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Abstract

The Millimeter-wave Intensity Mapping Experiment (mmIME) recently reported a detection of excess spatial
fluctuations at a wavelength of 3 mm, which can be attributed to unresolved emission of several CO rotational
transitions between z∼ 1 and 5. We study the implications of these data for the high-redshift interstellar medium
using a suite of state-of-the-art semianalytic simulations that have successfully reproduced many other
submillimeter line observations across the relevant redshift range. We find that the semianalytic predictions are
mildly in tension with the mmIME result, with a predicted CO power ∼3.5σ below what was observed. We explore
some simple modifications to the models that could resolve this tension. Increasing the molecular gas abundance at
the relevant redshifts to ∼108MeMpc−3, a value well above that obtained from directly imaged sources, would
resolve the discrepancy, as would assuming a CO–H2 conversion factor αCO of ∼1.5MeK−1 (km s−1)−1 pc2, a
value somewhat lower than is commonly assumed. We go on to demonstrate that these conclusions are quite
sensitive to the detailed assumptions of our simulations, highlighting the need for more careful modeling efforts as
more intensity mapping data become available.

Unified Astronomy Thesaurus concepts: Galaxy evolution (594); Molecular gas (1073); CO line emission (262);
Surveys (1671)

1. Introduction

As the primary fuel for star formation, cold molecular gas
plays a critical role in galaxy evolution. From the first
detections of molecular gas outside of our own Milky Way
(Rickard et al. 1975, 1977; Solomon & de Zafra 1975), there
has been an explosion of observations targeting extragalactic
molecular gas (see reviews by Carilli & Walter 2013;
Combes 2018; Tacconi et al. 2020). Paralleling and informing
similar observations of cosmic star formation (Madau &
Dickinson 2014), a consensus picture has emerged of the
cosmic molecular gas history, with the overall abundance of
molecular gas rising to a peak at redshift z∼ 2 before declining
to the present day (see, e.g., Walter et al. 2020).

However, this wealth of observational data share one key
limitation: they can only access sources bright enough to detect
individually, usually through their dust continuum or rotational
transitions of carbon monoxide. Molecular gas surveys to date
have generally applied one of two strategies, either directly
targeting a sample of galaxies selected based on other
observations (e.g., Tacconi et al. 2013; Freundlich et al.
2019) or blindly scanning a field and reporting candidates
above a certain detection threshold (e.g., Walter et al. 2014;
Pavesi et al. 2018; González-López et al. 2019). Both of these
methods will by their nature detect only a limited number of
sources, and those sources will by definition be biased toward
the brightest objects, which may or may not be representative
of the full population.

Recently, a third observational technique known as line
intensity mapping (LIM) has garnered attention as a complement
to these approaches. Intensity mapping does not aim to directly
image individual objects but instead seeks to make a statistical
observation of the aggregate emission from many unresolved
objects (see Kovetz et al. 2017, for a review). By targeting
spectrally narrow line emission, the target redshift can be finely
selected by modifying the observing frequency, enabling
tomographic measurements. For molecular gas studies, LIM
observations of CO lines are sensitive to fainter galaxies
inaccessible to direct imaging, allowing population-wide exam-
ination of this crucial interstellar medium (ISM) component. First
discussed in Righi et al. (2008), this application of LIM has
garnered significant interest (Lidz et al. 2011; Pullen et al. 2013;
Breysse et al. 2014, 2016; Breysse & Rahman 2017; Fonseca
et al. 2017; Padmanabhan 2018; Breysse & Alexandroff 2019;
Chung et al. 2019; Moradinezhad Dizgah & Keating 2020), with a
number of experimental efforts planned or in progress (Li et al.
2016; Lagache 2018; Stacey et al. 2018; Sun et al. 2021; Cataldo
et al. 2021). Two of these experiments, the CO Power Spectrum
Survey (Keating et al. 2016) and the Millimeter Intensity Mapping
Experiment (mmIME; Keating et al. 2020, hereafter K20), have
reported 2σ and 4σ detections of unresolved CO emission,
respectively.
Interpreting the results of CO observations, whether direct or

LIM, is a challenging modeling task. The conversion factor
αCO between CO luminosity and molecular gas mass is known
to depend on metallicity, density, and the level of excitation of
the CO-emitting gas (Bolatto et al. 2013; Tacconi et al. 2020).
Thus, the molecular abundance inferred from a measurement
depends sensitively on modeling assumptions. The LIM
measurements add an extra level of complexity to the modeling
task. The very thing that gives LIM surveys their sensitivity to
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faint populations, that they do not seek to detect individual
sources, means that LIM observations are only able to measure
quantities integrated over the entire galaxy population. Thus, in
addition to modeling the CO-gas conversion for individual
sources, a LIM measurement also needs to model how that
conversion is distributed across all galaxies, including those too
faint to detect individually.

In this work, we study how these modeling choices affect the
interpretation of modern CO intensity maps. We will focus on the
aforementioned mmIME survey as a test case. A detection of
aggregate CO emission at a wavelength of 3 mm using data from
the Atacama Large Millimeter/submillimeter Array (ALMA) and
the Atacama Compact Array (ACA) was reported by K20. This
observed wavelength contains emission from several CO
transitions at different redshifts; thus, the claimed detection
contains the sum of contributions from each of these lines.
Then, K20 made use of several scaling relations from the literature
to convert their CO detection into a cosmic molecular gas history,
finding an abundance on the high end of but consistent with
results from direct-imaging surveys. As we will show, these
results are quite sensitive to the details of the assumed scaling
relations. The relations used in K20 are all themselves calibrated
to relatively small populations of directly detected galaxies,
coming from a variety of observed bands and redshifts. They are
all empirical in nature; thus, there is no underlying physics behind
the various steps in the conversion. Here we will seek to place this
interpretation on a more physically grounded footing by employ-
ing a semianalytic model (SAM) of galaxy evolution combined
with a line spectral synthesis code.

The primary observational quantity reported by the mmIME
survey is the total spectral shot power Ĩs

2
, which can be directly

related to integrals over the CO luminosity function. The observed
emission comes from several overlapping CO transitions at
different redshifts, so one must model the redshift distribution of
the CO transitions to assign a fraction of the total power to each
line. Once this is done, each line must be converted to the
equivalent CO(1–0) luminosity and, finally, to a molecular gas
abundance through an assumed αCO value. Each step must
include an assumption about the mass dependence of the relevant
conversion. As the mmIME result provides only a single number
to constrain this wide model space, the approach taken in K20 is
to effectively assume that the shape of all of these distributions is
known and fit an overall amplitude to match the observed shot
power. We will follow a similar procedure, but we will obtain all
of the relevant distributions and scalings from the suite of SAMs
described in Yang et al. (2021, hereafter Y20). The SAM
procedure seeks to predict CO luminosity in a self-consistent,
physically motivated fashion and is calibrated to a wide variety of
empirical measurements of multiple lines. This should give them
broader applicability and more robustness than any single
empirical scaling. We use a two-step process consisting of a
galaxy evolution SAM developed by the Santa Cruz group
(Somerville et al. 2015) with an additional subgrid model that
predicts submillimeter line emission based on galaxy properties
(Popping et al. 2019a). We will refer to this suite of models as the
“SAM+submillimeter SAM.”

