
17

A Framework for Adversarially Robust

Streaming Algorithms

OMRI BEN-ELIEZER∗, Massachusetts Institute of Technology, USA

RAJESH JAYARAM†‡, Google Research, USA

DAVID P. WOODRUFF‡, Carnegie Mellon University, USA

EYLON YOGEV§, Bar-Ilan University, Israel

We investigate the adversarial robustness of streaming algorithms. In this context, an algorithm is considered

robust if its performance guarantees hold even if the stream is chosen adaptively by an adversary that ob-

serves the outputs of the algorithm along the stream and can react in an online manner. While deterministic

streaming algorithms are inherently robust, many central problems in the streaming literature do not admit

sublinear-space deterministic algorithms; on the other hand, classical space-efficient randomized algorithms

for these problems are generally not adversarially robust. This raises the natural question of whether there

exist efficient adversarially robust (randomized) streaming algorithms for these problems.

In this work, we show that the answer is positive for various important streaming problems in the insertion-

only model, including distinct elements and more generally Fp -estimation, Fp -heavy hitters, entropy estima-

tion, and others. For all of these problems, we develop adversarially robust (1+ ε)-approximation algorithms

whose required space matches that of the best known non-robust algorithms up to a poly(logn, 1/ε) multi-

plicative factor (and in some cases even up to a constant factor). Towards this end, we develop several generic

tools allowing one to efficiently transform a non-robust streaming algorithm into a robust one in various

scenarios.

CCS Concepts: • Theory of computation → Streaming, sublinear and near linear time algorithms;

Adversary models; Streaming models;

Additional Key Words and Phrases: Streaming algorithms, adversarial model, distinct elements, robust stream-

ing, adaptive inputs

ACM Reference format:

Omri Ben-Eliezer, Rajesh Jayaram, David P. Woodruff, and Eylon Yogev. 2022. A Framework for Adversarially

Robust Streaming Algorithms. J. ACM 69, 2, Article 17 (January 2022), 33 pages.

https://doi.org/10.1145/3498334

∗Work partially done while the author was at Tel Aviv University and later at Harvard University.
†‡Work partially conducted while the author was at Carnegie Mellon University.
‡Supported by the Office of Naval Research (ONR) grant N00014-18-1-2562, and the National Science Foundation (NSF)

under Grant No. CCF-1815840.
§Work partially done while the author was at Tel Aviv University.

Authors’ addresses: O. Ben-Eliezer, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; email:

omrib@mit.edu; R. Jayaram, Google Research, New York, New York; email: rkjayaram@google.com; D. P. Woodruff

(corresponding author), Carnegie Mellon University, Pittsburgh, Pennsylvania 15213; email: dwoodruf@cs.cmu.edu;

E. Yogev, Bar-Ilan University, Ramat Gan 5290002, Israel; email: eylony@gmail.com.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2022 Association for Computing Machinery.

0004-5411/2022/01-ART17 $15.00

https://doi.org/10.1145/3498334

Journal of the ACM, Vol. 69, No. 2, Article 17. Publication date: January 2022.

https://doi.org/10.1145/3498334
mailto:permissions@acm.org
https://doi.org/10.1145/3498334

17:2 O. Ben-Eliezer et al.

1 INTRODUCTION

The streaming model of computation is a central and crucial tool for the analysis of massive
datasets, where the sheer size of the input imposes stringent restrictions on the memory, compu-
tation time, and other resources available to the algorithms. Examples of theoretical and practical
settings where streaming algorithms are in need are easy to encounter. These include internet
routers and traffic logs, databases, sensor networks, financial transaction data, and scientific data
streams. Given this wide range of applicability, there has been significant effort devoted to design-
ing and analyzing extremely efficient one-pass algorithms. We recommend the survey of [48] for
a comprehensive overview of streaming algorithms and their applications.

Many central problems in the streaming literature do not admit sublinear-space deterministic
algorithms, and in these cases randomized solutions are necessary. In other cases, randomized so-
lutions are more efficient and simpler to implement than their deterministic counterparts. While
randomized streaming algorithms are well-studied, the vast majority of them are defined and ana-
lyzed in the static setting, where the stream is worst-case but fixed in advance, and only then the
randomness of the algorithm is chosen. However, assuming that the stream sequence is indepen-
dent of the chosen randomness, and in particular that future elements of the stream do not depend
on previous outputs of the streaming algorithm, may not be realistic [4, 10, 23, 24, 29, 46, 49],
even in non-adversarial settings. For example, suppose that a user sequentially makes updates
in a database, and receives an immediate response about the current state of the data after each
update. Naturally, future updates made by the user in such a setting may heavily depend on the
responses given by the database to previous queries. In other words, the stream updates are chosen
adaptively, and cannot be assumed to be fixed in advance.

A streaming algorithm that works even when the stream is adaptively chosen by an adversary
(the precise definition given next) is said to be adversarially robust. Deterministic algorithms are
inherently adversarially robust, since they are guaranteed to be correct on all possible inputs. How-
ever, the large gap in performance between deterministic and randomized streaming algorithms for
many problems motivates the need for designing adversarially robust randomized algorithms, if
they even exist. In particular, we would like to design adversarially robust randomized algorithms
which are as space and time efficient as their static counterparts, and yet as robust as deterministic
algorithms. The study of such algorithms is the main focus of our work.

The Adversarial Setting. There are several ways to define the adversarial setting, which may de-
pend on the information the adversary (who chooses the stream) can observe from the streaming
algorithm, as well as other restrictions imposed on the adversary. For the most part, we consider
a general model, where the adversary is allowed unbounded computational power and resources,
though we do discuss the case later when the adversary is computationally bounded. At each
point in time, the streaming algorithm publishes its output to a query for the stream. The adver-
sary observes these outputs one-by-one, and can choose the next update to the stream adaptively,
depending on the full history of the outputs and stream updates. The goal of the adversary is to
force the streaming algorithm to eventually produce an incorrect output to the query, as defined
by the specific streaming problem in question.1

Formally, a data stream of length m over a domain [n] is a sequence of updates of the form
(a1,Δ1), (a2,Δ2), . . . , (am ,Δm) where at ∈ [n] is an index and Δt ∈ Z is an increment or decrement

1In the streaming literature, an algorithm is often required to be correct on a query made only once, at the end of the stream.

This is a one-shot guarantee, as opposed to the tracking guarantee as defined here. However, the two settings are nearly

equivalent. Indeed, for almost all streaming problems, a one-shot algorithm can be made into a tracking algorithm with at

most an O (log n) blow-up in space, by simply setting the failure probability small enough to union bound over all points

in the stream.

Journal of the ACM, Vol. 69, No. 2, Article 17. Publication date: January 2022.

A Framework for Adversarially Robust Streaming Algorithms 17:3

to that index. The frequency vector f ∈ Rn of the stream is the vector with ith coordinate fi =∑
t :at=i Δt . We write f (t) to denote the frequency vector restricted to the first t updates, namely

f (t)
i =

∑
j≤t :aj=i Δj . It is assumed at all points t that the maximum coordinate in absolute value,

denoted ‖ f (t) ‖∞, is at most M for some M > 0, and that log(mM) = O (logn). In the insertion-only

model, the updates are assumed to be positive, meaning Δt > 0, whereas in the turnstile model Δt

can be positive or negative.

The general task in streaming is to respond to some query Q about the frequency vector f (t) at
each point in time t ∈ [m]. Oftentimes, this query is to approximate2 some function д : Rn → R
of f (t) . For example, counting the number of distinct elements in a data stream is among the most

fundamental problems in the streaming literature; hereд(f (t)) is the number of non-zero entries in

f (t) . Since exact computation cannot be done in sublinear space [16], the goal is to approximate the

value of д(f (t)) to within a multiplicative factor of (1 ± ε). Another important streaming problem
(which is not directly an estimation task) is the Heavy-Hitters problem, where the algorithm is

tasked with finding all the coordinates in f (t) which are larger than some threshold τ .
Formally, the adversarial setting is modeled by a two-player game between a (randomized)

StreamingAlgorithm and an Adversary. At the beginning, a query Q is fixed, which the
StreamingAlgorithm must continually reply to. The game proceeds in rounds, where in the
t th round:

(1) Adversary chooses an update ut = (at ,Δt) for the stream, which can depend, in particular,
on all previous stream updates and outputs of StreamingAlgorithm.

(2) StreamingAlgorithm processes the new update ut and outputs its current response Rt to
the query Q.

(3) Adversary observes Rt (stores it) and proceeds to the next round.

The goal of the Adversary is to make the StreamingAlgorithm output an incorrect response Rt

to Q at some point t in the stream. For example, in the distinct elements problem, the adversary’s
goal is that at some step t , the estimate Rt will fail to be a (1+ε)-approximation of the true current

number of distinct elements |{i ∈ [n] : f (t)
i � 0}|.

Streaming algorithms in the adversarial setting. It was shown by Hardt and Woodruff [29] that
linear sketches are inherently non-robust in adversarial settings for a large family of problems, thus
demonstrating a major limitation of such sketches. In particular, their results imply that no linear
sketch can approximate the Euclidean norm of its input to within a polynomial multiplicative
factor in the adversarial (turnstile) setting. Here, a linear sketch is an algorithm whose output
depends only on values Af and A, for some (usually randomized) sketching matrix A ∈ Rk×n .
This is quite unfortunate, as the vast majority of turnstile streaming algorithms are in fact linear
sketches.

On the positive side, a recent work of Ben-Eliezer and Yogev [10] showed that random sam-

pling is quite robust in the adaptive adversarial setting, albeit with a slightly larger sample size.
While uniform sampling is a rather generic and important tool, it is not sufficient for solving
many important streaming tasks, such as estimating frequency moments (Fp -estimation), finding
L2 heavy hitters, and various other central data analysis problems. This raises the natural question
of whether there exist efficient adversarially robust randomized streaming algorithms for these
problems and others, which is the main focus of this work. Perhaps even more importantly, we
ask the following.

2Ideally, one might wish to exactly compute the function д; however, in many cases, and in particular for the problems

that we consider here, exact computation cannot be done with sublinear space.

Journal of the ACM, Vol. 69, No. 2, Article 17. Publication date: January 2022.

17:4 O. Ben-Eliezer et al.

Is there a generic technique to transform a static streaming algorithm into an

adversarially robust streaming algorithm?

This work answers the above questions affirmatively for a large class of algorithms.

1.1 Our Results

We devise adversarially robust algorithms for various fundamental insertion-only streaming prob-
lems, including distinct element estimation, Fp moment estimation, heavy hitters, entropy estima-
tion, and several others. In addition, we give adversarially robust streaming algorithms which can
handle a bounded number of deletions as well. The required space of our adversarially robust al-
gorithms matches that of the best known non-robust ones up to a small multiplicative factor. Our
new algorithmic results are summarized in Table 1. In contrast, we demonstrate that some clas-
sical randomized algorithms for streaming problems in the static setting, such as the celebrated
Alon-Matias-Szegedy (AMS) sketch [5] for F2-estimation, are inherently non-robust to adaptive
adversarial attacks in a strong sense, even against an insertion-only adaptive adversary. In com-
parison, the attack of Hardt and Woodruff on linear sketches [29] requires both insertions and
deletions.

Our adversarially robust algorithms make use of two generic robustification frameworks that we
develop, allowing one to efficiently transform a non-robust streaming algorithm into a robust one
in various settings. Both of the robustification methods rely on the fact that functions of interest do
not drastically change their value too many times along the stream. Specifically, the transformed
algorithms have space dependency on the flip-number of the stream, which is a bound on the

number of times the function д(f (t)) can change by a factor of (1± ε) in the stream (see Section 3).
The first method, called sketch switching, maintains multiple instances of the non-robust algo-

rithm and switches between them in a way that cannot be exploited by the adversary. The second
technique bounds the number of computation paths possible in the two-player adversarial game.
This technique maintains only one copy of a non-robust algorithm, albeit with an extremely small
probability of error δ . We show that a carefully rounded sequence of outputs generates only a
small number of possible computation paths, which can then be used to ensure robustness by
union bounding over these paths. The framework is described in Section 3.

The two above methods are incomparable: for some streaming problems the former is more
efficient, while for others, the latter performs better, and we show examples of each. Specifically,
sketch switching can exploit efficiency gains of strong-tracking, resulting in particularly good per-
formance for static algorithms that can respond correctly to queries at each step without having
to union bound over all m steps. In contrast, the computation paths technique can exploit an al-
gorithm with good dependency on δ (the failure probability). Namely, algorithms that have small
dependency in update-time or space on δ will benefit from the computation paths technique.

For each of the problems we consider, we show how to use the framework combined with some
additional techniques, to solve it. Interestingly, we also demonstrate how cryptographic assump-
tions (which were not commonly used before in the streaming context) can be applied to obtain
an adversarially robust algorithm against computationally bounded adversaries for the distinct el-
ements problem at essentially no extra cost (compared to the space-optimal non-robust algorithm).
See Table 1 for a summary of our results in the adversarial setting compared to the state-of-the-art
in the static setting, as well as to deterministic algorithms.

Distinct elements and Fp -estimation. Our first suite of results provides robust streaming algo-
rithms for estimating Fp , the pth frequency moment of the frequency vector, defined as Fp =

‖ f ‖pp =
∑n

i=1 | fi |p , where we interpret 00 = 0. Estimating frequency moments has a myriad of ap-
plications in databases, computer networks, data mining, and other contexts. Efficient algorithms

Journal of the ACM, Vol. 69, No. 2, Article 17. Publication date: January 2022.

A Framework for Adversarially Robust Streaming Algorithms 17:5

Table 1. A Summary of Our Adversarially Robust Algorithms (in bold), as Compared to the Best

known Upper Bounds for Randomized Algorithms in the Static Setting and Lower Bounds for

Deterministic Algorithms

Problem Static Rand. Deter. Adversarial Comments

Distinct elem.
Õ (ε−2 + logn) Ω(n)

Õ (ε−3 + ε−1 logn)

(F0 est.) Õ (ε−2 + logn) crypto/rand. oracle

Fp estimation, O (ε−2 logn)
Ω̃(cpn)

Õ (ε−3 logn)

p ∈ (0, 2] \ {1} O (ε−3 log2 n) Õ (ε−3 log3 n) δ = Θ(n−
1
ε log n)

Fp estimation, O (n
1− 2

p (ε−2 logn
Ω(n)

O (n
1− 2

p (ε−3 log2 n
δ = Θ(n−

1
ε log n)

p > 2 +ε
− 4

p log
2
p +1

n)) +ε
− 6

p log
4
p +1

n))

�2 Heavy Hit. O (ε−2 log2 n) Ω(
√
n) Õ (ε−3 log2 n)

Entropy O (ε−2 log3 n)
Ω̃(n)

Õ (ε−4 log6 n)

estimation Õ (ε−2 logn) Õ (ε−4 log4 n) crypto/rand. oracle

Turnstile Fp ,
O (ε−2 log2 n) Ω(n) O (ε−2λ log2 n)

λ-bounded Fp flip

p ∈ (0, 2] num., δ = Θ(n−λ)

Fp , p ∈ [1, 2] Õ (log2 n+
Ω̃(cpn) O (αε−(2+p) log3 n)

static only

α-bounded del. ε−2 logα logn) for p = 1

The space bounds are given in bits. Note that all stated algorithms provide tracking. All results except for

the last two (which hold in restricted versions of the turnstile model) are for insertion-only streams. We

write Õ, Ω̃ to hide log ε−1 and log log n factors. The static randomized upper bounds are proved, respect-

ively, in [11–13, 18, 22, 34, 39, 39], and [33]. All lower bounds for Fp -estimation are proved in [16], except

for the turnstile bound, proved in [5]; the lower bound for heavy hitters is from [38]. Finally, the lower

bound for deterministic entropy estimation follows from a reduction from estimating Fp for

p = 1 + Θ̃(ε

log2 n
) to entropy estimation [30].

for estimating distinct elements (i.e., estimating F0) are important for databases, since query opti-
mizers can use them to find the number of unique values of an attribute without having to perform
an expensive sort on the values. Efficient algorithms for F2 are useful for determining the output
size of self-joins in databases, and for computing the surprise index of a data sequence [27]. Higher
frequency moments are used to determine data skewness, which is important in parallel database
applications [19].

We remark that for any fixed p � 1,3 including p = 0, any deterministic insertion-only algo-
rithm for Fp -estimation requires Ω(n) space [5, 16]. In contrast, we will show that randomized
adversarially robust algorithms exist for all p, whose space complexity either matches or has a
small multiplicative overhead over the best static randomized algorithms.

