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ABSTRACT

We investigate the adversarial robustness of streaming algorithms.
In this context, an algorithm is considered robust if its performance
guarantees hold even if the stream is chosen adaptively by an ad-
versary that observes the outputs of the algorithm along the stream
and can react in an online manner. While deterministic streaming
algorithms are inherently robust, many central problems in the
streaming literature do not admit sublinear-space deterministic
algorithms; on the other hand, classical space-efficient randomized
algorithms for these problems are generally not adversarially ro-
bust. This raises the natural question of whether there exist efficient
adversarially robust (randomized) streaming algorithms for these
problems.

In this work, we show that the answer is positive for various
important streaming problems in the insertion-only model, includ-
ing distinct elements and more generally Fy-estimation, Fp-heavy
hitters, entropy estimation, and others. For all of these problems,
we develop adversarially robust (1 + ¢)-approximation algorithms
whose required space matches that of the best known non-robust al-
gorithms up to a poly(log n, 1/¢) multiplicative factor (and in some
cases even up to a constant factor). Towards this end, we develop
several generic tools allowing one to efficiently transform a non-
robust streaming algorithm into a robust one in various scenarios.
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1 INTRODUCTION

The streaming model of computation is a central and crucial tool
for the analysis of massive datasets, where the sheer size of the
input imposes stringent restrictions on the memory, computation
time, and other resources available to the algorithms. Examples of
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theoretical and practical settings where streaming algorithms are
in need are easy to encounter. These include internet routers and
traffic logs, databases, sensor networks, financial transaction data,
and scientific data streams. Given this wide range of applicability,
there has been significant effort devoted to designing and analyzing
extremely efficient one-pass algorithms. We recommend the survey
of [33] for a comprehensive overview of streaming algorithms and
their applications.

Many central problems in the streaming literature do not ad-
mit sublinear-space deterministic algorithms, and in these cases
randomized solutions are necessary. In other cases, randomized
solutions are more efficient and simpler to implement than their de-
terministic counterparts. While randomized streaming algorithms
are well-studied, the vast majority of them are defined and analyzed
in the static setting, where the stream is worst-case but fixed in
advance, and only then the randomness of the algorithm is chosen.
However, assuming that the stream sequence is independent of
the chosen randomness, and in particular that future elements of
the stream do not depend on previous outputs of the streaming
algorithm, may not be realistic [5, 15, 16, 20, 31, 34], even in non-
adversarial settings. For example, suppose that a user sequentially
makes queries to a database, and receives an immediate response
after each query. Naturally, future queries made by the user in such
a setting may heavily depend on the responses given by the data-
base to previous queries. In other words, the stream updates are
chosen adaptively, and cannot be assumed to be fixed in advance.

A streaming algorithm that works even when the stream is adap-
tively chosen by an adversary (the precise definition given next)
is said to be adversarially robust. Deterministic algorithms are in-
herently adversarially robust, since they are guaranteed to be cor-
rect on all possible inputs. However, the large gap in performance
between deterministic and randomized streaming algorithms for
many problems motivates the need for designing adversarially ro-
bust randomized algorithms, if they even exist. In particular, we
would like to design adversarially robust randomized algorithms
which are as space and time efficient as their static counterparts,
and yet as robust as deterministic algorithms. The study of such
algorithms is the main focus of our work.

The Adversarial Setting. There are several ways to define the ad-
versarial setting, which depends on the information the adversary
(who chooses the stream) can observe from the streaming algo-
rithm, as well as other restrictions imposed on the adversary. For
the most part, we consider a general model, where the adversary is
allowed unbounded computational power and resources, though
we do discuss the case later when the adversary is computationally
bounded. At each point in time, the streaming algorithm publishes
its output to a query for the stream. The adversary observes these
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outputs one-by-one, and can choose the next update to the stream
adaptively, depending on the full history of the outputs and stream
updates. The goal of the adversary is to force the streaming algo-
rithm to eventually produce an incorrect output to the query, as
defined by the specific streaming problem in question.!

Formally, a data stream of length m over a domain [n] is a se-
quence of updates (aj, A1), (a2, A2) . . ., (@m, Am) where a; € [n] is
an index and A; € Z is an increment or decrement to that index.
The frequency vector € R™ of the stream is the vector with it
coordinate f; = 3;.4,=; At We write f () to denote the frequency

vector restricted to the first ¢ updates, namely fl.(t) =Yj<n aj=i O

It is assumed at all points ¢ that ||f(t)||oo < M for some M > 0, and
that log(mM) = O(log n). In the insertion-only model, the updates
are assumed to be positive, meaning A; > 0, whereas in the turnstile
model A; can be positive or negative.

The general task in streaming is to respond to some query Q
about the frequency vector f(*) at each point in time ¢ € [m]. Of-
tentimes, this query is to approximate? some function g : R” — R
of f (). For example, counting the number of distinct elements in a
data stream is among the most fundamental problems in the stream-
ing literature; here g(f (1)) is the number of non-zero entries in f ®,
Since exact computation cannot be done in sublinear space [9], the
goal is to approximate the value of g(f(*)) to within a multiplicative
factor of (1+¢). Another important streaming problem (which is not
directly an estimation task) is the Heavy-Hitters problem, where the
algorithm is tasked with finding all the coordinates in f () which
are larger than some threshold 7.

Formally, the adversarial setting is modeled by a two-player game
between a (randomized) STREAMINGALGORITHM and an ADVERSARY.
At the beginning, a query Q is fixed, which the STREAMINGALGO-
RITHM must continually reply to. The game proceeds in rounds,
where in the ¢-th round:

(1) The ADVERSARY chooses an update u; = (a;, A;) for the
stream, which can depend, in particular, on all previous
stream updates and outputs of STREAMINGALGORITHM.

(2) The STREAMINGALGORITHM processes the new update u;
and outputs its current response R to the query Q.

(3) The ADVERSARY observes R’ (stores it) and proceeds to the
next round.

The goal of the ADVERSARY is to make the STREAMINGALGORITHM
output an incorrect response R? to Q at some point ¢ in the stream.
For example, in the distinct elements problem, the adversary’s goal
is that on some step t, the estimate R’ will fail to be a (1 + ¢)-
approximation of the true current number of distinct elements

i€ [n]: £ # 0},

Streaming algorithms in the adversarial setting. It was shown
by Hardt and Woodruff [20] that linear sketches are inherently

!n the streaming literature, an algorithm is often required to be correct on a query
made only once, at the end of the stream. This is a one-shot guarantee, as opposed to the
tracking guarantee as defined here. However, the two settings are nearly equivalent.
Indeed, for almost all streaming problems, a one-shot algorithm can be made into a
tracking algorithm with at most an O(log n) blow-up in space, by simply setting the
failure probability small enough to union bound over all points in the stream.
Ideally, one might wish to exactly compute the function g; however, in many cases,
and in particular for the problems that we consider here, exact computation cannot be
done with sublinear space.
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non-robust in adversarial settings for a large family of problems,
thus demonstrating a major limitation of such sketches. In particu-
lar, their results imply that no linear sketch can approximate the
Euclidean norm of its input to within a polynomial multiplicative
factor in the adversarial (turnstile) setting. Here, a linear sketch
is an algorithm whose output depends only on values Af and A,
for some (usually randomized) sketching matrix A € R¥*" This
is quite unfortunate, as the vast majority of turnstile streaming
algorithms are in fact linear sketches.

On the positive side, a recent work of Ben-Eliezer and Yogev [5]
showed that random sampling is quite robust in the adaptive ad-
versarial setting, albeit with a slightly larger sample size. While
uniform sampling is a rather generic and important tool, it is not
sufficient for solving many important streaming tasks, such as
estimating frequency moments (Fj-estimation), finding L, heavy
hitters, and various other central data analysis problems. This raises
the natural question of whether there exist efficient adversarially
robust randomized streaming algorithms for these problems and
others, which is the main focus of this work. Perhaps even more
importantly, we ask the following.

Is there a generic technique to transform a static
streaming algorithm into an adversarially robust
streaming algorithm?

This work answers the above questions affirmatively for a large
class of algorithms.

1.1 Our Results

We devise adversarially robust algorithms for various fundamental
insertion-only streaming problems, including distinct element esti-
mation, FP moment estimation, heavy hitters, entropy estimation,
and several others. In addition, we give adversarially robust stream-
ing algorithms which can handle a bounded number of deletions
as well. The required space of our adversarially robust algorithms
matches that of the best known non-robust ones up to a small mul-
tiplicative factor. In contrast, we demonstrate that some classical
randomized algorithms for streaming problems in the static setting,
such as the celebrated Alon-Matias-Szegedy (AMS) sketch [3] for
F,-estimation, are inherently non-robust to adaptive adversarial
attacks in a strong sense.

Our adversarially robust algorithms make use of two generic
robustification frameworks that we develop, allowing one to effi-
ciently transform a non-robust streaming algorithm into a robust
one in various settings. Both of the robustification methods rely on
the fact that functions of interest do not drastically change their
value too many times along the stream. We combine this observa-
tion with a rounding technique so as to avoid leaking information
to the adaptive adversary.

The first method, called sketch switching, maintains multiple
instances of the non-robust algorithm and switches between them
in a way that cannot be exploited by the adversary. The second
technique bounds the number of computation paths possible in the
two-player adversarial game. This technique maintains only one
copy of a non-robust algorithm, albeit with an extremely small
probability of error §. We show that a carefully rounded sequence
of outputs generates only a small number of possible computa-
tion paths, which can then be used to ensure robustness by union
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L Problem

l Static Randomized

L Deterministic

l Adversarial

L Comments

Distinct elements (Fp)

O % + logn) [6]

Q(n) [9]

O(e73 + logn)

O(e72 + logn)

crypto/random oracle

Fp estimation, p € (0,2] \ {1}

O(e % logn) [7]

O(e3 log? n) [27]

Q2~1/01=p) . ) [9]

O(e~3logn)

O(¢31og> n)

§ = @(n—(l/e)log m)

2
O(nl_ﬁ (3 1og?n

_Z
O(n1 P (e3log?n

Fp estimation, p > 2 . y Q(n) [9] ) f S = @(n—(l/s)log )
- | -6 44
+¢ P log? n)) [14] +¢& 7 logr n))

{2 Heavy Hitters O(e % log? n) [8] Q(\/n) [26] O(¢ 3 1og? n)

. 0(e21og? n) [11] ~ O(¢>1og® n)
Ent Est t Q

PHropy Bemation O(e72) [23] () O(e™° log* n) crypto/random oracle

Turnstile Fp, p € (0, 2] O(e2 1 log? n) [27] Q) [3] O(¢~2A1og? n) A-bounded F,, flip

number, § = ®(n_’1)

Fp, p € [1,2], a-bdd. deletions O(¢ % log alog n + log® n) [22]

Q2 V0=p) . 1) [9]

O(ae=@*P) 1og® n) | static only for p = 1

Table 1: A summary of our adversarially robust algorithms (in bold), as compared to the best known upper bounds for random-
ized algorithms in the static setting and lower bounds for deterministic algorithms. Note that all stated algorithms provide
tracking. All results except for the last two (which hold in restricted versions of the turnstile model) are for insertion only
streams. We write O, Q to hide log ¢! and loglog n factors. The lower bound for deterministic entropy estimation follows from
a reduction from estimating F, forp =1+ é(log;zn) to entropy estimation [21].

bounding over these paths. The framework is described in Section
3.

The two above methods are incomparable: for some streaming
problems the former is more efficient, while for others, the latter
performs better, and we show examples of each. Specifically, sketch
switching can exploit efficiency gains of strong-tracking, resulting
in particularly good performance for static algorithms that can
respond correctly to queries at each step without having to union
bound over all m steps. In contrast, the computation paths technique
can exploit an algorithm with good dependency on § (the failure
probability). Namely, algorithms that have small dependency in
update-time or space on § will benefit from the computation paths
technique.

For each of the problems we consider, we show how to use
the framework, in addition to some further techniques which we
develop along the way, to solve it. Interestingly, we also demon-
strate how cryptographic assumptions (which were not commonly
used before in the streaming context) can be applied to obtain an
adversarially robust algorithm against computationally bounded
adversaries for the distinct elements problem at essentially no ex-
tra cost over the space optimal non-robust one. See Table 1 for
a summary of our results in the adversarial setting compared to
the state-of-the-art in the static setting, as well as to deterministic
algorithms.