Our primary result is a modest tension between the predictions
of the SAMs and the overall power detected by mmIME. While
the scalings used in K20 for LCO predict a value of Ĩs

2 quite close
to the mmIME measurement, the raw SAM+submillimeter SAM
prediction is lower by an order of magnitude, corresponding to an
∼3.5σ discrepancy. We find that, given this tension, the same

amplitude-scaling procedure applied in K20 but with an SAM
+submillimeter SAM–informed scaling yields a correspondingly
high cosmic molecular gas abundance. Taken at face value, this
would suggest that the LIM survey sees dramatically more
molecular gas in the universe than has been mapped directly.4

This result is not outside the realm of possibility, as LIM
surveys by their nature are sensitive to more emission than
traditional surveys, but one must be careful in drawing such a
strong conclusion from limited data. To demonstrate this, we
go on to examine how varying the model assumptions affects
the molecular gas estimates. We find that the tension can be
reduced by assuming a conventional molecular gas history and
reducing the average αCO value below what is generally
assumed for high-redshift galaxies. Similarly, while it does not
remove the tension in overall amplitude, changing the assumed
density profile of gas clouds in the SAM+submillimeter SAM
lowers the amount of molecular gas needed to resolve the
tension back down near the level obtained by the original
mmIME analysis. Finally, we substitute back in various pieces
of the empirical scalings used in K20 and find that the scatter in
the resulting molecular gas abundance is significantly larger
than the statistical error bars on the measurement, pointing to
the need for more data and more careful modeling to resolve
this tension.
The organization of this paper is as follows. Section 2

summarizes the mmIME intensity mapping results. Section 3
reviews the details of the SAM+submillimeter SAMs used in
this analysis. Section 4 describes how both the K20 scalings
and the SAM+submillimeter SAM are used to predict the
mmIME signal and illustrates the basic tension described
above. Section 5 reviews the K20 procedure for converting the
mmIME measurement to a molecular gas abundance and
describes the modified version of that method used here, with
the comparison of the results of these methods described in
Section 6. Section 7 describes the effects of varying our model
assumptions. We discuss our results and how they will improve
in the future in Section 8 and conclude in Section 9.
Throughout this paper, we assume a flat ΛCDM cosmology
consistent with the Planck 2018 results (Planck Collaboration
et al. 2020).

2. Data

Here we briefly review the relevant details of the mmIME
CO measurement.
The power spectrum constraints in K20 come from maps of

two separate fields. The first data set comes from ALMA as
part of the ALMA Spectroscopic Survey in the Hubble Ultra
Deep Field (ASPECS; Decarli et al. 2019; González-López
et al. 2019). It consists of a 4.6 arcmin2 area of the Hubble
Ultra Deep Field mapped at frequencies between 84 and
115 GHz with a 3.906MHz spectral resolution. The second
observation, made using the ACA, covers a 15 arcmin2 area
within the COSMOS field (Scoville et al. 2007) over the same
frequency range with a resolution of 7.813MHz.
The CO(2–1), (3–2), (4–3), and (5–4) transitions fall into this

frequency band at redshift ranges centered at z= 1.3, 2.5, 3.6,
and 4.8, respectively. Authors K20 reported their baseline
power spectrum result in the form of the total spectral shot

4 Most direct CO surveys estimate the molecular gas abundance using only
directly detected sources, without extrapolating the luminosity function to
fainter emitters (see, e.g., Walter et al. 2014; Decarli et al. 2019; Lenkić et al.
2020).
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power Ĩs
2
, which can be expressed as the sum of contributions

from each of these lines:

˜ ( ) ( )
( ) ( )

( )I
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n
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Each line is observed at a redshift z= νr/νobs assuming a rest
frequency νr and an observed frequency νobs. The power in
each line is rescaled to project the spatial dimensions at its
emission redshift to a common observed frame in the angular
direction by X(z)=DM(z), where DM is the comoving radial
distance to redshift z, and the line-of-sight direction by

( ) ( ) ( )Y z c z H E z, 1r r
2

0n n= + , where c is the speed of light,
H0 is the Hubble constant at z= 0, and E(z) is the dimensionless
Hubble parameter. On the small (k∼ 10 hMpc−1 or more) spatial
scales relevant to this measurement, the power spectrum of each
line is dominated by a scale-independent Poisson shot-noise
component Pshot, which will be defined in detail in Section 4.

A measured Ĩ 730 240 Ks
2 2m=  in the ASPECS field and

Ĩ 890 440 Ks
2 2m=  in the ACA field were reported by K20.

Keenan et al. (2020) showed that, for fields as small as the ones
considered here, the median measured power falls, on average,
below the “true” cosmological average due to sample variance
effects. Accounting for these effects and combining the two
fields gives their final result of Ĩ 1010 Ks

2
390
550 2m= -

+ .

3. SAMs and Submillimeter SAMs

The sample of dark matter (DM) halos and galaxies adopted
in this paper is provided by the Y20 cosmological mock light
cone. Here we briefly summarize the light-cone simulation
framework and parameters. We refer readers to Y20 for a more
detailed description.

The Y20 workflow can be summarized as a three-step
process. In the first step, DM halos are selected from an N-body
simulation along a past light cone, as described in Somerville
et al. (2021), using the lightcone package provided by
Behroozi et al. (2019). We choose the Small MultiDark-Planck
(SMDPL) N-body simulation (Klypin et al. 2016) to provide
the DM halo information for a 2 deg2 wide and 0� z� 10 long
cosmological light cone. Since the simulation cube volume of
SMDPL is ( )h400 Mpc 1 3- , greater than the volume of the
target light cone, ( )h5.7 10 Mpc7 1 3´ - , the statistical indepen-
dence among different regions within the light cone is, in
principle, guaranteed. Moreover, the 1010 Me halo mass
resolution of SMDPL is fine enough to ensure that massive
halos that can retain significant gas reservoirs and make a
significant contribution to the LIM statistics are not omitted.

In the second step, an SAM developed by the Santa Cruz
group (Somerville & Primack 1999; Somerville et al. 2008,
2012, 2015, 2021; Popping et al. 2014; Porter et al. 2014) is
used to simulate the DM halo merger history, as well as the
formation and evolution of galaxies. The Santa Cruz SAM
simulates the halo merger history using a method based on the
extended Press–Schechter (EPS) formalism (Somerville &
Kolatt 1999) or extracts the DM halo merger trees directly from
N-body simulations. We adopt the EPS method in this work, as
it allows us to resolve halos down to much lower masses. It
also replaces the computationally expensive hydrodynamic
simulations with simplified but physically motivated treat-
ments, covering the galaxy merging, gas heating and cooling,
ISM gas partitioning, photoionization squelching, and various
feedback processes.