We begin with several results on the problem of estimating distinct elements, or F0 estimation.
The first of them utilizes an optimized version of the sketch switching method to derive an upper
bound. The result is an adversarially robust F0 estimation algorithm whose complexity is only a
Θ(1

ε
log ε−1) factor larger than that of the optimal static (non-robust) algorithm [11].

Theorem 1.1 (Robust Distinct Elements by Sketch Switch; see Theorem 5.1). There is an

algorithm which, when run on an adversarial insertion-only stream, with probability at least 1 − δ
produces in every step t ∈ [m] an estimate Rt such that Rt = (1 ± ε)‖ f (t) ‖0. The space used by the

algorithm is

O

(
log(1/ε)

ε

(
log ε−1 + logδ−1 + log logn

ε2
+ logn

))
.

3Note that there is a trivial O (log n)-bit insertion-only F1 estimation algorithm: keeping a counter for
∑

t Δt .

Journal of the ACM, Vol. 69, No. 2, Article 17. Publication date: January 2022.

17:6 O. Ben-Eliezer et al.

The second result utilizes a different approach, by applying the computation paths method. The

space complexity is slightly worse, which is a result of setting the failure probability δ < n−
1
ε log n

for any given static algorithm. However, we introduce a new static algorithm for F0 estimation
which has very small update-time dependency on δ , and nearly optimal space complexity. As
a result, by applying our computation paths method to this new static algorithm, we obtain an
adversarially robust F0 estimation algorithm with extremely fast update time (note that the update
time of the above sketch switching algorithm would beO (ε−1 logn) to obtain the same result, even
for constant δ).

Theorem 1.2 (Fast Robust Distinct Elements; see Theorem 5.4). There exists a streaming

algorithm which, with probability 1−n−(C/ε) log n for any constantC ≥ 1, when run on an adversarially

chosen insertion-only data stream, returns a (1 ± ε) multiplicative estimate of the number of distinct

elements in every step of the stream. The space required is O (1
ε3 log3 n), and the algorithm runs in

O ((log2 log n

ε
) · (log log

log n

ε
)) worst case time per update.

The third result takes a different approach: it shows that under certain standard cryptographic
assumptions, there exists an adversarially robust algorithm which asymptotically matches the
space complexity of the best non-robust tracking algorithm for distinct elements. The crypto-
graphic assumption is that an exponentially secure pseudorandom function exists (in practice one
can take, for instance, AES as such a function). While our other algorithms in this article hold even
against an adversary which is unbounded computationally, in this particular result we assume that
the adversary runs in polynomial time. See Section 10 for more details.

Theorem 1.3 (Distinct Elements by Crypto Assumptions; see Theorem 10.1). In the random

oracle model, there is an F0-estimation (tracking) streaming algorithm in the adversarial setting, that

for an approximation parameter ε usesO (ε−2 (log 1/ε+log logn)+logn) bits of memory, and succeeds

with probability 3/4.

Moreover, given an exponentially secure pseudorandom function, and assuming the adversary has

bounded running time of nc , where c is a constant, the random oracle can be replaced with a concrete

function and the total memory is O (ε−2 (log 1/ε + log logn) + c logn).

Here, the random oracle model means that the algorithm is given read access to an arbitrarily
long string of random bits.

Our next set of results provides adversarially robust algorithms for Fp -estimation with p > 0.
The following result concerns the case 0 < p ≤ 2. It was previously shown that for p bounded

away from one, Ω(n) space is required to deterministically estimate ‖ f ‖pp , even in the insertion-
only model [5, 16]. On the other hand, space-efficient non-robust randomized algorithms for Fp -
estimation exist. We leverage these, along with an optimized version of the sketch switching tech-
nique to save a logn factor, and obtain the following.

Theorem 1.4 (Robust Fp -estimation for 0 < p ≤ 2; see Theorem 4.1). Fix 0 < ε,δ ≤ 1 and

0 < p ≤ 2. There is a streaming algorithm in the insertion-only adversarial model which outputs in

each step a value Rt such that Rt = (1±ε)‖ f (t) ‖p at every step t ∈ [m], and succeeds with probability

1 − δ . The algorithm uses O (ε−3 logn log ε−1 (log ε−1 + logδ−1 + log logn)) bits of space.

We remark that the space complexity of Theorem 1.4 is within a Θ(ε−1 log ε−1) factor of the
best known static (non-robust) algorithm [12]. While for most values of δ , the above theorem
using sketch switching has better space complexity than the computation paths reduction, for the
regime of very small failure probability δ it is actually preferable to use the latter, as we now state.

Theorem 1.5 (Robust Fp -estimation for Small δ ; see Theorem 4.2). Fix any 0 < ε < 1,

0 < p ≤ 2, and δ < n−C 1
ε log n for a sufficiently large constant C > 1. There is a streaming algorithm

Journal of the ACM, Vol. 69, No. 2, Article 17. Publication date: January 2022.

A Framework for Adversarially Robust Streaming Algorithms 17:7

for the insertion-only adversarial model which, with probability 1−δ , successfully outputs in each step

t ∈ [m] a valueRt such thatRt = (1±ε)‖ f (t) ‖p . The space used by the algorithm isO (1
ε2 logn logδ−1)

bits.

In addition, we show that for turnstile streams with bounded Fp flip number (defined formally
in Section 3), efficient adversarially robust algorithms exist. Roughly speaking, the Fp flip number
is the number of times that the Fp moment changes by a factor of (1 + ε). Our algorithms have

extremely small failure probability of δ = n−λ , and have optimal space among turnstile algorithms
with this value of δ [36].

Theorem 1.6 (Robust Fp -Estimation in Turnstile Streams; See Theorem 4.3). Fix 0 < p ≤ 2
and let Sλ be the set of all turnstile streams with Fp flip number at most λ. Then there is an adversar-

ially robust streaming algorithm for the class Sλ of streams that, with probability 1 − n−Cλ for any

constant C > 0, outputs in each step a value Rt such that Rt = (1 ± ε)‖ f ‖pp . The space used by the

algorithm is O (ε−2λ log2 n).

The next result concerns Fp -estimation forp > 2. Here again, we provide an adversarially robust
algorithm which is optimal up to a small multiplicative factor. This result applies the computation
paths robustification method as a black box. Notably, a classic lower bound of [8] shows that for

p > 2, Ω(n1−2/p) space is required to estimate ‖ f ‖pp up to a constant factor (improved lower bounds

have been provided since, e.g., [22, 43]).

Theorem 1.7 (Robust Fp -estimation for p > 2; see Theorem 4.4). Fix any ε > 0, and fix any

p > 2. There is a streaming algorithm for the insertion-only adversarial model which, with probability

1−n−(c log n)/ε for any constant c > 1, successfully outputs, at each step t ∈ [m], a value Rt such that

Rt = (1 ± ε)‖ f (t) ‖p . The space used by the algorithm is

O
(
n1−2/p

(
ε−3 log2 n + ε−6/p

(
log2 n

)2/p
logn

))

Attack on AMS. On the negative side, we demonstrate that the classic AMS sketch [5], the first
and perhaps most well-known F2 estimation algorithm (which uses sub-polynomial space), is not

adversarially robust, even in the insertion-only setting. Specifically, we demonstrate an adversary
which, when run against the AMS sketch, fools the sketch into outputting a value which is not a
(1± ε) estimate of the F2. The non-robustness of standard static streaming algorithms, even under
simple attacks, is a further motivation to design adversarially robust algorithms.

In what follows, recall that the AMS sketch computes S · f throughout the stream, where S ∈
R

t×n is a matrix of uniform {t−1/2,−t−1/2} random variables. The estimate of the F2 is then the
value ‖S f ‖22 .

Theorem 1.8 (Attack on AMS Sketch; see Theorem 9.1). Let S ∈ Rt×n be the AMS sketch with

1 ≤ t ≤ n/c for some constant c > 1. There is an adversary which, with probability 99/100, succeeds

in forcing the estimate ‖S f ‖22 of the AMS sketch to not be a (1± 1/2) approximation of the true norm

‖ f ‖22 . Moreover, the adversary needs to only make O (t) stream updates before this occurs.

Heavy Hitters. We also show how our techniques can be used to solve the popular heavy-hitters

problem. Recall that the heavy-hitters problem tasks the streaming algorithm with returning a
set S containing all coordinates i such that | fi | ≥ τ , and containing no coordinates j such that
| fj | < τ/2, for some threshold τ . Generally, the threshold τ is set to τ = ε ‖ f ‖p , which is known as
the Lp heavy hitters guarantee.

For L1 heavy hitters in insertion-only streams, a deterministicO (1
ε

logn) space algorithm exists
[47]. However, for p > 1, specifically for the highly popular p = 2, things become more compli-
cated. Note that since we can have ‖ f ‖2
 ‖ f ‖1, the L2 guarantee is substantially stronger. For

Journal of the ACM, Vol. 69, No. 2, Article 17. Publication date: January 2022.

17:8 O. Ben-Eliezer et al.

sketching-based turnstile algorithms, an Ω(n) lower bound for deterministic algorithms was pre-
viously known [21]. Since ‖ f ‖1 ≤

√
n‖ f ‖2, by setting ε = n−1/2, one can obtain a deterministic

O (
√
n logn) space insertion-only L2 heavy hitters algorithm. Recently, a lower bound of Ω(

√
n) for

deterministic insertion-only algorithms was given, demonstrating the near tightness of this result
[38]. Thus, to develop a more efficient adversarially robust L2 heavy hitters algorithm, we must
employ randomness.

Indeed, by utilizing our sketch switching techniques, we demonstrate an adversarially robust
L2 heavy hitters (tracking) algorithm which uses only anO (ε−1 log ε−1) factor more space than the
best known static L2 heavy hitters tracking algorithm [13]. Note that here the adversary sees the
estimated set S in every step.

Theorem 1.9 (Robust L2 Heavy Hitters: see Theorem 6.5). Fix any ε > 0. There is a streaming

algorithm in the adversarial insertion-only model which solves the L2 heavy hitters problem in every

step t ∈ [m] with probability 1 − n−C (for any constant C > 1). The algorithm uses O (
log ε−1

ε3 log2 n)
bits of space.

Entropy Estimation. Additionally, we demonstrate how our sketch switching techniques can be
used to obtain robust algorithms for empirical Shannon Entropy estimation. Here, the Shannon En-

tropy H (f) of the stream is defined via H (f) = −∑
i
|fi |
‖f ‖1 log(

|fi |
‖f ‖1). Our results follow from an

analysis of the exponential of α-Renyi Entropy, which closely approximates the Shannon entropy,
showing that the former cannot rapidly change too often within the stream. Our result is an adver-
sarially robust algorithm with space complexity only a small polylogarithmic factor larger than
the best known static algorithms [18, 34].

Theorem 1.10 (Robust Entropy Estimation; see Theorem 7.3). There is an algorithm

for ε-additive approximation of the Shannon entropy in the insertion-only adversarial stream-

ing model using O (1
ε4 log4 n(log logn + log ε−1))-bits of space in the random oracle model, and

O (1
ε4 log6 n(log logn + log ε−1))-bits of space in the general insertion-only model.

We remark that by making the same cryptographic assumption as in Theorem 1.3, we can
remove the random oracle assumption in [34] for correctness of the entropy algorithm in the
static case. Then, by applying the same techniques which resulted in Theorem 1.10, we can obtain
the same stated bound for entropy with a cryptographic assumption instead of a random oracle
assumption.

Bounded Deletion Streams. Lastly, we show that our techniques for Fp moment estimation can
be extended to data streams with a bounded number of deletions (negative updates). Specifically,
we consider the bounded deletion model of [33]. Formally, given some α ≥ 1, the model enforces

the restriction that at all points t ∈ [m] in the stream, we have ‖ f (t) ‖pp ≥ 1
α
‖h (t) ‖pp , where h is the

frequency vector of the stream with updates u ′i = (ai ,Δ
′
i) where Δ′i = |Δi | (i.e., the absolute value

stream). In other words, the stream does not delete off an arbitrary amount of the Fp weight that
it adds over the course of the stream.

We demonstrate that bounded deletion streams have the desirable property of having a small
flip number, which, as noted earlier, is a measurement of how often the Fp can change substantially
(see Section 3 for a formal definition). Using this property and our sketch switching technique, we
obtain the following.

Theorem 1.11 (Fp -estimation for Bounded Deletion; see Theorem 8.3). Fixp ∈ [1, 2], α ≥ 1,

and any constantC > 1. Then there is an adversarially robust Fp estimation algorithm for α-bounded

deletion streams which, with probability 1 − n−C , returns at each step t ∈ [m] an estimate Rt such

that Rt = (1 ± ε)‖ f (t) ‖pp . The space used by the algorithm is O (αε−(2+p) log3 n).

Journal of the ACM, Vol. 69, No. 2, Article 17. Publication date: January 2022.

A Framework for Adversarially Robust Streaming Algorithms 17:9

1.2 Other Previous Work

The need for studying adversarially robust streaming and sketching algorithms has been noted
before in the literature. In particular, [23, 24] motivate the adversarial model by giving applications
and settings where it is impossible to assume that the queries made to a sketching algorithm are
independent of the prior outputs of the algorithm, and the randomness used by the algorithm.
One particularly important setting noted in [24] is when the privacy of the underlying data-set is
a concern.

In response to this, in [29] the notion of adversarial robustness for linear sketching algorithms
is studied. Namely, it is shown how any function д : Rn → R, defined by д(x) = f (Ax) for some
A ∈ Rk×n and arbitrary f : Rk → R cannot approximate the F2 moment ‖x ‖22 of its input to
an arbitrary polynomial factor in the presence of an adversary who is allowed to query д(xi) at
polynomial many points (unless k is large). Since one can insert and delete off each xi in a turnstile
stream, this demonstrates a strong lower bound for adversarially robust turnstile linear sketching
algorithms, at least when the stream updates are allowed to be real numbers. Moreover, under
certain conditions it has been demonstrated that all turnstile algorithms can be transformed into
linear sketches [3, 37, 42]. We point out, however, that this equivalence holds only for classes of
static streams, and therefore does not immediately have any consequence for adversarial streams.
The work of [29] also points out a connection to differential privacy.

We remark that other work has observed the danger inherent in allowing adversarial queries to
a randomized sketch with only a static guarantee [1, 2]. However, the motivation of these works is
slightly different, and their setting is not fully adversarial. In [46], adversarial robustness of sketch-
ing in a distributed, multi-player model is considered, which is incomparable to the centralized
streaming problem considered in this work. Finally, in [26], it was asked if there are randomized
streaming algorithms whose output is independent of its randomness, making such algorithms
natural candidates for adversarial robustness; unfortunately a number of their results are nega-
tive, while their upper bounds do not apply to the problems studied here.

1.3 Subsequent Work and Open Questions

Based on this article, multiple very recent follow-up works have improved upon the space effi-
ciency of our robustification techniques for different settings. Reference [31] used techniques from
differential privacy to obtain a generic robustification framework in the same mold as ours, where

the dependency on the flip number is the improved
√
λ as opposed to linear in λ – the exact bound

includes other poly((logn)/ϵ) factors. Similar to our construction, they run multiple independent
copies of the static algorithm A with independent randomness and feed the input stream to all of
the copies. Unlike our construction, when a query comes, they aggregate the responses from the
copies in a way that protects the internal randomness of each of the copies using differential pri-
vacy. Using their framework, one may construct an adversarially robust algorithm for Fp -moment

estimation that uses Õ (
log4 n

ϵ 2.5) bits of memory for any p ∈ [0, 2]. This improves over our Õ (
log n

ϵ 3)
bound for interesting parameter regimes.

Reference [53] obtained further improvements for a number of streaming problems (e.g., Fp -
estimation, entropy, heavy hitters) which in some cases are nearly optimal even for the static
case. For example, they give an adversarially robust algorithm for Fp -moment estimation that uses

Õ (
log n

ϵ 2) bits of memory for any p ∈ [0, 2]. This improves upon both our work and [31]. Inter-
estingly, the way they achieve this leads them to a new class of (classical) streaming algorithms
they call difference estimators, which turn out to be useful also in the sliding window (classi-
cal) model. Subsequently, [7] combined the differential privacy based techniques of [31] with the

Journal of the ACM, Vol. 69, No. 2, Article 17. Publication date: January 2022.

