
31

Querying a Matrix through Matrix-Vector Products

XIAOMING SUN, Institute of Computing Technology, Chinese Academy of Sciences, China

and University of Chinese Academy of Sciences, China

DAVID P. WOODRUFF, Carnegie Mellon University, USA

GUANG YANG, Institute of Computing Technology, Chinese Academy of Sciences, China

and Conflux, China

JIALIN ZHANG, Institute of Computing Technology, Chinese Academy of Sciences, China and University

of Chinese Academy of Sciences, China

We consider algorithms with access to an unknown matrix M ∈ Fn×d via matrix-vector products, namely, the

algorithm chooses vectors v1, . . . , vq , and observes Mv1, . . . ,Mvq . Here the vi can be randomized as well

as chosen adaptively as a function of Mv1, . . . ,Mvi−1. Motivated by applications of sketching in distributed

computation, linear algebra, and streaming models, as well as connections to areas such as communication

complexity and property testing, we initiate the study of the number q of queries needed to solve various

fundamental problems. We study problems in three broad categories, including linear algebra, statistics prob-

lems, and graph problems. For example, we consider the number of queries required to approximate the rank,

trace, maximum eigenvalue, and norms of a matrix M; to compute the AND/OR/Parity of each column or row

of M, to decide whether there are identical columns or rows in M or whether M is symmetric, diagonal, or

unitary; or to compute whether a graph defined by M is connected or triangle-free. We also show separations

for algorithms that are allowed to obtain matrix-vector products only by querying vectors on the right, versus

algorithms that can query vectors on both the left and the right. We also show separations depending on the

underlying field the matrix-vector product occurs in. For graph problems, we show separations depending on

the form of the matrix (bipartite adjacency versus signed edge-vertex incidence matrix) to represent the graph.

Surprisingly, very few works discuss this fundamental model, and we believe a thorough investigation of

problems in this model would be beneficial to a number of different application areas.

CCS Concepts: • Theory of computation→ Complexity classes; Communication complexity;

Additional Key Words and Phrases: Communication complexity, linear algebra, sketching

An extended abstract of this manuscript appeared at ICALP 2019 [36].

All authors contributed equally to this research.

This work was supported in part by the National Natural Science Foundation of China under Grant No. 61832003, 61872334,

the Strategic Priority Research Program of Chinese Academy of Sciences under Grant No. XDA27000000 and K. C. Wong

Education Foundation. D. Woodruff would also like to thank the National Science Foundation grant No. CCF-181584 for

partial support, as well as the Chinese Academy of Sciences and the Simons Institute for the Theory of Computing, where

part of this work was done.

Authors’ addresses: X. Sun, and J. Zhang, Institute of Computing Technology, Chinese Academy of Sciences, Bei-

jing, China, University of Chinese Academy of Sciences, Beijing, China; emails: {sunxiaoming, zhangjialin}@ict.ac.cn;

D. P. Woodruff, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA; email: dwoodruf@andrew.cmu.edu; G.

Yang, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China, Conflux, Beijing, China; email:

guang.research@gmail.com.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Association for Computing Machinery.

1549-6325/2021/10-ART31 $15.00

https://doi.org/10.1145/3470566

ACM Transactions on Algorithms, Vol. 17, No. 4, Article 31. Publication date: October 2021.

mailto:permissions@acm.org
https://doi.org/10.1145/3470566

31:2 X. Sun et al.

ACM Reference format:

Xiaoming Sun, David P. Woodruff, Guang Yang, and Jialin Zhang. 2021. Querying a Matrix through Matrix-

Vector Products. ACM Trans. Algorithms 17, 4, Article 31 (October 2021), 19 pages.

https://doi.org/10.1145/3470566

1 INTRODUCTION

Suppose there is an unknown matrix M ∈ Fn×d that you can only access via a sequence of matrix-

vector products M ·v1, . . . ,M ·vq , where we call the vectors v1, . . . , vq the query vectors, which can
be chosen in a randomized, possibly adaptive way. By adaptive, we mean that vi can depend on
v1, . . . , vi−1 as well as Mv1, . . . ,Mvi−1. Here F is a field, and we study different fields for different
applications. Suppose our goal is to determine if M satisfies a specific property P, such as having
approximately full rank, or, for example, whether M has two identical columns. A natural question
is the following:

Question 1: How many queries q are necessary to determine if M has property P?

A number of well-studied problems are special cases of this question, i.e., compressed sensing or
sparse recovery, for which M ∈ R1×d is an approximately k-sparse vector, and one would like a
number q of queries close to k . It is known that if the query sequence is non-adaptive, meaning
v1, . . . , vq are chosen before making any queries, thenq = Θ(k log(n/k)) is necessary and sufficient
[7, 14] to recover an approximately k-sparse vector.1 However, if the queries can be adaptive, then
q = O (k log logn) queries suffice [19], while there is a lower bound of Ω(k+log logn) [33] (see also
recent work [20, 32]). There is also work on compressed sensing of matrices, where one recovers
sparse matrices via queries of the form Mv1,Mv2, . . . ,Mvi−1 [15].

The above problem is representative of an emerging field called linear sketching which is the
underlying technique behind a number of algorithmic advances the past two decades. In this model,
one queries M · v1, . . . ,M · vr for non-adaptive queries v1, . . . , vr . For brevity, we write this as
M · V, where V ∈ Fd×r has ith column equal to vi . Linear sketching has played a central role in
the development of streaming algorithms [3]. Perhaps more surprisingly, linear sketches are also
known to achieve the minimal space necessary of any, possibly non-linear, algorithm for processing
dynamic data streams under certain general conditions [2, 22, 27], which is an essential result
for proving a number of lower bounds for approximating matchings in a stream [5, 25]. Linear
sketching has also led to the fastest known algorithms for problems in numerical linear algebra,
such as least squares regression and low rank approximation; for a survey, see [40]. Note that
given M · V and M′ · V, by linearity one can compute (M +M′) · V = M · V +M′ · V. This basic
versatility property allows for fast updates in a data stream and mergeability in environments such
as MapReduce and other distributed models of computation.

Given the applications above, we consider Question 1 an important question to understand for
many different properties P of interest, which we describe in more detail below. A central goal of
this work is to answer Question 1 for such properties, and we believe the query model through
matrix-vector products is a natural model of study in its own right.

One notable difference with our model and a number of applications of linear sketching is
that we will allow for adaptive query sequences. In fact, our upper bounds will be non-adaptive,
and our nearly matching lower bounds for each problem we consider will hold even for adaptive
query sequences. The adaptive query model is common in practice. For the problems like iterative

1Here the goal is to output a vector M′ for which ‖M − M′ ‖2 ≤ (1 + ε) ‖M − Mk ‖2, where Mk is the best k-sparse

approximation to M, and ε is a constant.

ACM Transactions on Algorithms, Vol. 17, No. 4, Article 31. Publication date: October 2021.

https://doi.org/10.1145/3470566

Querying a Matrix through Matrix-Vector Products 31:3

linear system solving, eigenvalue finding, and so on, many algorithms used in practice are based
on gradient descent methods, Krylov subspace methods, and the like. Those algorithms are es-
sentially adaptive query algorithms designed with the primary goal of minimizing the number of
queries.

Our model is also related to property testing, where one tries to infer properties of a large
unknown object by (possibly adaptively) sampling a sublinear number of locations of that object.
We argue that linear queries are a natural extension of sampling locations of an object, and that
this is a natural “sampling model” not only because of the desired properties of the distributed,
linear algebra, and streaming applications above, but sometimes also for physical constraints, e.g.,
in compressed sensing, where optical devices naturally capture linear measurements.

From a theoretical standpoint, any property testing algorithm, i.e., one that samples q entries of
M, can be implemented in our model withq linear queries. However, our model gives the algorithm
much more flexibility. From a lower-bound perspective, as in the case of property testing [11],
some of our lower bounds will be derived from communication complexity. However, not all of
our bounds can be proved this way. For example, one notable result we show is an optimal lower
bound on the number of queries needed to approximate the rank of M ∈ Rn×n up to a factor t by
randomized, possibly adaptive algorithms; we show that n

t
+1 queries are necessary and sufficient.

A natural alternative way to prove this would be to give part of the matrix to Alice, part of the
matrix to Bob, and have the players exchange the MLvi and MRvi , where M = ML +MR and ML

is Alice’s part and MR is Bob’s part. Then, if the 2-player randomized communication complexity
of approximating the rank of M up to a factor of t were known to be Ω(n2/t), we would obtain a
nearly matching query lower bound of Ω(n/(t (b+ logn))), where b is the number of bits needed to
specify the entries of M and the queries. However, it is unknown what the 2-player communication
complexity of approximating the rank of M up to a factor t is over R! We are not aware of any
lower bound better than Ω(1) for constant t for this problem for adaptive queries. We note that for
non-adaptive queries, there is an Ω(n2) sketching lower bound over the reals given in [26], and an
Ω(n2/ logp) lower bound for finite fields (of size p) in [4]. There is also a property testing lower
bound in [8], though such a lower bound makes additional assumptions on the input. Thus, our
model gives a new lens to study this problem from, from which we are able to derive strong lower
bounds for adaptive queries. Our techniques could be helpful for proving lower bounds in existing
models, such as two-party communication complexity.

