduce the related task of ε-point queries.

Definition 6.2. A streaming algorithm is said to solve the (ε, δ )
point query problem with the L2 guarantee if with probability 1−δ ,
at every time step t ∈ [m], for each coordinate i ∈ [n] it can output

an estimate f̂ ti such that | f̂ ti − f
(t )
i | ≤ ε ∥ f (t )∥2. Equivalently, it

outputs a vector f̂ t ∈ Rn such that ∥ f (t ) − f̂ t ∥∞ ≤ ε ∥ f (t )∥2.
9

Notice that for any algorithm that solves the (ε, δ )-point query

problem, if it also has estimates Rt = (1± ε/10)∥ f (t )∥2 at each time

step t ∈ [m], then it immediately gives a solution to the (ε, δ ) heavy

hitters problem by just outputting all i ∈ [n] with ˜f ti > (3/4)εR
t
.

Thus solving (ε, δ )-point queries, together with F2 tracking, is a

stronger property. In the following, we say that f̂ t is ε-correct at

time t if ∥ f (t ) − f̂ t ∥∞ ≤ ε ∥ f (t )∥2.
In this section, we demonstrate how this fundamental task of

point query estimation can be accomplished robustly in the adver-

sarial setting. Note that we have already shown how F2 tracking

8
We remark that it is possible to optimize the logn factor toO (log δ−1 + log ε−1 +
log logn by hashing the identities stored in the lists of the algorithm to a domain of size

poly(δ−1, ε−1, logn). However, in our application we will be setting δ ≪ 1/n, and
so the resulting adversarially robust algorithm would actually be less space efficient.

9
We note that a stronger form of error is possible, called the tail guarantee, which does

not count the contribution of the top 1/ε2 largest coordinates to the error ε ∥f ∥2 . We

restrict to the simpler version of the L2 guarantee.

can be accomplished in the adversarial model, so our focus will be

on point queries. Our algorithm relies on a similar sketch switching

technique as used in Lemma 3.6, which systematically hides ran-

domness from the adversary by only publishing a new estimate f̂ t

when absolutely necessary. To define what is meant by “absolutely

necessary", we will first need the following Proposition.

Proposition 6.3. Suppose that f̂ t ∈ Rn is ε-correct at time t on
an insertion only stream, and let t1 > t be any time step such that
∥ f (t1) − f (t )∥2 ≤ ε ∥ f (t )∥∞. Then f̂ t is 2ε-correct at time t1.

Proof. We have ∥ f̂ t − f (t1)∥∞ ≤ ∥ f̂
t − f (t )∥∞ + ∥ f

(t1) −

f (t )∥∞ ≤ ε ∥ f (t )∥2 + ε ∥ f
(t )∥2 ≤ 2ε ∥ f (t1)∥2. ■

To prove the main theorem of Section 6, we will need the classic

count-sketch algorithm for finding L2 heavy hitters [10], which

solves the more general point query problem in the static setting

with high probability.

Lemma 6.4 ([10]). There is a streaming algorithm in the non-
adversarial insertion only model which solves the (ε, δ ) point query
problem, using O( 1ε2 logn log

n
δ ) bits of space.

We are now ready to prove the main theorem of this section.

Theorem 6.5. Fix any ε, δ > 0. There is a streaming algorithm in
the adversarial insertion only model which solves the (ε,n−C ) point
query problem, and also theO(ε,n−C )-heavy hitters problem, for any

constant C > 1. The algorithm uses O( log ε
−1

ε3 log
2 n) bits of space.

Proof. Since we already know how to obtain estimates Rt =

(1 ± ε/100)∥ f (t )∥2 at each time step t ∈ [m] in the adversarial

insertion only model within the required space, it will suffice to

show that we can obtain estimates f̂ t which are ε-correct at each
time step t (i.e., it will suffice to solve the point query problem).

Let 1 = t1, t2, . . . , tT = m for T = Θ(ε−1 logn) be any set of time

steps such that ∥ f (at+1) − f (at )∥2 ≤ ε ∥ f (at )∥2 for each i ∈ [T − 1].

Then by Proposition 6.3, we know that if we output a estimate f̂ i

on time ti which is ε-correct for time ti , then f̂ i will still be 2ε
correct at time ti+1. Thus our approach will be to output vectors

f̂ 1, f̂ 2, . . . , f̂ T , such that we output the estimate f̂ i ∈ Rn at all

times τ such that ti ≤ τi < ti+1, and such that f̂ i is ε-correct for
time ti .

First, to find the time steps ti , we run the adversarially robust

F2 estimator of Theorem 4.1, which gives an estimate Rt = (1 ±

ε/100)∥ f (t )∥2 at each time step t ∈ [m] with probability 1 − n−C

for any constantC > 1, and uses spaceO(ε−3 log2 n log ε−1). Notice
that this also gives the required estimates Rt as stated above. By

using an ε/2-rounding (Definition 3.7) of the output of this F2
estimation algorithm, we obtain our desired points ti . Notice that
this also gives T = Θ(ε−1 logn) as needed, by the flip number

bound of Corollary 3.5. Next, to obtain the desired ε point query
estimators at each time step ti , we run T independent copies of

the point query estimation algorithm of Lemma 6.4. At time ti , we

use the output vector of the i-th copy as our estimate f̂ i , which
will also be used without any modification on all times τ with