17:10 O. Ben-Eliezer et al.

difference estimators of [53] to obtain a “best of both worlds” result with improved bounds for
turnstile streams.

It was shown by [41] that the
√
λ-type space overhead is tight for some streaming problems; they

proved this for a streaming variant of the Adaptive Data Analysis problem, showing also that its
space complexity is polylogarithmic in the static setting and polynomial in the adversarially robust
setting. This is the first known example of such a large separation between static and adversari-
ally robust streaming. Another interesting work [45] shows that card guessing performance with
memory constraints may be exponentially worse against an adaptive adversarial dealer versus a
static one.

For core problems in the streaming literature like Fp -estimation in the turnstile model (allowing
insertions and deletions), it is not known whether such a separation exists. However, there is a
substantial gap between the space complexity of the static case and the best known algorithms
for the adversarially robust case. For static turnstile Fp -estimation, the space complexity is poly-
logarithmic in n when p ≤ 2. In the adversarially robust setting, the best known results are much
weaker, and involve polynomial dependence in the stream length m. As the above robustification

techniques induce a
√
λ overhead in the space complexity, and λ = m for turnstile Fp -estimation,

these techniques cannot obtain space bounds better than some O (
√
m) in general. Recently, [9]

used a hybrid approach combining the differential privacy based framework of [31] with classi-
cal results in sparse recovery to obtain improved space bounds for this problem; the dependence

in m is for example Õ (m1/3) when p = 0 and Õ (m2/5) when p = 2. This large gap in the best
known space requirements, despite the fact that no space complexity separations between static
and robust algorithms are known, leads to the following natural question (see [32], [9]):

What is the space complexity of adversarially robust

Fp -estimation under the turnstile streaming model?

Many problems remain open, mainly for achieving optimal bounds for all known streaming
problems in the adversarial setting. It is also interesting to determine which types of existing al-
gorithms are inherently adversarially robust. Remarkably, [14] showed that popular techniques
such as merge and reduce and row sampling can be robust “for free”, implying robustness guar-
antees for many types of existing algorithms for streaming, regression, low rank approximation,
and various other problems. Unlike our setting, which considers algorithms with a scalar output
(i.e., an output which is typically a single real number), many of these problems produce a higher-
dimensional vector output. It will be interesting to investigate what sorts of extensions of our flip
number definition may be relevant in high dimensions, and to find suitable applications for such
a generalized flip number notion.

A first result in this flavor has very recently been established by [15], who considered the prob-
lem of coloring a graph in the semi-streaming model. They proved that coloring with few colors
requires substantially more space in the adversarial model compared to the static one; for exam-
ple,O (Δ) colors require Ω(nΔ) space in the robust setting but onlyO (n) space in the static setting
[6]. They then provided adversarially robust algorithms for this problem, including one algorithm
based on our main technique, sketch switching.

2 PRELIMINARIES

For p > 0, the Lp norm4 of a vector f ∈ Rn is given by ‖ f ‖p = (
∑n

i=1 | fi |p)1/p . The pth moment,

denoted by Fp , is given by Fp = L
p
p , or Fp =

∑
i | fi |p . For p = 0, we define F0 to be the number

of non-zero coordinates in f , namely F0 = ‖ f ‖0 = |{i : fi � 0}|. Notice that this coincides

4Note that this is only truly a norm for p ≥ 1.

Journal of the ACM, Vol. 69, No. 2, Article 17. Publication date: January 2022.

A Framework for Adversarially Robust Streaming Algorithms 17:11

with defining 00 = 0 in the prior definition of Fp . The F0 moment is also known as the number
of distinct elements. For reals a,b ∈ R and ε > 0, we write a = (1 ± ε)b or a ∈ (1 ± ε)b to
denote the containment a ∈ [(1 − ε)b, (1 + ε)b]. Throughout, we will often assume that our error
parameter ε > 0 is smaller than some absolute constant ε0 which does not depend on any of the
other parameters of the problem.

A stream of lengthm over a domain [n] is a sequence of updates (a1,Δ1), (a2,Δ2) . . . , (am ,Δm)
where at ∈ [n] and Δt ∈ Z. The frequency vector f ∈ Rn of the stream is the vector with ith
coordinate fi =

∑
t :at=i Δt . Let f (j) be the frequency vector restricted to the first j updates, namely

f (j)
i =

∑
t ≤j :at=i Δt . It is assumed at all intermediate points t ∈ [m] in the stream that ‖ f (t) ‖∞ ≤ M ,

and log(mM) = Θ(logn). Notice in particular that this bounds |Δt | ≤ 2M for each t .
The general model as defined above is known as the turnstile model of streaming. Another

commonly studied model of streaming is the insertion-only model, where it is assumed that Δt > 0
for each t = 1, . . . ,m. The insertion-only model is often presented with the following equivalent
and simplified definition: an insertion-only stream is given by a sequence a1,a2, . . . ,am ∈ [n], and
the frequency vector f ∈ Rn is given by fi = |{j ∈ [m] : aj = i}|. Since we will sometimes consider
data streams with deletions (negative updates), in this work, we will use the former definition,
where updates are pairs (at ,Δt) ∈ [n] × Z. In this article, the space of a streaming algorithm is
measured in bits, and the update time of a streaming algorithm is measured in the RAM model,
where arithmetic operations on O (logn)-bit integers can be done in O (1) time. Throughout the
article we will almost always assume that the output (at any time) of the algorithms we discuss
is represented by O (logn) bits; since we are generally interested in (1 + ε)-approximation where
log(1/ε) = O (logn), any algorithm with higher bit precision can be replaced by one that only
outputs the most significant O (logn) bits at any step, without majorly affecting any of the results.
The only exception where the output requires more thanO (logn) bits is for F2-heavy hitters; here,
a total of O (logn/ε2) bits are generally required to store all heavy hitters.

The random-oracle model of streaming is the model where the streaming algorithm is allowed
random (read-only) access to an arbitrarily long string of random bits. In other words, the space
complexity of the algorithm is not charged for storing random bits. We remark that while nearly all
lower bounds for streaming algorithms hold even in the random oracle model, most of our results
(except for one of our results for entropy estimation and part of our cryptographic results) do not
require a random oracle.

Finally, given a vector x ∈ Rn , the empirical Shannon Entropy H (x) is defined via H (x) =
−∑

i |xi |/‖x ‖1 log (|xi |/‖x ‖1). For α > 0, the α-Renyi Entropy Hα (x) of x is given by the value
Hα (x) = log(‖x ‖αα /‖x ‖α1)/(1 − α).

2.1 Tracking Algorithms

The robust streaming algorithms we design in this article satisfy the tracking guarantee. Namely,
they must output a response to a query at every step in time t ∈ [m]. For the case of estimation
queries, this tracking guarantee is known as strong tracking.

Definition 2.1 (Strong Tracking). Let f (1), f (2), . . . , f (m) be the frequency vectors of a stream
(a1,Δ1), . . . , (am ,Δm), and let д : Rn → R be a function on frequency vectors. A randomized
algorithmA is said to provide (ε,δ)-strong д-tracking if at each step t ∈ [m] it outputs an estimate
Rt such that

|Rt − д(f (t)) | ≤ ε |д(f (t)) |

for all t ∈ [m] with probability at least 1 − δ .

Journal of the ACM, Vol. 69, No. 2, Article 17. Publication date: January 2022.

17:12 O. Ben-Eliezer et al.

In contrast, weak tracking replaces the error term ε |д(f (t)) | by maxt ′ ∈[m] ε · |д(f (t ′)) |. However,
for the purposes of this article, we will not need to consider weak tracking. We now state two
results for strong tracking of Fp moments for p ∈ [0, 2]. Both results are for the static setting, i.e.,
for a stream fixed in advance (and not for the adaptive adversarial setting that we consider).

Lemma 2.2 ([12]). For 0 < p ≤ 2, there is an insertion-only streaming algorithm which provides

(ε,δ)-strong Fp -tracking using O (
log n

ε2 (log ε−1 + logδ−1 + log logn)) bits of space.

Lemma 2.3 ([11]). There is an insertion-only streaming algorithm which provides (ε,δ)-strong F0-

tracking using O (
log log n+log δ−1

ε2 + logn) bits of space.

2.2 Roadmap

In Section 3, we introduce our two general techniques for transforming static streaming algorithms
into adversarially robust algorithms. In Section 4, we give our results on estimation of Fp moments,
and in Section 5 we give our algorithms for adversarially robust distinct elements estimation. Next,
in Section 6, we introduce our robust L2 heavy hitters algorithm, and in Section 7 we give our
entropy estimation algorithm. In Section 8, we provide our algorithms for Fp moment estimation
in the bounded deletion model. In Section 9, we give our adversarial attack on the AMS sketch.
Finally, in Section 10, we give our algorithm for optimal space distinct elements estimation under
cryptographic assumptions.

3 TOOLS FOR ROBUSTNESS

In this section, we establish two methods, sketch switching and computation paths, allowing one
to convert an approximation algorithm for any sufficiently well-behaved streaming problem to an
adversarially robust one for the same problem. The central definition of a flip number, bounds the
number of major (multiplicative) changes in the algorithm’s output along the stream. As we shall
see, a small flip number allows for efficient transformation of non-robust algorithms into robust
ones.5

3.1 Flip Number

Definition 3.1 (Flip Number). Let ε ≥ 0 and m ∈ N, and let ȳ = (y0,y1, . . . ,ym) be any sequence
of real numbers. The ε-flip number λε (ȳ) of ȳ is the maximum k ∈ N for which there exist 0 ≤ i1 <
· · · < ik ≤ m so that yi j−1 � (1 ± ε)yi j

for every j = 2, 3, . . . ,k .
Fix a function д : Rn → R and a class C ⊆ ([n] × Z)m of stream updates. The (ε,m)-flip number

λε,m (д) of д over C is the maximum, over all sequences ((a1,Δ1), . . . , (am ,Δm)) ∈ C, of the ε-flip

number of the sequence ȳ = (y0,y1, . . . ,ym) defined by yi = д(f (i)) for any 0 ≤ i ≤ m, where

as usual f (i) is the frequency vector after stream updates (a1,Δ1), . . . , (ai ,Δi) (and f (0) is the n-
dimensional zeros vector).

The class C may represent, for instance, the subset of all insertion-only streams, or bounded-
deletion streams. For the rest of this section, we shall assume C to be fixed, and consider the flip
number of д with respect to this choice of C.6

5The notion of flip number we define here also plays a central role in subsequent works ([31], [53]); for example, the main

contribution of the former is a generic robustification technique with an improved (square root type instead of linear)

dependence in the flip number. The latter improves the poly(1/ϵ) dependence on the flip number.
6A somewhat reminiscent definition, of an unvarying algorithm, was studied by [20] (see Definition 5.2 there) in the context

of differential privacy. While their definition also refers to a situation where the output undergoes major changes only a

few times, both the motivation and the precise technical details of their definition are different from ours.

Journal of the ACM, Vol. 69, No. 2, Article 17. Publication date: January 2022.

A Framework for Adversarially Robust Streaming Algorithms 17:13

Note that the flip number is clearly monotone in ε : namely λε ′,m (д) ≥ λε,m (д) if ε ′ < ε . One
useful property of the flip number is that it is nicely preserved under approximations. As we show,
this can be used to effectively construct approximating sequences whose 0-flip number is bounded
as a function of the ε-flip number of the original sequence. This is summarized in the following
lemma.

Lemma 3.2. Fix 0 < ε < 1. Suppose that ū = (u0, . . . ,um), v̄ = (v0, . . . ,vm), w̄ = (w0, . . . ,wm)
are three sequences of real numbers, satisfying the following:

— For any 0 ≤ i ≤ m, vi = (1 ± ε/8)ui .

— w0 = v0, and for any i > 0, if wi−1 = (1 ± ε/2)vi then wi = wi−1, and otherwise wi = vi .

Then wi = (1 ± ε)ui for any 0 ≤ i ≤ m, and moreover, λ0 (w̄) ≤ λε/8 (ū).
In particular, if (in the language of Definition 3.1) u0 = д(f (0)),u1 = д(f (1)), . . . ,um = д(f (m)) for

a sequence of updates ((a1,Δ1), . . . , (am ,Δm)) ∈ C, then λ0 (w̄) ≤ λε/8,m (д).

Proof. The first statement, that wi = (1 ± ε)ui for any i , follows immediately since vi = (1 ±
ε/8)ui and wi = (1 ± ε/2)vi and since ε < 1. The third statement follows by definition from the
second one. It thus remains to prove that λ0 (w̄) ≤ λε/8 (ū).

Let i1 = 0 and let i2, i3, . . . , ik be the collection of all values i ∈ [m] for which wi−1 � wi . Note
that k = λ0 (w̄) and that vi j−1 = wi j−1 = wi j−1+1 = · · · = wi j−1 � vi j

for any j = 2, . . . ,k . We now
claim that for every j in this range, ui j−1 � (1 ± ε/8)ui j

. This would show that k ≤ λε/8 (ū) and
conclude the proof.

Indeed, fixing any such j, we either have vi j−1 > (1 + ε/2)vi j
, or vi j−1 < (1 − ε/2)vi j

. In the first
case (assuming ui j

� 0, as the case ui j
= 0 is trivial),

ui j−1

ui j

≥
vi j−1/(1 +

ε
8)

vi j
/(1 − ε

8)
≥

(
1 +

ε

2

)
·

1 − ε
8

1 + ε
8

> 1 +
ε

8
.

In the second case, an analogous computation gives ui j−1/ui j
< 1 − ε/8. �

Note that the flip number of a function д critically depends on the model in which we work, as
the maximum is taken over all sequences of possible stream updates; for insertion-only streams, the
set of all such sequences is more limited than in the general turnstile model, and correspondingly
many streaming problems have much smaller flip number when restricted to the insertion-only
model. We now give an example of a class of functions with bounded flip number.

Proposition 3.3. Let д : Rn → R be any monotone function, meaning that д(x) ≥ д(y) if xi ≥ yi

for each i ∈ [n]. Assume further that д(x) ≥ T −1 for all x > 0, and д(M · �1) ≤ T , where M is a

bound on the entries of the frequency vector and �1 is the all 1’s vector. Then the flip number of д in

the insertion-only streaming model is λε,m (д) = O (1
ε

logT).

Proof. To see this, note that д(f (1)) ≥ T −1, and д(f (m)) ≤ д(�1 · M) ≤ T . Since the stream has

only positive updates, д(f (0)) ≤ д(f (1)) ≤ · · · ≤ д(f (m)). Let 1 ≤ y1 < y2 < · · · < yk ∈ [m] be any

maximal increasing sequence of time steps such that д(f (yi)) < (1−ε)д(f (yi+1)) for each i ∈ [k−1].
Note that restricting to y1 ≥ 1 only excludes the 0th step, so the flip number is at most k + 1.
Then the value of д increases by a 1

1−ε
factor after each step yi . Since there are at most O (1

ε
logT)

powers of 1
1−ε

between T −1 and T , by the pigeonhole principle if k > C
ε

log(T) for a sufficiently

large constant C , then at least two values must satisfy (1
1−ε

) j ≤ д(f (yi)) ≤ д(f (yi+1)) ≤ (1
1−ε

) j+1

for some j, which is a contradiction. �

Journal of the ACM, Vol. 69, No. 2, Article 17. Publication date: January 2022.

17:14 O. Ben-Eliezer et al.

Note that a special case of the above are the Fp moments of a data stream. Recall here ‖x ‖0 =
|{i : xi � 0}| is the number of non-zero elements in a vector x . For what follows, recall that the
stream length ism = O (poly(n)).

Corollary 3.4. Let p ≥ 0. The (ε,m)-flip number of ‖x ‖pp in the insertion-only streaming model

is λε,m (‖ · ‖pp) = O (1
ε

logn) for p ≤ 2, and λε,m (‖ · ‖pp) = O (
p

ε
logn) for p > 2. For p = 0, we also

have λε,m (‖ · ‖0) = O (1
ε

logm).