Distinct elements and Fp-estimation. Our first suite of results
provides robust streaming algorithms for estimating Fp, the pth fre-
quency moment of the frequency vector, defined as Fp, = || f ||£ =
> IfilP, where we interpret 0° = 0. Estimating frequency mo-
ments has a myriad of applications in databases, computer networks,
data mining, and other contexts. Efficient algorithms for estimating
distinct elements (i.e., estimating Fy) are important for databases,
since query optimizers can use them to find the number of unique
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values of an attribute without having to perform an expensive sort
on the values. Efficient algorithms for F, are useful for determining
the output size of self-joins in databases, and for computing the
surprise index of a data sequence [18]. Higher frequency moments
are used to determine data skewness, which is important in parallel
database applications [12].

We remark that for any fixed p # 1,3 including p = 0, any deter-
ministic insertion-only algorithm for Fp-estimation requires Q(n)
space [9]. In contrast, we will show that randomized adversarially
robust algorithms exist for all p, whose space complexity either
matches or has a small multiplicative overhead over the best static
randomized algorithms.

We begin with several results concerning the problem of estimat-
ing distinct elements, or Fy estimation. The first of them utilizes
an optimized version of the sketch switching method to derive an
upper bound. The result is an adversarially robust Fy estimation
algorithm whose complexity is only a @(% log e71) factor larger
than the optimal static (non-robust) algorithm [6].

THEOREM 1.1 (ROBUST DISTINCT ELEMENTS BY SKETCH SWITCH-
ING; SEE THEOREM 5.1). There is an algorithm which, when run
on an adversarial insertion only stream, with probability at least
1 — & produces at every step t € [m] an estimate R' such that
RE=(1+ £)||f(t)||0 . The space used by the algorithm is

o (log(l/e) (logs‘1 +1ogd7! +loglogn +log n)) ‘

€ £2

The second result utilizes a different approach, by applying the
computation paths method. The space complexity is slightly worse,
Llogn

which is a result of setting the failure probability § < n™ ¢
any given static algorithm. However, we introduce a new static

for

3Note that there is a trivial O(log n)-bit insertion only F; estimation algorithm: one
just keeps a counter for ) ; A;.
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algorithm for Fy estimation which has very small update-time de-
pendency on §, and nearly optimal space complexity. As a result,
by applying our computation paths method to this new static algo-
rithm, we obtain an adversarially robust Fy estimation algorithm
with extremely fast update time (note that the update time of the
above sketch switching algorithm would be O(e~! log 1) to obtain
the same result, even for constant J).

THEOREM 1.2 (FAST ADVERSARIALLY ROBUST DISTINCT ELEMENTS,
SEE THEOREM 5.3). There is a streaming algorithm which, with prob-
ability 1 — n~(€/O18" for any constant C > 1, when run on an
adversarial chosen insertion-only data stream, returns a (1 + €) mul-
tiplicative estimate of the number of distinct elements at every step in
the stream. The space required is O(Ei3 log® n), and the algorithm runs

ogn

in O((log? log l—) - (logloglog

£

logn .
=—)) worst case time per update.

The third result takes a different approach: it shows that under
certain standard cryptographic assumptions, there exists an adver-
sarially robust algorithm which asymptotically matches the space
complexity of the best non-robust tracking algorithm for distinct
elements. The cryptographic assumption is that an exponentially
secure pseudorandom function exists (in practice one can take, for
instance, AES as such a function). While our other algorithms in
this paper hold even against an adversary which is unbounded com-
putationally, in this particular result we assume that the adversary
runs in polynomial time. See Section 10 for more details.

THEOREM 1.3 (ROBUST Di1STINCT ELEMENTS BY CRYPTOGRAPHIC
ASSUMPTIONS; SEE THEOREM 10.1). In the random oracle model, there
is an Fy-estimation (tracking) streaming algorithm in the adversarial
setting, that for an approximation parameter ¢ uses O(e 2(log 1/e +
loglog n) + log n) bits of memory, and succeeds with probability 3/4.

Moreover, under a suitable cryptographic assumption, assuming
the adversary has bounded running time of n, where m is the stream
length and c is a constant, the random oracle can be replaced with a
concrete function and the total memory is O(e?(log 1/&+log log n) +
clogn).

Here, the random oracle model means that the algorithm is given
read access to an arbitrarily long string of random bits.

Our next set of results provides adversarially robust algorithms
for Fp-estimation with p > 0. The following result concerns the case
0 < p < 2.1t was previously shown [9] that for p bounded away
from one, Q(n) space is required to deterministically estimate || f ||£ ,
even in the insertion only model [9]. On the other hand, space-
efficient non-robust randomized algorithms for Fj-estimation exist.
We leverage these, along with an optimized version of the sketch
switching technique to save a log n factor, and obtain the following.

THEOREM 1.4 (FP—ESTIMATION FOR 0 < p < 2; SEE THEOREM 4.1).
Fix0 <¢,d <1and0 < p < 2. There is a streaming algorithm in the
insertion-only adversarial model which outputs at each step a value R’
such thatR* = (1 J_re)||f(t) |lp at every stept € [m], and succeeds with
probability 1 — 8. The algorithm uses O(¢ =3 lognlog e '(loge™! +
log 67! + loglog n)) bits of space.

We remark that the space complexity of Theorem 1.4 is within
a ©(¢ !loge™!) factor of the best known static (non-robust) algo-
rithm [7] . While for most values of §, the above theorem using
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sketch switching has better space complexity than the computation
paths reduction, for the regime of very small failure probability §
it is actually preferable to use the latter, as we now state.

THEOREM 1.5 (Fp ESTIMATION FOR SMALL §; SEE THEOREM 4.2).

Fixany0 <e<1,0<p <2,andd < n_célog"fora sufficiently
large constant C > 1. There is a streaming algorithm for the insertion-
only adversarial model which, with probability 1 — §, successfully
outputs at each step t € [m] a value R such thatR! = (1+ €)||f(t)||p.

The space used by the algorithm is O (El—z lognlog 6_1) bits.

In addition, we show that for turnstile streams with bounded Fp
flip number (defined formally in Section 3), efficient adversarially
robust algorithms exist. Roughly speaking, the Fj, flip number is
the number of times that the F, moment changes by a factor of
(1 + ¢). Our algorithms have extremely small failure probability of
8 = n~*, and have optimal space among turnstile algorithms with
this value of § [25].

THEOREM 1.6 (Fp ESTIMATION FOR A-FLIP NUMBER TURNSTILE
STREAMS; SEE THEOREM 4.3). Let Sy be the set of all turnstile streams
with Fp, flip number at most A 2 Ae m(||- ||£)for any0 < p < 2. Then
there is an adversarially robust streaming algorithm for the class S,
of streams that, with probability 1 — n~CA for any constant C > 0,
outputs at each time step a value R* such that R* = (1 + £)||f||£ The
space used by the algorithm is O(e %A log? n).

The next result concerns Fj-estimation for p > 2. Here again,
we provide an adversarially robust algorithm which is optimal up
to a small multiplicative factor. This result applies the computation
paths robustification method as a black box. Notably, a classic lower
bound of [4] shows that for p > 2, Q(nl=2/p) space is required to
estimate || f ||£ up to a constant factor (improved lower bounds have
been provided since, e.g., [29]). By using our computation paths
technique, we obtain adversarially robust F, moment estimation
algorithms as well for p > 2.

THEOREM 1.7 (ROBUST F), ESTIMATION FOR p > 2; SEE THEOREM
4.4). Fixanye > 0, and fix any p > 2. There is a streaming algorithm
for the insertion-only adversarial model which, with probability 1 —
n=(€logm/e for any constant ¢ > 1, successfully outputs at each step
a value R such thatR* = (1 + £)||f(t)||p at every step t € [m]. The
space used by the algorithm is

2/
o (nl_z/p (5_3 log? n + e o/p (10g2 n) P log n))

Attack on AMS. On the negative side, we demonstrate that the
classic Alon-Matias-Szegedy sketch (AMS sketch) [3], the first and
perhaps most well-known F, estimation algorithm (which uses
sub-polynomial space), is not adversarially robust. Specifically, we
demonstrate an adversary which, when run against the AMS sketch,
fools the sketch into outputting a value which is not a (1 * ¢)
estimate of the Fy. The non-robustness of standard static streaming
algorithms, even under simple attacks, is a further motivation to
design adversarially robust algorithms.

In what follows, recall that the AMS sketch computes S - f
throughout the stream, where S € REXM s a matrix of uniform
{t~1/2, _t~1/2} random variables. The estimate of the F is then the
value ||Sf||§
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THEOREM 1.8 (ATTACK ON AMS SKETCH; SEE THEOREM 9.1). Let
S € R™™ be the AMS sketch, wheret = r/e? for anyc < r < Cn for
constants ¢, C > 0. Then there is an adversary which, with probability
99/100, succeeds in forcing the estimate ||Sf||§ of the AMS sketch to
not be a (1 + ¢) approximation of the true norm ||f||§. Moreover, the
adversary need only make O(r) stream updates before this occurs.

Heavy Hitters. We also show how our techniques can be used
to solve the popular heavy-hitters problem. Recall that the heavy-
hitters problem tasks the streaming algorithm with returning a set
S containing all coordinates i such that | f;| > 7, and containing no
coordinates j such that | fj| < 7/2, for some threshold 7. Generally,
the threshold 7 is set to 7 = ¢|| f||, which is known as the L, heavy
hitters guarantee.

For Ly heavy hitters in insertion-only streams, a deterministic
O(% log n) space algorithm exists [32]. However, for p > 1, specifi-
cally for the highly popular p = 2, things become more complicated.
Note that since we can have ||f]l2 < ||f]1, the L guarantee is
substantially stronger. For sketching-based turnstile algorithms,
an Q(n) lower bound for deterministic algorithms was previously
known [13]. Since || f|l1 < vnl|f|l2, by setting ¢ = n~1/2 one can
obtain a deterministic O(+y/nlog n) space insertion only L, heavy
hitters algorithm. Recently, a lower bound of Q(+/n) for determin-
istic insertion only algorithms was given, demonstrating the near
tightness of this result [26]. Thus, to develop a more efficient ad-
versarially robust Ly heavy hitters algorithm, we must employ
randomness.

Indeed, by utilizing our sketch switching techniques, we demon-
strate an adversarially robust Ly heavy hitters (tracking) algorithm
which uses only an O(¢~! log ¢~!) factor more space than the best
known static Ly heavy hitters tracking algorithm [8].

THEOREM 1.9 (ROBUST Ly HEAVY HITTERS: SEE THEOREM 6.5). Fix
any € > 0. There is a streaming algorithm in the adversarial insertion
only model which solves the Ly heavy hitters problem at every step
t € [m] with probability 1 — n=C (for any constant C > 1). The
loge™!

€3

log? n) bits of space.

algorithm uses O(

Entropy Estimation. Additionally, we demonstrate how our sketch
switching techniques can be used to obtain robust algorithms for
empirical Shannon Entropy estimation. Here, the Shannon Entropy

H(f) of the stream is defined via H(f) = — 3; |||jj:_l|||1 Iog(”ljj:—illll).Our

results follow from an analysis of the exponential of ¢-Renyi En-
tropy, which closely approximates the Shannon entropy, showing
that the former cannot rapidly change too often within the stream.
Our result is an adversarially robust algorithm with space complex-
ity only a small polylogarithmic factor larger than the best known
static algorithms [11, 23].

THEOREM 1.10 (ROBUST ENTROPY ESTIMATION; SEE THEOREM 7.3).
There is an algorithm for e-additive approximation of the Shan-
non entropy in the insertion-only adversarial streaming model using
O(E—l5 log? n)-bits of space in the random oracle model, and O(el—5 log® n)-
bits of space in the general insertion only model.

We remark that by making the same cryptographic assumption
as in Theorem 1.3, we can remove the random oracle assumption
in [23] for correctness of the entropy algorithm in the static case.
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Then, by applying the same techniques which resulted in Theo-
rem 1.10, we can obtain the same stated bound for entropy with a
cryptographic assumption instead of a random oracle assumption.