ti ≤ τ < ti+1. Since each copy of the algorithm only reveals any

of its randomness at time ti , at which point it is never used again,
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by the same argument as Lemma 3.6 it follows that each f̂ i will
be ε-correct for time ti . Namely, since the set of stream updates on

times 1, 2, . . . , ti are independent of the randomness used in the

i-th copy of point-estimation algorithm, we can deterministically

fix the updates on these time steps, and condition on the i-th copy

of the non-adversarial streaming algorithm being correct on these

updates. Therefore this algorithm correctly solves the 2ε point

query problem on an adversarial stream. The total space used is

O
(
ε−3 log2 n log ε−1 +Tε−2 log2 n

)
We now note that we can improve the space by instead running

only T ′ = O(ε−1 log ε−1) independent copies of the algorithm of

Lemma 6.4. Each time we use one of the copies to output the desired

estimate f̂ i , we completely restart that algorithm on the remaining

suffix of the stream, and we loop modularly through all T ′ copies
of the algorithm, at each step using the copy that was least recently

restarted to output an estimate vector. More formally, we keep

copies A1, . . . ,AT ′ of the of the algorithm of Lemma 6.4. Each

time we arrive at a new step ti and must produce a new estimate f̂ i ,
we query the algorithmAj that was least recently restarted, and use
the estimate obtained by that algorithm, along with the estimates

Rt .
The same correctness argument will hold as given above, except

now each algorithm, when used after being restarted at least once,

will only be ε-correct for the frequency vector defined by a suffix
of the stream. However, by the same argument used in Theorem

4.1, we can safely disregard the prefix that was missed by this copy

of the algorithm, because it contains only an ε/100-fraction of the

total Lp mass of the current frequency vector when it is applied

again. Formally, if an algorithm is used again at time ti , and it was

last restarted at time τ , then by the correctness of our estimates Rt ,

the L2 norm must have gone up by a factor of (1 + ε)T
′

= 100

ε , so

∥ f (τ )∥2 ≤ ε/100∥ f (ti )∥2. Moreover, we have that the estimate f̂ i

produced by this copy satisfies ∥ f̂ i − (f (ti ) − f (τ ))∥∞ ≤ ε ∥ f (ti ) −

f (τ )∥2. But then

∥ f̂ i − f (ti )∥∞ ≤ ∥ f̂
i − (f (ti ) − f (τ ))∥∞ + ∥ f

(τ )∥∞

≤ ε ∥ f (ti ) − f (τ )∥2 + ∥ f
(τ )∥2

≤ ε
(
∥ f (ti )∥2 + ∥ f

(τ )∥2

)
+ ε/100∥ f (ti )∥2

≤ ε ∥ f (ti )∥2(1 + ε) + ε/100∥ f
(ti )∥2

≤ 2ε ∥ f (ti )∥2

(1)

Thus f̂ i is still 2ε-correct at time ti for the full stream vector f (ti ).
So by the same argument as above using Proposition 6.3, it follows

that the output of the overall algorithm is always 4ε-correct for
all time steps τ ∈ [m], and we can then resale ε by a factor of

1/4. Substituting the new number T ′ of copies used into the above

equation, we obtain the desired complexity. ■

7 ENTROPY ESTIMATION
We now show how our general techniques developed in Section 3

can be used to approximate the empirical Shannon entropy H (f )
of an adversarial stream. Recall that for a non-zero vector f , we

have that H (f ) = −
∑
i ,fi,0 pi log(pi ), where pi =

|fi |
∥f ∥1

. Also recall

that for α > 0, the α-Renyi Entropy Hα (x) of x is given by Hα (x) =

log

(
∥x ∥αα
∥x ∥α

1

)
/(1 − α). The proofs omitted from this section can be

found in Appendix A.2.

We begin with the following observation, which will allow us to

consider multiplicative approximation of 2
H (x )

. Then, by carefully

bounding the flip number of the Renyi entropy Hα for α close to 1,

we will be able to bound the flip number of H .

Remark. Note that any algorithm that gives an ε-additive ap-
proximation of the Shannon Entropy H (x) : Rn → R gives a (1 ± ε)
multiplicative approximation of д(x) = 2

H (x ), and vice-versa.

Proposition 7.1 (Theorem 3.1 of [21]). Let x ∈ Rn be a proba-
bility distribution whose smallest non-zero value is at least 1

m , where
m ≥ n. Let 0 < ε < 1 be arbitrary. Define µ = ε/(4 logm) and ν =
ε/(4 logn logm),α = 1+µ/(16 log(1/µ)) and β = 1+ν/(16 log(1/ν )).
Then

1 ≤
Hα
H
≤ 1 + ε and 0 ≤ H − Hβ ≤ ε

Proposition 7.2. Let д : RN → R be д(x) = 2
H (x ), i.e., the

exponential of the Shannon entropy. Then the (ε,m)-flip number of д
for the insertion only streaming model is λε ,m (д) = O( 1ε3 log

3m).

Theorem 7.3 (Robust Additive Entropy Estimation). There is
an algorithm for ε-additive approximation of entropy in the insertion-
only adversarial streaming model using O( 1ε5 log

4 n)-bits of space in
the random oracle model, andO( 1ε5 log

6 n)-bits of space in the general
insertion-only model.