Proof. We have ‖�0‖pp = 0, ‖z‖pp ≥ 1 for any non-zero z ∈ Z, and ‖ f (m) ‖pp ≤ Mpn ≤ n1+cp

for some constant c , where the second to last inequality holds because ‖ f ‖∞ ≤ M for some M =
poly(n) is assumed at all points in the streaming model. The result then follows from applying

Proposition 3.3 with T = nc ·max{p,1} . The last statement for p = 0 follows since ‖ f (m) ‖0 either
remains unchanged or increases by one after any single insertion. �

Another special case of Proposition 3.3 concerns the cascaded norms of insertion-only data
streams [35]. Here, the frequency vector f is replaced with a matrix A ∈ Zn×d , which receives
coordinate-wise updates in the same fashion, and the (p,k) cascaded norm of A is given by
‖A‖(p,k) = (

∑
i (
∑

j |Ai, j |k)p/k)1/p . In other words, ‖A‖(p,k) is the result of first taking the Lk norm
of the rows of A, and then taking the Lp norm of the result. Proposition 3.3 similarly holds with
T = poly(n) in the insertion-only model, and therefore the black-box reduction techniques in-
troduced in the following sections are also applicable to these norms (using e.g., the cascaded
algorithms of [35]).

Having a small flip number is very useful for robustness, as our next two robustification tech-
niques demonstrate.

3.2 The Sketch Switching Technique

Our first technique is called sketch switching, and is described in Algorithm 1. The technique main-
tains multiple instances of a static strong tracking algorithm, where at any given time only one
of the instances is “active”. The idea is to change the current output of the algorithm very rarely.
Specifically, as long as the current output is a good enough multiplicative approximation of the
estimate of the active instance, the estimate we give to the adversary does not change, and the
current instance remains active. As soon as this approximation guarantee is not satisfied, we up-
date the output given to the adversary, deactivate our current instance, and activate the next one
in line. By carefully exposing the randomness of our multiple instances, we show that the strong
tracking guarantee (which a priori holds only in the static setting) can be carried into the robust
setting. By Lemma 3.2, the required number of instances, which corresponds to the 0-flip number
of the outputs provided to the adversary, is controlled by the (Θ(ε),m)-flip number of the problem.

Lemma 3.5 (Sketch Switching). Fix any functionд : Rn → R and letA be a streaming algorithm

that for any 0 < ε < 1 and δ > 0 uses space L(ε,δ), and satisfies the (ε,δ)-strong д-tracking

property on the frequency vectors f (1), . . . , f (m) of any particular fixed stream. Then Algorithm 1 is

an adversarially robust algorithm for (1+ε)-approximating д(f (t)) at every step t ∈ [m] with success

probability 1 − δ , whose space is O (L(ε/8,δ/λ) · λ), where λ = λε/8,m (д).

The proof is by induction and we start by giving its main intuition. By Yao’s minimax principle,
one may assume the adversary is deterministic (but adaptive). Consider the point in time tρ where
the output yρ of the ρth instance, Aρ , is first sent to the adversary. From this point on, the output
displayed to the adversary is yρ , whereas the next instance Aρ+1 continues to run and update its
output internally (without displaying it to the adversary). Let tρ+1 be the first point in time where
the (internal) output of Aρ+1 substantially differs from yρ ; denote this output by yρ+1, and set the

Journal of the ACM, Vol. 69, No. 2, Article 17. Publication date: January 2022.

A Framework for Adversarially Robust Streaming Algorithms 17:15

ALGORITHM 1: Adversarially Robust д-estimation by Sketch Switching

1 λ ← λε/8,m (д)

2 Initialize independent instances A1, . . . ,Aλ of (ε
8 ,

δ
λ

)-strong д-tracking algorithm

3 ρ ← 1

4 д̃ ← д(�0)

5 while new stream update (ak ,Δk) do

6 Insert update (ak ,Δk) into each algorithm A1, . . . ,Aλ

7 y ← current output of Aρ

8 if д̃ � (1 ± ε/2)y then

9 д̃ ← y

10 ρ ← ρ + 1

11 Output estimate д̃

12 end

value displayed to the adversary to yρ+1. The crucial observation is that we only need to apply the
static tracking guarantee for a single specific input sequence in order to ensure that yρ is a good
approximation of our function f at any time between tρ and tρ+1 − 1. The said input sequence
consists of all inputs provided by the adversary until time tρ , concatenated with the sequence of
inputs that the adversary would send if it were to see the fixed outputyρ form−tρ times afterward.

Now, how many times will the active instance change during this process? Our choice of param-
eters in the algorithm ensures that each such change can happen only if the value of the function f
itself has changed by some 1±ε/8. Thus, the number of instances required is bounded by λε/8,m (f).

Proof. Note that for a fixed randomized algorithm A we can assume the adversary against A
is deterministic without loss of generality (in our case, A refers to Algorithm 1). This is because
given a randomized adversary and algorithm, if the adversary succeeds with probability greater
than δ in fooling the algorithm, then by a simple averaging argument, there must exist a fixing of
the random bits of the adversary which foolsA with probability greater than δ over the coin flips
of A. Note also here that conditioned on a fixing of the randomness for both the algorithm and
adversary, the entire stream and behavior of both parties is fixed.

We thus start by fixing such a string of randomness for the adversary, which makes it deter-
ministic. As a result, suppose that yi is the output of the streaming algorithm in step i . Then
given y1,y2, . . . ,yk and the stream updates (a1,Δ1), . . . , (ak ,Δk) so far, the next stream update
(ak+1,Δk+1) is deterministically fixed. We stress that the randomness of the algorithm is not fixed
at this point; we will gradually reveal it along the proof.

Let λ = λε/8,m (д) and letA1, . . . ,Aλ be the λ independent instances of an (ε/8,δ/λ)-strong track-
ing algorithm for д. Since δ0 = δ/λ, later on we will be able to union bound over the assumption
that for all ρ ∈ [λ], Ai satisfies strong tracking on some fixed stream (to be revealed along the
proof); the stream corresponding to Aρ will generally be different than that corresponding to ρ ′

for ρ � ρ ′.
First, let us fix the randomness of the first instance, A1. Let u1

1,u
1
2, . . . ,u

1
m be the updates u1

j =

(aj ,Δj) that the adversary would make if A were to output y0 = д(�0) at every time step, and let

f (t),1 be the stream vector after updates u1
1, . . . ,u

1
t . Let A1 (t) be the output of algorithm A1 at time

t of the stream u1
1,u

1
2, . . . ,u

1
t . Let t1 ∈ [m] be the first time step such that y0 � (1 ± ε/2)A1 (t1), if

exists (if not we can set, say, t1 = m + 1). At time t = t1, we change our output to y1 = A1 (t1).
Assuming that A1 satisfies strong tracking for д with approximation parameter ε/8 with respect
to the fixed stream of updates u1

1, . . . ,u
1
m (which holds with probability at least 1− δ/λ), we know

Journal of the ACM, Vol. 69, No. 2, Article 17. Publication date: January 2022.

17:16 O. Ben-Eliezer et al.

that A1 (t) = (1 ± ε/8)д(f (t)) for each t < t1 and that y0 = (1 ± ε/2)A1 (t). Thus, by the first part

of Lemma 3.2, y0 = (1 ± ε)д(f (t)) for any 0 ≤ t < t1. Furthermore, by the strong tracking, at time

t = t1 the output we provide y1 = A1 (t1) is a (1 ± ε/8)-approximation of the desired value д(f (t1)).
At this point,A “switches” to the instance A2, and presents y1 as its output as long as y1 = (1±

ε/2)A2 (t). Recall that randomness of the adversary is already fixed, and consider the sequence of
updates obtained by concatenatingu1

1, . . . ,u
1
t1

as defined above (these are the updates already sent

by the adversary) with the sequence u2
t1+1, . . . ,u

2
m to be sent by the adversary if the output from

time t = t1 onwards would always be y1. We condition on the ε/8-strong д-tracking guarantee on
A2 holding for this fixed sequence of updates, noting that this is the point where the randomness of
A2 is revealed. Set t = t2 as the first value of t (if exists) for whichA2 (t) = (1±ε/2)y1 does not hold.

We now have, similarly to above, y1 = (1± ε)д(f (t)) for any t1 ≤ t < t2, and y2 = (1± ε/8)д(f (t2)).
The same reasoning can be applied inductively for Aρ , for any ρ ∈ [λ], to get that (provided ε/8-

strong д-tracking holds for Aρ) at any given time, the current output we provide to the adversary
yρ is within a (1 ± ε)-multiplicative factor of the correct output for any of the time steps t =
tρ , tρ +1, . . . ,min{tρ+1−1,m}. Taking a union bound, we get that with probability at least 1−δ , all
instances provide ε/8-tracking (each for its respective fixed sequence), yielding the desired (1± ε)-
approximation of our algorithm.

It remains to verify that this strategy will succeed in handling all m elements of the stream
(and will not exhaust its pool of algorithm instances before then). Indeed, this follows immediately

from Lemma 3.2 applied with ū = ((д(f (0)), . . . ,д(f (m))), v̄ = (д(f (0)),A1 (1), . . . ,A1 (t1),A2 (t1+1),
. . . ,A2 (t2), . . .), and w̄ being the output that our algorithm A provides (y0 = д(f (0)) until time
t1 − 1, then y1 until time t2 − 1, and so on). Observe that indeed w̄ was generated from v exactly as
described in the statement of Lemma 3.2. �

3.3 The Bounded Computation Paths Technique

With our sketch switching technique, we showed that maintaining multiple instances of a non-
robust algorithm to estimate a function д, and switching between them when the rounded output
changes, is a recipe for a robust algorithm to estimate д. We next provide another recipe, which
keeps only one instance, whose success probability for any fixed stream is very high; it relies on
the fact that if the flip number is small, then the total number of fixed streams that we should need
to handle is also relatively small, and we will be able to union bound over all of them. Specifically,
we show that any non-robust algorithm for a function with bounded flip number can be modified
into an adversarially robust one by setting the failure probability δ small enough.

Lemma 3.6 (Computation Paths). Fix д : Rn → R and suppose that the output of д uses logT bits

of precision (see remark after the proof). Let A be a streaming algorithm that for any ε,δ > 0 satisfies

the (ε,δ)-strong д-tracking property on the frequency vectors f (1), . . . , f (m) of any particular fixed

stream. Then there is a streaming algorithm A′ satisfying the following.

(1) A′ is an adversarially robust algorithm for (1 + ε)-approximating д(f (t)) in all steps t ∈ [m],
with success probability 1 − δ .

(2) The space complexity and running time of A′ as above (with parameters ε and δ) are of the

same order as the space and time of running A in the static setting with parameters ε/8 and

δ0 = δ/(
(
m
λ

)
TO (λ)), where λ = λε/8,m (д).

The Algorithm for Computation Paths. The algorithm A′ simply runs a single instance of the
basic algorithm A with a smaller error probability. The outputs it provides to the adversary are
rounded as in the sketch switching technique.

Journal of the ACM, Vol. 69, No. 2, Article 17. Publication date: January 2022.

A Framework for Adversarially Robust Streaming Algorithms 17:17

Specifically, A′ runs by emulating A with parameters ε/8 and δ0. Assuming that the output
sequence of the emulated A up to the current time t is v0, . . . ,vt , it generates wt in exactly the
way described in Lemma 3.2: set w0 = v0, and for any i > 0, if wi−1 ∈ (1 ± ε/2)vi then wi = wi−1,
and otherwise wi = vi . The output provided to the adversary at time t would then be wt .

Proof. As in the proof of Lemma 3.5, we may assume the adversary to be deterministic. This
means, in particular, that the output sequence we provide to the adversary fully determines its
stream of updates (a1,Δ1), . . . , (am ,Δm). Take λ = λε/8,m (д). Consider the collection of all possible
output sequences (with logT bits of precision) whose 0-flip number is at most λ, and note that the

number of such sequences is at most
(
m
λ

)
TO (λ) . Each output sequence as above uniquely determines

a corresponding stream of updates for the deterministic adversary; let S be the collection of all
such streams.

Pick δ0 = δ/|S|. Taking a union bound, we conclude that with probability 1− δ , A (instantiated
with parameters ε/8 and δ0) provides an ε/8-strong д-tracking guarantee for all streams in S. The
proof follows by applying Lemma 3.2 to each stream in S. �

Remark (Bit Precision of Output). For the purposes of this article, we typically think of the bit
precision as O (logn) (for example, in Fp -estimation, there are poly(n) possible outputs). Since we

also generally assume that m = poly(n), the expression for δ0 is of the form δ0 = δ/nΘ(λ) in this
case. We note that while reducing the bit precision of the output slightly improves the bound on
δ0, this improvement becomes negligible for any streaming algorithm whose dependence in the
error probability δ is logarithmic or better; this covers all situations where we apply Lemma 3.6 in
this article.

4 Fp -ESTIMATION

In this section, we introduce our adversarially robust Fp moment estimation algorithms. Recall

that Fp is given by ‖ f ‖pp =
∑

i | fi |p for p > 0. For p = 0, the F0 moment, or the number of distinct
elements, is the number of non-zero coordinates in f , that is, ‖ f ‖0 = |{i ∈ [n] : fi � 0}|. Recall
that in Corollary 3.4, we bounded the flip number of the Fp moment in insertion-only streams for

any fixed p > 0 byO (max{p, 1} · ε−1 logn). By using our sketch switching argument, the strong Fp

tracking guarantees of [12] as stated in Lemma 2.2, we obtain our first result for 0 < p ≤ 2.

Theorem 4.1 (Fp -estimation by Sketch Switching). Fix any 0 < ε,δ ≤ 1 and 0 < p ≤ 2.

There is a streaming algorithm for the insertion-only adversarial model which, with probability 1−δ ,

successfully outputs at each step t ∈ [m] a value Rt such that Rt = (1 ± ε)‖ f (t) ‖p . The space used by

the algorithm is

O
(

1

ε3
logn log ε−1 (log ε−1 + logδ−1 + log logn)

)

Proof. By an application of Lemma 3.5 along with the flip number bound of Corollary 3.4 and
the strong tracking algorithm of Lemma 2.2, we immediately obtain a space complexity of

O
(

1

ε3
log2 n(log ε−1 + logδ−1 + log logn)

)

We now describe how the factor of 1
ε

logn, coming from running λε,m = Θ(1
ε

logn) independent

sketches in Lemma 3.5, can be improved to 1
ε

log ε−1.

To see this, we change Algorithm 1 in the following way. Instead of Θ(1
ε

logn) independent

sketches, we use λ ← Θ(1
ε

log ε−1) independent sketches, and change line 10 to state ρ ← ρ + 1
(mod λ). Each time we change ρ to ρ + 1 (mod λ) and begin using the new sketch Aρ+1 (mod λ) ,
we completely restart the algorithm Aρ with new randomness, and run it on the remainder of the

Journal of the ACM, Vol. 69, No. 2, Article 17. Publication date: January 2022.

17:18 O. Ben-Eliezer et al.

stream (or until it is restarted again after looping through all λ sketches). The proof of correctness
in Lemma 3.5 is completely unchanged, except for the fact that nowAρ is run only on a sub-interval

aj ,aj+1, . . . , of the stream, starting from the time step j where Aρ is reinitialized and ending at
the next time that Aρ is reinitialized. Specifically, at each time step t ≥ j, Aρ will produce a

(1 ± ε) estimate of ‖ f (t) − f (j−1) ‖p instead of ‖ f (t) ‖p . However, since the sketch will not be used

again until a step t ′ where ‖ f (t ′) ‖p ≥ (1 + ε)λ ‖ f (j) ‖p = 100
ε
‖ f (j) ‖p , it follows that only an ε

fraction of the �p mass was missed by Aρ . In particular, ‖ f (t ′) − f (j−1) ‖p = (1± ε/100)‖ f (t ′) ‖p , and

thus by giving a (1 ± ε/10) approximation of ‖ f (t ′) − f (j−1) ‖p , the algorithm Aρ gives the desired
(1±ε) approximation of the underlying �p norm, which is the desired result after a constant factor
rescaling of ε . Note that this argument could be used for the L0 norm, or any Lp norm for p ≥ 0,
using an Fp strong tracking algorithm for the relevant p. �

Remark (The Restart Trick). The above proof improves a logn factor to a log 1/ε one by main-
taining independent copies of the sketch in a cyclic manner, where old copies are restarted with
fresh randomness (rather than scrapped entirely). This trick works because the Fp -value cannot de-
crease in insertion-only streams, and turns out useful in many insertion-only streaming problems
where one wishes to estimate a non-decreasing quantity; we shall see a few examples throughout
the article. Indeed, as long as the previous estimate (using the old randomness) of a certain copy
is only, say, a ε/10-fraction of the current estimate, the restart does not majorly effect the output.