The Santa Cruz SAM we use in this work has successfully
reproduced various UV/optical galaxy observations up to z= 8
(Somerville et al. 2012, 2015, 2021; Yung et al. 2019a, 2019b).
However, it is important to keep in mind that, like all current
galaxy formation models, there are still many uncertainties in
the key physical processes implemented within the Santa Cruz
SAMs, and some of their predictions are in tension with some
observations (see, e.g., Popping et al. 2019b; Somerville
et al. 2021).
In the last step, a subresolution recipe developed by Popping

et al. (2019a, hereafter P19) is used to simultaneously model the
[C II], CO, and [C I] emission of each of the simulated galaxies,
and we refer to this model as the submillimeter SAM in the
following. The Santa Cruz SAM divides each simulated galaxy
into multiple annuli and uses the predicted gas surface density,
metallicity, and star formation rate (SFR) in each annulus to
predict the fraction of the ISM that is in the form of molecular,
atomic, and ionized gas. The submillimeter SAM then randomly
selects molecular cloud (MC) masses in each annulus from a
power-law MC mass function until the total mass of the MCs
reaches the molecular gas mass predicted by the SAM. The
submillimeter SAM then assumes an MC radial density profile
and further grids each MC into 25 zones. In each zone, it
estimates the emission luminosity of multiple submillimeter lines
with a linearly interpolated lookup table given by the line spectral
synthesis code DESPOTIC (Krumholz 2014). Finally, the galaxy-
wide [C II], CO, and [C I] luminosities are computed by summing
over the emission contributed by all of the MC zones in all annuli.
The submillimeter SAM has the advantage of simultaneously

and self-consistently estimating multiple submillimeter emission
lines and their correlations based on a set of properties predicted
by a cosmological galaxy formation model. However, the
submillimeter SAM introduces free parameters to describe the
MC mass distribution, radial density profile, and external
radiation fields. Currently, calibration is roughly performed
through manual parameter tuning. Particularly relevant to this
work, P19 found that the choice of MC radial density profile has
a significant influence on the resulting submillimeter line
emission statistics. P19 showed that the submillimeter SAM
predictions with an assumed Plummer density profile agree best
with the observed line luminosity versus galaxy SFR relations
that were available at publication (2018). However, Y20 found
that the original submillimeter SAM prediction is about a factor
of 3 lower than more recent ALMA [C II] measurements
(Zanella et al. 2018; Béthermin et al. 2020). Valentino et al.
(2020) also suggested that the submillimeter SAM [C I]
luminosity versus IR luminosity predictions at high redshifts
are significantly lower than the observations. It was shown
by Y20 that using a power-law MC density profile can largely
alleviate those tensions. In this work, we therefore adopt the
power-law MC radial density profile as our baseline assumption,
and we discuss how much the MC density profile assumption
influences molecular gas density constraints in Section 7.2.

4. Estimating LIM Shot Power from Line Emission Models

In this section, we outline the formalism used to connect
galactic line emission to the spectral shot power in an intensity
map. We will compare two methods of modeling the CO
signal, one from the original K20 paper and a new method
based on the SAM+submillimeter SAM described in the
preceding section, and show that the semianalytic prediction is
in mild tension with the LIM data.
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The shot noise Pshot that appears in Equation (1) is a quantity
that arises in LIM measurements due to the discrete nature of most
line-emitting sources. The CO emission arises virtually entirely
from dense gas within the ISM of star-forming galaxies, which, on
cosmological scales, effectively form a population of point-source
emitters. On large scales, the clustering of DM halos causes the
locations of these emitters to be correlated, but on small scales,
their power spectra are dominated by random, approximately
Poisson density fluctuations. This gives rise to a scale-independent
power spectrum on small scales with an amplitude

( ) ( ) ( ) ( ) ( )P z C z L M f M
dn

dM
dM 2LI

M
shot

2 2
duty

min
ò= á ñ

¥

(Lidz et al. 2011). This differs from the shot noise in a
spectroscopic galaxy survey, as each galaxy is weighted by its
line luminosity. In Equation (5), ( )L M2á ñ is the mean-square
line luminosity of halos with mass M, which is then averaged
over the halo mass function dn/dM. The expressions for

( )L M2á ñ and fduty(M) are the main “moving parts” of the model
and may be either based on the physics-based SAM or from
empirical considerations, as commonly assumed in the
literature. We assume the Tinker et al. (2008) halo mass
function throughout this work. The quantity

( )
( )

( )C z
c

H z4
3LI

rpn
=

converts from luminosity density to intensity units. As is common
in the literature, we assume that halos with masses below Mmin =

M1010 do not emit any appreciable CO, though our results are
relatively insensitive to the exact value of this choice.

Many simpler LIM models assume that all halos of mass M
emit exactly the same luminosity. Here we relax this
assumption in two important ways. First, we allow the halo
luminosity at a given mass to scatter about its mean value, to
account for a dependence on properties other than halo mass.
We assume that the actual luminosity of a halo takes the form
L= xL0(M), where L0(M) is the mean luminosity for all halos
of a given mass. Following Li et al. (2016), the scatter value x
is assumed to be a lognormally distributed random variable
with probability distribution5

( ) ( ) ( )⎡
⎣⎢

⎤
⎦⎥

P x
x

x1

ln 10 2
exp

ln ln 10 2

2
. 4

2 2

2s p
s
s

= -
+

The amplitude of the scatter is set by σ, which for the K20
model takes a mass-independent value of 0.37 dex. Averaging
over this distribution gives a final shot power of

( ) ( )

( ) ( ) ( )

[ ( )]P z C z e

L M f M
dn

dM
dM. 5

LI

M

shot
2 ln 10

0
2

duty

2
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ò

=

´

s

¥

Our second change is to assume that only a fraction fduty(M)
of all halos of a given mass are emitting at any given time (Lidz
et al. 2011; Pullen et al. 2013). This is particularly important at
lower redshifts, where many galaxies may be quenched and
emit effectively zero CO. We have slightly generalized the fduty
factor here both by allowing it to explicitly depend on halo
mass and by including both it and a scatter at the same time.

Keating et al. (2016) discussed accounting for all of the
variation around L0(M) with a single choice of σ, but we find
that this does not provide an accurate description of the galaxy
population produced by the SAM+submillimeter SAM.
In the simulated galaxies, the CO luminosity depends on the

density of molecular gas; therefore, the “duty cycle” is largely
sensitive to the gas content of the galaxy (Somerville et al.
2008). Cold gas can be accreted by cooling from the hot halo or
mergers of gas-rich satellites. Feedback from the radiatively
inefficient “jet mode” of an active galactic nucleus (AGN) can
reduce or stop cooling and therefore quench the central galaxy.
Cold gas can be ejected via supernova-driven winds and the
radiatively efficient “bright mode” of an AGN. The fduty factor
accounts for the fraction of galaxies that are quenched by these
processes at any given time.
We predict Pshot for the SAM+submillimeter SAM by binning

all of the halos in our simulated catalog by halo mass. We then
account for quenching by removing all halos with a specific SFR
(sSFR) below 1/3tH(z), where sSFR is the ratio between SFR and
halo mass, and tH(z) is the Hubble time at redshift z. The SAM
+submillimeter SAM equivalent of fduty is then the fraction of
galaxies that remain in a mass bin after this cut. Each mass bin then
inherently includes a scatter about the mean halo mass, which
arises from the variations in halo merger history within the
ensemble of halos. We could use this to estimate a lognormal
scatter width σ(M) for comparison with other models, but when we
predict the shot power, we can obtain a more accurate result by
directly estimating ( )L M2á ñ in each mass bin and applying
Equation (2) (i.e., using the full predicted distribution of
luminosities within each mass bin, instead of assuming that it
has a lognormal form). We could further improve the accuracy by
removing the explicit fduty and dn/dM dependence from
Equation (2) and simply integrating over an interpolated luminosity
function, but leaving the expression in this form lets us use the
same mass function for all of our calculations, bringing us closer to
an apples-to-apples comparison between the two approaches.
Figure 1 shows the mean mass–luminosity relationships for