8 BOUNDED DELETION STREAMS
In this section, we show how our results can be used to obtain

adversarially robust streaming algorithms for the bounded-deletion
model, introduced in [22]. The bounded deletion model serves as

an intermediate model between the turnstile and insertion only

model. Motivated by common lower bounds for turnstile streams,

which utilize seemingly unrealistic hard instances that insert a

large number of items before deleting nearly all of them, bounded

deletion streams are possibly a more representative model for real

world data-streams. Intuitively, a bounded deletion stream is one

where the Fp moment of the stream is a
1

α fraction of what the

Fp moment would have been had all updates been replaced with

their absolute values, meaning that the stream does not delete off

an arbitrary amount of the Fp weight that it adds over the course

of the stream. Formally, the model is as follows.

Definition 8.1. Fix anyp ≥ 1 andα ≥ 1. A data streamu1, . . . ,um ,

where ui = (ai ,∆i ) ∈ [n] × {1,−1} are the updates to the frequency
vector f , is said to be an Fp α-bounded deletion stream if at every

time step t ∈ [m] we have ∥ f (t )∥
p
p ≥

1

α
∑n
i=1(

∑
t ′<t :at ′=i |∆t ′ |)

p
.

Specifically, the α-bounded deletion property says that the Fp
moment ∥ f (t )∥p of the stream is at least

1

α ∥h
(t )∥p , where h is the

frequency vector of the stream with updates u ′i = (ai ,∆
′
i ) where

∆′i = |∆i | (i.e., the absolute value stream). Note here that the model

assumes unit updates, i.e., we have |∆i | = 1 for each i ∈ [m], which
can be accomplished without loss of generality with respect to

the space complexity of algorithms, by simply duplicating integral

updates into unit updates.
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In [22], the authors show that for α-bounded deletion streams,

a factor of logn in the space complexity of turnstile algorithms

can be replaced with a factor of logα for many important stream-

ing problems. In this section, we show another useful property of

bounded-deletion streams: norms in such streams have bounded

flip number. We use this fact to design adversarially robust stream-

ing algorithms for data streams with bounded deletions. The proofs

of Lemma 8.2 and Theorem 8.3 can be found in Appendix A.3.

Lemma 8.2. Fix any p ≥ 1. The λε ,m (∥ · ∥p ) flip number of the Lp
norm of a α-bounded deletion stream is at most O(p α

εp logn)

We now use our computation paths technique of Lemma 3.8,

along with the space optimal turnstile Fp estimation algorithm

of [27], to obtain adversarially robust algorithms for α-bounded
deletion streams. Specifically, we show that we can estimate the

Fp moment of a bounded deletion stream robustly. We remark that

once F2 moment estimation can be done, one can similarly solve the

heavy hitters problem in the robust model using a similar argument

as in Section 6, except without the optimization used within the

proof of Theorem 6.5 which restarts sketches on a suffix of the

stream. The result the space would be precisely a
α
ε logn factor

larger than the space stated in Theorem 6.5.

Theorem 8.3. Fix p ∈ [1, 2] and any constant C > 1. Then there
is an adversarially robust Fp estimation algorithm which, with prob-
ability 1 − n−C , returns at each time step t ∈ [m] an estimate Rt

such that Rt = (1 ± ε)∥ f (t )∥pp . The space used by the algorithm is

O(αε−(2+p) log3 n).

9 ADVERSARIAL ATTACK AGAINST THE
AMS SKETCH

It was shown by Hardt and Woodruff [20] that linear sketches

can in some cases be vulnerable to adaptive adversarial attacks

(see Subsection 1.2). In this section, we show another instance

of this phenomenon, demonstrating that the classic Alon-Matias-

Szegedy (AMS) sketch [3] for estimating the L2 norm of a data

stream is inherently non-robust. To this end, we describe an attack

fooling the AMS sketch into outputting a value which is not a good

approximation of the norm ∥ f ∥2
2
of the frequency vector. Our attack

provides an even stronger guarantee: for any r ≥ 1 and an AMS

sketch with r/ε2 rows, our adversary needs to only create O(r )
adaptive stream updates before it can fool the AMS sketch into

outputting an incorrect result.

We first recall the AMS sketch for estimating the L2 norm. The

AMS sketch generates (implicitly) a random matrix A ∈ Rt×n such

that the entries Ai , j ∼ {−1, 1} are i.i.d. Rademacher.
10

The algo-

rithm stores the sketch Af (j) at each time step j, and since the

sketch is linear it can be updated throughout the stream: Af (j+1) =

Af (j)+A·ei j+1∆j+1 where (i j+1,∆j+1) is the j+1-st update. The esti-

mate of the sketch at time j is 1

t ∥Af
(j)∥2

2
, which is guaranteed to be

with good probability a (1±ε) estimate of ∥ f (j)∥2
2
in non-adversarial

streams if t = Θ(ε−2).

10
In fact, the AMS sketch works even if the entries within a row of A are only 4-wise

independent. Here, we show an attack against the AMS sketch if it is allowed to store

a fully independent sketch A.

We now describe our attack. Let S be a t × n Alon-Matias-

Szegedy sketch. Equivalently, Si , j is i.i.d. uniformly distributed

in {−t−1/2, t−1/2}, and the estimate of AMS is ∥S f (j)∥2
2
at the j-th

step. The protocol for the adversary is as follows. In the follow-

ing, we let ei ∈ R
n
denote the standard basis vector which is zero

everywhere except the i-th coordinate, where it has the value 1.