Our model is also related to linear decision tree complexity, see, e.g., [10] and [21], though such
lower bounds typically involve just seeing a threshold applied to Mvi , and typically M is a vector.
In our case, we observe the entire output vector Mvi .

An interesting twist in our model is that, in our formulation above, we are only allowed to query
M via matrix-vector products on the right, i.e., of the form M ·vi . One could ask if there are natural
properties P of M for which the number qL of queries one would need to make if querying M via
queries of the form (u1)T M, (u2)T M, . . . , (uqL)T M can be significantly smaller than the number qR

of queries one would need to make if querying M via queries of the form Mu1,Mu2, . . . ,MuqR :

Question 2: Are there natural problems for which qL � qR?

We show that this is in fact the case, namely, if we can only multiply on the right, then it takes
Ω(n/ logn) queries to determine if there is a column of a matrix M ∈ {0, 1}n×n which is all 1s.
However, if we can multiply on the left, then the single query (1, 1, . . . , 1) can determine this.

We study a few problems around Question 2, which is motivated from several perspectives. First,
matrices might be stored on computers in a specific encoding, e.g., a sparse row format, from which
it may be much easier to multiply on the right than on the left. Also, in compressed sensing, it may
be natural for physical reasons to obtain linear combinations of columns rather than rows.

ACM Transactions on Algorithms, Vol. 17, No. 4, Article 31. Publication date: October 2021.

31:4 X. Sun et al.

Another important question is how the query complexity depends on the underlying field for
which matrix-vector products are performed. For example, might the query complexity be signifi-
cantly different when the products are performed modulo 2 or over the reals?

Question 3: Is there a natural problem for which the query complexity in our model
over F[2] is much larger than that over the reals?

Yet another important application of this model is to querying graphs. A natural question is which
representation to use for the graph. For example, a natural representation of a graph on n vertices
is through its adjacency matrix A ∈ {0, 1}n×n , where Ai, j = 1 if and only if {i, j} occurs as an edge.
A natural representation for a bipartite graph with n vertices in each part could be an n ×n matrix
A where Ai, j = 1 iff there is an edge from the ith left vertex to the jth right vertex. Yet another

representation could be the
(
n
2

)
× n edge-vertex incidence matrix, where the {i, j}-th row is either

0, or has exactly two ones, one in location i and one in location j. One often considers a signed
edge-vertex incidence matrix, where one first arbitrarily fixes an ordering on the vertices and then
the {i, j}-th entry has a 1 in the ith position and a −1 in the jth position if i > j; otherwise, positions
i and j are swapped. Yet another possible representation of a graph is through its Laplacian.

Question 4: Do some natural representations of graphs admit much more efficient query
algorithms for certain problems than other natural representations?

We note that in the data stream model, where one sees a long sequence of insertions and deletions
to the edges of a graph, each of the matrix representations above can be simulated and so they
lead to the same complexity. We will show, perhaps surprisingly, that in this model there can be
an exponential difference in the query complexity for two different natural representations of a
graph for the same problem.

We next get into the details of our results. We would like to stress that in this model, even for
basic problems, it is not immediately obvious how to tackle them. As a puzzle for the reader, what
is the query complexity of determining if a matrix M ∈ Fn×n is symmetric if one can only query
vectors on the right? We will answer this later in the paper.

1.1 Formal Model and Our Results

We now describe our model and results formally in terms of an oracle. The oracle has a matrix
M ∈ Fm×n , for some underlying field F that we specify in each application. We can only query
this matrix via matrix-vector products, i.e., we pick an arbitrary vector x and send it to the oracle,
and the oracle will respond with a vector y = M · x. We focus our attention when the queries
only occur on the right. Our goal is to approximate or test a number of properties of M with a
minimal number of queries, i.e., to answer Question 1 for a large number of different application
areas.

We study a number of problems as summarized in the Table 1. We assume M is anm ×n matrix
and ε > 0 is a parameter of the problem. The bounds hold for constant probability algorithms. In
some problems, such as testing whether the matrix is a diagonal matrix, we always assumem = n,
and in the graph testing problems we explicitly describe how the graph is represented using M.
Interestingly, we are able to prove very strong lower bounds for approximating the rank, which
as described above, are unknown to hold for randomized communication complexity.

Motivated be streaming and statistics questions, we next study the query complexity of approxi-
mating the norm of each row of M. We also study the computation of the majority or parity of each
column or row of M, the AND/OR of each column or row of M, or equivalently, whether M has an
all ones column or row, whether M has two identical columns or rows, and whether M contains
an unusually large-normed row, i.e., a “heavy hitter”. Here we show there are natural problems,

ACM Transactions on Algorithms, Vol. 17, No. 4, Article 31. Publication date: October 2021.

Querying a Matrix through Matrix-Vector Products 31:5

Table 1. Our Results

Problem Query Complexity

Linear Algebra Problems

Approximate Rank (for any p ′ > p p + 1 (Section 3.1)
distinguishing Rank ≤ p from Rank p ′)
Trace Estimation Ω(n/logn) (Section 3.2)

Symmetric Matrix/Diagonal Matrix O (1) (Sections 3.3 and 3.4)

Unitary Matrix 1 (Section 3.5)

Approximate Maximum Eigenvalue Θ(ε−0.5logn) for adaptive queries,
Θ(n) for non-adaptive queries
([29, 31, 35], Section 3.6)

Streaming and Statistics Problems

All Ones Column Θ(n) over F[2],
Ω(n/logn) over R (Section 4.1)

Two Identical Columns Ω(n/m) (m = Ω(log(n/ε)))
Two Identical Rows O (logm) (Section 4.2)

Approximate Row Norms/Heavy Hitters O
(
ε−2logm

)
(Section 4.3)

Majority of Columns Ω(n/ logn) over R
Majority of Rows O (1) over R (Section 4.4)

Parity of Columns Θ(n)
Parity of Rows O (1) (Section 4.5)

Graph Problems

Connectivity given Bipartite Adjacency Matrix Ω(n/ logn) (Section 5.1)
Connectivity given Signed Edge-Vertex Matrix O (polylog (n)) ([23], noted in Section 5.1)

Triangle Detection Ω(n/logn) (Section 5.2)

such as computing the parity of all columns, which can be solved with 1 query if sketching on the
left, but require Ω(n) queries if sketching on the right, thus answering Question 2. We also answer
Question 3, observing for the natural problem of testing if a row is all ones, a single deterministic
query suffices over the reals but over F[2] this deterministically requires Ω(n) queries.

For graph problems, we first argue if the graph is presented as an n × n bipartite adjacency
matrix M, then it requires Ω(n/ logn) possibly adaptive queries to determine if the graph is con-

nected. In contrast, if the graph is presented as an n ×
(
n
2

)
signed vertex-edge incidence matrix,

then polylog (n) non-adaptive queries suffices. This answers Question 4, showing that the type
of representation of the graph is critical in this model. Motivated by a large body of recent work
on triangle counting (see, e.g., [16] and the references therein), we also give strong negative re-
sults for this problem in our model, which, as with all of our lower bounds unless explicitly stated
otherwise, hold even for algorithms which perform adaptive queries.

Followup Work. In [12], the authors considered other related problems in this model, including
the important problem of linear regression and top eigenvalue estimation.

2 PRELIMINARIES

We use capital bold letters, e.g., A,B,M, to denote matrices, and use lowercase bold letters,
e.g., x, y, to denote column vectors. Sometimes we write a matrix as a list of column vectors in
square brackets, e.g., M = [m1, . . . ,mn]. We use calligraphic letters, e.g., D, to denote probability
distributions, and use M← D to denote that M is sampled from distribution D. In particular, we

ACM Transactions on Algorithms, Vol. 17, No. 4, Article 31. Publication date: October 2021.

31:6 X. Sun et al.

use G to denote a Gaussian distribution and G for a matrix whose entries are sampled from an
independently and identically distributed (denoted as i.i.d. in the following) Gaussian distribution.

We call a matrix M i.i.d. Gaussian if each element is i.i.d. Gaussian. Let matrix G be a p × n i.i.d.
Gaussian matrix, and R be an n × n rotation matrix, that is, RRT = I. It is easy to check that G × R

is still i.i.d. Gaussian, and has the same probability distribution of G.
The total variation distance, sometimes called the statistical distance, between two probability

measures P and Q is defined as

DTV (P ,Q)
def
= sup

A

|P (A) −Q (A) |.