While for most values of δ , the above theorem has better space complexity than the computation
paths reduction, for the regime of very small failure probability it is actually preferable to use the
latter, as we now state.

Theorem 4.2 (Fp -estimation for Small δ). Fix any 0 < ε < 1, 0 < p ≤ 2, and δ < n−C 1
ε log n for

a sufficiently large constant C > 1. There is a streaming algorithm for the insertion-only adversarial

model which, with probability 1 − δ , successfully outputs at each step t ∈ [m] a value Rt such that

Rt = (1 ± ε)‖ f (t) ‖p . The required space is O (1
ε2 logn logδ−1) bits.

The proof is a direct application of Lemma 3.6, along with the flip number bound of Corollary 3.4,
and theO (ε−2 logn logδ−1) static Fp estimation algorithm of [39]. Indeed, note that the flip number

is λ = O (logn/ε) and that for small enough values of δ as in the lemma, one has log(mλ/δ) =
Θ(log(1/δ)).

Next, we show that for turnstile streams with Fp flip number λ, we can estimate Fp with error

probability δ = n−λ . The space requirement of the algorithm is optimal for algorithms with such
failure probability δ , which follows by an Ω(ε−2 logn logδ−1) lower bound for turnstile algorithms
[36], where the hard instance in question has small Fp flip number.7

Theorem 4.3 (Fp -estimation for λ-flip Number Turnstile Streams). Let Sλ be the set of all

turnstile streams with Fp flip number at most λ ≥ λε,m (‖ · ‖pp) for any 0 < p ≤ 2. Then there is an

adversarially robust streaming algorithm for the class Sλ of streams that, with probability 1 − n−Cλ

for any constant C > 0, outputs at each time step a value Rt such that Rt = (1 ± ε)‖ f ‖pp . The space

used by the algorithm is O (ε−2λ log2 n).

Proof. The proof follows by simply applying Lemma 3.6, along with theO (ε−2 logn logδ−1) bit
turnstile algorithm of [39]. �

7The hard instance in [36] is a stream where O (n) updates are first inserted and then deleted, thus the flip number is at

most twice the Fp flip number of an insertion-only stream.

Journal of the ACM, Vol. 69, No. 2, Article 17. Publication date: January 2022.

A Framework for Adversarially Robust Streaming Algorithms 17:19

In addition, we show that the Fp moment can also be robustly estimated for p > 2. In this case,
it is preferable to use our computation paths reduction, because the upper bounds for Fp moment
estimation for large p yield efficiency gains when setting δ to be small.

Theorem 4.4 (Fp -estimation, p > 2, by Computation Paths). Fix any ε,δ > 0, and any

constant p > 2. Then there is a streaming algorithm for the insertion-only adversarial model

which, with probability 1 − n−(c log n)/ε for any constant c > 1, successfully outputs at every

step t ∈ [m] a value Rt such that Rt = (1 ± ε)‖ f (t) ‖p . The space used by the algorithm is

O (n1−2/p (ε−3 log2 n + ε−6/p (log2 n)2/p logn)).

Proof. We use the insertion-only Fp estimation algorithm of [22], which achieves(
n1−2/p

(
ε−2 logδ−1 + ε−4/p log2/p δ−1 logn

))
bits of space in the turnstile (and therefore insertion-only) model. We can set δ = δ/m to union
bound over all steps, making it a strong Fp tracking algorithm with

O
(
n1−2/p

(
ε−2 log(nδ−1) + ε−4/p log2/p (nδ−1) logn

))
bits of space. Then by Lemma 3.6 along with the flip number bound of Corollary 3.4, the claimed
space complexity follows. �

5 DISTINCT ELEMENTS ESTIMATION

We now demonstrate how our sketch switching technique can be used to estimate the number of
distinct elements, also known as F0 estimation, in an adversarial stream. In this case, since there
exist static F0 strong tracking algorithms [11] which are more efficient than repeating the sketch
logδ−1 times, it will be preferable to use our sketch switching technique.

Theorem 5.1 (Robust Distinct Elements by Sketch Switching). There is an algorithm which,

when run on an adversarial insertion-only stream, produces at each step t ∈ [m] an estimate Rt

such that Rt = (1 ± ε)‖ f (t) ‖0 with probability at least 1 − δ . The space used by the algorithm is

O (
log ε−1

ε
(

log ε−1+log δ−1+log log n

ε2 + logn)) bits.

Proof. We use the insertion-only distinct elements strong tracking algorithm of [11]. Specifi-

cally, the algorithm of [11] uses space O (
log δ−1

0 +log log n

ε2 + logn), and with probability 1 − δ0, suc-

cessfully returns an estimate Rt for every step t ∈ [m] such that Rt = (1 ± ε)‖ f (t) ‖0 in the non-
adversarial setting. Then by an application of Lemma 3.5, along with the flip number bound of

O (logn/ε) from Corollary 3.4, we obtain the space complexity with a factor of
log n

ε
blow-up after

setting δ0 = Θ(δ ε
log n

). This gives a complexity of O (
log n

ε
(

log ε−1+log δ−1+log log n

ε2 + logn)). To reduce

the extra logn-factor to a log ε−1 factor, we just apply the same argument used in the proof of The-
orem 4.1, which shows that by restarting sketches it suffices to keep onlyO (ε−1 log ε−1) copies. �

5.1 Fast Distinct Elements Estimation

As noted earlier, there are many reasons why one may prefer one of the reductions from Section 3
to the other. In this section, we will see such a motivation. Specifically, we show that adversarially
robust L0 estimation can be accomplished with extremely fast update time using the computation
paths reduction of Lemma 3.6.

First note that the standard approach to obtaining failure probability δ is to repeat the estimation
algorithm logδ−1 times independently, and take the median output. However, this blows up the
update time by a factor of logδ−1. Thus black-box applying Lemma 3.6 by setting δ to be small can
result in a larger update time. To improve upon this, we will introduce an insertion-only distinct

Journal of the ACM, Vol. 69, No. 2, Article 17. Publication date: January 2022.

17:20 O. Ben-Eliezer et al.

elements estimation algorithm, with the property that the runtime dependency on δ−1 is very
small (roughly log2 logδ−1). Thus applying Lemma 3.6 on this algorithm results in a very fast
robust streaming algorithm.

Lemma 5.2. There is a streaming algorithm which, with probability 1 − δ , returns a (1 ± ε)
multiplicative estimate of the number of distinct elements in an insertion-only data stream. The

space required is O (1
ε2 logn(log logn + logδ−1)),8 and the worst case running time per update is

O ((log2 log
log n

δ
) · (log log log

log n

δ
)).

We note that previously, the best known update time for insertion-only distinct elements es-
timation is the algorithm of [40], which obtains O (1)-update time in O (ε−2 + logn) space with
constant failure probability δ . Thus, to obtain small error probability δ , one would need to repeat
the entire algorithm O (logδ−1) times, causing a blow-up of O (logδ−1) in the update time. Before
presenting our proof of Lemma 5.2, we state the following proposition, which will allow for the
fast evaluation of d-wise independent hash functions.

Proposition 5.3 ([51], Ch. 10). Let R be a ring, and let p ∈ R[x] be a degree d univariate poly-

nomial over R. Then given distinct x1,x2, . . . ,xd ∈ R, all the values p (x1),p (x2), . . . ,p (xd) can be

computed using O (d log2 d log logd) operations over R.

of Lemma 5.2. We describe the algorithm here, as stated in Algorithm 2.

ALGORITHM 2: Fast Non-Adversarial Distinct Elements Estimation.

1 Initialize Lists L0,L1, . . . ,L� ← ∅, for � chosen such that n2 ≤ 2� ≤ n3. B ← Θ(1
ε2 (log logn + logδ−1)),

d ← Θ(log logn + logδ−1)

2 Initialize d-wise independent hash function H : [n]→ [2�].

3 while Receive update ai ∈ [n] do

4 Let j be such that 2�−j−1 ≤ H (ai) < 2�−j

5 if Lj has not been deleted then

6 Add ai to the list Lj if it is not already present.

7 end

8 If |Lj | > B for any j, delete the list Lj , and never add any items to it again.

9 end

10 Let i be the largest index such that |Li | ≥ 1
5B.

11 Return 2i+1 |Li | as the estimate of ‖ f ‖0

We initialize lists L0,L1, . . . ,L� ← ∅, where � is set so that n2 ≤ 2� ≤ n3. We also choose a hash
function H : [n] → [2�]. The lists Li will store a set of identities Li ⊂ [n] which have occurred in
the stream. We also set B ← Θ(1

ε2 (log logn+logδ−1)). For now, assume thatH is fully independent.
At each step when we see an update ai ∈ [n] (corresponding to an update which increments

the value of fi by one), we compute j such that 2�−j−1 ≤ H (ai) ≤ 2�−j . Note that this event occurs

with probability 2−(j+1) . Then we add the O (logn)-bit identity ai to the list Lj if |Lj | < B. Once
|Lk | = B for any k ∈ [�], we delete the entire list Lk , and never add an item to Lk again. We call
such a list Lk saturated. At the end of the stream, we find the largest value i such that 1

5B ≤ |Li |,
and output 2i+1 |Li | as our estimate of ‖ f ‖0.

8We remark that it is possible to optimize the log n factor to O (log δ−1 + log ε−1 + log log n) by hashing the identities

stored in the lists of the algorithm to a domain of size poly(δ−1, ε−1, log n). However, in our application we will be setting

δ
 1/n, and so the resulting adversarially robust algorithm would actually be less space efficient.

Journal of the ACM, Vol. 69, No. 2, Article 17. Publication date: January 2022.

A Framework for Adversarially Robust Streaming Algorithms 17:21

We now analyze the above algorithm. Let i0 be the smallest index such that E[|Li0 |] ≤
‖ f ‖02−(i0+1) < 1

5(1+ε)B. Note here that E[|Lk |] = 2−(k+1) ‖ f ‖0 for any k ∈ [�]. By a Chernoff

bound, with probability 1− exp(−Ω(−ε2B)) < 1− δ 2/ log(n) we have that |Li0 | < 1
5B. We can then

union bound over all such indices i ≥ i0. This means that we will not output the estimate used
from any index i ≥ i0. Similarly, by a Chernoff bound we have that |Li0−1 | = (1 ± ε)‖ f ‖02−i0 < 2

5B

and |Li0−2 | = (1 ± ε)‖ f ‖02−i0+1, and moreover we have 2
5(1+ε)B ≤ ‖ f ‖02−i0+1 ≤ 4

5B, meaning that

the output of our algorithm will be either |Li0−1 |2i0 or |Li0−2 |2i0−1, each of which yields a (1 ± ε)
estimate. Now note that we cannot store a fully independent hash function H , but since we only
needed all events to hold with probability 1 − Θ(δ 2/ log(n)), it suffices to choose H to be a d-wise
independent hash function for d = O (log logn + logδ−1), which yields Chernoff-style tail inequal-
ities with a decay rate of exp(−Ω(d)) (see e.g., Theorem 5 of [50]).

Next, we analyze the space bound. Trivially, we store at most O (logn) lists Li , each of which
stores at most B identities which require O (logn) bits each to store, yielding a total complexity of
O (1

ε2 log2 n(log logn + logδ−1)). We now show; however, that at any given step, there are at most
O (B) many identities stored in all of the active lists. To see this, let i0 < i1 < · · · < is be the time
steps such that ‖ f (i j) ‖0 = 2j+1 · B, and note that s ≤ log(n) + 1. Note that before time i0, at most B
identities are stored in the union of the lists. First, on time step i j for any j ∈ [s], the expected size
of |Lj−2 | is at least 2|B | (had we never deleted saturated lists), and, with probability 1− (δ/ logn)10

after a union bound, it holds that |Lj′ | is saturated for all j ′ ≤ j−2. Moreover, note that the expected

number of identities written to lists Lj′ with j ′ ≥ j −1 is ‖ f (i j) ‖0
∑

ν ≥1 2−j+1+ν ≤ 2B, and is at most
4B with probability at least 1− (δ/ logn)10 (using the d-wise independence ofH). We conclude that
on time step i j , the total space being used is O (B logn) with probability at least 1− (δ/ logn)10, so
we can union bound to obtain that this space holds over all such steps i j for j ∈ [s].

Next, we must analyze the space usage at steps τ for i j < τ < i j+1. Note that the number of
new distinct items which occur over all such time steps τ is at most 2j+1 ·B by definition. Since we
already conditioned on the fact that |Lj′ | is saturated for all j ′ ≤ j−2, it follows that each new item
is written into a list with probability at most 2−j . Thus, the expected number of items which are
written into lists within times τ satisfying i j < τ < i j+1 is 2j+1 · B · 2−j = 2B in expectation, and at
most 8B with probability 1− (δ/ logn)10 (again using the d-wise independence of H). Conditioned
on this, the total space used in these steps is at most O (B logn) = O (1

ε2 logn(log logn + logδ))
in this interval, and we then can union bound over all such O (logn) intervals, which yields the
desired space.

Finally, for the update time, note that at each stream update ai ∈ [n], on the first step of the
algorithm, we compute the value of a d-wise independent hash function H . Naïvely, computing
a d-wise independent hash function requires O (d) arithmetic operations (in the standard RAM
model), because H in this case is just a polynomial of degree d over Z. On the other hand, we
can batch sequences of d = O (log logn + logδ−1) computations together, which require an addi-
tive O (d logn) = O (logn(log logn + logδ−1)) bits of space at any given time step to store (which
is dominated by the prior space complexity). Then by Proposition 5.3, all d hash function evalu-

ations can be carried out in O (d log2 d log logd) = O (d log2 (log
log n

δ
) log log log

log n

δ
) time. The

work can then be evenly distributed over the following d steps, giving a worst case update time

of O (log2 (log
log n

δ
) log log log

log n

δ
). Note that this delays the reporting of the algorithm for the

contribution of updates by a total of d steps, causing an additive d error. However, this is only an
issue if d ≥ ε ‖ f ‖0, which occurs only when ‖ f ‖0 ≥ 1

ε
d . Thus for the first D = O (ε−1d) distinct

items, we can store the non-zero items exactly (and deterministically), and use the output of this
deterministic algorithm. The space required for this is O (ε−1 log(n) (log logn + logδ−1), which is
dominated by the space usage of the algorithm overall. After D distinct items have been seen, we

Journal of the ACM, Vol. 69, No. 2, Article 17. Publication date: January 2022.

17:22 O. Ben-Eliezer et al.

switch over to using the output of the randomized algorithm described here. Finally, the only other
operation involves adding an identity to at most one list per update, which is O (1) time, which
completes the proof. �

We can use the prior result of Lemma 5.2, along with our argument for union bounding over
adversarial computation paths of Lemma 3.6 and the flip number bound of Corollary 3.4, which
results in an adversarially robust streaming algorithm for distinct elements estimation with ex-
tremely fast update time.

Theorem 5.4. There is a streaming algorithm which, with probability 1 − n−(C/ε) log n for any

constant C ≥ 1, when run on an adversarially chosen insertion-only data stream, returns a (1 ±
ε) multiplicative estimate of the number of distinct elements at every step in the stream. The space

required isO (1
ε3 log3 n), and the worst case running time isO ((log2 log n

ε
) · (log log

log n

ε
)) per update.

6 HEAVY HITTERS

In this section, we study the popular heavy-hitters problem in data streams. The heavy hitters
problem tasks the algorithm with recovering the most frequent items in a data-set. Stated simply,
the goal is to report a list S of items fi that appear least τ times, meaning fi ≥ τ , for a given
threshold τ . Generally, τ is parameterized in terms of the Lp norm of the frequency vector f , so
that τ = ε ‖ f ‖p . For p > 2, this problem is known to take polynomial space [5, 8]. Thus, the
strongest such guarantee that can be given in sub-polynomial space is known as the L2 guarantee:

Definition 6.1. A streaming algorithm is said to solve the (ε,δ)-heavy hitters problem with the
L2 guarantee if the algorithm, when run on a stream with frequency vector f ∈ Rn , outputs a set
S ⊂ [n] such that with probability 1 − δ the following holds: for every i ∈ [n] if | fi | ≥ ε ‖ f ‖2 then
i ∈ S , and if | fi | ≤ (ε/2)‖ f ‖2 then i � S .

We also introduce the related task of (ε,δ)-point queries.