Algorithm 2: Adversary for AMS sketch

1 w ← C ·
√
t · e1

2 for i = 2, . . . ,m do
3 old← ∥Sw ∥2

2

4 w ← w + ei
5 new← ∥Sw ∥2

2

6 if new − old < 1 then
7 w ← w + Sei
8 end
9 else if new − old = 1 then
10 with probability 1/2, setw ← w + Sei
11 end
12 end

Note that the vectorw in the above algorithm is always equal to

the current frequency vector of the stream, namelyw = f (j) after
the j-th update. Note that the above algorithm can be implemented

by an adversary who only is giving the estimate ∥Sw ∥2
2
= ∥S f (j)∥2

2

of the AMS sketch after every step j in the stream. To see this,

note that the algorithm begins by inserting the first item (i1,∆1) =

(1,C ·
√
t) for a sufficiently large constant C . Next, for i = 2, . . . ,n,

it inserts the item i ∈ [n] once if doing so increases the estimate of

AMS bymore than 1. If the estimate of AMS is increased by less than

1, it inserts the item i twice (i.e., it inserts an update (i, 2) ∈ [n] ×Z).
Lastly, if inserting the item i ∈ [n] increases the estimate of AMS

by exactly 1, the adversary chooses to insert i ∈ [n] once with

probability 1/2, otherwise it inserts i ∈ [n] twice.
We now claim that at the end of a stream of m = O(t) up-

dates, with good probability ∥w ∥2
2
= ∥S f (m)∥2

2
< (1 ± ε)∥ f (m)∥2

2
.

In fact, we show that regardless of the number of rows t in the

AMS sketch, we force the AMS to give a solution that is not even a

2-approximation.

Theorem 9.1. Let S ∈ Rt×n be an AMS sketch (i.i.d. Rademacher
matrix scaled by t−1/2), where 1 ≤ t < n/c for some constant c .
Suppose further that the adversary performs the adaptive updates as
described in Algorithm 2. Then with probability 9/10, by them-th
stream update for somem = O(t), the AMS estimate ∥S f (m)∥2

2
of the

norm ∥ f (m)∥2
2
of the frequency vector f defined by the stream fails to

be a (1 ± 1/2) approximation of the true norm ∥ f (m)∥2
2
. Specifically,

we will have ∥S f (m)∥2
2
< 1

2
∥ f (m)∥2

2
.

Proof. For j = 2, 3 . . . we say that the j-th step of Algorithm 2

is the step in the for loop where the parameter i is equal to j, and
we define the first step to just be the state of the stream after line 1

of Algorithm 2. Letwi
be the state of the frequency vector at the

end of the i-th step of the for loop in Algorithm 2, let yi = Swi
be

the AMS sketch at this step, and let si = ∥Sw
i ∥2

2
be the estimate of
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AMS at the same point. Note that we have w1 = C ·
√
t · e1 for a

sufficiently large constant C , and thus s1 = C
2t . That is, already on

the first step of the algorithm we have ∥w1∥2
2
= C2t , and moreover

since the stream is insertion only, we always have ∥wi ∥2
2
≥ C2t .

Thus, it suffices to show that with good probability, at some time

step i ≥ 2 we will have si < C2t/2.
First, note that at any step i = 2, 3, . . . , if we add Sei+1 once,

we have si+1 = ∥y
i + Sei+1∥

2

2
=

∑t
j=1((y

i
j )
2 + 2yijSj ,i+1 + 1/t) =

si + 1 + 2

∑t
j=1 y

i
jSj ,i+1. If we add Sei+1 twice, we have si+1 =

∥yi + 2Sei+1∥
2

2
= si + 4 + 4

∑t
j=1 y

i
jSj ,i+1. By definition of the

algorithm, we choose to insert Sei+1 twice if ∥y
i +Sei+1∥

2

2
−si = 1+

2

∑t
j=1 y

i
jSj ,i+1 < 1, or more compactly whenever

∑t
j=1 y

i
jSj ,i+1 <

0. If

∑t
j=1 y

i
jSj ,i+1 > 0, we insert Sei+1 only once. Finally, if

∑t
j=1

yijSj ,i+1 = 0, we flip an unbiased coin, and choose to insert Sei+1
either once or twice with equal probability 1/2. Now observe that

the random variable

∑t
j=1 y

i
jSj ,i+1 is symmetric, since for any fixed

yi the Sj ,i+1’s are symmetric and independent. Thus, we have that

E
[��� t∑
j=1

yijSj ,i+1

���] = E[ t∑
j=1

yijSj ,i+1 | Sei+1 inserted once

]
= −E

[ t∑
j=1

yijSj ,i+1 | Sei+1 inserted twice

] (2)

Now recall that the vector S∗,i+1 given by the (i+1)-st column of

S is just an i.i.d. Rademacher vector scaled by 1/
√
t . Thus by the clas-

sic Khintchine inequality [19], we have that E[|
∑t
j=1 y

i
jSj ,i+1 |] =

1√
t
· α · ∥yi ∥2 = α

√
si/
√
t for some absolute constant α > 0 (in fact,

α ≥ 1/
√
2 suffices by Theorem 1.1 of [19]). Putting these pieces

together, the expectation of the estimate of AMS is then as follows:

E[si+1] =
1

2

(si + 1 + 2α

√
si
√
t
) +

1

2

(si + 4 − 4α

√
si
√
t
)

= si + 5/2 − α
√
si/t

≤ si + 5/2 −
√
si/2t

(3)

Where again the last line holds using the fact that α ≥ 1/
√
2. Thus

E[si+1] = E[si ] + 5/2 − E[
√
si/2t]. First, suppose there exists some

i ≤ C2t + 2 such that E[
√
si ] < C

√
t/200. This implies by definition

that

∑
j
√
j · Pr[si = j] < C

√
t/200, thus√

C2t/2 · Pr[si ≥ C2t/2] ≤
∑

j≥C2t/2

√
j · Pr[si = j]

<
√
C2t/200

(4)

Which implies that Pr[si ≥ C2t/2] ≤ 1/10. Thus, on that step i , we
have Pr[si < C2t/2] > 9/10, and thus by time step i we have fooled
the AMS sketch with probability at least 9/10. Thus, we can assume

that for all i = 2, 3, . . . , (C2t + 2) we have E[
√
si ] ≥ C

√
t/200.

