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Abstract 

This paper developed a novel deep learning-based approach to processing ground-penetrating 

radar (GPR) radargrams to reconstruct the occluded interior spaces of collapsed structures and 

extract essential information such as survivable void spaces to assist search-and-rescue 

operations. The proposed method innovatively exploits a generative adversarial network (GAN) 

to augment synthetic GPR training data and an end-to-end deep learning model to invert a GPR 

radargram to a permittivity map of the cross-section that can be further interpreted to 

reconstruct the interior scenarios of collapsed structures. First, to address the lack of training 

data with correct labels, synthetic GPR radargrams were generated from simulated scenarios of 

collapsed structures. The GAN was applied to augment the realism of synthetic GPR radargrams 

for training, providing a new mechanism for preparing and augmenting data that is difficult to 

collect from a real disaster site. Second, instead of detecting and segmenting nonintuitive 

features in GPR radargrams, a new encoder-decoder structure was trained using the 

augmented GPR radargrams to directly reconstruct permittivity maps corresponding to the 

cross-sections of collapsed structures. The visual Turing test indicated that the GAN 

substantially improved the realism of synthetic GPR radargrams. The proposed GPR inversion 

method achieved an R2
 value of 0.93, a Mean Absolute Error (MAE) of 0.73, and a Structural 

Similarity Index Measure (SSIM) of 0.95 in inferring the material permittivity from synthetic 

radargrams. The predicted permittivity map was further used to identify void spaces, achieving 

an F1 score of 64.34%, a precision of 63.06%, and a recall of 71.84% at the pixel level. On the 

augmented radargrams, the network achieved an R2 value of 0.76, an MAE of 1.49, and an SSIM 

of 0.89 in predicting the permittivity map. The void detection on augmented radargrams 

achieved an F1 score of 45.20%, a precision of 45.35%, and a recall of 53.99% at the pixel level. 

The feasibility of using the proposed inversion network to reconstruct permittivity maps from 

radargrams is also experimentally tested and demonstrated in simulations of two multistory 

building collapses. 

Keywords: Collapsed Structures; Search and Rescue; Disasters; Deep Learning; Radar; 

Reconstruction. 

1. Introduction 

Natural and man-made disasters such as earthquakes and explosions can lead to the collapse of 

buildings or infrastructure, causing numerous deaths and injuries [1]. According to [2], 15% of 

disaster victims are trapped inside void spaces under collapsed structures. The number of those 

who are successfully rescued, however, is comparatively small despite great and heroic search-

and-rescue efforts. For instance, a 12-story condominium in Surfside, Florida, partially collapsed 

on June 24th, 2021. The disastrous collapse caused 98 deaths, while only a few survivors were 

pulled out from the rubble [3]. The emergency responders were deployed to enter collapsed 

structures to conduct search-and-rescue operations, which put their lives in danger from 

exposure to hidden hazards and secondary collapse. In the September 11th, 2001, attacks, more 



than 400 emergency responders were killed during the search-and-rescue mission [4]. 

Subsurface information like void space is critical to help responders quickly locate entrapped 

victims and avoid potential hazards. Unfortunately, such information remains unavailable, 

significantly impairing the efficiency of search-and-rescue operations.   

Under current practices, first responders have adopted a number of technologies, such as the 

thermal camera and listening device, to locate buried victims. The effectiveness of these 

techniques, however, depends heavily on the first responders’ knowledge and experience. For 

instance, the deployment of a listening device and a thermal camera requires responders to first 

identify a location with a high probability of containing buried victims. However, subsurface 

information is always hard to obtain due to limited sensing capability. To address this challenge, 

several studies have begun to examine using ground-penetrating radar (GPR) in subsurface 

information extraction at disaster sites. GPR is a well-established method for subsurface imaging 

and has been demonstrated to be effective in underground utilities mapping, bridge inspection, 

and geological structures detection. In the disaster search and rescue domain, GPR has been 