the dominant CO transitions considered here. As we are
concerned with an observation at a single frequency, in this
figure and for the rest of this paper, we will assume that each
line is sourced only at the redshift corresponding to νobs, with
CO(2–1) at an average redshift of 1.3, CO(3–2) at 2.5, CO(4–3)
at 3.6, and CO(5–4) at 4.8. Shaded regions around each curve
in Figure 1 denote the 68% confidence interval of the scatter
around the mean relation. The higher-redshift predictions for
the K20 model cut off above some halo mass due to the mass
limits of the Behroozi et al. (2013) SFR catalog. Figure 2
shows the fduty(M) values inferred from the SAM at the central
redshifts where mmIME observes the four CO lines. This value
is quite close to unity at high redshift but drops for lower-
redshift lines as quenching effects become more important.
With these relations in hand, we can predict the total spectral

shot power present in these two models and compare to the
value reported in K20, as shown in Figure 3. As noted in K20,
the modified Li et al. (2016) scaling model predicts a total shot
power comparable to the mmIME measurement. The physically
motivated SAMs, on the other hand, produce a prediction a
factor of ∼20 smaller, corresponding to an ∼3.5σ discrepancy
under the quoted mmIME sensitivity.6 This difference can be

5 Note that our scatter PDF differs slightly from the similar calculation in Sun
et al. (2019), as we define P(x) such that the mean luminosity is preserved, i.e.,

( ) ( )L M L M0á ñ = for all values of σ.

6 The error quoted in K20 would correspond to an ∼2.5σ discrepancy under
the assumption of Gaussian uncertainty. The full non-Gaussian likelihood leads
to a stronger tension (G. K. Keating 2022, private communication).
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largely attributed to the nearly universally lower amplitude of
the L0(M) relationships seen in Figure 1. The lowest-redshift
CO lines make up a bit of power in the SAM+submillimeter
SAM due to extra scatter about the mean relation, but this
increase is offset by the inclusion of the subunity fduty from
Figure 2. The separation between the semianalytic prediction
and the LIM observation seen in Figure 3 is the tension we seek
to explore in the rest of this work.

5. Connection to Molecular Gas

If we are to understand the consequences of this possible
tension, we need to connect the integrated CO observations

discussed above to the physical properties of the emitting
galaxies. For maps of CO emission, the most obvious quantity
to explore is the molecular gas abundance, as we expect MCs
to source virtually all of the CO emission we detect. A
prescription for constraining the cosmic molecular gas history
from the mmIME ( )Is

2 n measurement was laid out by K20. In
this section, we will briefly review this procedure, then describe
a more streamlined method enabled by the internal consistency
of the SAM+submillimeter SAM catalog.

5.1. Redshift Evolution

The first hurdle we need to clear is to separate the single-
frequency mmIME measurement into its contributions from the
individual CO lines. Many methods have been proposed in the
literature for separating the signal from a target line from
interloper emission (Gong et al. 2014; Breysse et al. 2015;
Cheng et al. 2016, 2020; Lidz & Taylor 2016; Sun et al. 2018).
Most of these tools, however, require either an additional
cosmological tracer for masking or cross-correlation or a larger,
deeper map than those produced by mmIME. Thus, K20
adopted a simpler estimate in which each line is assigned a
fraction

˜

˜
( )f

I

I
6s

s
tot

,line
2

2
=

of the total observed shot power. They then assigned the ftot
that would be obtained under the modified Li et al. (2016)
model. In other words, they assumed that the scaling model had
the correct redshift evolution, and only the overall amplitude
needed to be shifted to match the measured shot power.
We can carry out the same prescription using our semianaly-

tically derived relations and calculate a predicted ftot from the
mass–luminosity relations plotted in Figure 1. The results of this

Figure 2. Fraction fduty of halos with nonnegligible star formation as a function
of halo mass at the redshifts of each of the four CO transitions we consider here
inferred from the SAM+submillimeter SAM. Though fduty is a property of
halos rather than specific CO transitions, we have labeled the relevant transition
in the legend to track which fduty curve is used for each line.

Figure 3. Spectral shot power ( )Is
2 n for CO rotational transitions (colored

curves/points) and the total power observed at a given frequency (black
curves/points). The circular point and error bars show the best-fit value and
60% confidence interval from K20. Lines show the predictions as a function of
observed frequency for the modified Li et al. (2016) model used in K20
(compare to their Figure 7). Squares show the values predicted by the SAM
+submillimeter SAM. Note that the semianalytic prediction falls significantly
below the mmIME measurement.

Figure 1. Mass–luminosity relations for the four CO transitions we consider
here assuming the modified Li model (blue) and the SAM prediction (red).
Shaded bands show the width of the 1σ scatter. The K20 models cut off at the
maximum mass available in the Behroozi et al. (2013) SFR catalogs.
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calculation are given in Table 1. One can immediately see that the
two models assign similar fractional contributions to each line.
This may be due to both models having been calibrated on similar
multiline source data. Both models assign <1% of the total signal
to lines with higher frequency than CO(5–4), so we will adopt the
same assumption as K20 and neglect any contribution from higher-
order CO transitions.

This method of separating interloper lines is obviously
highly simplified, and despite the similarity between these two
models, the data would certainly permit a substantially different
redshift evolution. Furthermore, we see in Table 1 that an ∼1%
change in the total intensity corresponds to an ∼30% increase
in the CO(5–4) shot power. This is a problem intrinsic to any
measurement of a faint signal overlapping with brighter
emission. We clearly should not trust these models to be
accurate to the percent level, so especially the highest-redshift
estimates made under these assumptions should be taken with a
grain of salt. However, our purpose here is a rough exploration
of this pair of models, not a precision measurement. Between
this and the fact that it is difficult to derive a better redshift
distribution without further measurements, we leave a more
detailed exploration of the redshift evolution of the LIM signal
to future work.

5.2. Scaling Models

Now that we have an estimate for at least one moment of the
CO luminosity function in our four redshift bins, we can
convert that value into a measurement of the cosmic molecular
gas abundance ρH2. First, we will review the method used
in K20 for this conversion. Typically, the molecular gas
content MH2 of a galaxy is related to its CO luminosity by the
parameter

( )
( – )

M

L
, 7CO

H2

CO 1 0
a =

¢

where the observer-unit CO luminosity L¢ is related to the
physical version by

( )( )

( – )

( )


⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠
⎛
⎝
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⎠
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L
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4.9 10
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. 8J J JCO 5
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1 2
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= ´
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Authors K20 assumed a typical extragalactic value of αCO=
3.6Me (K km s−1 pc2)−1, with wider estimates ranging from a
Milky Way–like αCO= 4.3Me (K km s−1 pc2)−1 down to a
ULIRG-like αCO= 0.8Me (K km s−1 pc2)−1.