Setting C > 200, we have that E[si+1] < E[si ] − 1 for all steps

i = 2, 3, . . . , (C2t + 2) However, since s1 = C2t , this implies that

E[sC2t+2] < −1, which is impossible since sj is always the value of
a norm. This is a contradiction, which implies that such an i with
i ≤ C2t + 2 and Pr[si ≥ C2t/2] ≤ 1/10 must exist, demonstrating

that we fool the AMS sketch by this step with probability 9/10,

which completes the proof. ■

10 OPTIMAL DISTINCT ELEMENTS VIA
CRYPTOGRAPHIC ASSUMPTIONS

Estimating the number of distinct elements (F0-estimation) in a

data stream is a fundamental problem in databases, network traffic

monitoring, query optimization, data mining, and more. After a

long line of work, [28, 37] settled space (and time) complexities of

F0-estimation by giving an algorithm using O(ε−2 + logn) bits of
space (with constant worst-case update time). The tracking version

of this algorithm (where it outputs a correct estimate at each time

step) takes memory O(ε−2(log ε−1 + log logn) + logn) bits and is

also optimal [6].

However, these results only hold in the (standard) static setting.

We show that using cryptographic tools (pseudorandom functions),

we can transform this algorithm, using the same amount of memory

to be robust in the adversarial setting as well, where the adversary

is assumed to be computationally bounded (as opposed to our other

results which have no assumptions on the adversary whatsoever).

The transformation actually works for a large class of stream-

ing algorithms. Namely, any algorithm such that when given an

element that appeared before, does not change its state at all (with

probability 1). Since the F0 tracking algorithm of [6] has this prop-

erty, we can black-box apply our results to this algorithm.

First, we show how this transformation works assuming the

existence of a truly random function, where the streaming algorithm

has access to the function without needing to store it explicitly (the

memory is free). Recall that this is known as the random oracle

model of streaming, as such a function can be represented by a

sufficiently long string of random bits. The model is appealing since

we have different heuristic functions (such as the SHA-X family)

that behave, as far as we can tell in practice, like random functions.

Moreover, there is no memory cost when using them. Nevertheless,

we discuss how to implement such a function with cryptographic

tools (pseudorandom functions) and storing only a small secret key

in the memory. The proof can be found in Appendix A.4.

Theorem 10.1 (Robust Distinct Elements by Cryptographic

Assumptions). In the random oracle model, there is an F0-estimation
(tracking) streaming algorithm in the adversarial setting, that for an
approximation parameter ε uses O(ε−2(log 1/ε + log logn) + logn)
bits of memory, and succeeds with probability 3/4.

Moreover, under a suitable cryptographic assumption, assuming
the adversary has bounded running time of nc , wherem is the stream
length and c is fixed, the random oracle can be replaced with a concrete
function and the total memory isO(ε−2(log 1/ε + log logn)+c logn).
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A MISSING PROOFS
A.1 Proofs from Section 5

Algorithm 3: Fast non-adversarial distinct elements esti-

mation.

1 Initialize Lists L0, L1, . . . , Lt ← ∅, for t = Θ(logn)

2 B ← Θ(ε−2 logδ−1), d ← Θ(log logn + logδ−1)

3 Initialize d-wise independent hash function H : [n] → [2ℓ]

such that n2 ≤ 2
ℓ ≤ n3.

4 while Receive update (at ,∆t ) ∈ [n] × Z do
5 Let j be such that 2

ℓ−j−1 ≤ H (at ) < 2
ℓ−j

6 if Lj has not been deleted then
7 Add at to the list Lj if it is not already present.

8 end
9 If |Lj | > B for any j , delete the list Lj , and never add any

items to it again.

10 end
11 Let i be the largest index such that |Li | ≥

1

5
B.

12 Return 2
i−1 |Li | as the estimate of ∥ f ∥0

Before stating our proof of Lemma 5.2, We will begin with the

following proposition which will allow for the fast evaluation of

d-wise independent hash functions.

Proposition A.1 ([36], Ch. 10). Let R be a ring, and let p ∈ R[x]
be a degree d univariate polynomial over R. Then given distinct
x1, x2, . . . , xd ∈ R, all the values p(x1),p(x2), . . . ,p(xd ) can be com-
puted using O(d log2 d log logd) operations over R.

Proof of Lemma 5.2. We describe the algorithm here, as stated

in Algorithm 3. We initialize lists L0, L1, . . . , Lt ← ∅, for t =

Θ(logn), and hash functions H : [n] → [2ℓ], where ℓ is set so

that n2 ≤ 2
ℓ ≤ n3. The lists Li will store a set of identities

Li ⊂ [n] which have occurred in the stream. We also set B ←
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Θ( 1ε2 (log logn + logδ
−1)). For now, assume that H is fully indepen-

dent.