used to detect buried victims under rubbles [5]. However, the success of victim detection 

requires the GPR to be in close proximity to the victims and suffers from noisy background 

signals. In [6], an algorithm was developed to detect and characterize void spaces in disaster 

rubble from GPR radargrams. However, the analysis is not sufficient as it only considers lean-to 

collapse voids, making it difficult to generalize to other types of collapsed voids that are also 

typical, e.g., pancake-shape and A-shape. In addition, while the aforementioned methods can 

identify the existence of voids or buried victims, they fail to provide detailed information about 

the underground space’s layout and interior structure.  

Defined as the measurement of the electric polarizability of a dielectric, the permittivity of a 

material is a strong indicator of its belonging to a certain material category (e.g., water, wood, or 

concrete). For example, the permittivity of air is around 1, while that of concrete is more than 6 

[7]. With a permittivity map of a subsurface space, it would then become straightforward to infer 

how different materials are distributed in an underground structure. For example, an area with a 

permittivity value of around 1 has a high probability of being a void space where a survivor could 

be entrapped. A permittivity of around 4, on the other hand, implies that there might be wood or 

other materials with relatively low strength in the corresponding area, which lacks sufficient 

support to ensure the stability of the collapsed structures and therefore requires additional 

caution when excavating [8].  

When mapping a subsurface space with GPR, permittivity is the primary factor influencing the 

speed of electromagnetic wave transmission, and it directly determines the radargram features. 

Therefore, it is theoretically possible to inversely infer the permittivity map of a subsurface 

structure from its GPR radargram. There have been pioneering studies that tried to reconstruct 

permittivity maps from GPR radargrams based on deep neural networks [9,10]. These works, 

however, mainly involve detecting defects in the linings of tunnels, which tend to have relatively 

homogenous and uniform layouts. As a comparison, collapsed rubbles are more complex, with 

multilayer structures and heterogeneous material distribution. In addition, these studies directly 

link time-dimensional GPR radargrams to space-dimensional permittivity data, which could lead 

to an inaccurate depth estimation of the target. For instance, in [10], radargrams with a two-way 

travel time of 20 ns were linked to permittivity maps with a depth of 1 m for different permittivity 

backgrounds (i.e., 5, 10, and 15). Furthermore, deep learning networks were trained on 

synthetic datasets without realistic radargram signatures in these studies, which largely affects 

their performance in real applications. 



There are two challenges in using GPR to penetrate occluded disaster rubbles and processing 

the collected radargrams to infer permittivity maps of collapsed structures. First, it is very 

difficult to collect GPR data in real disaster sites and correctly label the ground truths. To our 

best knowledge, there is no GPR dataset for collapsed structures and disaster sites, preventing 

the development of advanced deep learning methods for data processing and interpretation. 

Second, conventional signal processing-based methods and computer vision methods primarily 

focus on detecting and segmenting individual and nonintuitive features in GPR radargrams. 

Given the complexity of the interiors of collapsed structures, detecting obvious features and 

inferring the scenarios is very difficult. Previous studies aimed to detect known signatures of 

objects that have regular geometries, such as underground utilities [11–14], and to estimate 

their locations, dimensions, and other properties. However, void spaces and building wreckages 

are of irregular shapes, and their signatures in GPR radargrams can be of various shapes and 

completely unknown a priori. The inhomogeneous environment makes it almost impossible to 

recognize and characterize void spaces and other unknown objects from their signatures in GPR 

radargrams using conventional processing techniques. 

To overcome these challenges, a deep neural network (DNN)-based GPR data inversion 

approach was proposed in this study and trained on synthetic GPR data augmented by a 

generative adversarial network to infer the interior layouts of collapsed structures from 

reconstructed permittivity maps. The permittivity map can provide critical information regarding 

unseen spaces such as survivable void spaces, which has the potential to improve the 

efficiency, safety, and response time of search-and-rescue operations. This section will be 

succeeded by a background review of GPR in search and rescue and GPR processing 

algorithms. Methodology, experiments and validation, and a case study are presented in 

subsequent sections. Finally, results are discussed, and conclusions are summarized. 