Definition 6.2. A streaming algorithm is said to solve the (ε,δ) point query problem with the L2

guarantee if with probability 1 − δ , at every time step t ∈ [m], for each coordinate i ∈ [n] it can

output an estimate f̂ t
i such that | f̂ t

i − f (t)
i | ≤ ε ‖ f (t) ‖2. Equivalently, it outputs a vector f̂ t ∈ Rn

such that ‖ f (t) − f̂ t ‖∞ ≤ ε ‖ f (t) ‖2.9

Notice that for any algorithm that solves the (ε,δ)-point query problem, if it also has estimates

Rt = (1 ± ε/10)‖ f (t) ‖2 at each time step t ∈ [m], then it immediately gives a solution to the

(ε,δ)-heavy hitters problem by just outputting all i ∈ [n] with f̃ t
i > (3/4)εRt . Thus solving (ε,δ)-

point queries, together with F2 tracking, is a stronger property. In the following, we say that f̂ t is

ε-correct at time t if ‖ f (t) − f̂ t ‖∞ ≤ ε ‖ f (t) ‖2.
In this section, we demonstrate how this fundamental task of point query estimation can be

accomplished robustly in the adversarial setting. Note that we have already shown how F2 tracking
can be accomplished in the adversarial model, so our focus will be on point queries. Our algorithm
relies on a similar sketch switching technique as used in Lemma 3.5, which systematically hides

randomness from the adversary by only publishing a new estimate f̂ t when absolutely necessary.
To define what is meant by “absolutely necessary”, we will first need the following proposition.

Proposition 6.3. Suppose that f̂ t ∈ Rn is ε-correct at time t on an insertion-only stream, and let

t1 > t be any time step such that ‖ f (t1) − f (t) ‖∞ ≤ ε ‖ f (t) ‖2. Then f̂ t is 2ε-correct at time t1.

9We note that a stronger form of error is possible, called the tail guarantee, which does not count the contribution of the

top 1/ε2 largest coordinates to the error ε ‖f ‖2. We restrict to the simpler version of the L2 guarantee.

Journal of the ACM, Vol. 69, No. 2, Article 17. Publication date: January 2022.

A Framework for Adversarially Robust Streaming Algorithms 17:23

Proof. ‖ f̂ t − f (t1) ‖∞ ≤ ‖ f̂ t − f (t) ‖∞ + ‖ f (t1) − f (t) ‖∞ ≤ ε ‖ f (t) ‖2 + ε ‖ f (t) ‖2 ≤ 2ε ‖ f (t1) ‖2. �

To prove the main theorem of Section 6, we will need the classic count-sketch algorithm for
finding L2 heavy hitters [17], which solves the more general point query problem in the static
setting with high probability.

Lemma 6.4 ([17]). There is a streaming algorithm in the non-adversarial insertion-only model

which solves the (ε,δ)-point query problem, using O (1
ε2 logn log n

δ
) bits of space.

We are now ready to prove the main theorem of this section.

Theorem 6.5 (L2 Point Query and Heavy Hitters). Fix any ε,δ > 0. There is a streaming

algorithm in the adversarial insertion-only model which solves the (ε,n−C) point query problem, and

also theO (ε,n−C)-heavy hitters problem, for any constantC > 1. The algorithm usesO (
log ε−1

ε3 log2 n)
bits of space.

Proof. Since we already know how to obtain estimates Rt = (1 ± ε/100)‖ f (t) ‖2 at each time
step t ∈ [m] in the adversarial insertion-only model within the required space, it will suffice to

show that we can obtain estimates f̂ t which are ε-correct at each time step t (i.e., it will suffice to
solve the point query problem).

Let 1 = t1 < t2 < · · · < tT = m for T = Θ(ε−1 logn) be any set of time steps such that

‖ f (ti+1) − f (ti) ‖2 ≤ ε ‖ f (ti) ‖2 for each i ∈ [T − 1]. Then by Proposition 6.3, using that ‖ f (ti+1) −
f (ti) ‖∞ ≤ ‖ f (ti+1) − f (ti) ‖2, we know that if we output an estimate f̂ i which is ε-correct for time

ti , then f̂ i will still be 2ε correct at time ti+1. Moreover, because the stream is insertion-only, the

frequency vectors f (t) are coordinate-wise monotonically increasing over time. The latter implies

that ‖ f (t) − f (ti) ‖2 ≤ ‖ f (ti+1) − f (ti) ‖2 for all t ∈ [ti , ti+1], and therefore if f̂ i is ε-correct for time ti ,

then f̂ i will also be 2ε correct at any time t ∈ [ti , ti+1]. Thus our approach will be to output vectors

f̂ 1, f̂ 2, . . . , f̂ T , such that we output the estimate f̂ i ∈ Rn at all times τ such that ti ≤ τ < ti+1, and

such that f̂ i is ε-correct for time ti .
First, to find the time steps ti , we run the adversarially robust F2 estimator of Theorem 4.1, which

gives an estimate Rt = (1 ± ε/100)‖ f (t) ‖2 at each time step t ∈ [m] with probability 1 − n−C for
any constant C > 1, and uses space O (ε−3 log2 n log ε−1). Notice that this also gives the required
estimates Rt as stated above. By rounding down the outputs Rt of this F2 estimation algorithm
to the nearest power of (1 + ε/2), we obtain our desired points ti . Notice that this also gives T =
Θ(ε−1 logn) as needed, by the flip number bound of Corollary 3.4.

Next, to obtain the desired ε point query estimators at each time step ti , we run T independent
copies of the point query estimation algorithm of Lemma 6.4. At time ti , we use the output vector

of the ith copy as our estimate f̂ i , which will also be used without any modification on all times
τ with ti ≤ τ < ti+1. Since each copy of the algorithm only reveals any of its randomness at time
ti , at which point it is never used again, by the same argument as in Lemma 3.5 it follows that

each f̂ i will be ε-correct for time ti . Namely, since the set of stream updates on times 1, 2, . . . , ti
are independent of the randomness used in the ith copy of point-estimation algorithm, we can
deterministically fix the updates on these time steps, and condition on the ith copy of the non-
adversarial streaming algorithm being correct on these updates. Therefore this algorithm correctly
solves the 2ε point query problem on an adversarial stream. The total space used is

O
(
ε−3 log2 n log ε−1 +Tε−2 log2 n

)
.

We now note that we can improve the space by instead running onlyT ′ = O (ε−1 log ε−1) indepen-
dent copies of the algorithm of Lemma 6.4. Each time we use one of the copies to output the desired

Journal of the ACM, Vol. 69, No. 2, Article 17. Publication date: January 2022.

17:24 O. Ben-Eliezer et al.

estimate f̂ i , we completely restart that algorithm on the remaining suffix of the stream, and we
loop modularly through all T ′ copies of the algorithm, at each step using the copy that was least
recently restarted to output an estimate vector. More formally, we keep copiesA1, . . . ,AT ′ of the

algorithm of Lemma 6.4. Each time we arrive at a new step ti and must produce a new estimate f̂ i ,
we query the algorithmAj that was least recently restarted, and use the estimate obtained by that
algorithm, along with the estimates Rt .

The same correctness argument will hold as given above, except now each algorithm, when
used after being restarted at least once, will only be ε-correct for the frequency vector defined
by a sub-interval of the stream. However, by the same argument used in Theorem 4.1, we can
safely disregard the prefix that was missed by this copy of the algorithm, because it contains only
an ε/100-fraction of the total Lp mass of the current frequency vector when it is applied again.
Formally, if an algorithm Aj is used again at time ti , and it was last restarted at time τ , then by

the correctness of our estimates Rt , the L2 norm must have gone up by a factor of (1 + ε)T ′ = 100
ε

,

so ‖ f (τ) ‖2 ≤ ε/100‖ f (ti) ‖2. Moreover, we have that the estimate f̂ i produced by the algorithm

Aj at time ti satisfies ‖ f̂ i − (f (ti) − f (τ))‖∞ ≤ ε ‖ f (ti) − f (τ) ‖2. This follows from the fact that

(f (ti) − f (τ)) is the frequency vector of the sub-stream on which the algorithm Aj has been run
at time ti , along with the ε-correctness guarantee of the algorithm of Lemma 6.4. But then

‖ f̂ i − f (ti) ‖∞ ≤ ‖ f̂ i − (f (ti) − f (τ))‖∞ + ‖ f (τ) ‖∞
≤ ε ‖ f (ti) − f (τ) ‖2 + ‖ f (τ) ‖2
≤ ε (‖ f (ti) ‖2 + ‖ f (τ) ‖2) + ε/100‖ f (ti) ‖2
≤ ε ‖ f (ti) ‖2 (1 + ε) + ε/100‖ f (ti) ‖2
≤ 2ε ‖ f (ti) ‖2

, (1)

where in the first line we added and subtracted f (τ) and applied the triangle inequality, in the

second line we used the fact that ‖ f̂ i − (f (ti) − f (τ))‖∞ ≤ ε ‖ f (ti) − f (τ) ‖2 along with the fact that
the �∞ norm is bounded by the �2 norm, and in the third line we used the triangle inequality. Thus

f̂ i is still 2ε-correct at time ti for the full stream vector f (ti) . So by the same argument as above
using Proposition 6.3, it follows that the output of the overall algorithm is always 4ε-correct for
all time steps τ ∈ [m], and we can then re-scale ε by a factor of 1/4. Substituting the new number
T ′ of copies used into the above equation, we obtain the desired complexity. �

7 ENTROPY ESTIMATION

We now show how our general techniques developed in Section 3 can be used to approximate the
empirical Shannon entropy H (f) of an adversarial stream. Recall that for a non-zero vector f , we

have that H (f) = −∑
i,fi�0 pi log(pi), where pi =

|fi |
‖f ‖1 . Also recall that for α > 0, the α-Renyi

Entropy Hα (x) of x is given by Hα (x) = log(
‖x ‖αα
‖x ‖α1

)/(1 − α).

We begin with the following observation, which will allow us to consider multiplicative approx-

imation of 2H (x) . Then, by carefully bounding the flip number of the Renyi entropy Hα for α close
to 1, we will be able to bound the flip number of H .

Remark. Note that any algorithm that gives an ε-additive approximation of the Shannon En-

tropy H (x) : Rn → R gives a (1 ± ε) multiplicative approximation of д(x) = 2H (x) , and vice-versa.

Proposition 7.1 (Theorem 3.1 of [30]). Let x ∈ Rn be a probability distribution whose smallest

non-zero value is at least 1
m

, where m ≥ n. Let 0 < ε < 1 be arbitrary. Define μ = ε/(4 logm) and

Journal of the ACM, Vol. 69, No. 2, Article 17. Publication date: January 2022.

A Framework for Adversarially Robust Streaming Algorithms 17:25

ν = ε/(4 logn logm), α = 1 + μ/(16 log(1/μ)) and β = 1 + ν/(16 log(1/ν)). Then

1 ≤ Hα

H
≤ 1 + ε and 0 ≤ H − Hβ ≤ ε

Proposition 7.2. Let д : RN → R be д(x) = 2H (x) , i.e., the exponential of the Shannon

entropy. Then the (ε,m)-flip number of д for the insertion-only streaming model is λε,m (д) =
O (1

ε2 log3m(log logn + log ε−1)).

The proof of the above proposition is given later in this section. We now state the main result on
adversarially robust entropy estimation. An improved result is stated for the random oracle model

in streaming, which means that the algorithm is given random (read-only) access to an arbitrarily
large string of random bits.

Theorem 7.3 (Robust Additive Entropy Estimation). There is an algorithm for ε-additive ap-

proximation of entropy in the insertion-only adversarial streaming model usingO (1
ε4 log4 n(log logn+

log ε−1))-bits of space in the random oracle model, and O (1
ε4 log6 n(log logn + log ε−1))-bits of space

in the general insertion-only model.

To obtain our entropy estimation algorithm of Theorem 7.3, we will first need to state the results
for the state of the art non-adversarial streaming algorithms for additive entropy estimation. The
first algorithm is aO (ε−2 log2 n)-bit streaming algorithm for additive approximation of the entropy
of a turnstile stream, which in particular holds for insertion-only streams. The second result is a

Õ (1/ε2) upper bound for entropy estimation in the insertion-only model when a random oracle is
given.

Lemma 7.4 ([18]). There is an algorithm in the turnstile model that gives an ε-additive approxima-

tion to the Shannon Entropy H (f) of the stream. The failure probability is δ , and the space required

is O (1
ε2 log2 n logδ−1) bits.

Lemma 7.5 ([34]). There is an algorithm in the insertion-only random oracle model that gives an

ε-additive approximation to the Shannon Entropy H (f) of the stream. The failure probability is δ ,

and the space required is O (1
ε2 (logδ−1 + log logn + log ε−1)).

We now give the proof of Proposition 7.2, and then the proof of Theorem 7.3.

of Proposition 7.2. By Proposition 7.1, it suffices to get a bound on the flip number of Hβ

for the parameters β = 1 + ν/(16 log(1/ν)) and ν = ε/(4 logn logm). Recall д(x) = 2Hβ (x) =

(‖x ‖β

β
/‖x ‖β

1)1/(1−β) = (‖x ‖1/‖x ‖β)
β

β−1 , and define

τ = ε · β − 1

β
= Θ

(
ε2

(log2 n) · (log logn + log ε−1)

)

Then, to increase д(x) by a factor of (1 + ε), one must increase ‖x ‖1/‖x ‖β by a factor of 1 + Ω(τ).
Since the stream is insertion-only, both ‖x ‖1 and ‖x ‖β are non-decreasing in the stream. Therefore,
for the ratio to increase by a factor of 1 + Ω(τ), it must be that ‖x ‖1 itself increases by a factor of
at least 1 + Ω(τ). Similarly, for д(x) to decrease by a factor of 1 + ε , this would requires ‖x ‖β to
increase by a factor of 1 + Ω(τ).

In summary, if for time steps 1 ≤ t1 < t2 ≤ m of the stream we haveд(f (t2)) > (1+ε)д(f (t1)), then

it must be the case that ‖ f (t2) ‖1 > (1+Ω(τ))‖ f (t1) ‖1. Similarly, if we had д(f (t2)) < (1− ε)д(f (t1)),
then it must be the case that ‖ f (t2) ‖β > (1 + Ω(τ))‖ f (t1) ‖β . Since ‖ f (m) ‖β ≤ ‖ f (m) ‖1 ≤ Mn and
‖ · ‖1, ‖ · ‖β are monotone for insertion-only streams, it follows that each of them can increase by

a factor of (1 + Ω(τ)) at most O (1
τ

logn) = O (
log3 n (log log n+log ε−1)

ε2) times during the stream, which
completes the proof since logn = Θ(logm). �

Journal of the ACM, Vol. 69, No. 2, Article 17. Publication date: January 2022.

17:26 O. Ben-Eliezer et al.

of Theorem 7.3. The proof follows directly from an application of Lemma 3.5, using the non-
adversarial algorithms of Lemmas 7.4 and 7.5, as well as the flip number bound of Lemma 7.2. Note
that to turn the algorithms of Lemmas 7.4 and 7.5 into tracking algorithms, one must set δ < 1/m,
which yields the stated complexity. �

8 BOUNDED DELETION STREAMS

In this section, we show how our results can be used to obtain adversarially robust streaming
algorithms for the bounded-deletion model, introduced in [33]. The bounded deletion model serves
as an intermediate model between the turnstile and insertion-only model. Motivated by common
lower bounds for turnstile streams, which utilize seemingly unrealistic hard instances that insert
a large number of items before deleting nearly all of them, bounded deletion streams are possibly
a more representative model for real-world data streams. Intuitively, a bounded deletion stream is
one where the Fp moment of the stream is a 1

α
fraction of what the Fp moment would have been

had all updates been replaced with their absolute values, meaning that the stream does not delete
off an arbitrary amount of the Fp weight that it adds over the course of the stream. Formally, the
model is as follows.

Definition 8.1. Fix any p ≥ 1 and α ≥ 1. A data stream u1, . . . ,um , where ui = (ai ,Δi) ∈
[n] × {1,−1} are the updates to the frequency vector f , is said to be an Fp α-bounded deletion

stream if at every time step t ∈ [m] we have ‖ f (t) ‖pp ≥ 1
α

∑n
i=1 (

∑
t ′ ≤t :at ′=i |Δt ′ |)p .

Specifically, the α-bounded deletion property says that the Fp moment ‖ f (t) ‖pp of the stream is

at least 1
α
‖h (t) ‖pp , where h is the frequency vector of the stream with updates u ′i = (ai ,Δ

′
i) where

Δ′i = |Δi | (i.e., the absolute value stream). Note here that the model assumes unit updates, i.e., we
have |Δi | = 1 for each i ∈ [m], which can be accomplished without loss of generality with respect
to the space complexity of algorithms, by simply duplicating integral updates into unit updates.