Since αCO is typically reported relative to CO(1–0) luminosity,
it is necessary to convert the higher-J CO intensities predicted
here to their CO(1–0) equivalents. Authors K20 adopted the mean

line ratios ( – )r L LJ J,1 1 0= ¢ ¢ from a sample of z= 1.5 optically
selected galaxies (Daddi et al. 2015) and averaged them over the
galaxy population by assuming

( )( – )P r P , 9J Jshot, ,1
2

shot,CO 1 0=

where rJ,1= 0.76± 0.09, 0.42± 0.07, 0.31± 0.06, and 0.23±
0.04 for the CO(2–1), (3–2), (4–3), and (5–4) transitions,
respectively.
Finally, we need a prescription for fitting a model for LCO,J

to the measured Ĩs
2. As we have only a single number to base

this on, we can handle only a single independent parameter in
our fitting. Authors K20 assumed a broken power-law mass–
luminosity relation for this step parameterized by




( ) ( )⎧

⎨
⎩

L M
A M M

A M M M ,
10

M

MCO
CO 0

CO 0 0

2

0=

where M0= 1012Me h−1 is the location of the turnover, and
the overall amplitude ACO is the free parameter used for the fit.
When applying Equation (10), the K20 model assumes the
default mass-independent scatter of σ= 0.37 dex from Li et al.
(2016). As with all of the K20 scaling relations, we continue to
assume fduty= 1.
Thus, the overall procedure to connect the measured Ĩs

2
to

ρH2 goes as follows.

1. Find the value of ACO in Equation (10) that best fits the
measured shot power Ĩs

2
.

2. Convert the resulting CO luminosity to the CO(1–0)
equivalent using Equation (9).

3. Convert the CO(1–0) luminosity to MH2 assuming a
constant αCO.

4. Integrate the resulting MH2(M) over a halo mass function
to get a total estimated ρH2.

5.3. Alternate Procedure Using SAMs

The full range of detailed galaxy properties available in the
SAM+submillimeter SAMs enables a more nuanced procedure
for constraining ρH2 from Ĩs

2. The above scaling approach
necessarily assumes that most of its relevant quantities are both
mass- and redshift-independent. Due to the sparsity of empirical
data, many of the scalings are calibrated at different redshifts than
the mmIME observation. Furthermore, all of the scalings should
have some galaxy-to-galaxy scatter about the given mean relation,
just like that of the mass–luminosity relation discussed previously.
Scatter in one relation can easily be correlated with scatter in
another, further complicating attempts to model these relationships
analytically.
With our simulated halos in hand, we can calculate the full

mass- and redshift-dependent forms of Equations (7)–(10)
based on the SAM. However, while we will make use of these
later, we do not actually need them to get a ρH2 measurement.
Following the broad strokes of the K20 model, we will assume
that we know the shape of the L0(M) relation from the SAM
results and fit for an overall amplitude offset ACO

SAM such that

( ) ( ) ( )L M A L M . 110,fit CO
SAM

0=

In other words, we want to find the value of ACO
SAM that

brings the SAM+submillimeter SAM forecast for Ĩs
2
into

agreement with the mmIME result plotted in Figure 3,

Table 1
Predicted Contributions to the Total Shot Power Ĩs

2 from Each Line Considered
Here under the Modified Li et al. (2016) Model Used and the SAM

+Submillimeter SAM

Transition zá ñ K20 Ĩs
2 SAM Ĩs

2 K20 ftot SAM ftot

CO(2–1) 1.3 340 27.5 0.43 0.44
CO(3–2) 2.5 310 23.5 0.4 0.38
CO(4–3) 3.6 120 8.8 0.14 0.14
CO(5–4) 4.8 30 2.3 0.03 0.04

Total L 790 62.1 1.00 1.00

Note. All Ĩs
2 values have the dimension μK2 Hz sr.
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assuming the semianalytic predictions for the mean and scatter
on L0(M), as well as fduty.

Since we know the molecular content of each SAM galaxy,
we know the value of the total cosmic molecular gas density
ρH2,0 that corresponds to the default SAM+submillimeter SAM
results. By definition, then, A 1CO

SAM = corresponds to a
universe with ρH2= ρH2,0, and the total shot power Ĩs

2
scales

as ( )ACO
SAM 2. Since we are rescaling the CO luminosities

linearly, we can get a K20-equivalent ρH2 measurement simply
from

( )A . 12H2 CO
SAM

H2,0r r=

Note that, in the SAM, we of course know the predicted value
of the conversion from any excitation-state CO line to the
CO(1–0) line luminosity, and we know the value of αCO for
each galaxy. Indeed, these conversions vary galaxy by galaxy
and also indirectly depend on redshift due to changes in the
ISM properties and the cosmic microwave background
radiation field strength (see, e.g., Popping et al. 2016). With
the procedure described above, we are assuming a population-
averaged effective conversion between observed line emission
and CO(1–0) and, similarly, a population-averaged value of
αCO. This implicitly assumes that these conversion factors are
correctly predicted by the SAM, and that the SAM correctly
predicts the galaxy population properties that are relevant for
determining them.

6. Results

Here we present the molecular gas history inferred by using
the procedure based on the semianalytic mocks, as outlined in
Section 5.3, in place of the K20 scaling relations, as described
in Section 5.2. Figure 4 shows the resulting ρH2(z) estimate
compared to that obtained in the original mmIME analysis. We
further compare those measurements to a compilation of direct-
imaging results from Walter et al. (2020, hereafter W20), which
includes CO-based measurements from the xCOLD GASS
(Fletcher et al. 2021), ASPECS (Decarli et al. 2020), COLDz
(Riechers et al. 2019), and VLASPECS surveys (Riechers et al.
2020), along with several dust continuum observations (Berta
et al. 2013; Scoville et al. 2017; Magnelli et al. 2020). The
black line shows a fit to these direct observations. The original
mmIME results quoted in K20 are broadly consistent with the
direct-imaged molecular gas surveys, if slightly on the high
side. The values of ρH2 obtained by directly integrating the
intrinsic molecular gas masses in all galaxies in the SAM are
also consistent with the values estimated from direct-imaging
surveys.

Due to the discrepancy between the predicted and measured
Ĩs
2
, however, the SAM+submillimeter SAM requires an ACO

SAM

of ∼4 to match the mmIME Ĩs
2
measurement. Thus, we find

that using the scalings derived from the SAM and the mmIME
measurement of Ĩs

2
, instead of the K20 scalings, increases the

inferred value of ρH2 from a value consistent with the direct
measurements to one substantially above them.

It should be noted that, again because we are only fitting a
single data point, the four redshift bins plotted in Figure 4 are all
exactly correlated. Thus, what we are seeing is the same ∼3.5σ
tension from Figure 3 being carried over into the estimates of ρH2.
What we have effectively done is assumed that the relationship
between H2 mass and CO luminosity is exactly known from the

SAM+submillimeter SAM and linearly increased the amount of
molecular gas needed to match the mmIME Ĩs

2 value.
If all of the above assumptions are taken at face value, this

would seem to indicate that mmIME has seen a substantial
reservoir of high-redshift molecular gas that has not been seen
by traditional surveys. This is not implausible on the surface, as
one of the primary motivators for intensity mapping surveys
like mmIME is to map the properties of sources below the
detection thresholds of individual images.
It is clearly premature to make such a strong statement, though,

at least without substantial caveats. A single data point in modest
tension with a single model is not enough justification to claim a
detection of a factor of several increase in the molecular gas
content of the universe, particularly when modeling a system as
complicated and poorly understood as the high-redshift ISM. We
will devote the next section to an exploration of some of the ways
in which the results of this analysis change depending on the
model assumptions we adopt.