2. Background review 

2.1 GPR in search and rescue 

GPR is a non-destructive technique that has been widely used in subsurface target detection 

and reconstruction, and it has been demonstrated to be an effective method. Many studies have 

developed methods to reconstruct a variety of subsurface targets, such as underground utilities 

[11–14], cracks [15,16], roots [17,18], and concrete rebar [19]. In the search and rescue domain, 

GPR has been proved to be feasible in the detection of mission persons buried in snow following 

avalanches [20]. The GPR system with a 900 MHz antenna was pulled by manpower on snow 

surfaces. This search technique is very time-consuming and unsuitable for rugged avalanche 

surfaces. In addition, this method is almost impossible to employ on a mountain slope, where 

avalanches mostly occur. To address these limitations, the GPR was mounted on aerial vehicles 

to take full advantage of the GPR technique in avalanche search and rescue. For instance, a 

semiautomatic detection algorithm was developed to recognize potential victims buried in snow 

via airborne GPR [21]. In this method, snowpack is manually extracted to remove the zone of 

snowpack in GPR data, which requires expertise in GPR data and is error-prone. Fruehauf et al. 

[22] improved this method to achieve approximately real-time victim detection. The method first 

utilized an active contour model to extract snowpack in the radargram automatically. The 

template-matching method was then used to detect hyperbolic features formed by buried 

victims in the radargram. However, these methods were mainly developed for avalanche victim 

detection and are not suitable for victims buried in disaster rubbles because of those 

environments' cluttered and heterogeneous nature. 



To date, various studies have assessed the efficacy of GPR in detecting human vital signs during 

urban search and rescue. For instance, in [23], a numerical modeling approach was adopted to 

study the feasibility of GPR in buried victim detection under a complex subsurface situation. The 

results showed the potential of the GPR technique in trapped victim detection under collapsed 

buildings. In the research conducted by Cist et al. [5], GPR was demonstrated to be applicable in 

detecting survivors’ motion and breathing in rubble piles. More recently, Yang et al. [24] 

proposed a novel method to identify and locate human vital signs from radar-received signals 

based on permutation entropy (PE) and an ensemble empirical mode decomposition (EEMD) 

algorithm. Yan et al. [25] developed a Golay complementary coded system to detect quasi-static 

trapped victims under collapsed structures. The system consisted of stationary and scanning 

operating modes that were designed for nonperiodic strong respiration and quasiperiodic weak 

respiration, respectively. It should be noted that these victim-detection methods require leaving 

the GPR antenna static for a certain period. Furthermore, these methods require placing the 

GPR above the trapped victims, which is difficult to achieve in cluttered disaster sites. Identifying 

voids in structural collapses can pinpoint locations with potentially trapped victims, which can 

facilitate the deployment of victim-detection radar. A number of studies [6,26–28] have 

attempted to detect and reconstruct invisible void spaces based on GPR signal characteristics. 

The main drawback of these studies is the inability to provide critical information such as interior 

layout and structure.  

Another important issue to be considered for search-and-rescue applications is the safety of 

GPR for the trapped victims. GPR is widely considered to be a safe and nondestructive 

subsurface imaging technique. The existing literature indicated that electromagnetic emissions 

from GPR systems are commonly far below International Commission on Non-Ionizing Radiation 

Protection (ICNIRP)’s recommended maximum level of 1 mW/cm2, which does not constitute a 

health impact on operating personnel [29]. However, since the GPR antenna is radiating directly 

against trapped victims, the research conducted by Persico and Pajewski [30,31] suggested 

being careful to avoid any potential health impacts on the trapped victims in such applications. 