At each step when we see an update ai ∈ [n] (corresponding to

an update which increments the value of fi by one), we compute j

such that 2
ℓ−j−1 ≤ H (ai ) ≤ 2

ℓ−j
. Note that this event occurs with

probability 2
−(j+1)

. Then we add the O(logn)-bit identity ai to the

list Lj if |Lj | < B. Once |Lk | = B for any k ∈ [t], we delete the

entire list Lk , and never add an item to Lk again. We call such a list

Lk saturated. At the end of the stream, we find the largest value i
such that

1

5
B ≤ |Li |, and output 2

i−1 |Li | as our estimate of ∥ f ∥0.
We now analyze the above algorithm. Let i0 be the smallest in-

dex such that E[|Li0 |] ≤ ∥ f ∥02
−(i0+1) < 1

5(1+ε )B. Note here that

E[|Lk |] = 2
−(k+1)∥ f ∥0 for any k ∈ [t]. By Chernoff bounds, with

probability 1−exp(−B) < 1−δ2/log(n)we have that |Li0 | <
1

5
B. We

can then union bound over all such indices i ≥ i0. This means that

we will not output the estimate used from any index i ≥ i0. Simi-

larly, by a Chernoff we have that |Li0−1 | = (1 ± ε)∥ f ∥02
−i0 < 2

5
B

and |Li0−2 | = (1 ± ε)∥ f ∥02
−i0+1

, and moreover we have
2

5(1+ε )B ≤

∥ f ∥02
−i0+1 ≤ 4

5
B, meaning that the output of our algorithm will

be either |Li0−1 |2
i0−2

or |Li0−2 |2
i0−3

, each of which yields a (1 ± ε)
estimate. Now note that we cannot store a fully independent hash

function H , but since we only needed all events to hold with proba-

bility 1 − Θ(δ2/log(n)), it suffices to choose H to be a d-wise inde-
pendent hash function for d = O(log logn + logδ−1), which yields

Chernoff-style tail inequalities with a decay rate of exp(−Ω(d)) (see
e.g. Theorem 5 of [35]).

Now to analyze the space bound. Trivially, we store at most

O(logn) lists Li , each of which stores at most B identities which

require O(logn) bits each to store, yielding a total complexity of

O( 1ε2 log
2 n(log logn+ logδ−1)). We now show however that at any

given step, there are at most O(B log logn) many identities stored

in all of the active lists. To see this, let i0 < i1 < · · · < is be the
time steps such that ∥ f (i j )∥0 = 2

j+1 ·B, and note that s ≤ log(n)+1.
Note that before time i0, at most B identities are stored in the union

of the lists. First, on time step i j for any j ∈ [s], the expected

size of |Lj−2 | is at least 2|B | (had we never deleted saturated lists),

and, with probability 1 − (δ/logn)10 after a union bound, it holds

that |Lj′ | is saturated for all j ′ ≤ j − 2. Moreover, note that the

expected number of identities written to lists Lj′ with j ′ ≥ j − 1

is ∥ f (i j )∥0
∑
ν ≥1 2

−j+1+ν ≤ 2B, and is at most 4B with probability

at least 1 − (δ/logn)10 (using the d-wise independence of H ). We

conclude that on time step tj , the total space being used isO(B logn)

with probability at least 1 − (δ/logn)10, so we can union bound

over all such steps i j for j ∈ [s].
Next, wemust analyze the space usage at steps τ for i j < τ < i j+1.

Note that the number of new distinct items which occur over all

such time steps τ is at most 2
j+1 · B by definition. Since we already

conditioned on the fat that |Lj′ | is saturated for all j ′ ≤ j − 2, it fol-
lows that each new item is written into a list with probability at most

2
−j
. Thus the expected number of items which are written into lists

within times τ satisfying i j < τ < i j+1 is 2
j · B · 2−j = B in expecta-

tion, and at most 4B with probability 1−(δ/logn)10 (again using the
d-wise Independence ofH ). Conditioned on this, the total space used

in these steps is at most O(B logn) = O( 1ε2 logn(log logn + logδ ))

in this interval, and we then can union bound over all suchO(logn)
intervals, which yields the desired space.

Update Time: Finally, for the update time, note that at each

stream update ai ∈ [n] the first step of the algorithm. Naïvely, com-

puting ad-wise independent hash function requiresO(d) arithmetic

operations (in the standard RAM model), because H in this case is

just a polynomial of degree d over Z. On the other hand, we can

batch sequences ofd = O(log logn+logδ−1) computations together,

which require an additiveO(d logn) = O(logn(log logn+ logδ−1))
bits of space at any given time step to store (which is dominated

by the prior space complexity). Then by Proposition A.1, all d hash

function evaluations can be carried out in O(d log2 d log logd) =

O(d log2(log
logn
δ ) log log log log

n
δ ) time. The work can then be

evenly distributed over the following d steps, giving a worst case

update time ofO(log2(log
logn
δ ) log log log log

n
δ ). Note that this de-

lays the reporting of the algorithm for the contribution of updates

by a total of d steps, causing an additive d error. However, this is

only an issue if d ≥ ε ∥ f ∥0, which occurs only when ∥ f ∥0 ≥
1

ε d .