Let X be an n × m matrix with each row i.i.d. drawn from an m-variate normal distribution
N (0, Σ). Then the distribution of the m ×m random matrix A = XT X is called the Wishart distri-

bution with n degrees of freedom and covariance matrix Σ, denoted byWm (n, Σ). The distribution
of eigenvalues of A is characterized in the following lemma:

Lemma 1 (Corollary 3.2.19 in [24]). If A isWm (n, λIm), withn > m−1, the joint density function

of the eigenvalues Λ = (λ1, . . . , λm) of A (in descending order) is

f (Λ) =
πm2/2

(2λ)mn/2Γm (m/2)Γn (n/2)
exp ��− 1

2λ

m∑
i=1

λi
��

m∏
i=1

λ(n−m−1)/2
i

∏
1≤i<j≤m

(λi − λj).

In particular, for λ = 1 and n =m, ∃ a constant Zm independent from λ1, . . . , λm , such that

f (Λ) =
1

Zm
exp ��−1

2

m∑
i=1

λi
��

m∏
i=1

λ−1/2
i

∏
1≤i<j≤m

(λi − λj).

3 LINEAR ALGEBRA PROBLEMS

In this part, we present our lower bound for rank approximation in Section 3.1. After that, we
provide our results about trace estimation in Section 3.2, testing symmetric matrices in Section 3.3,
testing diagonal matrices in Section 3.4, testing unitary matrices in Section 3.5, and approximating
the maximum eigenvalue in Section 3.6.

3.1 Lower Bound for Rank Approximation

In this section, we discuss how to approximate the rank of a given matrix M over the reals when
the queries consist of right multiplication by vectors. A naïve algorithm to learn the rank is to
pick random Gaussian query vectors non-adaptively. In order to approximate the rank, that is,
to distinguish whether rank (M) ≤ p or rank (M) ≥ p + 1, this algorithm needs at least p + 1
queries, and it is not hard to see that the algorithm succeeds with probability 1. Indeed, if M is

the unknown n × n matrix, and H ∈ Rn×(p+1) is the random Gaussian query matrix, then we can
write M in its thin singular value decomposition as M = UΣVT , where U and V ∈ Rn×k have
orthonormal columns, and Σ ∈ Rk×k has positive diagonal entries. Here, k =rank(M). We have
that rank(M ·H) = rank(VT H). Since V has orthonormal columns, it can be extended to a rotation
matrix V′ ∈ Rn×n by adding n − k orthonormal columns. We have V′T H is a random Gaussian
matrix by rotational invariance of the Gaussian distribution. VT H is actually the first k rows of
V′T H, so it is also a random Gaussian matrix. Thus, rank(VT H) is the minimum of p + 1 and the
rank of M with probability 1.

In the following, we will show that we cannot expect anything better. We will first show for
non-adaptive queries, at least p + 1 queries are necessary to learn the approximate rank. Then we
generalize our results to adaptive queries. Our results hold for randomized algorithms by applying
Yao’s minimax principle.

ACM Transactions on Algorithms, Vol. 17, No. 4, Article 31. Publication date: October 2021.

Querying a Matrix through Matrix-Vector Products 31:7

3.1.1 Non-Adaptive Query Protocols.

Theorem 1. Let constant ε > 0 be the error tolerance and let M be an n × n oracle matrix and

suppose to start that we make non-adaptive queries. For integer p < p ′ ≤ n, at least p + 1 queries are

necessary to distinguish rank (M) ≤ p from rank (M) ≥ p ′ with advantage ≥ ε .

Proof. Given any algorithm distinguishing rank (M) ≤ p from rank (M) ≥ p ′ for some p ′ < n,
we can determine whether a p ′ ×p ′ matrix M′ has full rank p ′ or rank (M′) ≤ p, by padding M′ to
an n × n matrix M. Therefore, in what follows, it suffices to prove the lower bound for two n × n
matrices M1 and M2 where rank (M1) ≤ p and rank (M2) = n:

(1) M1 = U × GT;
(2) M2 = U × GT + 1

Z (n) · U
⊥ × HT.

Here U has p columns and U⊥ has (n − p) columns such that [U,U⊥] forms an n × n random
orthonormal basis, GT and HT are p × n and (n − p) × n matrices whose entries are sampled i.i.d.
from the standard Gaussian distribution, and Z (n) is a function in n which will be specified later.

Since M2 = [U,U⊥]× [GT

1
Z (n) HT], it immediately follows that rank (M1) ≤ p and rank (M2) = n with

probability 1. Then we assume rank (M2) = n and discuss the query lower bound for distinguishing
M1 from M2.

Given M ∈ {M1,M2}, without loss of generality we denote the q non-adaptive queries with an
n × q orthonormal2 matrix V = [v1, . . . , vq], where q ≤ p and each n × 1 column vector vi is a
query to the oracle of matrix M which gets response M · vi , for i ∈ [q]. Then, it suffices to show
that the following two distributions are hard to distinguish:

(1) M1 × V ≡ UW, where W = GT V;
(2) M2 × V ≡ UW + 1

Z (n) · U
⊥W′, where W′ = HT V.

Note that [U,U⊥] is orthonormal, and hence UT U = Ip , (U
⊥)T U⊥ = In−p , UT U⊥ = 0p×(n−p) . We

introduce Lemma 2 to eliminate U,U⊥ in the representation of M × V.

Lemma 2. For M1,M2 and V defined as above,

DTV (M1V,M2V) = DTV

(
(M1V)T M1V, (M2V)T M2V

)
Proof. The direction DTV (M1V,M2V) ≥ DTV ((M1V)T M1V, (M2V)T M2V) is trivial by the data-

processing inequality (i.e., for every X,Y and random function f , DTV (X,Y) ≥ DTV (f (X), f (Y))).
In what follows, we only prove the other direction.

For a random matrix M sampled as M1 or M2, we will design a random transforma-
tion process where the input is a random sample from VT MT MV, and the output has the
same distribution as MV. If we have such a transformation, we have DTV (M1V,M2V) ≤
DTV ((M1V)T M1V, (M2V)T M2V).

The transformation process works as follow: given a q × q sample matrix X from VT MT MV,
let its singular value decomposition be X = BΛBT . We generate an n × q random orthonormal

matrix A, and output an n × q matrix Y = AΛ1/2BT . We then show the matrix Y follows the same
distribution of MV.

First, let us consider the case M = M1 = U × GT . Let the singular value decomposition of
W = GT V be W = CΣDT where C is a p × q matrix, and Σ, D are q × q matrices. Then, we have

VT MT
1 M1V = DΣ2DT . Thus, we know Σ = Λ1/2 and D = B. We do not know the left matrix C,

but UC is an n × q random orthonormal matrix since the columns of U come from a basis for a

2Non-orthonormal queries can be made orthonormal using a change of basis in post-processing.

ACM Transactions on Algorithms, Vol. 17, No. 4, Article 31. Publication date: October 2021.

31:8 X. Sun et al.

random p dimensional subspace. In addition, the random matrix UC is independent of D. Thus,
the matrix A generated by the transformation process has the same distribution as UC which
means our output matrix Y follows the distribution of M1V if the input matrix is sampled from
VT MT

1 M1V.

Second, let us consider the case M = M2 = U × GT + 1
Z (n) · U

⊥ × HT . The idea is similar as

the first case. Let the singular value decomposition of M2V be M2V = CΣDT where C is an n × q
matrix, and Σ, D are q×q matrices. Then, we have VT MT

2 M2V = DΣ2DT . Thus, we know Σ = Λ1/2

and D = B. Consider an n × n uniformly random orthonormal matrix R, we have RM2V has the
same distribution as M2V since [RU,RU⊥] also forms an n × n random orthonormal basis. And
RC is an n × q uniformly random orthonormal matrix which has the same distribution of A, and
also independent of D. So our output matrix Y follows the distribution of M2V if the input matrix
sampled from VT MT

2 M2V. �

Let Λ = diag(λ1, . . . , λq),Λ′ = diag(λ′1, . . . , λ
′
q) be diagonal matrices such that WT W = AT ΛA

and WT W+
(W′)T W′

Z 2 (n)
= BT Λ′B for orthonormal matrices A and B. We assume both λ1, . . . , λq and

λ′1, . . . , λ
′
q are sorted in decreasing order. Using Lemma 2, it suffices to prove an upper bound for

DTV
(
Λ,Λ′

)
as follows:

DTV

(
UW,UW +

U⊥W′

Z (n)

)

= DTV
��(UW)T (UW),

(
UW +

U⊥W′

Z (n)

)T (
UW +

U⊥W′

Z (n)

)��
= DTV

(
WT W,WT W +

(W′)T W′

Z 2 (n)

)
≤ DTV

(
Λ,Λ′

)
.

The last inequality uses the similar idea to Lemma 2. Given any sample X from Λ or Λ′, we
can generate a q × q uniformly random orthonormal matrix C, and the matrix CT XC follows the

same distribution of either WT W or WT W+
(W′)T W′

Z 2 (n)
, which depends on whether X comes from Λ

or Λ′.
We then apply Weyl’s inequality as follows:

Lemma 3 (Weyl’s Ineqality, [39, 42]). Let A = B+C where B,C are n ×n Hermitian matrices,

with their respective eigenvalues μi ,νi , ρi ordered as follows:

A : μ1 ≥ · · · ≥ μn ,

B : ν1 ≥ · · · ≥ νn ,

C : ρ1 ≥ · · · ≥ ρn .