In [33], the authors show that for α-bounded deletion streams, a factor of logn in the space com-
plexity of turnstile algorithms can be replaced with a factor of logα for many important streaming
problems. In this section, we show another useful property of bounded-deletion streams: norms in
such streams have bounded flip number. We use this fact to design adversarially robust streaming
algorithms for data streams with bounded deletions.

Lemma 8.2. Fix any p ≥ 1. The λε,m (‖ · ‖p) flip number of the Lp norm of a α-bounded deletion

stream is at most O (p α
εp logn).

Proof. Let h be the frequency vector of the stream with updates u ′i = (ai ,Δ
′
i) where Δ′i = |Δi |.

Note that h is then the frequency vector of an insertion-only stream. Now let 0 ≤ t1 < t2 < · · · <
tk ≤ m be any set of time steps such that ‖ f (ti) ‖p � (1 ± ε)‖ f (ti+1) ‖p for each i ∈ [k − 1]. Since by

definition of the α-bounded deletion property, we have ‖ f (t) ‖p ≥ 1
α 1/p ‖h (t) ‖p for each t ∈ [m], it

follows that

‖ f (ti+1) − f (ti) ‖p ≥ �
�
�
‖ f (ti+1) ‖p − ‖ f (ti) ‖p ��� ≥ ε ‖ f (ti+1) ‖p ≥

ε

α1/p
‖h (ti+1) ‖p ≥

ε

α1/p
‖h (ti) ‖p (2)

where in the last inequality we used the fact that h is an insertion-only stream. Now since the

updates to h are the absolute value of the updates to f , we also have that ‖h (ti+1) − h (ti) ‖pp ≥
‖ f (ti+1) − f (ti) ‖pp ≥ εp

α
‖h (ti) ‖pp . Thus

‖h (ti+1) ‖pp = ‖h (ti) + (h (ti+1) − h (ti))‖pp ≥ ‖h (ti) ‖pp + ‖h (ti+1) − h (ti) ‖pp ≥
(
1 +

εp

α

)
‖h (ti) ‖pp (3)

Journal of the ACM, Vol. 69, No. 2, Article 17. Publication date: January 2022.

A Framework for Adversarially Robust Streaming Algorithms 17:27

where in the second inequality, we used the fact that ‖X + Y ‖pp ≥ ‖X ‖
p
p + ‖Y ‖

p
p for non-negative

integral vectors X ,Y when p ≥ 1. Thus ‖h (ti+1) ‖pp must increase by a factor of (1 + εp/α) from

‖h (ti) ‖pp whenever ‖ f (ti) ‖p � (1 ± ε)‖ f (ti+1) ‖p . Since ‖0‖pp = 0, and ‖h (m) ‖pp ≤ Mpn ≤ ncp for

some constant c > 0, it follows that this can occur at most O (p α
εp logn) many times. Thus k =

O (p α
εp logn), which completes the proof. �

We now use our computation paths technique of Lemma 3.6, along with the space optimal turn-
stile Fp estimation algorithm of [39], to obtain adversarially robust algorithms for α-bounded dele-
tion streams. Specifically, we show that we can estimate the Fp moment of a bounded deletion
stream robustly. We remark that once F2 moment estimation can be done, one can similarly solve
the heavy hitters problem in the robust model using a similar argument as in Section 6, except
without the optimization used within the proof of Theorem 6.5 which restarts sketches on a suffix
of the stream. The resulting space would be precisely an (α

ε
logn)-factor larger than the space

stated in Theorem 6.5.

Theorem 8.3. Fix p ∈ [1, 2], α ≥ 1, and any constantC > 1. Then there is an adversarially robust

Fp estimation algorithm for α-bounded deletion streams which, with probability 1 − n−C , returns at

each time step t ∈ [m] an estimate Rt such that Rt = (1± ε)‖ f (t) ‖pp . The space used by the algorithm

is O (αε−(2+p) log3 n).

Proof. We use the turnstile algorithm of [39], which gives an estimate Rt = (1 ± ε)‖ f (t) ‖pp at

a single point t ∈ [m] with probability 1 − δ , using O (ε−2 logn logδ−1) bits of space. Then for
any δ0 ∈ (0, 1), we can run this algorithm with failure parameter δ = δ0/poly(m), and union

bound over all steps, to obtain that Rt = (1 ± ε)‖ f (t) ‖pp at all time steps t ∈ [m] with probability

1 − δ0. Thus, this gives a (ε,δ0)-strong Fp tracking algorithm using O (ε−2 logn log(n/δ0)) bits of
space. The theorem then follows from applying Lemma 3.6, setting the failure probability to be
n−C , along with the flip number bound of Lemma 8.2. �

9 ADVERSARIAL ATTACK AGAINST THE AMS SKETCH

It was shown by [29] that linear sketches can be vulnerable to adaptive adversarial attacks in the
turnstile model, where both insertions and deletions are allowed (see Section 1.2). In this section,
we demonstrate that algorithms based on linear sketching can in some cases be susceptible to
attacks even in the insertion-only model; Specifically, we show this for the well known AMS sketch
[5] for estimating the L2 norm of a data stream. To this end, we describe an attack fooling the
AMS sketch into outputting a value which is not a good approximation of the norm ‖ f ‖22 of the
frequency vector. Our attack provides an even stronger guarantee: for any r ≥ 1 and an AMS
sketch with r/ε2 rows, our adversary needs to only create O (r) adaptive stream updates before it
can fool the AMS sketch into outputting an incorrect result.

We first recall the AMS sketch for estimating the L2 norm. The AMS sketch generates (implic-
itly) a random matrix A ∈ Rt×n such that the entries Ai, j ∼ {−1, 1} are i.i.d. Rademacher.10 The

algorithm stores the sketchAf (j) at each time step j, and since the sketch is linear it can be updated

throughout the stream: Af (j+1) = Af (j) +A · ei j+1 Δj+1 where (i j+1,Δj+1) is the j + 1-st update. The

estimate of the sketch at time j is 1
t
‖Af (j) ‖22 , which is guaranteed to be with good probability a

(1 ± ε) estimate of ‖ f (j) ‖22 in non-adversarial streams if t = Θ(ε−2).

10In fact, the AMS sketch works even if the entries within a row of A are only 4-wise independent. Here, we show an attack

against the AMS sketch if it is allowed to store a fully independent sketch A.

Journal of the ACM, Vol. 69, No. 2, Article 17. Publication date: January 2022.

17:28 O. Ben-Eliezer et al.

We now describe our attack. Let S be a t × n AMS sketch. Equivalently, Si, j is i.i.d. uniformly

distributed in {−t−1/2, t−1/2}, and the estimate of AMS is ‖S f (j) ‖22 at the jth step. The protocol for
the adversary is as follows. In the following, we let ei ∈ Rn denote the standard basis vector which
is zero everywhere except the ith coordinate, where it has the value 1.

ALGORITHM 3: Adversary for AMS Sketch

1 w ← C ·
√
t · e1

2 for i = 2, . . . ,m do

3 old← ‖Sw ‖22
4 w ← w + ei

5 new← ‖Sw ‖22
6 if new − old < 1 then

7 w ← w + ei

8 end

9 else if new − old = 1 then

10 with probability 1/2, set w ← w + ei

11 end

12 end

Note that the vector w in Algorithm 3 is always equal to the current frequency vector of the

stream, namelyw = f (j) after the jth update. Note that the Algorithm 3 can be implemented by an

adversary who only is given the estimate ‖Sw ‖22 = ‖S f (j) ‖22 of the AMS sketch after every step j in

the stream. To see this, note that the adversary begins by inserting the first item (i1,Δ1) = (1,C ·
√
t)

for a sufficiently large constant C . Next, for i = 2, . . . ,n, it inserts the item i ∈ [n] once if doing
so increases the estimate of AMS by more than 1. If the estimate of AMS is increased by less than
1, it inserts the item i twice (i.e., it inserts an update (i, 2) ∈ [n] × Z). Lastly, if inserting the item
i ∈ [n] increases the estimate of AMS by exactly 1, the adversary chooses to insert i ∈ [n] once
with probability 1/2, otherwise it inserts i ∈ [n] twice.

We now claim that at the end of a stream ofm = O (t) updates, with good probability ‖S f (m) ‖22 �
(1 ± ε)‖ f (m) ‖22 (note that, at the end of the stream, w = f (m)). In fact, we show that regardless of
the number of rows t in the AMS sketch, we force the AMS to give a solution that is not even a
2-approximation.

Theorem 9.1. Let S ∈ Rt×n be an AMS sketch (i.i.d. Rademacher matrix scaled by t−1/2), where

1 ≤ t < n/c for some constant c . Suppose further that the adversary performs the adaptive updates as

described in Algorithm 3. Then with probability 9/10, by themth stream update for somem = O (t), the

AMS estimate ‖S f (m) ‖22 of the norm ‖ f (m) ‖22 of the frequency vector f defined by the stream fails to be

a (1± 1/2) approximation of the true norm ‖ f (m) ‖22 . Specifically, we will have ‖S f (m) ‖22 <
1
2 ‖ f

(m) ‖22 .

Proof. For j = 2, 3 . . . we say that the jth step of Algorithm 3 is the step in the for loop where
the parameter i is equal to j, and we define the first step to just be the state of the stream after line
1 of Algorithm 3. Letw i be the state of the frequency vector at the end of the ith step of the for loop
in Algorithm 3, let yi = Sw i be the AMS sketch at this step, and let si = ‖Sw i ‖22 be the estimate

of AMS at the same point. Note that we have w1 = C ·
√
t · e1 for a sufficiently large constant C ,

and thus s1 = C2t . That is, already on the first step of the algorithm we have ‖w1‖22 = C2t , and

moreover since the stream is insertion-only, we always have ‖w i ‖22 ≥ C2t . Thus, it suffices to show

that with good probability, at some time step i ≥ 2 we will have si < C2t/2.

Journal of the ACM, Vol. 69, No. 2, Article 17. Publication date: January 2022.

A Framework for Adversarially Robust Streaming Algorithms 17:29

First, note that at any step i = 2, 3, . . . , if we add ei+1 to the stream once, we have si+1 =

‖yi + Sei+1‖22 =
∑t

j=1 ((yi
j)

2 + 2yi
jS j,i+1 + 1/t) = si + 1 + 2

∑t
j=1 y

i
jS j,i+1. If we add ei+1 twice, we

have si+1 = ‖yi + 2Sei+1‖22 = si + 4 + 4
∑t

j=1 y
i
jS j,i+1. By definition of the algorithm, we choose

to insert ei+1 twice if ‖yi + Sei+1‖22 − si = 1 + 2
∑t

j=1 y
i
jS j,i+1 < 1, or more compactly whenever∑t

j=1 y
i
jS j,i+1 < 0. If

∑t
j=1 y

i
jS j,i+1 > 0, we insert ei+1 only once. Finally, if

∑t
j=1 y

i
jS j,i+1 = 0, we flip

an unbiased coin, and choose to insert ei+1 either once or twice with equal probability 1/2. Now
observe that the random variable

∑t
j=1 y

i
jS j,i+1 is symmetric, since for any fixed yi the S j,i+1’s are

symmetric and independent. Thus, we have that

E

⎡
⎢
⎢
⎢
⎢
⎢
⎣

�
�
�
�
�
�
�

t∑
j=1

yi
jS j,i+1

�
�
�
�
�
�
�

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= E

⎡
⎢
⎢
⎢
⎢
⎢
⎣

t∑
j=1

yi
jS j,i+1 | Sei+1 inserted once

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= −E
⎡
⎢
⎢
⎢
⎢
⎢
⎣

t∑
j=1

yi
jS j,i+1 | Sei+1 inserted twice

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (4)

Now recall that the vector S∗,i+1 given by the (i + 1)-st column of S is just an i.i.d. Rademacher

vector scaled by 1/
√
t . Thus, by Khintchine’s inequality [28], we have that E[|∑t

j=1 y
i
jS j,i+1 |] =

1√
t
· α · ‖yi ‖2 = α

√
si/
√
t for some absolute constant α > 0 (in fact, α ≥ 1/

√
2 suffices by Theorem

1.1 of [28]). Putting these pieces together, the expectation of the estimate of AMS is then as follows:

E[si+1] =
1

2

(
si + 1 + 2α

√
si√
t

)
+

1

2

(
si + 4 − 4α

√
si√
t

)

= si + 5/2 − α
√
si/t

≤ si + 5/2 −
√
si/2t

, (5)

where again the last line holds using the fact that α ≥ 1/
√

2. Thus E[si+1] = E[si]+5/2−E[
√
si/2t].

First, suppose there exists some i ≤ C2t +2 such that E[
√
si] < C

√
t/200. This implies by definition

that
∑

j

√
j · Pr[si = j] < C

√
t/200, thus√

C2t/2 · Pr[si ≥ C2t/2] ≤
∑

j≥C2t/2

√
j · Pr[si = j] <

√
C2t/200, (6)

which implies that Pr[si ≥ C2t/2] ≤ 1/10. Thus, at step i , we have Pr[si < C2t/2] > 9/10, and
thus by time step i we have fooled the AMS sketch with probability at least 9/10. Thus, we can
assume that for all i = 2, 3, . . . , (C2t + 2) we have E[

√
si] ≥ C

√
t/200. Setting C > 200, we have

that E[si+1] < E[si]−1 for all steps i = 2, 3, . . . , (C2t +2) However, since s1 = C
2t , this implies that

E[sC2t+2] < −1, which is impossible since sj is always the value of a norm. This is a contradiction,
which implies that such an i with i ≤ C2t +2 and Pr[si ≥ C2t/2] ≤ 1/10 must exist, demonstrating
that we fool the AMS sketch by this step with probability 9/10, which completes the proof. �

10 OPTIMAL DISTINCT ELEMENTS VIA CRYPTOGRAPHIC ASSUMPTIONS

Estimating the number of distinct elements (F0-estimation) in a data stream is a fundamental prob-
lem in databases, network traffic monitoring, query optimization, data mining, and more. After
a long line of work, [40, 52] settled space (and time) complexities of F0-estimation by giving an
algorithm using O (ε−2 + logn) bits of space (with constant worst-case update time). The tracking
version of this algorithm (where it outputs a correct estimate at each time step) takes memory
O (ε−2 (log ε−1 + log logn) + logn) bits and is also optimal [11].

Journal of the ACM, Vol. 69, No. 2, Article 17. Publication date: January 2022.

17:30 O. Ben-Eliezer et al.

However, these results only hold in the (standard) static setting. We show that using crypto-
graphic tools (pseudorandom functions), we can transform this algorithm, using the same amount
of memory to be robust in the adversarial setting as well, where the adversary is assumed to be
computationally bounded (as opposed to our other results which have no assumptions on the ad-
versary whatsoever).

The transformation actually works for a large class of streaming algorithms. Namely, any algo-
rithm such that when given an element that appeared before, does not change its state at all (with
probability 1). Since the F0 tracking algorithm of [11] has this property, we can black-box apply
our results to this algorithm.

First, we show how this transformation works assuming the existence of a truly random func-
tion, where the streaming algorithm has access to the function without needing to store it explicitly
(the memory is free). This is known as the random oracle model. The model is appealing since we
have different heuristic functions (e.g., SHA-256) that behave, as far as we can tell in practice, like
random functions. Moreover, there is no memory cost when using them in an implementation,
which is very appealing from a practical perspective. Nevertheless, we discuss how to implement
such a function with cryptographic tools (e.g., pseudorandom functions) while storing only a small
secret key in the memory.

Theorem 10.1 (Distinct Elements by Cryptographic Assumptions). In the random oracle

model, there is an F0-estimation (tracking) streaming algorithm in the adversarial setting, that for an

approximation parameter ε usesO (ε−2 (log 1/ε + log logn)+ logn) bits of memory, and succeeds with

probability 3/4.

Moreover, given an exponentially secure pseudorandom function, and assuming the adversary has

bounded running time of nc , where c is fixed, the random oracle can be replaced with a concrete

function and the total memory is O (ε−2 (log 1/ε + log logn) + c logn).

Proof. For simplicity, in the following proof, we assume that we have a random permutation.
We note that the proof with a random function is exactly the same conditioned on not having any
collisions. If the random function maps the universe to a large enough domain (say of size at least
m2) then there will be no collisions with high probability. Thus, it suffices to consider permutations.