Bounded Deletion Streams. Lastly, we show that our techniques
for F,, moment estimation can be extended to data streams with a
bounded number of deletions (negative updates). Specifically, we
consider the bounded deletion model of [22]. Formally, given some
a > 1, the model enforces the restriction that at all points ¢ € [m] in
the stream, we have ||f(t)||£ > é”h(t)”g, where h is the frequency
vector of the stream with updates u; = (a;, A}) where A] = |A;]
(i.e., the absolute value stream). In other words, the stream does not
delete off an arbitrary amount of the F,, weight that it adds over
the course of the stream.

We demonstrate that bounded deletion streams have the desir-
able property of having a small flip number, which is a measurement
of how often the F, can change substantially (see Section 3 for a
formal definition). Using this property and our sketch switching
technique, we obtain the following.

THEOREM 1.11. Fix p € [1,2] and any constant C > 1. Then
there is an adversarially robust Fy, estimation algorithm which, with
probability 1 — n~C, returns at each time step t € [m] an estimate
R? such thatR* = (1 + £)||f(t)||£. The space used by the algorithm is

O(ae=®*P) 1og® n).

1.2 Other Related Work

The need for studying adversarially robust streaming and sketching
algorithms has been noted before in the literature. In particular,
[15, 16] motivate the adversarial model by giving applications and
settings where it is impossible to assume that the queries made
to a sketching algorithm are independent of the prior outputs of
the algorithm, and the randomness used by the algorithm. One
particularly important setting noted in [16] is when the privacy of
the underlying data-set is a concern.

In response to this, in [20] the notion of adversarial robustness for
linear sketching algorithms is studied. Namely, it is shown how any
function g : R™ — R, defined by g(x) = f(Ax) for some A € Rkxn
and arbitrary f : RF — R cannot approximate the Fp moment
||x||§ of its input to an arbitrary polynomial factor in the presence
of an adversary who is allowed to query g(x;) at polynomial many
points (unless k is large). Since one can insert and delete off each
x; in a turnstile stream, this demonstrates a strong lower bound for
adversarially robust turnstile linear sketching algorithms.

We remark that other work has observed the danger inherent
in allowing adversarial queries to a randomized sketch with only
a static guarantee [1, 2]. However, the motivation of these works
is slightly different, and their setting not fully adversarial. Finally,
in [31], adversarial robustness of sketching in a distributed, multi-
player model is considered, which is incomparable to the centralized
streaming problem considered in this work.

2 PRELIMINARIES
For p > 0, the L, norm? of a vector f € R"is given by || fll, =
(=n, |fi|p)1/P' The p-th moment, denoted by Fp, is given by Fj, =

“Note that this is only truly a norm for p > 1.
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Lz, or Fy = %; | filP. For p = 0, we define Fy to be the number of
non-zero coordinates in f, namely Fy = ||fllo = [{i : fi # 0}|-
Notice that this coincides with defining 0° = 0 in the prior definition
of Fp. The Fy moment is also known as the number of distinct
elements. For reals a,b € R and ¢ > 0, we write a = (1 £ ¢)b to
denote the containment a € [(1 — €)b, (1 + ¢)b]. Throughout, we
will often assume that our error parameter ¢ > 0 is smaller than
some absolute constant &y which does not depend on any of the
other parameters of the problem.

A stream of length m over a domain [n] is a sequence of updates
(a1,A1), (a2, A2) ..., (am, Am) where a; € [n] an A; € Z. The fre-
quency vector f € R" of the stream is the vector with ith coordinate
fi = Zta,=i Dt Let f([) be the frequency vector restricted to
the first j updates, namely fi(’) = Ztsj:a,:i Ay. It is assumed at
all intermediate points t € [m] in the stream that ||f(t)||oo <M,
and log(mM) = ©(logn). Notice in particular that this bounds
|A¢| < 2M for each t.

The general model as defined above is known as the turnstile
model of streaming. Another commonly studied model of streaming
is the insertion-only model, where it is assumed that Ay > 0 for
each t = 1,...,m. The insertion-only model is often presented
with the following equivalent and simplified definition: an insertion
only stream is given by a sequence ay,ay, ...,am € [n], and the
frequency vector f € R" is given by the coordinates and f; =
[{j € [m] : aj = i}|. Since we will sometimes consider data streams
with deletions (negative updates), in this work will use the former
definition, where updates are pairs (a;, A;) € [n] X Z. In this paper,
the space of a streaming algorithm is measured in bits, and the
update time of a streaming algorithm is measured in the RAM
model, where arithmetic operations on O(log n)-bit integers can be
done in O(1) time.

The random-oracle model of streaming is the model where the
streaming algorithm is allowed random (read-only) access to an
arbitrarily long string of random bits. In other words, the space
complexity of the algorithm is not charged for storing random
bits. We remark that while nearly all lower bounds for streaming
algorithms hold even in the random oracle model, most of our
results (except for one of our results for entropy estimation and
part of our cryptographic results) do not require a random oracle.

Finally, given a vector x € R", the empirical Shannon Entropy
H(x) is defined via H(x) = = X; |xil/[lx[l1 log (|x:|/[lx[l1). For & >
0, the a-Renyi Entropy Hy (x) of x is given by the value Hy (x) =
log(Ilxlg /11xIF)/(1 = ).

2.1 Tracking Algorithms

The robust streaming algorithms we design in this paper satisfy
the tracking guarantee. Namely, they must output a response to
a query at every step in time t € [m]. For the case of estimation
queries, this tracking guarantee is known as strong tracking.

Definition 2.1 (Strong tracking). Let FO, @ £l pe the
frequency vectors of a stream (a1, A1), ...,(am,Am), and let g :
R™ — R be a function on frequency vectors. A randomized algo-
rithm A is said to provide (e, §)-strong g-tracking if at each time
step t € [m] it outputs an estimate R; such that

IRe = g(f )] < elg(f )]
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for all t € [m] with probability at least 1 — &.

In contrast, weak tracking replaces the error term ¢|g(f (0] by
MaXy [ ] € - |g(f<t’))|. However, for the purposes of this paper, we
will not need to consider weak tracking. We now state two results
for strong tracking of F;, moments for p € [0, 2]. Both results are
for the static setting, i.e., for a stream fixed in advance (and not for
the adaptive adversarial setting that we consider).

Lemma 2.2 ([7]). For 0 < p < 2, there is an insertion only
streaming algorithm which provides (e, §)-strong Fp-tracking using

O(log#(log el +log 71 + loglogn)) bits of space.

LEmMMA 2.3 ([6]). There is an insertion-only streaming algorithm
-1
which provides (¢, §)-strong Fy-tracking using O(w +

log n) bits of space.

2.2 Roadmap

In Section 3, we introduce our two general techniques for transform-
ing static streaming algorithms into adversarially robust algorithms.
In Section 4, we give our results on estimation of Fp moments, and
in Section 5 we give our algorithms for adversarially robust distinct
elements estimation. Next, in Section 6, we introduce our robust
L heavy hitters algorithm, and in Section 7 we give our entropy
estimation algorithm. In Section 8, we provide our algorithms for
Fp moment estimation in the bounded deletion model. In Section 9,
we give our adversarial attack on the AMS sketch. Finally, in Sec-
tion 10, we give our algorithm for optimal space distinct elements
estimation under cryptographic assumptions.

3 TOOLS FOR ROBUSTNESS

In this section we establish two methods, sketch switching and com-
putation paths, allowing one to convert an approximation algorithm
for any sufficiently well-behaved streaming problem to an adversar-
ially robust one for the same problem. At the core of these methods
is a rounding technique that allows us to leak only a small amount
of information to the adversary. The relevant definitions, of round-
ing and flip number, are given first, and afterward we use them to
develop our robustification methods.

For any x € R and ¢ > 0, define the real number [x], as follows.
If x > 0, then [x], is the number y > 0 of the formy = (1 + &)t
for ¢ € Z which minimizes max{y/x, x/y}. In other words, [x]; is
the power of (1 + ¢) closest (in multiplicative terms) to x. If x < 0,
set [x], as —[—x],; and finally, set [0], = 0. Note that [x], is in all
cases a (1 + ¢/2)-multiplicative approximation of x. Furthermore,
in this paper the values of x that we consider are generally in the
range [-n€, —1/n°JU{0}U[1/n¢, n€]. The number of possible values
of [x]¢ for x in this range is O(¢~! log n) and thus no more than
O(loglog n + log 1/¢) bits are required to store [x],.

Definition 3.1 (e-rounding). Let y1,yo, ..., Yym € R be a sequence
of non-negative real numbers. An ¢-rounding of yi1,...,ym is a
sequence y1, . . ., yy, constructed in the following way. We set y| =
[y1]e. Given y;, we construct yj, ; by setting y; , = y;if (1 -
e)Yi+1 < y; < (1+ &)yi+1, otherwise we set y7 ;= [yi+1]e.

The notion of e-rounding is useful as it allows a streaming algo-
rithm to leak less information, without a significant loss in accuracy;
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specifically, this can be done by outputting the e-rounding of the
output of the algorithm, instead of the raw output.

Typical streaming problems ask one to (1 + ¢)-approximate the
value of some function g : R — R of the frequency vector. For
example, in the count-distinct problem, g(f () is the number of dis-
tinct elements among (a1, A1), . . ., (aj, A;). As it turns out, for many
classical problems in the insertion-only model (including count-
distinct), the number of distinct values among the e-rounding of the
sequence g(f(l)), g(f(z)), e ,g(f(m)) is small. The next definition,
of a flip number, captures a closely related quantity.

Definition 3.2 (¢, m)-flip number). Let ¢ > 0 and m € N, and
let yo, y1, . . ., Ym be any sequence of real numbers. The (e, m)-flip
number of yo, y1, . . ., Ym is the maximum k € N for which there
exist 0 < iy < ... <ix < msothaty; , ¢ [(1-¢e)yi, 1+ eyl
for every j = 2,3,...,k.

Given a function g: R" — R, the (¢, m)-flip number A, ,(g)
of g is the maximum, over all sequences (a1, A1), ..., (am,Am)
of possible stream updates, of the (¢, m)-flip number of the se-
quence Yo, Y1, - - -, Yym defined by y; = g(f(i)) forany 0 < i < m,
where as usual f ) is the frequency vector after stream updates
(a1, A1), ..., (aj, A;) (and f(O) is the n-dimensional zeros vector).

Note that flip number is clearly monotone in &: namely A¢ 1 (g) <
Aer.m(g) if €’ < e. For our purposes, we will need a robust variant
of this property, requiring that any sequence that approximates the
elements of (g(f' (i)))l’.'i ; to within an error of, say, £/10, will have
its e-rounding not change often.

LEMMA 3.3. Let g: R® — R, 0 < ¢ < ¢ where ¢ is a small
positive absolute constant, and m € N. Suppose that zo, z1, . . ., Zm
is a sequence of real numbers satisfying the following: there exists
a stream of updates (a1, A1), . . ., (@m, Am) on which the output of
g iS Yo, Y1, .. ..Ym, where (1 — ¢/10)y; < z; < (1 + ¢/10)y;. Let
20,21, . > 2 be the e-rounding of 20, z1, . . ., Zm. Then the number
of indices i € [m] for which z| # z]_, is at most Az 19, m(9).

Proor. Consider the collection of all indices i € [m] for which
zl’- * zlf_l. Write these indicesas 1 < i1 < iz < ... < i < m. We
wish to show that |yi; —yi, ;| > elyi;|/10 for any 2 < j < k, which
will immediately imply by definition that A, /19 m(9) > k-

Indeed, observe that all of the following hold for any 2 < j < k.

o By definition of e-rounding, we know that zlfj_l ¢ [(1-
&)z, (1 +e)zi; ]
e Again by definition of rounding, z;j_l is the power of 1 + ¢
closest to z;;_,, and so z;j_l =zi; (1 ¢/2).
e By the assumption in the statement of the lemma, z; =
yi(1+¢/10) for both i = ij_; and i = i;.
It follows that the difference |yij - yij_1| is at least of the form®
(36/10—0(82))|yij | > elyi;|/10, where the inequality holds provided
that ¢ < ¢ for some absolute constant ¢ > 0. |

Note that the flip number of a function critically depends on
the model in which we work, as the maximum is taken over all
sequences of possible stream updates; for insertion-only streams,
the set of all such sequences is more limited than in the general

SHere we think of & > 0 as a small parameter.
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turnstile model, and correspondingly many streaming problems
have much smaller flip number when restricted to the insertion
only model. We now give an example of a class of functions with
bounded flip number.