Then the following inequalities hold: νi + ρn ≤ μi ≤ νi + ρ1 for 1 ≤ i ≤ n.

For every i ∈ [q], we have λ′i ∈ [λi −O (
‖W′ ‖22
Z 2 (n)

), λi +O (
‖W′ ‖22
Z 2 (n)

)]. Notice that W′ is an (n − p) × q
i.i.d. Gaussian matrix. Thus, we have ‖W ′‖22 ≤ ‖W ′‖2F which is the sum of (n − p)q independent
squared Gaussian random elements. Hence, it is bounded by O ((n − p)q) with high probability.
More specifically, we have Pr (‖W ′‖2F ≥ (n − p)q(1 + t)) ≤ exp(−(n − p)qt2/18) for all t ∈ [0, 3]
according to Example 2.12 in [38]. Recalling that q ≤ p, in what follows, we condition on the event
λ′i ∈ [λi −O (

np

Z 2 (n)
), λi +O (

np

Z 2 (n)
)].

We then show the gaps between eigenvalues λi are sufficiently large. Note that, since GT is i.i.d.
Gaussian and V is an orthonormal matrix, each row in W = GT V is independently drawn from an

ACM Transactions on Algorithms, Vol. 17, No. 4, Article 31. Publication date: October 2021.

Querying a Matrix through Matrix-Vector Products 31:9

q-variate normal distribution; thus, the probability distribution of WT W is a Wishart distribution
Wq (p, Iq). It is enough to show the case where q = p. Since λ1, . . . , λp is sorted in descending order,
by Lemma 1, the density function of Λ is:

f (Λ) =
1

Zp
exp ��−1

2

p∑
i=1

λi
��

p∏
i=1

λ−1/2
i

∏
1≤i<j≤p

(λi − λj). (1)

Let E denote the event that λp ≥ 0.01√
n

and ∀1 ≤ i < j ≤ p, λi − λj ≥ γ = 2−Θ(p2 log p) .

Lemma 4. For WT W defined as above and sufficiently small γ = 2−Θ(p2 log n) , Pr[E] > 0.9.

Proof. By Equation (2) in [34] we know that for the smallest singular value λp , we have

Pr[
√
nλp ≥ y] = exp(−(y2/2 + y)). Thus, for y = 0.01 and E0

def
= {λp ≥ 0.01/

√
n}, we get:

Pr [E0] = Pr

[
λp ≥

0.01
√
n

]
= exp (−0.01005) > 0.99.

Also, we note that, for every i , Pr[|λi | ≤ 100n] ≥ 1 − 2 exp(−32n), by setting t = 8
√
n in

Corollary 5.35 of [37]. In what follows, we condition on the event E′0 that |λi | ≤ 100n for every
i ∈ [p].

Then we consider the joint distribution μ of λ1, . . . , λp in Λ. Let Ei
def
= {λi − λi+1 < γ } be the

event that λi and λi+1 has a gap smaller than γ . Thus, E = E0 ∧ (∧p−1
i=1 Ei). To lower bound Pr[E],

we need to upper bound the probability of Ei for 1 ≤ i ≤ p − 1.
Let f be the density function of μ as in (1), and let Leb(·) be the Lebesgue measure in n dimen-

sions. Then, for every i ,

Pr[Ei
��� E′0] = μ (λi − λi+1 < γ) ≤ Leb (λi − λi+1 < γ) · | f |∞ = O (γ/n) · | f |∞

Note that conditioning on E0 such that λp ≥ 0.01/
√
n, the density function f is bounded as:

| f |∞ ≤ O
(
exp

(
−1

2
λ1

) (
100
√
n
)p/2

λ
p2/2
1

)
= 2O (p2 log n)

As a result, we get Pr[Ei ∧ E0
��� E′0] ≤ γ · 2O (p2 log n) .

Therefore, the probability of E is lower bounded for sufficiently small γ = 2−Θ(p2 log n) ,

Pr [E] ≥ Pr
[E′0] · Pr

[
E0 ∧

(
∧p−1

i=1 Ei

) ��� E′0]
≥ Pr

[E′0] · ���Pr
[
E0

��� E′0] − p−1∑
i=1

Pr
[
Ei ∧ E0

��� E′0]���
> (1 − 2p exp(−32n)) ·

(
0.99 − (p − 1)γ · 2O (p2 log n)

)
> 0.9. �

Conditioned on event E and recalling that λ′i ∈ [λi−O (
np

Z 2 (n)
), λi+O (

np

Z 2 (n)
)], the probability den-

sity of Λ′ has only a negligible difference from that of Λ, since the small disturbance of eigenvalues

ACM Transactions on Algorithms, Vol. 17, No. 4, Article 31. Publication date: October 2021.

31:10 X. Sun et al.

is dominated by the corresponding terms in f (Λ).

f (Λ′)

f (Λ)
=

exp
(
− 1

2

∑p
i=1 λ

′
i

) ∏p
i=1 λ

′
i
−1/2 ∏

1≤i<j≤p (λ′i − λ′j)

exp
(
− 1

2

∑p
i=1 λi

) ∏p
i=1 λ

−1/2
i

∏
1≤i<j≤p (λi − λj)

≤ exp

(
p · np
Z 2 (n)

) ���
λp − np

Z 2 (n)

λp

���
−p/2 ∏

1≤i<j≤p

λi − λj +
2np

Z 2 (n)

λi − λj

≤ exp

(
np2

Z 2 (n)

)
·
(
1 +

np

λp · Z 2 (n)

)p (
1 +

2np

Z 2 (n) ·mini�j |λi − λj |

)p (p−1)/2

≤ exp

(
np2

Z 2 (n)

)
·
(
1 +

100
√
n · np

Z 2 (n)

)p (
1 +

2np

Z 2 (n) · γ

)p (p−1)/2

= 1 +O

(
np3γ−1

Z 2 (n)

)

Similarly, we can prove f (Λ′)/f (Λ) ≥ 1 − O
(
np3γ−1/Z 2 (n)

)
. Thus, the total variation distance

between Λ and Λ′ conditioned on E is DTV (Λ,Λ′ ��� E) ≤ (np3γ−1/Z 2 (n)) = (1/n2) for sufficiently

large Z (n) ≥ (np)1.5γ−0.5 = 2Θ(p2 log n) . Thus, for sufficiently large n, we have:

DTV
(
Λ,Λ′

) ≤ Pr[E] + Pr[E] · DTV (Λ,Λ′ ��� E) ≤ 0.1 +O (1/n2) < 0.11.

Therefore, with as many as q = p non-adaptive queries to the oracle matrix M, the two distribu-
tions M1 and M2 cannot be distinguished with advantage greater than 0.11. At least p + 1 queries
are necessary to distinguish those two matrices M1 and M2 of rank ≤ p and rank n, respectively.

Indeed, the above argument holds for every constant advantage ε if y = ε/3, t >
√

12n/ε , and γ
is sufficiently small in the proof of Lemma 4, and letting Z (n) be sufficiently large. �

3.1.2 Equivalence between Adaptive and Non-Adaptive Protocols. Now, we consider the adaptive
query matrix V = [v1, . . . , vq] where vi is the ith query vector. Without loss of generality, we can
assume that ∀i, vi is a unit vector and it is orthogonal to query vectors v1, . . . , vi−1. This gives us
the following formal definition of an adaptive query protocol:

Definition 1. For a target matrix M, an adaptive query protocol P will output a sequence of query
vectors v1, v2, It is called a normalized adaptive protocol if for any i , the query vector vi output
by P satisfies

(1) vi is a unit vector;
(2) vi is orthogonal to the vectors v1, . . . , vi−1;
(3) vi is deterministically determined by M × [v1, . . . , vi−1].

Let Pstd be a standard protocol which outputs e1, e2, . . . where ei is the ith standard basis vec-
tor. We then show that adaptivity is unnecessary by proving that Pstd has the same power as
any normalized adaptive protocol to distinguish the matrix M1 and M2 defined in the previous
subsection.

More formally, we show the following lemma for matrix M2:

Lemma 5. Fix any n × n orthogonal matrix [U,U⊥] and any normalized adaptive protocol P . Con-

sider M2 = U × GT + 1
poly(n) · U⊥ × HT where GT be a p × n i.i.d. Gaussian matrix, and HT be

a (n − p) × n i.i.d. Gaussian matrix. Let matrix V = [v1, . . . , vq] and Vstd = [e1, . . . , eq] be the

query matrix output by protocol P and Pstd , correspondingly. We have the matrix M2V has the same

distribution as M2Vstd .

ACM Transactions on Algorithms, Vol. 17, No. 4, Article 31. Publication date: October 2021.