7. Varying the Model

As noted in Section 3, both the SAM and submillimeter
SAM contain free parameters that characterize the physical
processes in the galaxy formation model (e.g., star formation
efficiency, stellar feedback efficiency, AGN feedback effi-
ciency, etc.) and the subgrid properties of the MCs that
populate the ISM and give rise to the observed CO emission
(cloud mass function, radial profile, etc.). These parameters
have, up to now, been manually tuned to match the properties
of individual observed sources like the ones used to derive
the W20 direct estimate of ρH2. In principle, we could try
varying these parameters, perhaps using something like a
Markov Chain Monte Carlo sampler, to explore whether there
are parts of the complex and high-dimensional parameter space
that can satisfy the direct-imaging and LIM constraints

Figure 4. Measurements of the cosmic molecular gas history. Gray points
show direct measurements collected in W20; the black line shows a fit to these
points. Blue points are the values quoted in K20 assuming empirical scalings.
Orange squares show the intrinsic values of ρH2 in the SAM, and red points
show the values inferred from the mmIME measurement using conversions
based on the SAM. Note that, because all of the LIM measurements are derived
from a single measured data point, all of the errors on the red and blue points
are perfectly correlated.
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simultaneously. This would be a very interesting exercise but is
well beyond the scope of the current analysis.

Thus, we will instead examine a few simple modifications to
our SAM-based calculation and examine their implications. We
do not claim that either the results presented above or any in
this section are definitive statements about the nature of the
high-redshift universe, but they do offer a picture of the kind
and scale of model-dependent effects that exist in this and
future LIM analyses.

7.1. Fixed ρH2, Varying αCO

As stated previously, our primary assumption when deriving
Figure 4 was that we know precisely the relationship between
CO and molecular gas, so that an increase in CO intensity must
be accompanied by an increase in ρH2. However, the same
result could be accomplished by instead altering the relation-
ship between CO and H2. The most obvious place to start
would be the choice of αCO. We can hold the total ρH2 constant
and simply increase the CO luminosity per unit of molecu-
lar gas.

In the SAM+submillimeter SAM, we know both the CO
luminosity and H2 mass of each simulated galaxy. Thus, we
can access the full distribution of αCO(M) for halos of different
mass. To compare to the values quoted above, we need the
population-averaged value. Averaging only over the star-
forming population, this takes the form

( ) ( ) ( )
n

f M M
dn

dM
dM

1
, 13CO duty COòa a=

where ( )( )n f M dn dM dMdutyò= is the mean number density
of star-forming galaxies.

To fit the mmIME result by varying αCO, we start with the
end result of the previous section, a fitted value of ACO

SAM that
brings the semianalytic prediction of Ĩs

2
into agreement with the

mmIME measurement. As we saw, this alone yields a ρH2
estimate well in excess of that obtained through direct
observations. We then make a new assumption, that the W20
ρH2 fit in fact provides the true value of the molecular gas
density. Finally, we linearly scale the SAM αCO parameter to a
value that brings the red SAM+mmIME points from Figure 4
into agreement with the W20 fit. Symbolically, this is given by

( )
A

. 14CO
fit

CO
SAM H2

W20

CO
SAM

H2,0

a a
r

r
=

The results of this computation are plotted in Figure 5, with a
comparison to both the redshift-independent range of αCO

assumed in K20 and the mean values obtained from the
unmodified SAM+submillimeter SAM. Note that, because the
intrinsic SAM+submillimeter SAM predictions for ρH2 are
fairly close to the W20 fit, this is similar to the result we would
obtain simply by scaling CO

SAMa by A1 CO
SAM to directly cancel

out the effect of increasing the CO luminosity.
We find that, under these assumptions, we would need an

COa value of ∼1.5–2Me (K km s−1 pc2)−1, roughly a factor of
2 lower than that assumed in K20. The ∼3.5σ offset between
the red points and black line in Figure 5 is again the same initial
tension in Ĩs

2 but this time entirely attributed to a change in CO
emission per unit of molecular gas.

Note that throughout this section, we have continued to hold
all aspects of the SAM+submillimeter SAM predictions to
their intrinsic values with only two exceptions: the linear ACO

SAM

scaling on L0(M) needed to fit the mmIME measurement and a
linear scaling on αCO to bring the resulting ρH2 fit into
agreement with W20. The shape of L0(M), the scatter around
that average, and the conversions between CO(1–0) and each of
the higher transitions are all unchanged.

7.2. Varying the Submillimeter SAM Subgrid Ingredients

The submillimeter SAM and the underlying Santa Cruz
SAM are both highly sophisticated frameworks with many
tunable parameters necessary to model the complexity of the
ISM. For the same reason that we do not attempt any fully
automated parameter search, an exhaustive study of all of the
possible SAM and submillimeter SAM variations that could
affect Ĩs

2
is beyond the scope of this paper. We will instead

highlight a single change to show how sensitive the interpreta-
tion is to the choice of model. Specifically, we will alter the
density profile assumed for individual MCs from the power-law
shape we have assumed thus far to the Plummer density profile
originally suggested by Popping et al. (2019a).
Using a new galaxy catalog produced under this changed

assumption, we obtain a predicted Ĩs
2 of 198.7μK2 Hz sr, a factor

of 3 or so higher than our original result. The tension with the
mmIME value of 1010 390

550
-
+ μK2 Hz sr is lessened but still lingers

at ∼2σ. However, when we repeat the calculation of the cosmic
molecular gas density from Figure 4, we see that the inferred ρH2
values are now much closer to those obtained through the K20
scaling model, as shown in Figure 6. We still see a modest
increase for the highest-redshift CO(5–4) line, but, as mentioned
above, the highest-redshift points are likely the least trustworthy
under our limited ability to separate interlopers.
As we have discussed in Section 3, both the power-law and

Plummer profiles produce results for the LCO–SFR relation that
are in reasonable agreement with the observational constraints
within the rather large scatter. However, the L[C II]–SFR and

Figure 5. Population-averaged conversion constants αCO between CO(1–0)
luminosity and molecular gas mass for the four mmIME redshift bins. The
black lines show the values assumed in K20 for all galaxies (solid; the default
value used in their analysis), the Milky Way (dashed), and ULIRGS (dotted).
Orange squares show the values from the SAM alone, and red squares show the
value needed to bring the SAM+submillimeter SAM into agreement with both
the mmIME Ĩs

2 and W20 ρH2 measurements.
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L[C I]–LIR relations predicted by the SAM+submillimeter SAM
assuming the Plummer model are significantly lower than the
current observations. The purpose of showing the results with
the Plummer radial profile assumption is not to suggest that it is
the correct resolution to the tension we have pointed out.
Instead, we show this variant to illustrate how sensitive the
inferred H2

r can be to details about the subgrid properties of
the ISM.