PROPOSITION 3.4. Let g : R®™ — R be any monotone function,
meaning that g(x) > g(y) if x; > y; for each i € [n]. Assume further
that g(0) = 0, g(x) = T~! for allx > 0, and g(M - 1) < T, where M
is the bound on the entries of the frequency vector and 1 is the all
1’s vector. Then the flip number of g in the insertion only streaming
model is Ag, m(g) = O(% log T).

Proor. To see this, note that g(f(o)) =0, g(f(l)) > T71, and
g(f™) < g(1- M) < T. Since the stream has only positive updates,
g(f @) < g(fM) < - < g(f"). Let yr.....yx € [m] be any
set of points such that g(f(yi)) <(1+ e)g(f(yi“)) for each i. Since
there are at most O(% log T) powers of (1 + ) between T~! and T,

by the pigeonhole principle if k > % log(T) for a sufficiently large
constant C, then at least two values must satisfy (1+¢)/ < g(f(yi)) <
g(f(yi“)) < (1 + eY*! for some j, which is a contradiction. |

Note that a special case of the above are the F, moments of a
data stream. Recall here ||x|lp = |[{i : x; # 0}| is the number of
non-zero elements in a vector x.

COROLLARY 3.5. Let p > 0. Then the (&, m)-flip number of||x||1,{J
in the insertion only streaming model is ¢ m(]| - ||£) = O(% log m)
forp < 2, and ¢ m(]| -
also have A¢ m(|| - llo) = O(% log m)

||£) = O(‘g logm) forp > 2. Forp = 0, we

Proor. We have ||6||£ =0, ||z||;f,J > 1 for any non-zero z € Z,

and ||f(m)||£ < MPn < n°P for some constant ¢, where the second
to last inequality holds because || f||co < M for some M = poly(n)
is assumed at all points in the streaming model. Moreover, for
p = 0we have || f(™)]|y < n. The result then follows from applying
Proposition 3.4 with T = n¢'max{p.1}, [ ]

Another special case of Proposition 3.4 concerns the Cascaded
Norms of insertion-only data streams [24]. Here, the frequency vec-
tor f is replaced with a matrix A € Z"™ 9 which receives coordinate-
wise updates in the same fashion, and the (p, k) cascaded norm of
Ais given by [|Allp.x) = (Zi(Z; |Ai,j|k)1’/k)1/f’. In other words,
||A||(p, k) is the result of first taking the Ly norm of the rows of 4,
and then taking the L, norm of the result. Proposition 3.4 similarly
holds with T = poly(n) in the insertion only model, and therefore
the black-box reduction techniques introduced in the following
sections are also applicable to these norms (using e.g., the cascaded
algorithms of [24]).

Having a small flip number is very useful for robustness, as our
next two robustification techniques demonstrate.

3.1 The Sketch Switching Technique

Our first technique is called sketch switching, and is described in
Algorithm 1. The technique maintains multiple instances of a static
strong tracking algorithm, where each time step only one of the
instances is “active”. The idea is to change the current output of the
algorithm very rarely. Specifically, as long as the current output
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is a good enough multiplicative approximation of the estimate of
the active instance, the estimate we give to the adversary does not
change, and the current instance remains active. As soon as this
approximation guarantee is not satisfied, we update the output
given to the adversary, deactivate our current instance, and activate
the next one in line. By carefully exposing the randomness of our
multiple instances, we show that the strong tracking guarantee
(which a priori holds only in the static setting) can be carried into
the robust setting. The number of instances required is controlled
by the flip number of the problem.

Algorithm 1: Adversarially Robust g-estimation by Sketch
Switching
1 A Ae/20,m(9)
2 Initialize independent instances Ay, ...,A) of a
(¢/20, 5/ 1)-strong g-tracking algorithm.
3 pe—1
g < 9(0)
5 while new stream update (ay, Ay) do

'S

6 Insert update (ag, Ay) into each algorithm A, ..., A).
7 y « current output of A,.

8 if g ¢ (1« %)y then

o || e ARy

10 pe—p+1l
11 Output estimate g.
12 end

LEMMA 3.6 (SKETCH SWITCHING). Fix any function g : R" —
R and let A be a streaming algorithm that for any ¢,6 > 0 uses
space L(e, 8), and satisfies the (e, §)-strong g-tracking property on
the frequency vectors f(l), e ,f(’") of any particular fixed stream.
Then Algorithm 1 is an adversarially robust algorithm for (1 + ¢)-
approximating g(f)) at every step t € [m] with success probability
1— 8, whose space is O (L(gg, 8) - Aey,m(g)), where gg = O(¢), & =
O(8/ ey, m(9))-

Proor. Note that for a fixed randomized algorithm A, we can
assume the adversary against A is deterministic without loss of
generality. This is because given a randomized adversary and algo-
rithm, if the adversary succeeds with probability greater than § in
fooling the algorithm, then by a simple averaging argument there
must exist a fixing of the random bits of the adversary which fools
A with probability greater than § over the coin flips of A. Note
also here that conditioned on a fixing of the randomness for both
the algorithm and adversary, the entire stream and behavior of both
parties is fixed. We thus start by fixing such a string of randomness
for the adversary, which makes it deterministic. As a result, suppose
that y; is the output of the streaming algorithm on step i. Then
given y1, 42, . . ., Yi and the stream updates (a1, A1), . .., (ag, A)
so far, the next stream update (ag 41, Ag,1) is deterministically fixed.
We stress that the randomness of the algorithm is not fixed at this
point; we will gradually reveal it along the proof.

We may assume that ¢ > 0 is small enough, in particular smaller
than the positive absolute constant dictated by Lemma 3.3. Now let
g0 = ¢/20 and A = Ag, m, and fix a set of A independent instances
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A1, Ay, ..., A, of the streaming algorithm A with the (&, §p)-strong
g-tracking property. Since &y = O(5/2), later on we will be able to
union bound over the assumption that for all p € [1], A; satisfies
strong tracking on some fixed stream (to be revealed along the
proof); the stream corresponding to A, will generally be different
than that corresponding to p’ for p # p’.

First, let us fix the randomness of the first instance, Aj. Let

u%,u;, .. .,u,ln be the updates u]1 = (aj,Aj) that the adversary

would make if A were to output yo = g(0) at every time step, and
.,u}. Let A1(t) be
the output of algorithm A; at time ¢ of the stream u], u%, .o ul.Let
t; € [m] be the first time step such that |A;(t1) — yo| > €]A1(#1)]/2,
if it (if not we can set, say, t; = m + 1). At this point, we change our
output to y1 = [A1(t1)],/2- Assuming that A; satisfies strong track-
ing for g with approximation parameter & with respect to the fixed
stream of updates u!, ..., ul , we know that A;(¢) = (1% eo)g(f(t))
for each t < t; and that yo = (1 * £/2)|A1(t1)|, from which we
conclude that yo = (1 + £)g(f¥)) for any ¢ < t;. Similarly, since
y1 = [A1(t1)]s/2 we know that y1 = (1 £ /¢/2)A1(t1) and so
yy =1+ e)g(f([l)) holds as well, that is, the new output of our
algorithm y is still a valid approximation at time ¢ = ¢;.

At this point, the algorithm “switches” to the instance Ay, and
presents y; as its output as long as A(t) = (1 + £/2)y;. Recall
that randomness of the adversary is already fixed, and consider
the sequence of updates obtained by concatenating u%, e, u}l as
defined above (these are the updates already sent by the adversary)
with the sequence u?l FRTRRE u2, to be sent by the adversary if
the output from time ¢ = #; onwards would always be y;. We
condition on the ¢-strong g-tracking guarantee on Ay holding for
this fixed sequence of updates, noting that this is the point where
the randomness of Aj is revealed. Set t = t; as the first value of
t (if exists) for which Az(t) = (1 + ¢/2)y; does not hold. We now
have, similarly to above, y; = (1££)g(f()) forany t; < t < t5, and
y2 = (1 £ )g(f ().

The same reasoning can be applied inductively for A,, for any
p € [Agy,m], to get that the output of our algorithm y, is within a
(1 + ¢)-multiplicative factor for any of the time steps t = t5, t, +
1,...,min{tp4+1 — 1, m}. It remains to verify that this strategy will
succeed in handling all m elements of the stream (and will not
exhaust its pool of algorithm instances before then). Indeed, this
follows immediately from Lemma 3.3, applied with the parameters
g, £/2, m; since our instances of the algorithm employ (¢/20)-strong
tracking for g, and our actual output is an (¢/2)-rounding of these
instances, the conditions of Lemma 3.3 hold as required. ]

let (1)1 be the stream vector after updates uj, ..

3.2 The Bounded Computation Paths
Technique

With our sketch switching technique, we showed that maintaining
multiple instances of a non-robust algorithm to estimate a function
g, and switching between them when the rounded output changes,
is a recipe for a robust algorithm to estimate g. We next provide
another recipe, which keeps only one instance, whose success prob-
ability for any fixed stream is very high; it relies on the fact that if
the flip number is small, then the total number of fixed streams that
we should need to handle is also relatively small, and we will be
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able to union bound over all of them. Specifically, we show that any
non-robust algorithm for a function with bounded flip number can
be modified into an adversarially robust one by setting the failure
probability § small enough.

Definition 3.7 (e-rounding for algorithms). The e-rounding of a
(possibly randomized) streaming algorithm A is an algorithm A’
which simulates an instance of A and runs as follows: after the first
received element, A’ return z{ = [21]¢, where z;1 is the output of A.
When the i-th stream element is received, for i > 2, the algorithm
A’ feeds this element to its instance of A and receives an output
zi.if (1 - €)z; < z]_; < (1 + &)z; then the algorithm sets z} = z]_,.
Otherwise, it sets z] = [z;]. In both cases, the output of A’ is z].

Note that for any fixed stream of updates (a1, A1), . . ., (am, Am),
the output sequence z/, . .., z}, of the e-rounding algorithm A’ is
simply the e-rounding for the output sequence zi, ..., z;, of its
internally maintained A-instance.

LEMMA 3.8 (COMPUTATION PaTHS). Fixg: R" — R and suppose
that the output of g over any possible stream of updates is in the range
[-T,-1/T] U {0} U [1/T,T] for someT > 1. Let A be a streaming
algorithm that for any €, > 0 satisfies the (¢, §)-strong g-tracking
property on the frequency vectors f(l), e, f(m) of any particular
fixed stream. Then the ¢y-rounding algorithm A’ for A, where A is
instantiated with approximation parameter ¢y = ©(¢) and failure

probability § = 5/((/1502(9)) (87 log T))Ago’m(g)), is an adver-

sarially robust algorithm for (1+ ¢)-approximating g(f(t)) in all steps
t € [m], with success probability 1 — §.

PROOF. As in the proof of Lemma 3.6, we may assume the ad-
versary to be deterministic. This means, in particular, that the
output sequence we provide to the adversary fully determines its
stream of updates (a1, A1), . .., (am, Am). Take €9 = £/20 and take
A = Ag,m(9). Now consider all sequences sg, s1, . . ., S, Where each
s; is either zero, or a power of 1+¢ between 1/T(1+¢) and T(1+¢), or
the negation of such a number; and moreover, the number of i € [m]

for which s; # s;_1 is at most A. By a standard counting argument,

the number of such sequences is (; m(g)) - (0(e7tlog T))Ago’m(g).
£.m

Each such output sequence uniquely determines a corresponding
stream of updates for the deterministic adversary; let S be the
collection of all such streams.

Pick 8o = §/|S|. Taking a union bound, we conclude that with
probability 1 — §, A (instantiated with parameters gy and y) pro-
vides an g-strong g-tracking guarantee for all streams in S. We
now fix the randomness of A, and assume the last event holds. For
any stream of updates ((a1, A1), ..., (am, Am)) € S this fixes a cor-
responding output sequence (2o, . . ., z,,) of the algorithm A. Let O
be the collection of all such output sequences. Each such sequence
satisfies the conditions of Lemma 3.3, and so its ¢/2-rounding is
a sequence z, ...,z where z; # z|_, for at most A values of
i € [m]. Thus, if the above event holds, then the output provided to
the adversary has at most A distinct values (which are powers of
1 + ¢ in the relevant range). Thus, conditioning on this event, the
stream of updates which the adversary creates upon observing the
rounded outputs (z(, . . ., z;,) of the algorithm A" must by definition
be in S. It follows by the -strong tracking guarantee given by
this event that the ¢/2-rounding z(’), ...,z of the output of Ais a
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(1 £ ¢)-approximation for g on all possible adversarial streams in
this setting, i.e., all streams in S. |

4 F, ESTIMATION

In this section, we introduce our adversarially robust F;, moment
estimation algorithms. Recall that F), is given by ||f||£ =Y Ifil?
for p > 0. For p = 0, the Fy moment, or the number of distinct
elements, is the number of non-zero coordinates in f, thatis, || f]lo =
I{i € [n]: fi # 0}|. Recall that in Corollary 3.5, we bounded the flip
number of the F;, moment in insertion only streams for any fixed
p > 0 by O(pe~! log n). By using our sketch switching argument,
the strong F), tracking guarantees of [7] as stated in Lemma 2.2, we
obtain our first result for 0 < p < 2.