Querying a Matrix through Matrix-Vector Products 31:11

Proof. Since the matrix GT · Vstd and HT · Vstd is i.i.d. Gaussian, that is, every element in two
matrices is from standard Gaussian distribution and independent of each other, it is enough to
show both GT · V and HT · V are i.i.d. Gaussian. In the following, we will show GT · V are i.i.d.
Gaussian and independent of HT · V, and the similar argument also holds for HT · V.

Let Vi = [v1, . . . , vi] and Vstd
i = [e1, . . . , ei]. Note that v1, . . . , vq are unit vectors and orthog-

onal to each other. We first define orthogonal rotation matrices R1,R2, . . . recursively as follows.
The matrix R1 will take v1 to e1. The matrix Ri will take ej to ej for any j < i and takes Ri−1 · · ·R1vi

to ei . Note, for any i , the orthogonal rotation matrix which satisfies the condition is not unique. We
can arbitrary choose any orthogonal rotation matrix Ri deterministically and Ri only depends on
the first i query vectors. We have Ri · · ·R1Vi = Vstd

i for any i ≤ q, and GT V = GT ·R−1
1 · · ·R−1

q ·Vstd .

Define matrix GRi � GT · R−1
1 · · ·R−1

i . In the following, we use induction to show for any i ≤ q,

GRi is i.i.d. Gaussian and independent of HT ·V. It is enough to show that, for any fixed H , for any
i ≤ q, GRi is i.i.d. Gaussian.

For i = 1, since R1 is determined by v1 which is independent of GT and R1 is an orthogonal
matrix, GR1 = GT R−1

1 is i.i.d. Gaussian.

Now, suppose GRi is i.i.d. Gaussian, we will prove GRi+1 = GRi · R−1
i+1 is also i.i.d. Gaussian. On

the one hand, Ri+1 is determined by v1, . . . , vi+1 which are determined by the response of the first
i queries, that is, determined by M2Vi . We have

M2Vi

= UGT R−1
1 · · ·R−1

i Vstd
i + 1

poly(n) U⊥HT R−1
1 · · ·R−1

i Vstd
i

= (U × (GT R−1
1 · · ·R−1

i) + 1
poly(n) U⊥ × (HT R−1

1 · · ·R−1
i)) · Vstd

i

It means Ri+1 is determined by the first i columns of matrix GRi = GT R−1
1 · · ·R−1

i and

HT R−1
1 · · ·R−1

i . Note by the inductive assumption, GRi is i.i.d. Gaussian. Therefore, Ri+1 is inde-
pendent of the last n − i columns of GRi .

On the other hand, Ri+1ej = ej for any j ≤ i , and thus R−1
i+1 = [

Ii 0

0 R′
] where Ii is the i × i

identity matrix. Note the matrix R′ is actually determined by the protocol, U, U⊥, H and also the
first i columns of GRi , but it is independent of the last n − i columns of GRi . Consequently, in
the multiplication of GRi × R−1

i+1, the first i columns are the same as those in GRi . For the other
n− i columns, the ath element of jth column is

∑
b≥i+1 дrabr

′
b, j

where дrab , r
′
b, j

are the elements in

GRi ,R
′ correspondingly. Since r ′

b, j
is independent of the lastn−i columns of GRi , it is independent

of дrab when b ≥ i + 1. Since GRi is i.i.d Gaussian and R′ is an orthogonal matrix, the last n − i
columns of GRi+1 is also i.i.d. Gaussian and independent of the first i columns. Therefore, we show
GRi+1 = GT · R−1

1 · · ·R−1
i+1 is still i.i.d. Gaussian.

By induction GT V is i.i.d. Gaussian, and independent of HT V. This finishes our proof. �

Obliviously, the same also holds for M1. Combining these results and Theorem 1, together with
Yao’s minimax principle [41],

Theorem 2. Let constant ε > 0 be the error tolerance and let M be an n × n oracle matrix with

adaptive queries. For integer p < p ′ ≤ n, at least p + 1 queries are necessary for any randomized

algorithm to distinguish whether rank (M) ≤ p or rank (M) ≥ p ′ with advantage ≥ ε .

3.2 Lower Bound for Trace Estimation

In this section, we lower bound the number of queries needed to approximate the trace tr(M)
of a matrix M. In particular we reduce this problem to triangle detection as will be proved in
Theorem 16. For the trace estimation problem, Avron and Toledo [6] analyzed the convergence of

ACM Transactions on Algorithms, Vol. 17, No. 4, Article 31. Publication date: October 2021.

31:12 X. Sun et al.

randomized trace estimators via a similar matrix vector products framework. In their model, for
an unknown matrix M, they can access it via vT Mv; while in our model, we only consider the right
multiplication of the form Mv.

Theorem 3. For any integerC > 0 and symmetric n × n matrix M with entries in {0, 1, 2, . . . ,n3},
the number of possibly adaptively chosen query vectors, with entries in {0, 1, 2, . . . ,nC }, needed to

approximate tr(M) up to any relative error, is Ω(n/ logn).

Proof. Suppose we had a possibly adaptive query algorithm making q(n) queries which for a
symmetric matrix M, could approximate tr(M) up to any relative error. If M = A3 for a symmetric
matrix A, we can run the trace esimation algorithm on M as follows: if x1 is the first query, we
compute Ax1, then A(Ax1), then A(A(Ax1)) = A3x1. This then determines the second query x2,
and we similarly compute Ax2, then A(Ax2), then A(A(Ax2)) = A3x2, and so on. Thus, given only
query access to A, we can simulate the algorithm on M = A3 with 3q(n) adaptive queries.

Now, it is well known that for an undirected graphG with adjacency matrix A, the trace tr(A3)/6
is the number of triangles inG. By the argument above, it follows that with 3q(n) queries to A, we
can determine if G has a triangle or has no triangles. On the other hand, by Theorem 16 below, at
least Ω(n/ logn) queries to A are necessary for any adaptive algorithm to decide if there is a triangle
inG. Therefore, 3q(n) = Ω(n/ logn) and hence we complete the proof with q(n) = Ω(n/ logn). �

3.3 Deciding if M is a Symmetric Matrix

Theorem 4. Given an n ×n matrix M over any finite field or over fields R or C,O (log(1
ε

)) queries

are enough to test whether M is symmetric or not with probability 1 − ε .

Proof. We choose two random vectors u and v, where, over a finite field, we choose from a
uniform distribution and over fields R or Cwe choose the Gaussian distribution. We then compute
Mu and Mv. We declare M to be symmetric if and only if uT · Mv = vT · Mu. It is easy to check
that if M is symmetric, the test will succeed. We then show if M is not symmetric, uT Mv � vT Mu

with constant probability, so we obtain success probability 1 − ε by repeating the test O (log(1
ε

))
times.

Let A = M − MT . When M is not symmetric, A is not 0. Thus, uT Mv = vT Mu means
uT Av = 0. We can treat this as a degree-2 polynomial in the entries of vT and u, i.e., this is∑

i, j uivj Ai, j =
∑

i ui
∑

j vj Ai, j . Thus, this is a non-zero polynomial and has at most constant prob-
ability of evaluating to 0 for any underlying field. To see this, for each i , let ti =

∑
j vj Ai, j . Then

there will be at least one ti which is non-zero with probability at least 1/2, for any underlying
field. So now we get

∑
i uiti . Fix all the ui except ui for a given ti that is non-zero. Then, we obtain

S +uiti . Then, if ui has at least two possible values, this is 0 in one case and non-zero in the other
case. So we obtain a probability of at least 1/4 of detection overall. �

3.4 Deciding if M is a Diagonal Matrix

Theorem 5. Given an n ×n matrix M over any finite field or over fields R or C,O (log(1
ε

)) queries

are sufficient to test whether M is a diagonal matrix with failure probability ≤ ε .

Proof. The first query is an all ones vector which retrieves the sum of each row. Then we take
Ω(log 1

ε
) random queries where each entry is uniformly sampled from {0, 1}. We then show that

every row containing non-zero entries off the diagonal can be detected with probability 1/2 under
such a random query. We illustrate it with the first row a = (a1,a2, . . . ,an) of matrix M. Without
loss of generality, assume the off-diagonal element a2 � 0. Let v be a random query. Thus, we
have Pr (

∑
i aivi = (

∑
i ai)v1) = Pr (v2 = a−1

2 (v1 +
∑n

i=3 ai (v1 − vi))) ≤ 1/2. This means every

ACM Transactions on Algorithms, Vol. 17, No. 4, Article 31. Publication date: October 2021.

Querying a Matrix through Matrix-Vector Products 31:13

random query can detect this row with probability at least 1/2. This implies bounded error ≤ ε
after Ω(log 1

ε
) random queries. Furthermore, this algorithm works over any field. �

3.5 Deciding if M is a Unitary Matrix

Theorem 6. Given an n × n complex matrix M, 1 query is enough to test whether M is unitary or

not, that is M∗M = MM∗ = I .