Therefore, the GPR antenna should be properly selected and tested before its deployment to 

disaster sites.  

2.2 GPR data processing 

Despite the wide usage and promising results in subsurface imaging of GPR, it remains a 

challenge to automate GPR data processing. In previous research, a variety of signal-based 

automatic algorithms have been developed to address this challenge. For instance, Wang et al. 

[32] developed an algorithm based on partial differential equations for hyperbola detection in 

GPR images. A template-based method was then used to identify the hyperbolic peak which 

represents the rebar location in a concrete bridge deck. In [33], a template-matching algorithm 

was also used to estimate the radius, buried depth, and horizontal location of cylindrical objects 

detected by GPR. However, the performance of the template-based method depends on the 

handcrafted threshold, and the method is sensitive to noise. Dinh et al. [34] developed a 

migration-based automated rebar picking method based on the Limited and Simplified 

Hyperbolic Summation technique. However, this method is only suitable for cylindrical objects 

with significant hyperbolic features.  

The Full Waveform Inversion (FWI) method for seismic data has been adapted for GPR data to 

estimate subsurface properties. For instance, a Bayesian FWI was developed to detect and 

characterize subsurface structure defects using cross-hole GPR data [35]. The method 

integrated a two-dimensional finite-difference time-domain simulator, Markov chain Monte Carlo 



simulation, and discrete cosine transform. Feng et al. [36] proposed an improved FWI method 

based on total variation regularization to estimate subsurface permittivity and conductivity for 

tunnel lining defect reconstruction. In their method, the total variation constraint and multiscale 

inversion approach were integrated to find the global optimal value. The FWI method has also 

been used to estimate layer thickness and properties of pavement structure using GPR data 

[37]. However, the inversion accuracy of FWI methods depends on initial model selection and 

may get stuck in local optima.   

Machine learning techniques have been used to detect targets from GPR data. Kaur et al. [38] 

integrated the Support Vector Machine (SVM) classification method with histogram gradient 

features to detect rebar hyperbolic signatures from GPR radargrams. Harkat et al. [39], 

developed a multi-objective genetic algorithm to recognize hyperbolic features in the 

radargrams. The algorithm utilized a binary classifier with a neural network radial basis function 

to locate the target using high-order statistic cumulant features. Giannakis et al.  [40] proposed a 

machine learning scheme to estimate the diameter of reinforcing bars in concrete structures 

using GPR. The proposed detection scheme consists of two neural network regression models 

and the random forest method. The main drawback of machine learning methods is that the 

detection performance relies on selected features, which is not applicable for cluttered field 

GPR data at disaster sites.  

Much of the current literature on GPR data processing pays particular attention to Convolutional 

Neural Network (CNN) with the advancement of computational power. In the method proposed 

by Hou et al. [41], a Mask RCNN-based method was adapted to detect and segment rebar 

features in GPR radargrams. Their method introduced a novel loss function called distance-

guided intersection over union to improve segmentation accuracy. Dinh [42] developed a CNN-

based algorithm to localize and detect rebars from GPR data of concrete bridge decks. Hou et 

al. [43] adopted a Mask Scoring RCNN architecture to detect and segment plant roots from GPR 

radargrams. The anchor shape ratios were optimized to maximize the root signature detection. 

However, these methods were developed for cylindrical objects which appear as significant 

hyperbolic features in radargrams. Subsurface structures at disaster sites are more complex 

than simple cylindrical objects. More recent studies developed CNN-based inversion networks 

to reconstruct permittivity maps from GPR radargrams. This includes Liu et al. [9], in which 

authors proposed a trace-to-trace encoder-decoder network to directly map the GPR data to the 

corresponding permittivity map. The proposed network was demonstrated to be effective in 

reconstructing tunnel lining defects from radargrams. Ji et al. [10] developed a CNN-based 

permittivity inversion network (PINet) for permittivity map reconstruction from GPR data. A 

global feature encoder is incorporated to learn the spatial alignments between GPR radargrams 

and inverted permittivity maps. The shapes, locations, and permittivity of tunnel defects can be 

reconstructed using the PINet. The main drawbacks of these deep learning-based inversion 

methods have been discussed in the introduction section. This study aims to address these 

limitations.  