THEOREM 4.1 (F), ESTIMATION BY SKETCH SWITCHING). Fix any
0<¢6d8 <1and0 < p < 2. There is a streaming algorithm for
the insertion-only adversarial model which, with probability 1 — 6,
successfully outputs at each step t € [m] a value R" such that R' =

(1+ £)||f(t)||p. The space used by the algorithm is
1 -1 -1 -1
0] (€—3 lognloge “(loge " +1logd™ " +loglog n))

PRrOOF. By an application of Lemma 3.6 along with the flip num-
ber bound of Corollary 3.5 and the strong tracking algorithm of
Lemma 2.2, we immediately obtain a space complexity of

1. 2 -1 -1
0(8—310g n(loge " +logd +log10gn))

We now describe how the factor of % log n, coming from running
Aem = @(% log n) independent sketches in Lemma 3.6, can be
improved to % loge™.

To see this, we change Algorithm 1 in the following way. Instead
of G)(% log n) independent sketches, we use A « @(% log e™!) inde-
pendent sketches, and change line 10 to state p < p + 1 (mod A).
Each time we change p to p + 1 and begin using the new sketch
Api1, we completely restart the algorithm A, with new randomness,
and run it on the remainder of the stream. The proof of correctness
in Lemma 3.6 is completely unchanged, except for the fact that
now A, is run only on a suffix aj, aj+1, ..., of the stream, if j is
the time step where A, is reinitialized. Specifically, at each time
step t > j, Ap will produce a (1 + ¢) estimate of ||f([) - f(’._1)||1{J
instead of || f° )] p. However, since the sketch will not be used again
until a time step ¢’ where ||f(t)||p >(1+ e)AHfU)Hp = %Hf(j)ﬂp,
it follows that only an ¢ fraction of the {;, mass was missed by A,.
In particular, || f) — fUD]|, = (1 z £/100)|| f*")]|,p, and thus by
giving a (1+¢/10) approximation of ||f(t') —f(f_l) [lp the algorithm
A, gives the desired (1 + ¢) approximation of the underlying ¢,
norm, which is the desired result after a constant factor rescaling
of . Note that this argument could be used for the Ly norm, or
any p norm for p > 0, using a F,, strong tracking algorithm for the
relevant p. |

While for most values of 8, the above theorem has better space
complexity than the computation paths reduction, for the regime
of very small failure probability it is actually preferable to use
the latter, as we now state. The proof is a direct application of
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Lemma 3.8, along with the flip number bound of Corollary 3.5, and
the O(¢72? log nlog 671) static Fp estimation algorithm of [27]. We
remark that the below complexity is optimal up to a log n term for
insertion only streams. The reason is that the O(1/e% log nlog 1/6)
lower bound of [25] degrades to O(1/¢? log 1/5) when deletions are
not allowed. ¢

THEOREM 4.2 (Fp ESTIMATION FOR SMALL §). Fix any0 < e <1,

0<p<2andd < n~Czlogn for a sufficiently large constant C > 1.
There is a streaming algorithm for the insertion-only adversarial
model which, with probability 1 — &, successfully outputs at each step
t € [m] a value R? such thatR* = (1 + £)||f(t)||P. The required space

isO (Eiz log nlog 5_1) bits.

Next, we show that for turnstile streams with Fp flip number
A, we can estimate F,, with error probability § = n~*. The space
requirement of the algorithm is optimal for algorithms with such
failure probability &, which follows by an Q(e 2 log nlog § 1) lower
bound for turnstile algorithms [25], where the hard instance in
question has small F, flip number. 7

THEOREM 4.3 (Fp ESTIMATION FOR A-FLIP NUMBER TURNSTILE
STREAMS). Let S) be the set of all turnstile streams with Fp flip
number at most A > Ae m(|| - ||£)for any 0 < p < 2. Then there is an
adversarially robust streaming algorithm for the class S, of streams
that, with probability 1 — n=C% for any constant C > 0, outputs at
each time step a value R* such that R = (1+ £)||f||£ The space used

by the algorithm is O(¢~2Alog? n).

Proor. The proof follows from a simple application of Lemma
3.8, along with the O(¢~2log nlog 6~1) bit turnstile algorithm of
[27]. |

In addition, we show that the Fj moment can also be robustly
estimated for p > 2. In this case, it is preferable to use our compu-
tation paths reduction, because the upper bounds for F,, moment
estimation for large p yield efficiency gains when setting § to be
small.

THEOREM 4.4 (Fp ESTIMATION, p > 2, BY COMPUTATION PATHS).
Fix anye, 5 > 0, and any constant p > 2. Then there is a streaming al-
gorithm for the insertion-only adversarial model which, with probabil-
ity1—n—(clogm)/e for any constant c > 1, successfully outputs at every
stept € [m] a value R? such thatR = (1+ £)||f(t)||p‘ The space used
by the algorithm is O(n'~2/P(¢73 log? n + £~°/P(log?® n)/P log n)).

Proor. We use the insertion only Fj, estimation algorithm of
[14], which achieves

(nl_z/f’ (8_2 log 6" + e 4P 10g?/P 571 1og n))

bits of space in the turnstile (and therefore insertion only) model.
We can set § = §/m to union bound over all steps, making it a

%Specifically, one may not apply the augmented indexing step in the reduction of [25]
to delete off coordinates in log n levels, which loses this factor in the lower bound.
7The hard instance in [25] is a stream where O(n) updates are first inserted and then
deleted, thus the flip number is at most twice the Fj, flip number of an insertion only
stream.
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strong Fj, tracking algorithm with
(0] (nl_z/P (8_2 log(ns™1) + eip logz/p(né_l)log n))

bits of space. Then by Lemma 3.8 along with the flip number bound
of Corollary 3.5, the claimed space complexity follows. |

5 DISTINCT ELEMENTS ESTIMATION

We now demonstrate how our sketch switching technique can be
used to estimate the number of distinct elements, also known as F
estimation, in an adversarial stream. In this case, since there exist
static Fy strong tracking algorithms [6] which are more efficient
than repeating the sketch log §~! times, it will be preferable to use
our sketch switching technique.

THEOREM 5.1 (ROBUST DISTINCT ELEMENTS BY SKETCH SWITCH-
ING). There is an algorithm which, when run on an adversarial inser-
tion only stream, produces at each step t € [m] an estimate R* such

thatR* = (1 £)||f(t)||0 with probability at least 1 — §. The space
log e~ ,log e !+log ' +loglog n
T ul

used by the algorithm is O( + logn))

bits.

ProoF. We use the insertion only distinct elements strong track-
ing algorithm of [6]. Specifically, the algorithm of [6] uses space

log 8; ' +loglog n
o( 8 9 = glog

fully returns an estimate R’ for every step t € [m] such that

+ logn), and with probability 1 — &y, success-

Rl =(1+¢)|f Q) |lo in the non-adversarial setting. Then by applica-
tion of Lemma 3.6, along with the flip number bound of O(log n/¢)
from Corollary 3.5, we obtain the space complexity with a factor
of lof " blow-up after setting 8 = ©(6 =t ). This gives a complex-

logn
-1 -1
ity of O(log n (logs -%—logj2 +loglogn
log n-factor to a loge™! factor, we just apply the same argument

used in the proof of Theorem 4.1, which shows that by restarting
sketches it suffices to keep only O(¢~! log ¢™1) copies. |

+ log n)). To reduce the extra

5.1 Fast Distinct Elements Estimation

As noted earlier, there are many reasons why one may prefer one of
the reductions from Section 3 to the other. In this section, we will see
such a motivation. Specifically, we show that adversarially robust
Ly estimation can be accomplished with extremely fast update time
using the computation paths reduction of Lemma 3.8.

First note that the standard approach to obtaining failure prob-
ability § is to repeat the estimation algorithm log 6~ times inde-
pendently, and take the median output. However, this blows up the
update time by a factor of log §~!. Thus black-box applying Lemma
3.8 by setting § to be small can result in a larger update time. To
improve upon this, we will introduce an insertion only distinct
elements estimation algorithm, with the property that the runtime
dependency on 87! is extremely small (roughly log? loglog §77).
Thus applying Lemma 3.8 on this algorithm results in a very fast
robust streaming algorithm. The proof of the correctness of Lemma
5.2, along with a detailed discussion of the proposed algorithm, can
be found in Appendix A.1.

LEMMA 5.2. There is a streaming algorithm which, with proba-
bility 1 — 8, returns a (1 * ) multiplicative estimate of the number
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of distinct elements in an insertion only data stream. The space re-
quired is O(e—l2 log n(loglog n +1og §71)),2 and the algorithm runs in

@) ((log2 log 10%) . (Iog loglog lo%)) worst case time per update.

We can use the prior result of Lemma 5.2, along with our ar-
gument for union bounding over adversarial computation paths
of Lemma 3.8 and the flip number bound of Corollary 3.5, which
results in an adversarially robust streaming algorithm for distinct
elements estimation with extremely fast update time.

THEOREM 5.3. There is a streaming algorithm which, with prob-
ability 1 — n~(€/18" for any constant C > 1, when run on an
adversarial chosen insertion-only data stream, returns a (1 + €) mul-
tiplicative estimate of the number of distinct elements at every step
in the stream. The space required is O(g—l3 log® n), and the worst case

lof 1 ) . (log loglog k’%)) per update.

running time is O ((log2 log

6 HEAVY HITTERS

In this section, we study the popular heavy-hitters problem in data
streams. The heavy hitters problem tasks the algorithm with recov-
ering the largest items in a data-set. Stated simply, the goal is to
report a list S of items f; that appear least 7 times, meaning f; > r,
for a given threshold 7. Generally, 7 is parameterized in terms of
the L, norm of the frequency vector f, so that 7 = || f||,. For
p > 2, this problem is known to take polynomial space [29]. Thus,
the strongest such guarantee that can be given in sub-polynomial
space is known as the Ly guarantee:

Definition 6.1. A streaming algorithm is said to solve the (¢, §)-
heavy hitters problem with the Ly guarantee if the algorithm, when
run on a stream with frequency vector f € R", outputsa set S C [n]
such that with probability 1—§ the following holds: for every i € [n]
if [fi| > ¢l fll2 theni € S, and if | ;| < (e/2)||f||2 theni ¢ S.

We will also introduce the related task of e-point queries.

Definition 6.2. A streaming algorithm is said to solve the (¢, §)
point query problem with the Ly guarantee if with probability 1 -6,
at every time step ¢ € [m], for each coordinate i € [n] it can output
an estimate ﬁt such that |j?it - fi(t)| < || fO|5. Equivalently, it
outputs a vector ]?t € R™ such that ||f(t) - ]?t||o<, < £||f(t)||2.9

Notice that for any algorithm that solves the (¢, §)-point query
problem, if it also has estimates R? = (1 + 5/10)||f(t) |2 at each time
step t € [m], then it immediately gives a solution to the (¢, §) heavy

. . . . . ~t t
hitters problem by just outputting all i € [n] with f > (3/4)eR".
Thus solving (¢, §)-point queries, together with Fy tracking, is a
stronger property. In the following, we say that f’ is e-correct at
time ¢ if || = f*lleo < ell fO).