Proof. We choose a random Gaussian vector v, and compute Mv. We declare M to be unitary
if and only if |Mv|2 = |v|2. It is easy to check that, if M is unitary, the test will succeed. We then
show that if M is not unitary, |Mv|2 � |v|2 with probability 1. Let the singular value decomposition
of M be M = UΣVT . We have |Mv|22 = |Σu|22 , where u = VT v is a random Gaussian vector with

|u|22 = |v|22 . The diagonal values in Σ are not all 1 since M is not unitary. Consider
∑

i σ
2
i u

2
i , where

σi = Σi,i . We want this to equal |v|22 = |u|22 =
∑

i u
2
i , so this is

∑
i u

2
i (σ 2

i − 1) = 0. This is a non-

zero polynomial and has probability 0 of evaluating to 0 since the u2
i are drawn from a continuous

distribution. �

3.6 Approximating the Maximum Eigenvalue

The upper bound is due to [31]. Given a matrix M ∈ Rm×n , we can ε-approximate the maxi-
mum eigenvalue of M by taking a random vector v ∈ Rn and computing Mv,M2v, . . . ,Mr v for
r = O (ε−0.5logn). This requires r adaptive oracle queries to M. See [31] for details. See [35] for a
matching lower bound for adaptive queries. A non-adaptive Ω(n) lower bound is given in [29].

4 STREAMING AND STATISTICS PROBLEMS

In this part, we discuss the following streaming and statistics problems: testing an all ones col-
umn/row and identical columns/rows; approximating row norms or finding heavy hitters; and
computing the majority or parity of columns/rows.

4.1 Testing Existence of an All Ones Column/Row

Given a matrix M ∈ {0, 1}m×n , we want to test if M has a column (or row) with all 1 entries. It is
trivial to test whether M has an all 1 column (or row) using n queries, e.g., e1, . . . , en . We consider
this problem both over F[2] and R. Note in the case over R, if we allow an arbitrary query vector,
we can set one query v = {1, 2, 4, 8, . . . , 2n }, and then reconstruct M exactly. Thus, in order to
avoid such trivial cases, we also restrict the entries in the query to be in {0, 1, 2, . . . ,nC }.

For testing the existence of an all ones column, we reduce the problem to the communication
complexity of Disjointness. Disjointness requires Ω(n) bits of communication to decide whether
two sets with characteristic vectors x, y ∈ {0, 1}n are disjoint with constant probability, where
the randomness is taken only over the coin tosses of the protocol (not over the inputs). Suppose
the first m − 1 rows in M each equal xT while the last row equals yT . If we can decide whether
M has an all ones column with q non-adaptive queries v1, . . . , vq , then we obtain a protocol for

Disjointness with communicationq by letting Alice send a message (xT v1, . . . , x
T vq). Thus, from

the communication complexity lower bound of Disjointness, q = Ω(n) queries over F[2] are
necessary to test if there is an all ones column in M, which shows that the naïve algorithm is
already optimal. For queries over R, note that each entry xT vj in the message is represented with
logn bits, and as a result q ≥ Ω(n/logn). To summarize, we have:

Theorem 7. Given a matrix M ∈ {0, 1}m×n , we want to test if M has a column with all 1 entries.

Over field F[2], q = Ω(n) queries are necessary; while over field R, Ω(n/logn) queries are necessary

if we restrict the entries in the query to be in {0, 1, 2, . . . ,nC } for some constant C .

ACM Transactions on Algorithms, Vol. 17, No. 4, Article 31. Publication date: October 2021.

31:14 X. Sun et al.

Testing the existence of an all ones row with queries over R is trivial deterministically by query-
ing v = (1, 1, . . . , 1). Next, we study the query complexity of testing an all 1s row deterministi-
cally with queries over F[2]. With any q ≤ n − 1 queries V = [v1, . . . , vq], there is a non-zero

vector z � 0 such that zT V = 0. Therefore, the query matrix V cannot distinguish whether
a row is from xT or xT + zT . However, xT and xT + zT cannot be both all 1 rows, and hence
n queries are necessary. This result also shows that the query complexity of the same problem
over different fields might be quite different. We note for randomized algorithms, O (log(1/ε))
queries suffice over F[2]. Suppose a row a is not all ones where a1 = 0 without loss of gener-
ality. Choose a random query v where each entry is uniformly sampled from {0, 1}. Thus, we have
Pr (

∑
i aivi =

∑
i vi) = Pr (v1 =

∑n
i=2 (ai − 1)vi) = 1/2. This means, a random query can detect a

not-all-ones row with probability 1/2. SoO (log(1/ε)) random queries suffice to check the existence
of an all ones row with failure probability ≤ ε over F[2]. To summarize, we have:

Theorem 8. Given a matrix M ∈ {0, 1}m×n , we want to test if M has a row with all 1 entries. Over

field R, 1 query is enough. Over field F[2], if we use deterministic algorithm, n queries are necessary

to test; whileO (log(1/ε)) random queries suffice to check the existence of an all ones row with failure

probability ≤ ε .

Evaluating the OR/AND function of columns/rows of a Boolean matrix can be reduced to testing
existence of an all 1 or all 0 column/row, and hence the same bounds follow.

4.2 Identical Columns/Rows

Given an m × n matrix M, we want to test whether M has two identical columns or rows. The
trivial solution naively retrieves all information with n queries (column vectors). In this section,
we consider the query complexity over F[2].

Theorem 9. Given anm×n matrix M, over field F[2], to test whether M has two identical columns,

when m ≥ 4 log(n/ε), any randomized algorithm with successful probability at least 1 − ε needs

Ω(n/m) queries. On the other hand, to test whether M has two identical rows, O (log(m/ε)) queries

are enough with probability 1 − ε .

Proof. Testing identical columns can be reduced to Disjointness. Suppose Alice and Bob have
x, y ∈ {0, 1}n . Let Alice expand her vector x to an m

2 × n matrix M1 as follows: the first row is

(1, xT) = (1,x1, . . . ,xn); for 2 ≤ i ≤ m
2 the ith row is (1, z (i)

1 , . . . , z
(i)
n) where z (i)

j = 1 if x j = 1,

and z (i)
j is uniformly random over {0, 1} if x j = 0, for 1 ≤ j ≤ n. Bob expands his vector y to M2

similarly. Putting M1,M2 together, we let M
def
= [M1

M2
]. Then, M is anm × (n+1) matrix with the first

column being all 1s. For j ≥ 2, the jth column is all 1s if and only if x j = yj = 1, in which case M has
two identical rows of all 1 entries. For columns where x j ,yj are not both equal to 1, without loss
of generality, we may assume the jth and j ′th columns satisfy x j = x j′ = 0 and yj = yj′ . Then, two

columns are identical only if (z (2)
j , . . . , z

(m

2)

j) = (z (2)
j′ , . . . , z

(m

2)

j′), which happens with probability

≤ 1/2
m

2 −1. Therefore, the overall probability of two not-all-ones columns in M being identical is
bounded by n2/2m/2. Thus, the error probability is less than ε ifm ≥ 4 log(n/ε).

That is, except for a small error ε , two identical columns in M are both all ones columns, which
turns out to be equivalent to the case that two vectors x, y held by Alice and Bob are not disjoint.
Then, because Disjointness requires Ω(n) bits of communication, and after one oracle queries,
Alice or Bob can communicate at mostm bits, at least Ω(n/m) oracle queries to M are necessary.

On the other hand, to test identical rows with error ε , if suffices to makeq = O (log(m/ε)) random
queries with each entry uniform random over {0, 1}. Since for every pair of distinct rows, a random
query distinguishes them with probability 1

2 , with �log(m2/ε)� queries each pair of distinct rows is

ACM Transactions on Algorithms, Vol. 17, No. 4, Article 31. Publication date: October 2021.

Querying a Matrix through Matrix-Vector Products 31:15

miscounted as identical with probability ≤ ε/m2. By a union bound, the overall false-positive error

is bounded by ε
m2 ·

(
m
2

)
< ε , while there is no false-negative error since for all queries, identical

rows always lead to identical outputs. �

4.3 Approximating Row Norms and Finding Heavy Hitters

Theorem 10. Given a matrix M ∈ Rm×n , O (ε−2 logm) queries are enough to approximate the

row norms up to a (1 ± ε)-factor, and O (ε−2 logm) queries are enough to find the heavy hitters with

probability 1 − ε .

Proof. To approximate the norms of each row in a matrix M ∈ Rm×n , we recall the Johnson-
Lindenstrauss lemma which guarantees that norms are roughly preserved when embedded to a
lower dimensional space. Thus, with q = O (ε−2 logm) and an n × q random query matrix V, the
output M · V preserves the row norms of M up to a (1 ± ε)-factor.

The above algorithm also gives a natural upper bound for finding heavy hitters in the matrix
M, which requires finding all rows Mi with norm |Mi |22 ≥

1
10 |M|

2
F and not outputting any row Mi

with |Mi |22 ≤
1
20 |M|

2
F (rows with norm in between the two quantities can be classified arbitrarily).

Again we use the Johnson-Lindenstrauss lemma to approximate all row norms and decide which
row is a heavy hitter. �

4.4 Majority

Theorem 11. Given a matrix M ∈ {0, 1}m×n with queries over R, 1 query is enough to compute the

majority of rows in M; while Ω(n/ logn) queries are necessary to compute the majority of columns

in M.