The solution is inspired by the work of [49] (which had a similar adaptive issue in the context
of Bloom filters). Let Π be a truly random permutation, and let S be a tracking steaming algo-
rithm with parameter ε . Let L(ε,n) be the memory consumption of the algorithm. We construct
an algorithm S ′ that works in the adversarial setting as follows. Upon receiving an element x the
algorithm S ′ computes x ′ = Π(x) and feeds it to S . The output of S ′ is exactly the output of S .
Notice that applying Π to the stream does not change the number of distinct elements.

We sketch the proof. Assume towards a contradiction that there is adaptive adversary A′ for S ′.
Consider the adversary A′ at some point in time t , where the stream is currently x1, . . . ,xt . It has
two options: (i) it can choose an element xi , where i ∈ [t] that appeared before, or (ii) it could
choose a new element x∗ � {x1, . . . ,xi }. Since the state of S ′ does not change when receiving
duplicate items, and also does not change the number of distinct elements, option (i) has no effect
on the success probability of A′. Thus, in order to gain a chance of winning, A′ must submit a new
query. Thus, we can assume without loss of generality that A′ submits only distinct elements.

For such an adversary A′ let Dt be the distribution over states of S ′ at time t . Let D ′t be the
distribution over states of S ′ for the fixed sequence 1, 2, . . . , t . We claim that Dt ≡ D ′t (identical
distributions) for every t ∈ [n]. We show this by induction. The first query is non-adaptive, denote
it by x1. Then, since Π is a random permutation, we get that Π(1) ≡ Π(x1) which is what is fed to
S . Thus, the two distribution are identical. Assume it holds for t − 1. Consider the next query of

Journal of the ACM, Vol. 69, No. 2, Article 17. Publication date: January 2022.

A Framework for Adversarially Robust Streaming Algorithms 17:31

the adversary (recall that we assumed that this is a new query). Then, for any xt (that has not been
previously queried by Π) the distribution of Π(xt) ≡ Π(t), and therefore we get that Dt ≡ D ′t .

Given the claim above, we get thatA′ is equivalent to a static adversaryA that outputs 1, 2, . . . ,k
for some k ∈ [n]. However, the choice of k might be adaptive. We need to show that S ′ works for
all k simultaneously. Here, we use the fact that S was a tracking algorithm (and thus also S ′),
which means that S ′ succeeds on every time step. Thus, for the stream 1, 2, . . . ,m, the algorithm
S ′ succeeds at timestamp k , which consists of k distinct elements. Thus, if there exists an adaptive
choice of k that would make S ′ fail, then there would exist a point in time, k , such that S ′ fails at
1, . . . ,k . Since S is tracking, such a point does not exist (w.h.p.).

For the second part of the theorem, we note that we can implement the random function using an
exponentially secure pseudorandom function (see [25] for the precise definition and discussion).
For a key K of size λ, the pesudorandom function FK (·) looks random to an adversary that has
oracle access to FK (·) and runs in time at most 2γ λ for some constant γ > 0. Let A be an adversary
that runs in time at most nc . Then, we set O (λ = 1/γ · c · logn) and get that A cannot distinguish
between FK (·) and the truly random function except when a negligible probability event occurs
(i.e., the effect on δ is negligible and hidden in constants). Indeed, if A would be able to succeed
against S ′ when using the oracle FK (·), but, as we saw, it does not succeed when using a truly
random function, then A′ could be used to break the security of the pseudorandom function.

To complete the proof, we note that the only property of A we needed was that when given an
element in the stream that has appeared before, A does not change its state at all. This property
holds for many F0 estimation algorithms, such as the one-shot F0 algorithm of [40], and the F0

tracking algorithm of [11]. Thus we can simply use the F0 tracking algorithm of [11], which results
in the space complexity as stated in the theorem. �

Remark. There are many different ways to implement such a pseudorandom function with expo-
nential security and concrete efficiency. First, one could use heuristic (and extremely fast) functions
such as AES or SHA256 (see also [49] for a discussion on fast implementations of AES in the con-
text of hash functions). Next, one can assume that the discrete logarithm problem (see [44] for the
precise definition) over a group of size q is exponentially hard. Indeed, the best-known algorithm
for the problem runs in time O (

√
q). Setting q ≥ 2λ gets us the desired property for γ = 1/2.

ACKNOWLEDGMENTS

The authors wish to thank Arnold Filtser for invaluable feedback, and the anonymous reviewers
for many helpful suggestions. This work was done in part in the Simons Institute for the Theory
of Computing.

REFERENCES

[1] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. 2012. Analyzing graph structure via linear measurements. In

Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM, 459–467.

[2] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. 2012. Graph sketches: Sparsification, spanners, and subgraphs.

In Proceedings of the 31st ACM SIGMOD-SIGACT-SIGAI symposium on Principles of Database Systems. ACM, 5–14.

[3] Yuqing Ai, Wei Hu, Yi Li, and David P. Woodruff. 2016. New characterizations in turnstile streams with applications. In

Proceedings of the 31st Conference on Computational Complexity. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

[4] Noga Alon, Omri Ben-Eliezer, Yuval Dagan, Shay Moran, Moni Naor, and Eylon Yogev. 2021. Adversarial laws of large

numbers and optimal regret in online classification. In Proceedings of the 53rd Annual ACM SIGACT Symposium on

Theory of Computing. ACM, 447–455.

[5] Noga Alon, Yossi Matias, and Mario Szegedy. 1999. The space complexity of approximating the frequency moments.

Journal of Computer and System Sciences 58, 1 (1999), 137–147.

[6] Sepehr Assadi, Yu Chen, and Sanjeev Khanna. 2019. Sublinear algorithms for (Δ + 1) vertex coloring. In Proceedings

of the 2019 Annual ACM-SIAM Symposium on Discrete Algorithms. 767–786.

Journal of the ACM, Vol. 69, No. 2, Article 17. Publication date: January 2022.

17:32 O. Ben-Eliezer et al.

[7] Idan Attias, Edith Cohen, Moshe Shechner, and Uri Stemmer. 2021. A framework for adversarial streaming via differ-

ential privacy and difference estimators. arXiv:2107.14527. Retrieved from https://arxiv.org/abs/2107.14527.

[8] Ziv Bar-Yossef, Thathachar S. Jayram, Ravi Kumar, and D. Sivakumar. 2004. An information statistics approach to data

stream and communication complexity. Journal of Computer and System Sciences 68, 4 (2004), 702–732.

[9] Omri Ben-Eliezer, Talya Eden, and Krzysztof Onak. 2021. Adversarially robust streaming via dense–Sparse trade-offs.

arXiv:2109.03785 (2021). Retrieved from https://arxiv.org/abs/2109.03785.

[10] Omri Ben-Eliezer and Eylon Yogev. 2020. The adversarial robustness of sampling. In Proceedings of the 39th ACM

SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems. ACM, 49–62.

[11] Jarosław Błasiok. 2018. Optimal streaming and tracking distinct elements with high probability. In Proceedings of the

29th Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM, 2432–2448.

[12] Jarosław Błasiok, Jian Ding, and Jelani Nelson. 2017. Continuous monitoring of Lp norms in data streams. In Proceed-

ings of the Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. 32:1–32:13.

[13] Vladimir Braverman, Stephen R. Chestnut, Nikita Ivkin, Jelani Nelson, Zhengyu Wang, and David P. Woodruff. 2017.

BPTree: An �2 heavy hitters algorithm using constant memory. In Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI

Symposium on Principles of Database Systems. ACM, 361–376.

[14] Vladimir Braverman, Avinatan Hassidim, Yossi Matias, Mariano Schain, Sandeep Silwal, and Samson Zhou. 2021.

Adversarial robustness of streaming algorithms through importance sampling. arXiv:2106.14952. Retrieved from

https://arxiv.org/abs/2106.14952.

[15] Amit Chakrabarti, Prantar Ghosh, and Manuel Stoeckl. 2021. Adversarially robust coloring for graph streams.

arXiv:2109.11130. Retrieved from https://arxiv.org/abs/2109.11130.

[16] Amit Chakrabarti and Sagar Kale. 2016. Strong fooling sets for multi-player communication with applications to

deterministic estimation of stream statistics. In Proceedings of the IEEE 57th Annual Symposium on Foundations of

Computer Science. 41–50.

[17] Moses Charikar, Kevin Chen, and Martin Farach-Colton. 2004. Finding frequent items in data streams. Theoretical

Computer Science 312, 1 (2004), 3–15.

[18] Peter Clifford and Ioana Cosma. 2013. A simple sketching algorithm for entropy estimation over streaming data. In

Proceedings of the 16th International Conference on Artificial Intelligence and Statistics. 196–206.

[19] David J. DeWitt, Jeffrey F. Naughton, Donovan A. Schneider, and S. Seshadri. 1992. Practical skew handling in parallel

joins. In Proceedings of the 18th International Conference on Very Large Data Bases. 27–40.

[20] Cynthia Dwork, Moni Naor, Toniann Pitassi, and Guy N. Rothblum. 2010. Differential privacy under continual obser-

vation. In Proceedings of the 42nd ACM Symposium on Theory of Computing. ACM, 715–724.

[21] Sumit Ganguly. 2009. Deterministically estimating data stream frequencies. In Proceedings of the International Confer-

ence on Combinatorial Optimization and Applications. Springer, 301–312.

[22] Sumit Ganguly and David P. Woodruff. 2018. High probability frequency moment sketches. In Proceedings of the 45th

International Colloquium on Automata, Languages, and Programming. 58:1–58:15.

[23] Anna C. Gilbert, Brett Hemenway, Atri Rudra, Martin J. Strauss, and Mary Wootters. 2012. Recovering simple signals.

In Proceedings of the 2012 Information Theory and Applications Workshop. IEEE, 382–391.

[24] Anna C. Gilbert, Brett Hemenway, Martin J. Strauss, David P. Woodruff, and Mary Wootters. 2012. Reusable low-error

compressive sampling schemes through privacy. In Proceedings of the 2012 IEEE Statistical Signal Processing Workshop.

IEEE, 536–539.

[25] Oded Goldreich. 2005. Foundations of cryptography - A primer. Foundations and Trends in Theoretical Computer Science

1, 1 (2005), 1–116.

[26] Shafi Goldwasser, Ofer Grossman, Sidhanth Mohanty, and David P. Woodruff. 2020. Pseudo-deterministic streaming.

In Proceedings of the 11th Innovations in Theoretical Computer Science Conference. Schloss Dagstuhl - Leibniz-Zentrum

für Informatik, 79:1–79:25.

[27] I. J. Good. 1989. C332. Surprise indexes and p-values. Journal of Statistical Computation and Simulation 32, 1–2 (1989),

90–92.

[28] Uffe Haagerup. 1981. The best constants in the Khintchine inequality. Studia Mathematica 70, 3 (1981), 231–283.

[29] Moritz Hardt and David P. Woodruff. 2013. How robust are linear sketches to adaptive inputs? In Proceedings of the

45th Annual ACM Symposium on Theory of Computing. 121–130.

[30] Nicholas J. A. Harvey, Jelani Nelson, and Krzysztof Onak. 2008. Sketching and streaming entropy via approximation

theory. In Proceedings of the 49th Annual IEEE Symposium on Foundations of Computer Science. 489–498.

[31] Avinatan Hassidim, Haim Kaplan, Yishay Mansour, Yossi Matias, and Uri Stemmer. 2020. Adversarially robust stream-

ing algorithms via differential privacy. In Proceedings of the Advances in Neural Information Processing Systems.

[32] Rajesh Jayaram. 2021. Sketching and Sampling Algorithms for High-Dimensional Data. Ph.D. Dissertation. Carnegie

Mellon University, Pittsburgh, PA.

Journal of the ACM, Vol. 69, No. 2, Article 17. Publication date: January 2022.

https://arxiv.org/abs/2107.14527
https://arxiv.org/abs/2109.03785
https://arxiv.org/abs/2106.14952
https://arxiv.org/abs/2109.11130

A Framework for Adversarially Robust Streaming Algorithms 17:33

[33] Rajesh Jayaram and David P. Woodruff. 2018. Data streams with bounded deletions. In Proceedings of the 37th ACM

SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems. ACM, 341–354.

[34] Rajesh Jayaram and David P. Woodruff. 2019. Towards optimal moment estimation in streaming and distributed mod-

els. In Proceedings of the Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques.

29:1–29:21.

[35] Thathachar S. Jayram and David P. Woodruff. 2009. The data stream space complexity of cascaded norms. In Proceed-

ings of the 50th Annual IEEE Symposium on Foundations of Computer Science. 765–774.

[36] Thathachar S. Jayram and David P. Woodruff. 2013. Optimal bounds for Johnson-Lindenstrauss transforms and stream-

ing problems with subconstant error. ACM Transactions on Algorithms 9, 3 (2013), 26.

[37] John Kallaugher and Eric Price. 2020. Separations and equivalences between turnstile streaming and linear sketching.

In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing. 1223–1236.

[38] Akshay Kamath, Eric Price, and David P. Woodruff. 2021. A simple proof of a new set disjointness with applications

to data streams. In Proceedings of the 36th Computational Complexity Conference. Schloss Dagstuhl–Leibniz-Zentrum

fuer Informatik.

[39] Daniel M. Kane, Jelani Nelson, and David P. Woodruff. 2010. On the exact space complexity of sketching and streaming

small norms. In Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms. SODA, 1161–1178.

[40] Daniel M. Kane, Jelani Nelson, and David P. Woodruff. 2010. An optimal algorithm for the distinct elements problem.

In Proceedings of the 29th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems. ACM, 41–52.

[41] Haim Kaplan, Yishay Mansour, Kobbi Nissim, and Uri Stemmer. 2021. Separating adaptive streaming from oblivious

streaming using the bounded storage model. In Proceedings of the Advances in Cryptology. Tal Malkin and Chris Peikert

(Eds.). Springer International Publishing, Cham, 94–121.

[42] Yi Li, Huy L. Nguyen, and David P. Woodruff. 2014. Turnstile streaming algorithms might as well be linear sketches.

In Proceedings of the 46th Annual ACM Symposium on Theory of Computing. 174–183.

[43] Yi Li and David P. Woodruff. 2013. A tight lower bound for high frequency moment estimation with small error. In Pro-

ceedings of the Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. Springer,

623–638.

[44] Kevin S. McCurley. 1990. The discrete logarithm problem. In Proceedings of Symposia in Applied Mathematics, Vol. 42.

49–74.

[45] Boaz Menuhin and Moni Naor. 2021. Keep that card in mind: Card guessing with limited memory. arXiv:2107.03885.

Retrieved from https://arxiv.org/abs/2107.03885.

[46] Ilya Mironov, Moni Naor, and Gil Segev. 2011. Sketching in adversarial environments. SIAM Journal of Computing 40,

6 (2011), 1845–1870.

[47] Jayadev Misra and David Gries. 1982. Finding repeated elements. Science of Computer Programming 2, 2 (1982), 143–

152.

[48] S. Muthukrishnan. 2005. Data streams: Algorithms and applications. Foundations and Trends in Theoretical Computer

Science 1, 2 (2005), 117–236.

[49] Moni Naor and Eylon Yogev. 2015. Bloom filters in adversarial environments. In Proceedings of the Advances in Cryp-

tology 35th Annual Cryptology Conference. 565–584.

[50] Jeanette P. Schmidt, Alan Siegel, and Aravind Srinivasan. 1995. Chernoff–Hoeffding bounds for applications with

limited independence. SIAM Journal on Discrete Mathematics 8, 2 (1995), 223–250.

[51] Joachim von zur Gathen and Jürgen Gerhard. 2013. Modern Computer Algebra (3rd ed.). Cambridge University Press.

[52] David Woodruff. 2004. Optimal space lower bounds for all frequency moments. In Proceedings of the 15th Annual

ACM-SIAM Symposium on Discrete Algorithms. 167–175.

[53] David P. Woodruff and Samson Zhou. 2021. Adversarially robust and sliding window streaming algorithms without

the overhead. arXiv:2011.07471. Retrieved from https://arxiv.org/abs/2011.07471.

Received December 2020; revised October 2021; accepted November 2021

Journal of the ACM, Vol. 69, No. 2, Article 17. Publication date: January 2022.

https://arxiv.org/abs/2107.03885
https://arxiv.org/abs/2011.07471