In this section, we demonstrate how this fundamental task of
point query estimation can be accomplished robustly in the adver-
sarial setting. Note that we have already shown how F; tracking
8We remark that it is possible to optimize the log n factor to O(log §7* + log e™! +
log log n by hashing the identities stored in the lists of the algorithm to a domain of size
poly(87!, e, log n). However, in our application we will be setting § < 1/n, and
so the resulting adversarially robust algorithm would actually be less space efficient.
9We note that a stronger form of error is possible, called the tail guarantee, which does

not count the contribution of the top 1/&? largest coordinates to the error £||f ||z. We
restrict to the simpler version of the L, guarantee.
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can be accomplished in the adversarial model, so our focus will be
on point queries. Our algorithm relies on a similar sketch switching
technique as used in Lemma 3.6, which systematically hides ran-
domness from the adversary by only publishing a new estimate f’
when absolutely necessary. To define what is meant by “absolutely
necessary", we will first need the following Proposition.

PROPOSITION 6.3. Suppose that f’ € R" is e-correct at time t on
an insertion only stream, and let t; > t be any time step such that
||f(t1) - f(t>||2 < £||f(t)||oo. Then f? is 2e-correct at time t;.

Proor. We have [|f! = f1| < |Iff = fOlle + I F®) -
FOlleo < ell fOll + el fOlz < 2e]| £ |

To prove the main theorem of Section 6, we will need the classic
count-sketch algorithm for finding L, heavy hitters [10], which
solves the more general point query problem in the static setting
with high probability.

LEMMA 6.4 ([10]). There is a streaming algorithm in the non-
adversarial insertion only model which solves the (¢, §) point query
problem, using O(Ei2 lognlog %) bits of space.

We are now ready to prove the main theorem of this section.

THEOREM 6.5. Fix anye,d > 0. There is a streaming algorithm in
the adversarial insertion only model which solves the (¢,n~C) point
query problem, and also the O(e, n~C)-heavy hitters problem, for any

-1
constant C > 1. The algorithm uses O(IOggﬁ

log? n) bits of space.

PrOOF. Since we already know how to obtain estimates R’ =
(1 % £/100)]| fV)||; at each time step ¢ € [m] in the adversarial
insertion only model within the required space, it will suffice to
show that we can obtain estimates ]?t which are e-correct at each
time step t (i.e., it will suffice to solve the point query problem).
Let1 =ty,ty,...,tr = mfor T = O(e! log n) be any set of time
steps such that || f(ar+1) — f(a0)|l, < ¢]| f(@0)]|, for each i € [T — 1].
Then by Proposition 6.3, we know that if we output a estimate fi
on time t; which is e-correct for time t;, then fi will still be 2¢
correct at time t;41. Thus our approach will be to output vectors
fl, ... ]?T, such that we output the estimate ]?i € R™ at all
times 7 such that t; < 7; < tj+1, and such that ]?i is e-correct for
time t;.

First, to find the time steps t;, we run the adversarially robust
F, estimator of Theorem 4.1, which gives an estimate RE=(1=
5/100)||f(t)||2 at each time step t € [m] with probability 1 — n~C
for any constant C > 1, and uses space O(e > log? nlog ¢~1). Notice
that this also gives the required estimates R as stated above. By
using an ¢/2-rounding (Definition 3.7) of the output of this F;
estimation algorithm, we obtain our desired points ¢;. Notice that
this also gives T = ©(¢ ! logn) as needed, by the flip number
bound of Corollary 3.5. Next, to obtain the desired ¢ point query
estimators at each time step t;, we run T independent copies of
the point query estimation algorithm of Lemma 6.4. At time t;, we
use the output vector of the i-th copy as our estimate ]?i , which
will also be used without any modification on all times 7 with
ti < 7 < tj41. Since each copy of the algorithm only reveals any
of its randomness at time ¢;, at which point it is never used again,
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by the same argument as Lemma 3.6 it follows that each fi will
be e-correct for time ¢;. Namely, since the set of stream updates on
times 1,2,...,t; are independent of the randomness used in the
i-th copy of point-estimation algorithm, we can deterministically
fix the updates on these time steps, and condition on the i-th copy
of the non-adversarial streaming algorithm being correct on these
updates. Therefore this algorithm correctly solves the 2¢ point
query problem on an adversarial stream. The total space used is

(@) (873 log?nloge™ + Te 2 log? n)

We now note that we can improve the space by instead running
only T = O(e ! log e!) independent copies of the algorithm of
Lemma 6.4. Each time we use one of the copies to output the desired
estimate ]?" , we completely restart that algorithm on the remaining
suffix of the stream, and we loop modularly through all T’ copies
of the algorithm, at each step using the copy that was least recently
restarted to output an estimate vector. More formally, we keep
copies Aj, ..., A7 of the of the algorithm of Lemma 6.4. Each
time we arrive at a new step t; and must produce a new estimate fi,
we query the algorithm A; that was least recently restarted, and use
the estimate obtained by that algorithm, along with the estimates
RY.

The same correctness argument will hold as given above, except
now each algorithm, when used after being restarted at least once,
will only be e-correct for the frequency vector defined by a suffix
of the stream. However, by the same argument used in Theorem
4.1, we can safely disregard the prefix that was missed by this copy
of the algorithm, because it contains only an ¢/100-fraction of the
total L, mass of the current frequency vector when it is applied
again. Formally, if an algorithm is used again at time t;, and it was
last restarted at time 7, then by the correctness of our estimates RE,
= %, S0
||f(T)||2 < 5/100||f(ti)||2. Moreover, we have that the estimate ]?i
produced by this copy satisfies ||f’ - (f(ti) - f(f))||oo < £||f(ti) -
F]l,. But then

IF = F % < IF = (£ = F)lleo + 11£ oo
< el f4) = FOly + 1 F O
< e (I + £l + /1001 £ (1)
< el F1 (1 + ) + e/100]| 1
< 2¢]| 10l

the Ly norm must have gone up by a factor of (1 + ol

Thus ]?i is still 2¢-correct at time ¢; for the full stream vector f).
So by the same argument as above using Proposition 6.3, it follows
that the output of the overall algorithm is always 4¢-correct for
all time steps 7 € [m], and we can then resale ¢ by a factor of
1/4. Substituting the new number T’ of copies used into the above
equation, we obtain the desired complexity. |

7 ENTROPY ESTIMATION

We now show how our general techniques developed in Section 3
can be used to approximate the empirical Shannon entropy H(f)
of an adversarial stream. Recall that for a non-zero vector f, we

have that H(f) = = X; £, 20 pi log(pi), where p; = ”lj:—‘llll Also recall

74

PODS ’20, June 14-19, 2020, Portland, OR, USA

that for @ > 0, the a-Renyi Entropy Hy(x) of x is given by Hy(x) =

log ( ”i”% ) /(1 — a). The proofs omitted from this section can be
1

found in Appendix A.2.
We begin with the following observation, which will allow us to

consider multiplicative approximation of 27 (x)_ Then, by carefully
bounding the flip number of the Renyi entropy Hy, for « close to 1,
we will be able to bound the flip number of H.

REMARK. Note that any algorithm that gives an e-additive ap-
proximation of the Shannon Entropy H(x) : R" — R gives a (1 + ¢)
multiplicative approximation of g(x) = 2H®)  and vice-versa.

ProPOSITION 7.1 (THEOREM 3.1 OF [21]). Let x € R”" be a proba-
bility distribution whose smallest non-zero value is at least % where
m > n. Let 0 < ¢ < 1 be arbitrary. Define u = ¢/(4logm) and v =
e/(4lognlogm),a = 1+pu/(16log(1/u)) and f = 1+v/(16 log(1/v)).

Then
Hgy

H
PROPOSITION 7.2. Let g : RN — R be g(x) = 2H™) e, the

exponential of the Shannon entropy. Then the (¢, m)-flip number of g
for the insertion only streaming model is A¢ m(g) = O(Ei3 log® m).

1< S1+£and0SH—Hﬁ§£

THEOREM 7.3 (ROBUST ADDITIVE ENTROPY ESTIMATION). There is
an algorithm for e-additive approximation of entropy in the insertion-
only adversarial streaming model using O(% log? n)-bits of space in
the random oracle model, and O( ;—5 log® n)-bits of space in the general
insertion-only model.

8 BOUNDED DELETION STREAMS

In this section, we show how our results can be used to obtain
adversarially robust streaming algorithms for the bounded-deletion
model, introduced in [22]. The bounded deletion model serves as
an intermediate model between the turnstile and insertion only
model. Motivated by common lower bounds for turnstile streams,
which utilize seemingly unrealistic hard instances that insert a
large number of items before deleting nearly all of them, bounded
deletion streams are possibly a more representative model for real
world data-streams. Intuitively, a bounded deletion stream is one
where the F), moment of the stream is a é fraction of what the
Fp moment would have been had all updates been replaced with
their absolute values, meaning that the stream does not delete off
an arbitrary amount of the F, weight that it adds over the course
of the stream. Formally, the model is as follows.

Definition 8.1. Fixany p > land a > 1. A datastreamus, ..., unm,
where u; = (aj, A;) € [n] x {1, —1} are the updates to the frequency
vector f, is said to be an Fp a-bounded deletion stream if at every
time step t € [m] we have ||fO|) > £ 37 (S <piap=i 1A P

Specifically, the a-bounded deletion property says that the F,
moment ||f(t)||;7 of the stream is at least é”h(t)”p, where h is the
frequency vector of the stream with updates u; = (a;, A]) where
A7 = |A;] (i.e., the absolute value stream). Note here that the model
assumes unit updates, i.e., we have |A;| = 1 for each i € [m], which
can be accomplished without loss of generality with respect to
the space complexity of algorithms, by simply duplicating integral
updates into unit updates.
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In [22], the authors show that for a-bounded deletion streams,
a factor of logn in the space complexity of turnstile algorithms
can be replaced with a factor of log a for many important stream-
ing problems. In this section, we show another useful property of
bounded-deletion streams: norms in such streams have bounded
flip number. We use this fact to design adversarially robust stream-
ing algorithms for data streams with bounded deletions. The proofs
of Lemma 8.2 and Theorem 8.3 can be found in Appendix A.3.

LEmMMA 8.2. Fixanyp > 1. The Ae, m(|| - |lp) flip number of the Ly
norm of a a-bounded deletion stream is at most O(p log n)

We now use our computation paths technique of Lemma 3.8,
along with the space optimal turnstile F,, estimation algorithm
of [27], to obtain adversarially robust algorithms for a-bounded
deletion streams. Specifically, we show that we can estimate the
Fp moment of a bounded deletion stream robustly. We remark that
once F; moment estimation can be done, one can similarly solve the
heavy hitters problem in the robust model using a similar argument
as in Section 6, except without the optimization used within the
proof of Theorem 6.5 which restarts sketches on a suffix of the
stream. The result the space would be precisely a % logn factor
larger than the space stated in Theorem 6.5.

THEOREM 8.3. Fixp € [1,2] and any constant C > 1. Then there
is an adversarially robust F,, estimation algorithm which, with prob-
ability 1 — n~C, returns at each time step t € [m] an estimate R!

such thatR* = (1 + €)||f(t)||£. The space used by the algorithm is
O(ae®*P) log? n).

9 ADVERSARIAL ATTACK AGAINST THE
AMS SKETCH

It was shown by Hardt and Woodruff [20] that linear sketches
can in some cases be vulnerable to adaptive adversarial attacks
(see Subsection 1.2). In this section, we show another instance
of this phenomenon, demonstrating that the classic Alon-Matias-
Szegedy (AMS) sketch [3] for estimating the Ly norm of a data
stream is inherently non-robust. To this end, we describe an attack
fooling the AMS sketch into outputting a value which is not a good
approximation of the norm || f ||§ of the frequency vector. Our attack
provides an even stronger guarantee: for any r > 1 and an AMS
sketch with r/e? rows, our adversary needs to only create O(r)
adaptive stream updates before it can fool the AMS sketch into
outputting an incorrect result.

We first recall the AMS sketch for estimating the Ly norm. The
AMS sketch generates (implicitly) a random matrix A € R¥*" such
that the entries A; ; ~ {-1,1} are ii.d. Rademacher.!” The algo-
rithm stores the sketch Af U) at each time step Jj, and since the
sketch is linear it can be updated throughout the stream: Af U+ =
Af(j) +A-ei;, Aj where (ij+1, Aj+1) is the j+1-st update. The esti-
mate of the sketch at time j is % I[Af ) ||§, which is guaranteed to be
with good probability a (1+¢) estimate of || f o] g in non-adversarial
streams if t = O(e72).