Proof. The majority of each row in M is trivial with an all 1 query and addition over R.
For the majority of columns in M, we use a similar matrix M as that reduced from Disjointness

in Section 4.2 to obtain a lower bound. More specifically, we consider x, y whose intersection is at
most 1. Let M be obtained from x, y such that the firstm/2 rows are identical to x and the remaining
rows are identical to y. Thus, if M has a column with majority 1, then the column must be all 1s
and we can conclude that x and y are not disjoint. As a result, Ω(n/ logn) queries are necessary to
compute the majority of columns in M. �

4.5 Parity

For parity, we consider a matrix M ∈ {0, 1}m×n with only queries over F[2]. Computing the parity
of rows in M is trivial by using a vector (1, 1, . . . , 1). However, to compute the parity of all columns
of M, we claim at least n queries are necessary.

Theorem 12. Given a matrix M ∈ {0, 1}m×n with only queries over F[2], 1 query is enough to

compute the parity of rows in M; while Ω(n) queries are necessary to compute the parity of columns

in M.

Proof. Let V be any n×q query matrix. Note that the parity of columns of M remains the same

if we sum up all the rows, i.e., M′
def
= P · M has the same parity on each column as M, where P is

defined to be

P
def
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 1 . . . 1
0 0 . . . 0
...
... . . .

...
0 0 . . . 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦m×m

ACM Transactions on Algorithms, Vol. 17, No. 4, Article 31. Publication date: October 2021.

31:16 X. Sun et al.

Thus, M′V = PMV is a 1 × q row vector followed by m − 1 zero rows, since M′, as well as P, is
non-zero only in the first row. Then, we must have q = Ω(n) to obtain the output of n parity
instances from M′V. Indeed, if we were to place the uniform distribution on M, then its columns
define n uniform parity bits, and for any fixed V, we only obtain q bits of information, which is
a contradiction to Yao’s minimax principle (since there must be a fixed V which succeeds with
at least 2/3 probability on this distribution). This is a typical example illustrating the difference
between left- and right-queries. �

5 GRAPH PROBLEMS

In this part, we provide our results related to graph problems: testing graph connectivity in
Section 5.1 and triangle detection in Section 5.2.

5.1 Connectivity

Theorem 13. Given the bipartite adjacency matrix A ∈ {0, 1}n×n of a graph, we need Ω(n/ logn)
queries to decide whether the graph is connected with constant probability.

Proof. Consider two row vectors u, v ∈ {0, 1}n−1 and construct matrix A as follows: The first
n/2 rows of A equal u and the rest are equal to v. Also, add an all 1s column to A. Now, matrix
A can be treated as a bipartite adjacency matrix of a graph G with n vertices in each part, where
Ai, j = 1 iff there is an edge from the ith left vertex to the jth right vertex. Since all left vertices
connect with the nth right vertex, the graphG is disconnected if and only if there exists some right
vertex which does not connect with any left vertices, that is, the corresponding column of matrix
A is an all 0s column. In other words, G is disconnected if and only if the two vectors u and v are
0 on the same position.

Thus, any algorithm that uses q(n) non-adaptive queries on the right of A to decide the connec-
tivity of G immediately implies a protocol for set disjointness, provided we replace 1s with 0s in
the input characteristic vectors to the set disjointness problem. So the communication is at most
q(n) logn, thus q(n) = Ω(n/ logn). �

Theorem 14. Given the signed edge-vertex incidence matrix M ∈ {0,±1}n×(n

2) of a graph G with

n vertices, the connectivity of G can be decided with polylog (n) non-adaptive queries.

This follows from the main theorem of [23] (also proved in the work [1]). By the following the-
orem, every cut ofG is multiplicatively approximated and henceG is connected iff H is connected,
since a graph is disconnected iff it has a zero cut.

Theorem 15 ([23]). There is a distribution on
(

n
2

)
× polylog (n) matrices S such that from MS,

one can construct a (1 ± 0.1)-sparsifier H of the graph G with constant probability. Here, xT LGx =
(1 ± 0.1)xT LHx for all x , with constant probability, where LG and LH are the corresponding graph

Laplacians.

By the above, every cut of G is multiplicatively approximated and hence G is connected iff H is
connected, since a graph is disconnected iff it has a zero cut.

5.2 Triangle Detection

Theorem 16. If an n×n matrix A is the adjacency matrix of a graphG, then determining whether

G contains a triangle or not requires Ω(n/ logn) queries, even for randomized algorithms succeeding

with constant probability.

Proof. To obtain a lower bound on q(n), we use a 2-player communication lower bound of
counting the number of triangles in a graph G, where the edges are distributed across the two

ACM Transactions on Algorithms, Vol. 17, No. 4, Article 31. Publication date: October 2021.

Querying a Matrix through Matrix-Vector Products 31:17

players, Alice and Bob. Namely, it is known [9, 17, 18] that if Alice has a subset of the edges of
G, and Bob has the remaining (disjoint) subset of edges of G, then the multiround randomized
communication complexity of deciding if there is a triangle in G is Ω(n2). Alice can view her
subset of edges as an adjacency matrix A′, and Bob can view his subset of edges as an adjacency
matrix A′′, so that A = A′ + A′′. To execute the query algorithm on A, Alice sends A′x1 to Bob,
who computes A′′x1 followed by A′x1 + A′′x1 = Ax1, and sends the result back to Alice. Alice
then possibly adaptively chooses x2, which is also known to Bob who knows x1 and Ax1, and
sends Bob A′x2, from which Bob can compute A′′x2 and Ax2 = A′x2 +A′′x2. This process repeats
until the entire q(n) queries have been executed, at which point Bob, by the success guarantee
of the algorithm, can decide if G contains a triangle with say, probability at least 2/3. Because of
the bounds on the bit complexity of the queries while the total communication is O (q(n)n logn),
which must be Ω(n2), and consequently q(n) = Ω(n/ logn), as desired. �

6 CONCLUSIONS

We initiated the study of querying a matrix through matrix-vector products. We illustrated that, for
some quantities, if one can only query matrix-vector products on one side, the problem becomes
harder. We also illustrated the importance of the underlying field defining the matrix-vector prod-
ucts, as well as the representation of the graph for graph problems. Given connections to sketching
algorithms, streaming, and compressed sensing, we believe this area deserves its own study. Some
interesting open questions are for computing matrix norms, such as Schatten-p norms, for which
tight bounds in streaming and communication complexity models remain elusive; for recent work
on this, see [13], [28], and [30]. Given the success of our model in proving lower bounds for approx-
imate rank, which we also do not have streaming or communication lower bounds for, perhaps
tight bounds in our query model are possible for matrix norms. Such bounds may give insight for
other models.

ACKNOWLEDGMENTS

We would like to thank Yi Li, Yan Shuo Tan, Max Simchowitz, and Roman Vershynin for helpful
comments. We also thank the reviewers of ICALP 2019 for their detailed feedback, which has
greatly helped the readability of the article.

REFERENCES

[1] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. 2012. Analyzing graph structure via linear measurements. In

Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms, (SODA’12) (Kyoto, Japan, January 17–19,

2012). 459–467.

[2] Yuqing Ai, Wei Hu, Yi Li, and David P. Woodruff. 2016. New characterizations in turnstile streams with applications.

In Proceedings of the 31st Conference on Computational Complexity (CCC’16) (May 29 to June 1, 2016, Tokyo, Japan).

20:1–20:22.

[3] Noga Alon, Yossi Matias, and Mario Szegedy. 1996. The space complexity of approximating the frequency moments. In

Proceedings of the 28th Annual ACM Symposium on the Theory of Computing (STOC’96) (Philadelphia, PA, May 22–24,

1996). 20–29.

[4] Sepehr Assadi, Sanjeev Khanna, and Yang Li. 2017. On estimating maximum matching size in graph streams. In Pro-

ceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’17) (Barcelona, Spain, Hotel Porta

Fira, January 16–19). 1723–1742.

[5] Sepehr Assadi, Sanjeev Khanna, Yang Li, and Grigory Yaroslavtsev. 2016. Maximum matchings in dynamic graph

streams and the simultaneous communication model. In Proceedings of the 27th Annual ACM-SIAM Symposium on

Discrete Algorithms (SODA’16) (Arlington, VA, January 10–12, 2016). 1345–1364.

[6] Haim Avron and Sivan Toledo. 2011. Randomized algorithms for estimating the trace of an implicit symmetric positive

semi-definite matrix. J. ACM 58, 2 (2011), 8:1–8:34.

[7] Khanh Do Ba, Piotr Indyk, Eric Price, and David P. Woodruff. 2010. Lower bounds for sparse recovery. In Proceed-

ings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’10) (Austin, TX, January 17–19, 2010).

1190–1197.

ACM Transactions on Algorithms, Vol. 17, No. 4, Article 31. Publication date: October 2021.