7.3. Varying the K20 Scalings

For the final step in our exploration, we will examine how
the SAM+submillimeter SAM predictions for the individual
scalings used in Section 5.2 differ from those assumed in K20
and estimate how these differences impact the estimate of ρH2.
Though we did not explicitly use either the αCO or rJ,1 scalings
to produce Figure 4 from the SAMs, we can of course read
these quantities directly from the simulated catalog. The most
obvious difference between the SAM-inferred relations and
those in K20 is that both the CO–H2 and line luminosity ratios
are mass- and redshift-dependent. Figure 7 shows the two
primary ratios used to convert the CO measurement to ρH2,
comparing the mass-dependent semianalytic values to the
constant empirical values assumed in K20.

We can immediately see clear and significant differences
between the SAM predictions and the K20 assumptions. For
αCO, the SAMs predict higher values at all masses and redshifts
than the K20 assumption. The rJ,1 values are generally higher
as well, the redshift dependence is a bit different, and there is a
significant halo mass dependence. As the entire point of the
SAM+submillimeter SAM is that all of these quantities are
computed self-consistently based on a physical model, we
cannot simply manually change these relations to see how they
affect the measured Ĩs

2
; any changes would have to be obtained

by varying parameters like the cloud profile choice discussed in
the previous section. In order to get a sense of the role of the
different pieces of the model for obtaining an estimate of ρH2
from Ĩs

2
, we need to artificially break the internal consistency of

the semianalytic predictions. This will lose the key advantage

of the SAM+submillimeter SAM procedure, but it will give us
an idea of where the differences come from and how big they
might be.
Combining all of the scalings from Section 5.2 allows us to

explicitly write the dependence of ρH2 on the fitted ACO
SAM,

yielding

( )
( )

( ) ( ) ( )
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Figure 6. Comparison of molecular gas mass density inferred from the
mmIME measurement using a Plummer MC profile (red) to results from
Figure 4 (pink) that assumes a power-law profile for the submillimeter SAM
subgrid model.

Figure 7. Comparing the mass dependence of SAM scaling relations to those
assumed in K20. (Top) CO(1–0) luminosity–H2 mass ratio αCO(M) at the
central redshifts of our four CO transitions (colored lines) compared to the
typical, Milky Way, and ULIRG values used in K20 (black solid, dashed, and
dotted lines, respectively). All αCO averages are computed using only the star-
forming galaxies from the SAM+submillimeter SAM. (Bottom) CO line
luminosity ratios rJ,1(M) for the same lines (solid lines) compared to the
constant Daddi et al. (2015) values from K20 (dotted lines). For both relations,
note that the halo mass function tends to weight 1011–1012 Me halos the
strongest when computing average quantities.
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where x L4.9 10 5¢ º ´ - (K km s−1 pc2)−1 is the conversion
factor between L and L¢ from Equation (8). The factor of J3

comes from the frequency dependence of the same conversion.
Since this final computation is even more approximate than the
previous ones, we will neglect the scatter in these quantities for
now. Equation (15) without scatter gives a ρH2 result within 5%
of the original calculation using the full SAM+submillimeter
SAM results with scatter. We can see that the ρH2 inferred from
a given line scales as αCO/rJ,1 up to an integral over mass. We
can modify this ratio to change ρH2 without changing the
assumed mass–luminosity relation LJ(M).

To get a rough idea of how much this choice matters, in
Figure 8, we alternately replace the αCO(M) and rJ,1(M)
relations in Equation (15) with the constant values used in the
analysis of K20. If we use the commonly assumed
αCO= 3.6Me (K km s−1 pc2)−1, our ρH2 values fall by 1σ–
1.5σ and end up much closer to the K20 values. This
effectively restates the point from Figure 5 that a smaller
αCO will alleviate the tension in our ρH2 estimates. On the other
hand, if we consider ourselves free to modify the model in this
fashion, keeping the built-in mass-dependent αCO and instead
using the Daddi et al. (2015) constant rJ,1 ratios increases the
inferred molecular gas abundance even further beyond the
estimates from direct imaging. All in all, the range between the
different estimates in Figure 8 can be seen as an extremely
approximate estimate of the “error bar” on the modeling
uncertainty in this problem, which is substantially larger than
the statistical uncertainties.

We should note that this last type of uncertainty is far from
unique to LIM measurements. Direct-imaging measurements of
CO transitions must also make assumptions about the values of
rJ,1 and αCO, and these choices are a source of significant
uncertainty (see Boogaard et al. 2021, for an example). One could
thus envision a similar amount of model-based scatter on the gray
literature points in Figure 8 as on the red LIM points. As
discussed above, however, the need to choose mass-dependent
values for these quantities presents and will continue to present a
unique challenge for integrated LIM measurements.

8. Discussion

The core result presented here is both simple and fairly robust,
at least at the level of detail we consider here. The mmIME survey
produced a measurement of the total shot power from high-
redshift CO lines that is roughly 3.5σ, in tension with predictions
from the Santa Cruz SAM+submillimeter SAM framework, taken
as face value. The tension is present in both versions of the SAM
+submillimeter SAM discussed above, which adopt different MC
density profiles. There are, of course, many other modeling
choices baked into the semianalytic prediction that we have
assumed here to be essentially fixed. Most of these parameters,
however, are set by comparison to a wide variety of other galaxy
survey measurements, and changing any of them to fit the
mmIME data could easily create discrepancies elsewhere. A full
statistical treatment would require fitting the mmIME Ĩs

2 value and
all of the other galaxy measurements simultaneously while
varying all of the underlying SAM parameters. Such an effort
would be highly enlightening but is beyond the scope of this
work, so for this initial exploration, we confine ourselves to
reproduction and modest extension of the original K20 mmIME
analysis using our semianalytic framework.

When we repeat an analysis similar to that of K20 but
replace their empirical scalings with predictions from the SAM
for the relationship between halo mass and CO luminosity and
assume that any difference between the mmIME measurement
and our model prediction of Ĩs

2
can be explained by a linear

change in H2 content across all halo masses, we infer the
presence of a large amount of excess molecular gas at high
redshift compared to direct measurements from individual CO
line detections or dust continuum measurements. If true (which
is far from certain given the limitations of these results), the
distribution of H2 within galaxies would almost certainly not
look like a simple linear increase in every galaxy above the
original SAM+submillimeter SAM predictions. In order to
have been missed in traditional surveys, the excess molecular
gas would have to be predominantly located in individually
faint lower-mass galaxies, otherwise surveys like COLDz and
ASPECS would see it (though there may be sample variance
limitations as well; see Keenan et al. 2020). If tensions like this
continue to exist and are confirmed in the future, a simple
extension to this analysis would be to apply something like the
empirical models presented in Padmanabhan (2018), where we
are free to add more CO emission to galaxies of different
masses rather than uniformly increasing it across the board, as
was done here.
The mmIME measurement is not the only source of tension

between intensity mapping measurements and semianalytic
forecasts. Yang et al. (2019) published an estimate of the
158 μm C II integrated line intensity by cross-correlating data
from the Planck satellite with spectroscopic galaxy measure-
ments. As shown in Figure 8 of Y20, the result is also
somewhat brighter than the prediction from the SAM+sub-
millimeter SAM. While this tension is also quite modest, it is
further evidence that some of the physical processes in the
current Santa Cruz SAM+submillimeter SAM may need to be
modified.