107n fact, the AMS sketch works even if the entries within a row of A are only 4-wise
independent. Here, we show an attack against the AMS sketch if it is allowed to store
a fully independent sketch A.
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We now describe our attack. Let S be a t X n Alon-Matias-
Szegedy sketch. Equivalently, S; ; is ii.d. uniformly distributed
in {=t71/2,+71/2} and the estimate of AMS is ||Sf(j)||§ at the j-th
step. The protocol for the adversary is as follows. In the follow-
ing, we let e; € R" denote the standard basis vector which is zero
everywhere except the i-th coordinate, where it has the value 1.

Algorithm 2: Adversary for AMS sketch
1weC-Vt e

2 for i=2,...,mdo

3 old « ||Sw||§

4 W w+te;

5 new «— ||Sw||§

6 if new— old < 1 then

7 ‘ w «— w + Se;

8 end

9 else if new — old = 1 then
10 ‘ with probability 1/2, set w « w + Se;
1 end

12 end

Note that the vector w in the above algorithm is always equal to
the current frequency vector of the stream, namely w = f° U) after
the j-th update. Note that the above algorithm can be implemented
by an adversary who only is giving the estimate ||Sw||§ = ||Sf0)||§
of the AMS sketch after every step j in the stream. To see this,
note that the algorithm begins by inserting the first item (i1, A1) =
(1, C - V) for a sufficiently large constant C. Next, fori = 2,...,n,
it inserts the item i € [n] once if doing so increases the estimate of
AMS by more than 1. If the estimate of AMS is increased by less than
1, it inserts the item i twice (i.e., it inserts an update (i, 2) € [n] X Z).
Lastly, if inserting the item i € [n] increases the estimate of AMS
by exactly 1, the adversary chooses to insert i € [n] once with
probability 1/2, otherwise it inserts i € [n] twice.

We now claim that at the end of a stream of m = O(t) up-
dates, with good probability [|w[|Z = [[SF™ 12 ¢ (1 )|l f™)2.
In fact, we show that regardless of the number of rows ¢t in the
AMS sketch, we force the AMS to give a solution that is not even a
2-approximation.

THEOREM 9.1. Let S € R¥™*"™ be an AMS sketch (i.i.d. Rademacher
matrix scaled by t712) where1 < t < nfc for some constant c.
Suppose further that the adversary performs the adaptive updates as
described in Algorithm 2. Then with probability 9/10, by the m-th
stream update for some m = O(t), the AMS estimate ||Sf(m)||§ of the
norm ||f(m) ||§ of the frequency vector f defined by the stream fails to
be a (1 = 1/2) approximation of the true norm ||f(m)||§. Specifically,
we will have [|SF™||2 < 1| f(m)|2,

Proor. For j =2,3... we say that the j-th step of Algorithm 2
is the step in the for loop where the parameter i is equal to j, and
we define the first step to just be the state of the stream after line 1
of Algorithm 2. Let w be the state of the frequency vector at the
end of the i-th step of the for loop in Algorithm 2, let y = Sw’ be
the AMS sketch at this step, and let s; = ||Sw' ||§ be the estimate of
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AMS at the same point. Note that we have wl=C-i-e fora
sufficiently large constant C, and thus s; = C?¢. That is, already on
the first step of the algorithm we have ||w! ||§ = C?t, and moreover
since the stream is insertion only, we always have ||w' ||§ > C%.
Thus, it suffices to show that with good probability, at some time
step i > 2 we will have s; < C?t/2.

First, note that at any step i = 2,3,..., if we add Se;+; once,
we have siv1 = ||y’ + Seivtll} = 27_, (W) +2y}Sj,ie1 + 1/1) =
si+1+ 22;:1 y]’:Sj,Hl. If we add Se;yq twice, we have s;11 =
lyt + 25ei+1||§ = s +4+ 42;21 le-Sj,i+1. By definition of the
algorithm, we choose to insert Se; 1 twice if [y’ +Se;1]|5 —s; = 1+
2 Z]t‘=1 yJi.Sj’iH < 1, or more compactly whenever Z]t-=1 y}Sj,i+1 <
0.If th'=1 y}’.Sj,Hl > 0, we insert Se;+1 only once. Finally, if Z]t-=1
yJ’-Sj,i+1 = 0, we flip an unbiased coin, and choose to insert Se;1
either once or twice with equal probability 1/2. Now observe that
the random variable jt.:l y]’.S j,i+1 is symmetric, since for any fixed

y' the S j,i+1 s are symmetric and independent. Thus, we have that

t
EH Zy}sj,iﬂ
=

t
] = E[ yji.Sj,Hl | Sejt+1 inserted once]
Jj=1

@)

= —E[ le-Sj,,-H | Sej+1 inserted twice]
J=1

Now recall that the vector S ;+1 given by the (i + 1)-st column of
S is just an i.i.d. Rademacher vector scaled by 1/+v/. Thus by the clas-
sic Khintchine inequality [19], we have that E[| Z§:1 yj’.Sj,Hl 1=
1
vt
a > 1/V2 suffices by Theorem 1.1 of [19]). Putting these pieces
together, the expectation of the estimate of AMS is then as follows:

Vi Vi

1( +1+2 si)+l( +4—4 si)
(s a Xy L (s —4q L
2 N Vi

-a - |ly*ll2 = a+/si/Vt for some absolute constant & > 0 (in fact,

Elsi+1] =
®3)

si+5/2—avsi/t
<si+5/2—+/si/2t

Where again the last line holds using the fact that « > 1/ V2. Thus
E[si+1] = E[s;] +5/2 - E[W] First, suppose there exists some
i < C%t + 2 such that E[+/si] < C+/t/200. This implies by definition
that 3} v/j - Pr[s; = j] < C/t/200, thus

VC[2 Prls; = C*tj21 < ) \j-Prlsi = j]

j=C?%t/2
< +/C2t/200

Which implies that Pr[s; > C%t/2] < 1/10. Thus, on that step i, we
have Pr[s; < C?t/2] > 9/10, and thus by time step i we have fooled
the AMS sketch with probability at least 9/10. Thus, we can assume
that for all i = 2,3,...,(C%t + 2) we have E[/5;] > C+/t/200.
Setting C > 200, we have that E[s;+1] < E[s;] — 1 for all steps
i=23,...,(C% + 2) However, since s; = C%t, this implies that
E[sczs42] < —1, which is impossible since s; is always the value of
anorm. This is a contradiction, which implies that such an i with
i < C?t + 2 and Pr[s; > C%t/2] < 1/10 must exist, demonstrating

©
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that we fool the AMS sketch by this step with probability 9/10,
which completes the proof. |

10 OPTIMAL DISTINCT ELEMENTS VIA
CRYPTOGRAPHIC ASSUMPTIONS

Estimating the number of distinct elements (Fy-estimation) in a
data stream is a fundamental problem in databases, network traffic
monitoring, query optimization, data mining, and more. After a
long line of work, [28, 37] settled space (and time) complexities of
Fy-estimation by giving an algorithm using O(¢~2 + log n) bits of
space (with constant worst-case update time). The tracking version
of this algorithm (where it outputs a correct estimate at each time
step) takes memory O(¢~?(log e ™! + log log n) + log n) bits and is
also optimal [6].

However, these results only hold in the (standard) static setting.
We show that using cryptographic tools (pseudorandom functions),
we can transform this algorithm, using the same amount of memory
to be robust in the adversarial setting as well, where the adversary
is assumed to be computationally bounded (as opposed to our other
results which have no assumptions on the adversary whatsoever).

The transformation actually works for a large class of stream-
ing algorithms. Namely, any algorithm such that when given an
element that appeared before, does not change its state at all (with
probability 1). Since the Fy tracking algorithm of [6] has this prop-
erty, we can black-box apply our results to this algorithm.

First, we show how this transformation works assuming the
existence of a truly random function, where the streaming algorithm
has access to the function without needing to store it explicitly (the
memory is free). Recall that this is known as the random oracle
model of streaming, as such a function can be represented by a
sufficiently long string of random bits. The model is appealing since
we have different heuristic functions (such as the SHA-X family)
that behave, as far as we can tell in practice, like random functions.
Moreover, there is no memory cost when using them. Nevertheless,
we discuss how to implement such a function with cryptographic
tools (pseudorandom functions) and storing only a small secret key
in the memory. The proof can be found in Appendix A.4.

THEOREM 10.1 (ROBUST DISTINCT ELEMENTS BY CRYPTOGRAPHIC
AsSUMPTIONS). In the random oracle model, there is an Fy-estimation
(tracking) streaming algorithm in the adversarial setting, that for an
approximation parameter ¢ uses O(e %(log 1/¢ + loglog n) + log n)
bits of memory, and succeeds with probability 3/4.

Moreover, under a suitable cryptographic assumption, assuming
the adversary has bounded running time of n°, where m is the stream
length and c is fixed, the random oracle can be replaced with a concrete
function and the total memory is O(¢~2(log 1/¢ +log log n) + clog n).
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A MISSING PROOFS
A.1 Proofs from Section 5

Algorithm 3: Fast non-adversarial distinct elements esti-
mation.

1 Initialize Lists Lo, L1, ..., Ly < 0, for t = O(logn)

2 B« 0(e2logd™!), d « O(loglogn +logd~1)

3 Initialize d-wise independent hash function H : [n] — [2€]

such that n? < 2¢ < n®.

4 while Receive update (a;, A;) € [n] X Z do

5 Let j be such that 267~ < H(a;) < 2¢/

6 if Lj has not been deleted then

7 ‘ Add a; to the list L; if it is not already present.

8 end

9 If L;j| > B for any j, delete the list L;, and never add any

items to it again.

10 end
11 Let i be the largest index such that |L;| > %B.
12 Return 271|L;| as the estimate of || f|lo

Before stating our proof of Lemma 5.2, We will begin with the
following proposition which will allow for the fast evaluation of
d-wise independent hash functions.

ProrosITION A.1 ([36], CH. 10). Let R be a ring, and let p € R[x]
be a degree d univariate polynomial over R. Then given distinct
X1, X2, ...,Xq € R, all the values p(x1), p(x2), . . ., p(xq) can be com-
puted using O(d log? d log log d) operations over R.

PRrROOF OF LEMMA 5.2. We describe the algorithm here, as stated
in Algorithm 3. We initialize lists Lo, L1,...,L; « 0, for t =
O(log n), and hash functions H : [n] — [2¢], where ¢ is set so
that n2 < 2¢ < n3. The lists L; will store a set of identities
L; c [n] which have occurred in the stream. We also set B «—
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6(5_12 (loglog n +log §71)). For now, assume that H is fully indepen-
dent.

At each step when we see an update a; € [n] (corresponding to
an update which increments the value of f; by one), we compute j
such that 26=/=1 < H(a;) < 2¢7J. Note that this event occurs with
probability 2~U+1)_Then we add the O(log n)-bit identity a; to the
list Lj if |[Lj| < B. Once |Lg| = B for any k € [t], we delete the
entire list Ly, and never add an item to Ly again. We call such a list
Ly saturated. At the end of the stream, we find the largest value i
such that %B < |L;|, and output 2/71|L;| as our estimate of || f]|o.

We now analyze the above algorithm. Let iy be the smallest in-

dex such that E[|L;,|] < |[f]lo2~(+D < 5(11+5)B' Note here that

E[|Lg]] = 2’(k+1)||f||o for any k € [t]. By Chernoff bounds, with
probability 1—exp(—B) < 1-§2/log(n) we have that |Liy| < %B, We
can then union bound over all such indices i > ij. This means that
we will not output the estimate used from any index i > i. Simi-
larly, by a Chernoff we have that [Ljy—1| = (1 % &)||f]lo27% < %B

and |Ljj—2| = (1 e)|l fllo2~%*1, and moreover we have —5(12+£)B <

I fllo2~ ! < %B, meaning that the output of our algorithm will
be either |L;,—1 |20072 or |Lio,2|2i0_3, each of which yields a (1 + ¢)
estimate. Now note that we cannot store a fully independent hash
function H, but since we only needed all events to hold with proba-
bility 1 — ©(5? /log(n)), it suffices to choose H to be a d-wise inde-
pendent hash function for d = O(loglog n + log §~1), which yields
Chernoff-style tail inequalities with a decay rate of exp(—Q(d)) (see
e.g. Theorem 5 of [35]).