31:18 X. Sun et al.

[8] Maria-Florina Balcan, Yi Li, David P. Woodruff, and Hongyang Zhang. 2019. Testing matrix rank, optimally. In Pro-

ceedings of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’19) (San Diego, CA, January 6–9,

2019). 727–746.

[9] Ziv Bar-Yossef, Ravi Kumar, and D. Sivakumar. 2002. Reductions in streaming algorithms, with an application to count-

ing triangles in graphs. In Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’02)

(January 6–8, 2002, San Francisco, CA), 623–632.

[10] Anders Björner, László Lovász, and Andrew C. C. Yao. 1992. Linear decision trees: Volume estimates and topological

bounds. In Proceedings of the 24th Annual ACM Symposium on Theory of Computing (STOC’92). ACM, 170–177.

[11] Eric Blais, Joshua Brody, and Kevin Matulef. 2012. Property testing lower bounds via communication complexity.

Computational Complexity 21, 2 (2012), 311–358.

[12] Mark Braverman, Elad Hazan, Max Simchowitz, and Blake E. Woodworth. The gradient complexity of linear regres-

sion. In Proceedings of the Conference on Learning Theory (COLT’20), (9–12 July 2020, Virtual Event [Graz, Austria]).

[13] Vladimir Braverman, Stephen R. Chestnut, Robert Krauthgamer, Yi Li, David P. Woodruff, and Lin Yang. 2018. Matrix

norms in data streams: Faster, multi-pass and row-order. In Proceedings of the 35th International Conference on Machine

Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10–15, 2018. 648–657.

[14] Emmanuel J Candes, Justin K Romberg, and Terence Tao. 2006. Stable signal recovery from incomplete and inaccu-

rate measurements. Communications on Pure and Applied Mathematics: A Journal Issued by the Courant Institute of

Mathematical Sciences 59, 8 (2006), 1207–1223.

[15] Gautam Dasarathy, Parikshit Shah, Badri Narayan Bhaskar, and Robert D. Nowak. 2015. Sketching sparse matrices,

covariances, and graphs via tensor products. IEEE Trans. Inf. Theory 61, 3 (2015), 1373–1388.

[16] Talya Eden, Amit Levi, Dana Ron, and C. Seshadhri. 2017. Approximately counting triangles in sublinear time. SIAM

J. Comput. 46, 5 (2017), 1603–1646.

[17] Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang. 2008. Graph distances in the

data-stream model. SIAM J. Comput. 38, 5 (2008), 1709–1727.

[18] Magnús M. Halldórsson, Xiaoming Sun, Mario Szegedy, and Chengu Wang. 2012. Streaming and communication

complexity of clique approximation. In Proceedings of the 39th International Colloquium on Automata, Languages, and

Programming, Part I (ICALP’12) (Warwick, UK, July 9–13, 2012), 449–460.

[19] Piotr Indyk, Eric Price, and David P. Woodruff. 2011. On the power of adaptivity in sparse recovery. In Proceedings

of the IEEE 52nd Annual Symposium on Foundations of Computer Science (FOCS’11) (Palm Springs, CA, October 22–25,

2011). 285–294.

[20] Akshay Kamath and Eric Price. 2019. Adaptive sparse recovery with limited adaptivity. In Proceedings of the 30th

Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’19) (San Diego, CA, January 6–9, 2019). 2729–2744.

[21] Daniel M. Kane, Shachar Lovett, and Shay Moran. 2018. Near-optimal linear decision trees for k-SUM and related

problems. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing (STOC’18) (Los Angeles,

CA, June 25–29, 2018). 554–563.

[22] Sampath Kannan, Elchanan Mossel, Swagato Sanyal, and Grigory Yaroslavtsev. 2018. Linear Sketching over F_2.

In Proceedings of the 33rd Computational Complexity Conference (CCC’18), (San Diego, CA, June 22–24, 2018),

8:1–8:37.

[23] Michael Kapralov, Yin Tat Lee, Cameron Musco, Christopher Musco, and Aaron Sidford. 2017. Single pass spectral

sparsification in dynamic streams. SIAM J. Comput. 46, 1 (2017), 456–477.

[24] John T. Kent and R. J. Muirhead. 1984. Aspects of multivariate statistical theory. The Statistician 33, 2 (1984), 251.

[25] Christian Konrad. 2015. Maximum matching in turnstile streams. In Proceedings of the 23rd Annual European Sympo-

sium on Algorithms (ESA’15), (Patras, Greece, September 14–16, 2015). 840–852.

[26] Yi Li, Huy L. Nguyen, and David P. Woodruff. 2014. On sketching matrix norms and the top singular vector. In Proceed-

ings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’14) (Portland, OR, January 5–7, 2014).

1562–1581.

[27] Yi Li, Huy L. Nguyen, and David P. Woodruff. 2014. Turnstile streaming algorithms might as well be linear sketches.

In Proceedings of the Symposium on Theory of Computing (STOC’14), (New York, NY, May 31 - June 3, 2014). 174–183.

[28] Yi Li and David P. Woodruff. 2016. On approximating functions of the singular values in a stream. In Proceedings

of the 48th Annual ACM SIGACT Symposium on Theory of Computing (STOC’16) (Cambridge, MA, June 18–21, 2016).

726–739.

[29] Yi Li and David P Woodruff. 2016. Tight bounds for sketching the operator norm, Schatten norms, and subspace

embeddings. RANDOM/APPROX 2016 60, 39 (2016), 1–11.

[30] Yi Li and David P. Woodruff. 2017. Embeddings of Schatten norms with applications to data streams. In Proceedings of

the 44th International Colloquium on Automata, Languages, and Programming (ICALP’17) (July 10–14, 2017, Warsaw,

Poland). 60:1–60:14.

ACM Transactions on Algorithms, Vol. 17, No. 4, Article 31. Publication date: October 2021.

Querying a Matrix through Matrix-Vector Products 31:19

[31] Cameron Musco and Christopher Musco. 2015. Randomized block Krylov methods for stronger and faster approximate

singular value decomposition. In Proceedings of the 28th International Conference on Neural Information Processing

Systems (NIPS’15) (December 7-12, 2015, Montreal, Canada). 1396–1404.

[32] Vasileios Nakos, Xiaofei Shi, David P. Woodruff, and Hongyang Zhang. 2018. Improved algorithms for adaptive

compressed sensing. In Proceedings of the 45th International Colloquium on Automata, Languages, and Programming

(ICALP’18) (July 9–13, 2018, Prague, Czech Republic). 90:1–90:14.

[33] Eric Price and David P. Woodruff. 2013. Lower bounds for adaptive sparse recovery. In Proceedings of the 24th Annual

ACM-SIAM Symposium on Discrete Algorithms (SODA’13) (New Orleans, LA, January 6–8, 2013). 652–663.

[34] Jianhong Shen. 2001. On the singular values of Gaussian random matrices. Linear Algebra Appl. 326 (2001), 1–14.

[35] Max Simchowitz, Ahmed El Alaoui, and Benjamin Recht. 2018. Tight query complexity lower bounds for PCA via finite

sample deformed Wigner law. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing,

(STOC’18) (Los Angeles, CA, June 25–29, 2018). 1249–1259.

[36] Xiaoming Sun, David P. Woodruff, Guang Yang, and Jialin Zhang. 2019. Querying a matrix through matrix-vector

products. In Proceedings of the 46th International Colloquium on Automata, Languages, and Programming (ICALP’19)

(July 9–12, 2019, Patras, Greece), Vol. 132. 94:1–94:16.

[37] Roman Vershynin. 2010. Introduction to the non-asymptotic analysis of random matrices. Compressed Sensing: Theory

and Applications (11 2010).

[38] Martin Wainwright. High-dimensional statistics: A non-asymptotic viewpoint. https://www.stat.berkeley.edu/

~mjwain/stat210b/Chap2_TailBounds_Jan22_2015.pdf.

[39] Hermann Weyl. 1912. Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen

(mit einer Anwendung auf die Theorie der Hohlraumstrahlung). Math. Ann. 71, 4 (1912), 441–479.

[40] David P. Woodruff. 2014. Sketching as a tool for numerical linear algebra. Foundations and Trends in Theoretical Com-

puter Science 10, 1–2 (2014), 1–157.

[41] Andrew Chi-Chin Yao. 1977. Probabilistic computations: Toward a unified measure of complexity. In Proceedings of

the 18th Annual Symposium on Foundations of Computer Science (FOCS’77). IEEE, 222–227.

[42] Qiaochu Yuan. 2017. Singular value decomposition. (2017). https://qchu.wordpress.com/2017/03/13/singular-value-

decomposition/.

Received February 2020; revised January 2021; accepted June 2021

ACM Transactions on Algorithms, Vol. 17, No. 4, Article 31. Publication date: October 2021.

https://www.stat.berkeley.edu/~mjwain/stat210b/Chap2_TailBounds_Jan22_2015.pdf
https://qchu.wordpress.com/2017/03/13/singular-value-decomposition/