Thus for the first D = O(ε−1d) distinct items, we can store the

non-zero items exactly (and deterministically), and use the out-

put of this deterministic algorithm. The space required for this is

O(ε−1 log(n)(log logn + logδ−1), which is dominated by the space

usage of the algorithm overall. After D distinct items have been

seen, we switch over to using the output of the randomized algo-

rithm described here. Finally, the only other operation involves

adding an identities to at most one list per update, which is O(1)
time, which completes the proof. ■

A.2 Proofs from Section 7
To obtain our Entropy estimation algorithm of Theorem 7.3, we will

first need to state the results for the state of the art non-adversarial

streaming algorithms for additive entropy estimation. The first

algorithm is a O(ε−2 log2 n)-bit streaming algorithm for additive

approximation of the entropy of a turnstile stream, which in partic-

ular holds for insertion only streams. The second result is a Õ(1/ε2)
upper bound for entropy estimation in the insertion only model

when a random oracle is given. Recall that the random oracle model

of streaming means that the algorithm is given random (read-only)

access to an arbitrarily large string of random bits.

Lemma A.2 ([11]). There is an algorithm in the strict turnstile
model that gives a ε-additive approximation to the Shannon Entropy
H (f ) of the stream. The failure probability is δ , and the space required
is O( 1ε2 log

2 n logδ−1) bits.

Lemma A.3 ([23]). There is an algorithm in the insertion-only
random oracle model that gives a ε-additive approximation to the
Shannon EntropyH (f ) of the stream. The failure probability is δ , and
the space required is O( 1ε2 (logδ

−1 + log logn + log ε−1))

We now give the proof of Proposition 7.2, and then the main

Theorem 7.3.

Proof of Proposition 7.2. By Proposition 7.1, it suffices to get

a bound on the flip number of Hβ for the parameters β = 1 +

ν/(16 log(1/ν )) and ν = ε/(4 logn logm). Recall д(x) = 2
Hβ (x ) =

(∥x ∥
β
β /∥x ∥

β
1
)1/(1−β ). Now to increase д(x) by a factor of (1+ε), one
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must increase ∥x ∥
β
β /∥x ∥

β
1
by a factor of (1 + Θ(ε(1 − β)). For this

to happen, ∥x ∥β must increase by a factor of (1+Θ(ε(1− β)). Since

∥x ∥β ≤ ∥x ∥1 ≤ n1−1/β ∥x ∥1 = (1 +O(ε/logn))∥x ∥1, and thus ∥x ∥1
must also increase by a factor of (1 + Θ(ε)(1 − β)).

Similarly, for д(x) to decrease by a factor of (1 + ε), this requires
∥x ∥1 to increase by a factor of (1+Θ(ε(1−β)). In summary, for д(x)
to change by a factor of (1 ± ε), ∥x ∥1 must increase by a factor of

(1 + Θ(ε(1 − β)) = (1 + τ ), where τ = Θ̃(ε2/log2 n). ∥ f (m)∥1 ≤ Mn
and ∥ · ∥1 is monotone for insertion only streams, it follows that

this can occur at most O(
log

3 n
ε2 ) times, which completes the proof

since logn = Θ(logm). ■

Proof of Theorem 7.3. The proof follows directly from an ap-

plication of Lemma 3.6, using the non-adversarial algorithms of

Lemmas A.2 and A.3, as well as the flip number bound of Lemma

7.2. Note that to turn the algorithms of Lemmas A.2 and A.3 into

tracking algorithms, one must set δ < 1/m, which yields the stated

complexity. ■

A.3 Proofs from Section 8
Proof of Lemma 8.2. Leth be the frequency vector of the stream

with updates u ′i = (ai ,∆
′
i ) where ∆′i = |∆i |. Note that h is then

the frequency vector of an insertion only stream. Now let 0 ≤

t1 < t2 < · · · < tk ≤ m be any set of time steps such that

∥ f (ti )∥p < (1±ε)∥ f
(ti+1)∥p for each i ∈ [k−1]. Since by definition of

the α-bounded deletion property, we have ∥ f (t )∥p ≥
1

α 1/p ∥h
(t )∥p

for each t ≥ T , it follows that

∥ f (ti+1) − f (ti )∥p ≥
���∥ f (ti+1)∥p − ∥ f (ti )∥p ���
≥ ε ∥ f (ti+1)∥p

≥
ε

α1/p
∥h(ti+1)∥p

≥
εp

α1/p
∥h(ti )∥p

(5)

Where in the last equation we used that h is an insertion only

stream. Now since the updates to h are the absolute value of the

updates to f , we also have that ∥h(ti+1) − h(ti )∥
p
p ≥ ∥ f

(ti+1) −

f (ti )∥
p
p ≥

εp
α ∥h

(ti )∥
p
p . Thus

∥h(ti+1)∥
p
p = ∥h

(ti ) +
(
h(ti+1) − h(ti )

)
∥
p
p

≥ ∥h(ti )∥
p
p + ∥h

(ti+1) − h(ti )∥
p
p

≥ (1 +
εp

α
)∥h(ti )∥

p
p

(6)