Now to analyze the space bound. Trivially, we store at most
O(logn) lists L;, each of which stores at most B identities which
require O(log n) bits each to store, yielding a total complexity of
O(g—l2 log? n(loglog n+log 6~1)). We now show however that at any

given step, there are at most O(Bloglog n) many identities stored
in all of the active lists. To see this, let iy < iy < --- < is be the
time steps such that ||f(if) llo = 2/*1- B, and note that s < log(n)+1.
Note that before time i(, at most B identities are stored in the union
of the lists. First, on time step i; for any j € [s], the expected
size of |Lj_»| is at least 2|B| (had we never deleted saturated lists),
and, with probability 1 — (§/log n)' after a union bound, it holds
that |Lj| is saturated for all j* < j — 2. Moreover, note that the
expected number of identities written to lists Ly with j* > j—1
is | f0)]lo 31 277*1*Y < 2B, and is at most 4B with probability
at least 1 — (§/log n)'? (using the d-wise independence of H). We
conclude that on time step £;, the total space being used is O(B log n)
with probability at least 1 — (§/log n)'?, so we can union bound
over all such steps i; for j € [s].

Next, we must analyze the space usage at steps 7 fori; < 7 < ij41.
Note that the number of new distinct items which occur over all
such time steps 7 is at most 2/*1 - B by definition. Since we already
conditioned on the fat that |Lj| is saturated for all j* < j — 2, it fol-
lows that each new item is written into a list with probability at most
27J. Thus the expected number of items which are written into lists
within times t satisfying i; < 7 < ij41 is 2/ - B-27/ = Bin expecta-
tion, and at most 4B with probability 1—(5/log n)!° (again using the
d-wise Independence of H). Conditioned on this, the total space used
in these steps is at most O(Blogn) = O(Eiz log n(loglogn + log §))
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in this interval, and we then can union bound over all such O(log n)
intervals, which yields the desired space.

Update Time: Finally, for the update time, note that at each
stream update a; € [n] the first step of the algorithm. Naively, com-
puting a d-wise independent hash function requires O(d) arithmetic
operations (in the standard RAM model), because H in this case is
just a polynomial of degree d over Z. On the other hand, we can
batch sequences of d = O(log log n+log §~1) computations together,
which require an additive O(d log n) = O(log n(log log n + log §71))
bits of space at any given time step to store (which is dominated
by the prior space complexity). Then by Proposition A.1, all d hash
function evaluations can be carried out in O(d log? dloglogd) =

o(d logz(log logn)log logloglog %) time. The work can then be
evenly distributed over the following d steps, giving a worst case
update time of O(log?(log log ) loglogloglog %)- Note that this de-
lays the reporting of the algorithm for the contribution of updates
by a total of d steps, causing an additive d error. However, this is
only an issue if d > ¢||f|lo, which occurs only when || f|lo > %d.
Thus for the first D = O(¢~'d) distinct items, we can store the
non-zero items exactly (and deterministically), and use the out-
put of this deterministic algorithm. The space required for this is
O(e 1 log(n)(log log n + log §71), which is dominated by the space
usage of the algorithm overall. After D distinct items have been
seen, we switch over to using the output of the randomized algo-
rithm described here. Finally, the only other operation involves
adding an identities to at most one list per update, which is O(1)
time, which completes the proof. |

A.2 Proofs from Section 7

To obtain our Entropy estimation algorithm of Theorem 7.3, we will
first need to state the results for the state of the art non-adversarial
streaming algorithms for additive entropy estimation. The first
algorithm is a O(¢~% log? n)-bit streaming algorithm for additive
approximation of the entropy of a turnstile stream, which in partic-
ular holds for insertion only streams. The second result is a O(1/¢2)
upper bound for entropy estimation in the insertion only model
when a random oracle is given. Recall that the random oracle model
of streaming means that the algorithm is given random (read-only)
access to an arbitrarily large string of random bits.

LEMMA A.2 ([11]). There is an algorithm in the strict turnstile
model that gives a e-additive approximation to the Shannon Entropy
H(f) of the stream. The failure probability is §, and the space required
is O(; log® nlog §71) bits.

LEMMA A.3 ([23]). There is an algorithm in the insertion-only
random oracle model that gives a e-additive approximation to the
Shannon Entropy H(f) of the stream. The failure probability is §, and
the space required is O(El—z(log 571 +loglogn + loge™1))

We now give the proof of Proposition 7.2, and then the main
Theorem 7.3.

PRroOF oF ProPosITION 7.2. By Proposition 7.1, it suffices to get
a bound on the flip number of Hg for the parameters § = 1 +

v/(16log(1/v)) and v = ¢/(4log nlog m). Recall g(x) = 2Hs(™*) =
(||x||g/||x||f)1/(1_/3), Now to increase g(x) by a factor of (1+¢), one
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must increase ||x||§/||x||'f by a factor of (1 + ©(¢(1 — f)). For this
to happen, [|x|| must increase by a factor of (1 + ©(e(1 — B)). Since
lIxllg < llxll < n'"Pljx|l; = (1 + O(¢/log m)Ix1, and thus |lx]l;
must also increase by a factor of (1 + O(¢e)(1 — f)).

Similarly, for g(x) to decrease by a factor of (1 + ¢), this requires
||x||1 to increase by a factor of (14 ©(e(1 — f)). In summary, for g(x)
to change by a factor of (1 + ¢), ||x||; must increase by a factor of
(1+0(e(1 - p)) = (1 + 1), where 7 = O(c2/log? n). || F™ ||, < Mn
and || - ||; is monotone for insertion only streams, it follows that
this can occur at most O(lofz ") times, which completes the proof
since logn = ©(log m). |

Proor oF THEOREM 7.3. The proof follows directly from an ap-
plication of Lemma 3.6, using the non-adversarial algorithms of
Lemmas A.2 and A.3, as well as the flip number bound of Lemma
7.2. Note that to turn the algorithms of Lemmas A.2 and A.3 into
tracking algorithms, one must set § < 1/m, which yields the stated
complexity. |

A.3 Proofs from Section 8

Proor oF LEMMA 8.2. Let h be the frequency vector of the stream
with updates u] = (a;, A}) where A} = |A;|. Note that h is then
the frequency vector of an insertion only stream. Now let 0 <

ti <ty < -+ < t < m be any set of time steps such that
||f(’f")||‘,7 ¢ (1ie)||f(l‘i+1)||‘,7 for each i € [k—1]. Since by definition of
the a-bounded deletion property, we have ||f(t)||p > M+P ||h(t)||p
for each t > T, it follows that
”f(tm) _f(ti)”p > ||f(ti+1)||p _ ||f(fi)||p
> el fU ],
£ ) 5
> ||h(t‘“)||p (5)
&P .
> Il

Where in the last equation we used that A is an insertion only
stream. Now since the updates to h are the absolute value of the
updates to f, we also have that ||h(ti+1) — h(t")Hg > || flt) -

f(ti)“g > %”h(ti)”g.Thus

||h(fi+1)||£ — ||h(fi) + (h(fm) _ h(ti)) ||11”

> ||h(ti)||11)’ + ||h(ti+1) _ h(ti)”jl)’ ©)

&P )
> (1+ )R
[24

Where in the second inequality, we used the fact that || X + Y||£ >
1X|IpP + ||Y||§ for non-negative integral vectors X,Y when p >
1. Thus ||h(ti+1)||£ must increase by a factor of (1 + &”/«) from
IR} whenever || f*9], ¢ (1ze)[| f“+2)]|,.. Since [[0]|} = 0,and
||h(m)||£ < MPn < n°P for some constant ¢ > 0, it follows that this

can occur at most O(p-% log n) many times. Thus k = O(p 5 log n),
which completes the proof. |
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ProoF oF THEOREM 8.3. We use the turnstile algorithm of [27],
which gives a estimate Rf = (1+ €)||f(t) ||g at a single point t € [m]
with probability 1 — &, using O(e 2 log nlog §~1) bits of space. We
can set § = 1/poly(m), and union bound over all steps, to obtain
that R = (1 + £)||f(t>||£ at all time steps ¢ € [m] with probability
1 — n~C. Thus this gives a strong Fp tracking algorithm using
O(e 2 log nlog(n/9)) bits of space. The theorem then follows from
applying Lemma 3.8, along with the flip number bound of Lemma
8.2. |

A.4 Proofs from Section 10

Proor oF THEOREM 10.1. For simplicity, in the following proof
we assume that we have a random permutation. We note that the
proof with a random function is exactly the same conditioned on
not having any collisions. If the random function maps the universe
to a large enough domain (say of size at least m?) then there will
be no collisions with high probability. Thus, it suffices to consider
permutations.

The solution is inspired by the work of [34] (which had a similar
adaptive issue in the context of Bloom filters). Let II be a truly
random permutation, and let S be a tracking steaming algorithm
with parameter ¢. Let L(e, n) be the memory consumption of the
algorithm. We construct an algorithm S’ that works in the adversar-
ial setting as follows. Upon receiving an element x the algorithm S’
computes x” = II(x) and feeds it to S. The output of S’ is exactly the
output of S. Notice that applying IT to the stream does not change
the number of distinct elements.

We sketch the proof. Assume towards a contradiction that there
is adaptive adversary A’ for S”. Consider the adversary A’ at some
point in time ¢, where the stream is currently x, . . ., x;. It has two
options: (i) it can choose an element x;, where i € [¢] that appeared
before, or (ii) it could choose a new element x* ¢ {x1, ..., x;}. Since
the state of $” does not change when receiving duplicate items, and
also does not change the number of distinct elements, option (i)
has no effect on the success probability of A’. Thus, in order to
gain a chance of winning A’ must submit a new query. Thus, we
can assume without loss of generality that A’ submits only distinct
elements.

For such an adversary A’ let D; be the distribution over states of
S’ at time . Let D; be the distribution over states of S’ for the fixed
sequence 1,2,...,t. We claim that D; = D} (identical distributions)
for every t € [m]. We show this by induction. The first query is non-
adaptive, denote it by x1. Then, since II is a random permutation,
we get that TI(1) = I1(x;) which is what is fed to S. Thus, the two
distribution are identical. Assume it holds for ¢t — 1. Consider the
next query of the adversary (recall that we assumed that this is a
new query). Then, for any x; (that has not been previously queried
by II) the distribution of I1(x;) = II(¢), and therefore we get that

Dt = D;
Given the claim above, we get that A’ is equivalent to a static
adversary A that outputs 1, 2, . . ., k for some k € [m]. However, the

choice of k might be adaptive. We need to show that S” works for
all k simultaneously. Here we use the fact that S was a tracking
algorithm (and thus also S”), which means that S’ succeeds on every
timestep. Thus, for the stream 1, 2, .. ., m the algorithm S’ succeeds
at timestamp k which consists of k distinct elements. Thus, if there
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exists an adaptive choice of k that would make S’ fail, then there
would exist a point in time, k, such that $’ fails at 1, .. ., k. Since S
is tracking, such a point does not exist (w.h.p. ).

For the second part of the theorem, we note that we can imple-
ment the random function using an exponentially secure pseudo-
random function (see [17] for the precise definition and discussion).
For a key K of size A, the pesudorandom function Fk(-) looks ran-
dom to an adversary that has oracle access to Fx(-) and runs in
time at most 2Y4 for some constant Yy > 0. Let A be an adversary
that runs in time at most n¢. Then, we set O(A = 1/y - ¢ - log n) and
get that A cannot distinguish between Fk(-) and the truly random
function except when a negligible probability event occurs (i.e., the
affect on ¢ is negligible and hidden in constants). Indeed, if A would
be able to succeed against S’ when using the oracle Fk(-), but, as
we saw, it does not succeed when using a truly random function,
then A’ could be used to break the security of the pseudorandom
function.
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There are many different ways to concretely implement such a
pseudorandom function with exponential security. First, one could
use heuristic (and extremely fast) functions such as AES or SHA256
(see also [34] for a discussion on fast implementations of AES in the
context of hash functions). Next, one can assume that the discrete
logarithm problem (see [30] for the precise definition) over a group
of size q is exponentially hard. Indeed, the best known algorithm
for the problem runs in time O(+/q). Setting ¢ > 22 gets us the
desired property for y = 1/2.

To complete the proof, we note that the only property of A we
needed was that when given an element in the stream that has
appeared before, A does not change its state at all. This property
holds for many Fj estimation algorithms, such as the one-shot Fy
algorithm of [28], and the Fy tracking algorithm of [6]. Thus we
can simply use the Fy tracking algorithm of [6], which results in
the space complexity as stated in the theorem. |
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