3. Methodology 

Fig. 1 presents an overview of the proposed framework for subsurface reconstruction in disaster 

rubbles, which consists of three steps. First, the gprMax simulator [44] is used to generate 

synthetic GPR data. The numerical simulation can generate a large amount of GPR radargrams 

along with ground-truth permittivity maps to train the neural network. In real disaster sites, it is 

almost impossible to obtain ground-truth permittivity maps corresponding to GPR radargrams. In 

addition, a variety of collapsed structures can be simulated to provide data that is difficult to 



collect in real disaster sites. Second, a Generative Adversarial Network (GAN) is trained to 

augment the realism of the synthetic GPR data. The GAN method can reduce the domain gap 

between synthetic and real GPR data and thus enhance the generalizability and capability of the 

trained model. Third, a Convolutional Neural Network (CNN) model based on the encoder-

decoder structure is designed to invert GPR data into subsurface permittivity maps. The CNN 

model is adapted from the UNet architecture [45]. The network integrates the Atrous Spatial 

Pyramid Pooling (ASPP) module to capture multiscale GPR information by changing the size of 

the receptive field to capture surrounding trace features. The ASPP module is beneficial for GPR 

data inversion since neighboring traces of radargrams are typically correlated with each other. 

Each step is detailed in the following section.  

 

Fig. 1 Methodology overview 

3.1 Data preparation 

Numerical simulation is conducted to generate synthetic GPR radargrams as the training 

dataset. The gprMax is used as a simulator with a 350 MHz ricker pulse, which is well accepted 

for GPR simulation [44]. The 350 MHz antenna has a penetration depth of up to 10 m. Search-

and-rescue efforts for entrapped victims under collapsed buildings generally start from the 

rubble’s surface. In addition, entrapped victims have a higher survival probability within the top 

few meters. Therefore, the penetration depth of the 350 MHz antennae is suitable for subsurface 

imaging in the context of disaster rubbles. The subsurface structures under collapsed buildings 

are complex, with multiple layers which have different electromagnetic properties. The number 

of subsurface layers is randomly generated between 4 and 12. Each layer is further divided into 

a random number of sub-blocks. The relative permittivity of subsurface structures is randomly 

selected from 3 to 25. The void space is modeled as polygon and triangle shapes with a relative 

permittivity of 1. The size of the void is randomized and randomly placed within the simulated 

subsurface structures. To simulate a realistic collapse setting, subsurface structure, and shapes 

and sizes of void were generated to be as varied as possible. Each simulated permittivity map 

consists of 224 traces that are equal to a length of 2.24 m. The depth of simulated models is set 

to 6.7 m. Fig. 2 presents two examples of simulated permittivity maps. 

             
                   

      

                    
         

            

          

           

          
          

        

             
                 

             
           

            
         

   



 
Fig. 2 Example of two simulated permittivity maps. 

The simulated subsurface models were in the spatial depth domain, which needs to be 

converted into the time depth domain to match simulated radargrams. Eq. (1) gives the 

conversion, where t represents two-way travel time in ns, d is the depth in m,  is the relative 

permittivity, and C is the speed of light (3 × 108m/s). 

𝑡 =
2𝑑

𝐶
√𝜀                                                                 (1) 

The gprMax simulation spatial step is 0.01 m, and the time window is 2.35865e-11s. The number 

of iterations is set as 3,000. Each radargram is composed of 224 traces that are equal to a 

length of 2.24 m. The time-zero correction and exponential gain are applied to the radargram. 