Where in the second inequality, we used the fact that ∥X + Y ∥
p
p ≥

∥X ∥pp + ∥Y ∥
p
p for non-negative integral vectors X ,Y when p ≥

1. Thus ∥h(ti+1)∥
p
p must increase by a factor of (1 + εp/α) from

∥h(ti )∥
p
p whenever ∥ f (ti )∥p < (1±ε)∥ f

(ti+1)∥p . Since ∥0∥
P
p = 0, and

∥h(m)∥
p
p ≤ Mpn ≤ ncP for some constant c > 0, it follows that this

can occur at mostO(p α
εp logn)many times. Thus k = O(p α

εp logn),
which completes the proof. ■

Proof of Theorem 8.3. We use the turnstile algorithm of [27],

which gives a estimate Rt = (1± ε)∥ f (t )∥
p
p at a single point t ∈ [m]

with probability 1 − δ , using O(ε−2 logn logδ−1) bits of space. We

can set δ = 1/poly(m), and union bound over all steps, to obtain

that Rt = (1 ± ε)∥ f (t )∥
p
p at all time steps t ∈ [m] with probability

1 − n−C . Thus this gives a strong Fp tracking algorithm using

O(ε−2 logn log(n/δ )) bits of space. The theorem then follows from

applying Lemma 3.8, along with the flip number bound of Lemma

8.2. ■

A.4 Proofs from Section 10
Proof of Theorem 10.1. For simplicity, in the following proof

we assume that we have a random permutation. We note that the

proof with a random function is exactly the same conditioned on

not having any collisions. If the random function maps the universe

to a large enough domain (say of size at leastm2
) then there will

be no collisions with high probability. Thus, it suffices to consider

permutations.

The solution is inspired by the work of [34] (which had a similar

adaptive issue in the context of Bloom filters). Let Π be a truly

random permutation, and let S be a tracking steaming algorithm

with parameter ε . Let L(ε,n) be the memory consumption of the

algorithm. We construct an algorithm S ′ that works in the adversar-

ial setting as follows. Upon receiving an element x the algorithm S ′

computes x ′ = Π(x) and feeds it to S . The output of S ′ is exactly the
output of S . Notice that applying Π to the stream does not change

the number of distinct elements.

We sketch the proof. Assume towards a contradiction that there

is adaptive adversary A′ for S ′. Consider the adversary A′ at some

point in time t , where the stream is currently x1, . . . , xt . It has two
options: (i) it can choose an element xi , where i ∈ [t] that appeared
before, or (ii) it could choose a new element x∗ < {x1, . . . , xi }. Since
the state of S ′ does not change when receiving duplicate items, and

also does not change the number of distinct elements, option (i)

has no effect on the success probability of A′. Thus, in order to

gain a chance of winning A′ must submit a new query. Thus, we

can assume without loss of generality that A′ submits only distinct

elements.

For such an adversaryA′ let Dt be the distribution over states of

S ′ at time t . Let D ′t be the distribution over states of S ′ for the fixed
sequence 1, 2, . . . , t . We claim that Dt ≡ D ′t (identical distributions)
for every t ∈ [m]. We show this by induction. The first query is non-

adaptive, denote it by x1. Then, since Π is a random permutation,

we get that Π(1) ≡ Π(x1) which is what is fed to S . Thus, the two
distribution are identical. Assume it holds for t − 1. Consider the
next query of the adversary (recall that we assumed that this is a

new query). Then, for any xt (that has not been previously queried

by Π) the distribution of Π(xt ) ≡ Π(t), and therefore we get that

Dt ≡ D ′t .
Given the claim above, we get that A′ is equivalent to a static

adversaryA that outputs 1, 2, . . . ,k for some k ∈ [m]. However, the
choice of k might be adaptive. We need to show that S ′ works for
all k simultaneously. Here we use the fact that S was a tracking

algorithm (and thus also S ′), which means that S ′ succeeds on every
timestep. Thus, for the stream 1, 2, . . . ,m the algorithm S ′ succeeds
at timestamp k which consists of k distinct elements. Thus, if there
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exists an adaptive choice of k that would make S ′ fail, then there

would exist a point in time, k , such that S ′ fails at 1, . . . ,k . Since S
is tracking, such a point does not exist (w.h.p. ).

For the second part of the theorem, we note that we can imple-

ment the random function using an exponentially secure pseudo-

random function (see [17] for the precise definition and discussion).

For a key K of size λ, the pesudorandom function FK (·) looks ran-
dom to an adversary that has oracle access to FK (·) and runs in

time at most 2
γ λ

for some constant γ > 0. Let A be an adversary

that runs in time at most nc . Then, we setO(λ = 1/γ · c · logn) and
get that A cannot distinguish between FK (·) and the truly random

function except when a negligible probability event occurs (i.e., the

affect on δ is negligible and hidden in constants). Indeed, ifAwould

be able to succeed against S ′ when using the oracle FK (·), but, as
we saw, it does not succeed when using a truly random function,

then A′ could be used to break the security of the pseudorandom

function.

There are many different ways to concretely implement such a

pseudorandom function with exponential security. First, one could

use heuristic (and extremely fast) functions such as AES or SHA256

(see also [34] for a discussion on fast implementations of AES in the

context of hash functions). Next, one can assume that the discrete

logarithm problem (see [30] for the precise definition) over a group

of size q is exponentially hard. Indeed, the best known algorithm

for the problem runs in time O(
√
q). Setting q ≥ 2

λ
gets us the

desired property for γ = 1/2.

To complete the proof, we note that the only property of A we

needed was that when given an element in the stream that has

appeared before, A does not change its state at all. This property

holds for many F0 estimation algorithms, such as the one-shot F0
algorithm of [28], and the F0 tracking algorithm of [6]. Thus we

can simply use the F0 tracking algorithm of [6], which results in

the space complexity as stated in the theorem. ■
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