Figure 8. Estimates of ρH2 obtained by combining the semianalytic and
empirical scaling relationships in Equation (15), compared to the same K20
mmIME and direct-imaging constraints plotted in Figures 4 and 6. Pink points
show our original constraints, which use the unmodified SAM+submillimeter
SAM to go from ACO

SAM to ρH2. Red and dark red points respectively substitute
in the constant line ratio rJ,1 and CO–H2 ratio αCO values from K20 while
retaining the other model elements from the SAM+submillimeter SAM
predictions.
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As emphasized previously, there are many uncertainties in the
physical processes and parameter values for both the SAM and
submillimeter SAM. There are also other signs of observational
tensions with the Santa Cruz SAMs and other models; for
example, Popping et al. (2019b) showed that both the Santa Cruz
SAM and the IllustrisTNG hydrodynamic simulations show a
deficit of large H2 reservoirs at intermediate redshift z∼ 1–2. This
could reflect inadequacies in the modeling of processes such as
star formation and stellar feedback in the galaxy formation models
or the fairly simple assumptions about conversion from the
observed CO lines to H2 mass adopted in that work. As already
discussed, addressing a disagreement with a particular set of
observations by varying the physics in the models is tricky,
because the SAM has been developed over many years to produce
agreement with a broad set of observations over a wide range in
redshift. Ultimately, a more automated calibration procedure
needs to be developed that can account for many observations
simultaneously. Similarly, there are many assumptions that go into
the subgrid models that need to be adopted to describe the ISM
properties and carry out the line spectral synthesis. The properties
of the ISM, such as the cloud mass function and cloud radial
profiles, may vary in a complex way with environment or other
galaxy properties. Again, as already noted, changing one of the
subgrid ingredients to fit a particular line may result in worse
agreement for a different line arising from a different part of the
ISM, as we found when changing the cloud radial profile from a
power law to a Plummer profile.

Key to resolving all of these challenges will be, of course,
acquiring more data. Fortunately, there will be a dramatic increase
in the volume and quality of LIM data in the next few years. The
Carbon Monoxide Mapping Array Project (COMAP; Li et al.
2016) targets the CO(1–0) emission line at z= 2.4–3.4, right in the
middle of the mmIME redshift range and near the excess C II
emission seen in the Planck data, and will provide a highly
complementary molecular gas measurement over a much larger
intensity mapping volume. The Experiment for Cryogenic Large-
Aperture Intensity Mapping (EXCLAIM; Cataldo et al. 2021) will
probe the C II line in a similar redshift range and offer an improved
measurement of that line to improve upon the Planck measure-
ment. Several other reionization-focused projects have an mmIME-
like ladder of CO lines as a “foreground” to their higher-redshift
science (Lagache 2018; Stacey et al. 2018; Sun et al. 2021).

These new experiments will offer opportunities for more
varied analysis of the intensity mapping data beyond the shot-
noise power spectra used in mmIME. Some surveys, including
COMAP and EXCLAIM, are designed with the possibility of
cross-correlating their intensity maps with spectroscopic galaxy
surveys in mind. This has the primary utility of improving
confidence in the detection of a cosmological signal, but cross-
correlations can also provide windows into unique aspects of
galaxy evolution beyond those accessible to a single line (Serra
et al. 2016; Breysse & Rahman 2017; Breysse & Alexandroff
2019; Chung et al. 2019). Cross-correlating pairs of tracers can
also isolate a single line from interlopers that fall into the same
frequency, obviating the need to model the sum of several lines
at once, as has been done in this work.

With or without cross-correlating, future surveys covering
larger areas can make use of larger scales in the power
spectrum, which is sensitive to the DM-induced clustering of
the galaxy population. This clustering component gives more
weight to fainter galaxies, providing independent information
about line luminosity functions (see derivation in the Appendix

of Breysse & Alexandroff 2019). More detailed analyses like
the anisotropic power spectrum (Cheng et al. 2016; Lidz &
Taylor 2016; Bernal et al. 2019; Chung 2019) and the one-
point intensity distribution (Breysse et al. 2017, 2019; Ihle et al.
2019) permit more detailed probes of the distribution of line
intensity than the single shot power measurement available in
mmIME. In turn, these measurements will constrain the
relationship between halo mass and line luminosity for various
tracers, thus placing constraints on the physical processes that
are included in physics-based models. For example, the
efficiency of stellar feedback will have a strong impact on
the slope of the L(M) relation at halo masses below around 1012

Me, while the details of AGN feedback will impact the L(M)
relation and duty cycle at higher halo masses. In future work,
we plan to systematically explore how variations in the
uncertain components of these physical processes translate
into LIM observables.

9. Conclusion

We have demonstrated here that a modest tension exists
between new LIM observations of high-redshift galaxies from
the mmIME survey and state-of-the-art SAMs of the line
emission from the dense ISM in galaxies. At ∼3.5σ, this
tension is relatively minor and may weaken with time and new
data. However, these are some of the first intensity mapping
results at these redshifts, and the SAM+submillimeter SAM
routines have been calibrated to date primarily on direct galaxy
survey measurements, so even this modest tension is interest-
ing. We therefore go on to explore the ways in which this
tension could be caused by physical processes that impact the
LIM measurements.
We carry out a modified version of the K20 analysis of the

mmIME-based measurement of the cosmic molecular gas
abundance, using our internally consistent, physically motivated
SAM+submillimeter SAM scaling relations at all steps. In doing
so, we find implied ρH2 values roughly twice as high as those
obtained in K20, corresponding to an ∼2σ increase. As the K20
ρH2 fit is already a bit higher than the measurements obtained
from direct-imaging galaxy surveys, our result is quite a bit higher
than any previous measurement. In other words, if we assume, as
in K20, that any tension between mmIME and the model
predictions is due to a change in the molecular gas abundance, the
modest tension in the intensity map becomes a similar tension in
ρH2. If this interpretation is valid, it implies that there is a
substantial population of CO-emitting galaxies that are statistically
detectable to LIM but have not been seen in galaxy surveys.
However, we go on to show that the tension could similarly

be resolved by a number of other changes in the modeling
assumptions. Most simply, we show that we could equivalently
account for the tension by reducing the value of αCO in high-
redshift galaxies without changing the molecular gas abun-
dance at all. We also show that small changes to the SAM
subgrid ingredients can solve the tension in ρH2 even if the
overall tension with mmIME remains. Finally, we relax our
reliance on the SAM+submillimeter SAM slightly and show
that substituting some of the not-unreasonable scaling relations
originally used in K20 can shift our ρH2 result over a range
quite a bit larger than the statistical error bars on the
measurement, with some choices weakening the tension and
others leading to even higher ρH2 values.
It is thus clear that, while current data and model predictions

have perhaps begun to differ in interesting ways, neither has
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progressed to the point of being able to confidently understand
the source of those differences. This state of affairs is rapidly
changing, however, particularly on the experimental side.
Intensity mapping data in particular will dramatically expand in
the next few years, as many dedicated LIM instruments begin
to produce results. Perhaps the most important conclusion of
this work is that substantial effort will be required on the
modeling and simulation fronts if we are to fully understand the
new regimes probed by these measurements.
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