The time-corrected radargram has an iteration of 2,715, which is equivalent to 64 ns. The 

samples for each trace are downsampled to 224. The first 64 ns of the simulated permittivity 

map are extracted to match the travel time of the simulated radargrams. The samples of the 

permittivity map are also downsampled to 224. A total number of 55,799 data pairs are 

generated. Each data pair consists of a subsurface permittivity map and a GPR radargram over 

that respective area. Fig. 3 presents two examples of subsurface permittivity maps and 

corresponding radargrams in the time-depth domain.  

      



 
Fig. 3 Examples of simulated permittivity maps and radargrams in the time-depth domain. 

3.2 Data augmentation with GAN 

Despite the convenience of simulation, there is a certain level of deviation between the 

simulated results and the real GPR radargrams. Training the permittivity prediction networks on 

the synthetic GPR radargrams provided by simulation tools might hinder the generalizability of 

the resulting model to real scenarios in the future. Therefore, the generative adversarial network 

(GAN) technique is used to enhance the realism of the simulation results.  

CycleGAN [46], a GAN framework for unpaired image-to-image style translation, has 

demonstrated solid performance in rendering simulated images with photorealistic texture while 

still preserving the original contents [47]. Fig. 4 shows the CycleGAN structure for GPR 

radargram augmentation. The model involves two types of deep neural networks (i.e., 

Generators and Discriminators) that are mutually adversarial in a zero-sum game theory: while 

one of the Generators takes the synthetic radargrams simulated by gprMax as input and 

produces realistic radargrams after refinement (referred to as augmented radargrams 

thereafter) as output, one of the Discriminators is fed both augmented and real radargrams and 

distinguishes whether a given sample is real or fake. The Generator and Discriminator form a 

composite model (denoted by Composite Model #1) that aims to generate augmented GPR 

radargrams with high realism. To ensure the augmented and synthetic radargrams can be 

paired up, Composite Model #2 is used, in which the Generator aims to generate synthetic 

radargrams, while the Discriminator is trained to distinguish the synthetic radargrams from their 

real counterparts.  



The two composite models are trained simultaneously, after which the Generator of Composite 

Model #1 will be used separately for data augmentation. The collection of synthetic radargrams 

generated by the gprMax is used as input to the Generator network, which then processes and 

augments the radargrams with realistic details and texture applied. The output radargrams are 

not only visually similar to real data but also preserve the corresponding subsurface permittivity 

annotations that can be used for inversion model training in the next section. 

  

Fig. 4 Model structure of CycleGAN for GPR radargram augmentation. 

3.3 GPR Inversion Network 

Fig. 5 presents the architecture of the proposed network. The proposed deep learning network 

is adapted from the UNet architecture [45], which consists of three sections: contraction, 

bottleneck, and expansion. The radargram is first fed into the contraction section, which is 

composed of five convolutional blocks. Each block consists of two 3×3 convolution operations 

followed by 2×2 max pooling on feature maps. The spatial size of the feature map reduces to 

half, and the dimension doubles when the network progresses from shallow to deep blocks.  

The bottleneck layer consists of a 3×3 convolutional operation, Atrous Spatial Pyramid Pooling 

(ASPP), and a bilinear upsampling layer. The ASPP module is applied to extract multi-scale 

features using multiple parallel filters with different rates. This process can improve inversion 

accuracy with the ability to account for neighboring traces of a radargram, which is important to 

capture object features with different scales. This is because the GPR antenna sends 

electromagnetic waves in a cone shape, and thus neighboring traces are correlated to each 

other in a radargram. The ASPP module contains a 1×1 convolution layer, three 3×3 convolution 

layers, and global average pooling. The sampling rates of the four convolution layers are 1, 2, 4, 

and 6, respectively. The batch normalization and ReLU activation layer are added, followed by 

each convolution layer and pooling layer. The output of a single layer from the ASPP module is 

256 channels. The five layers are concatenated together with 1,280 channels. Subsequently, a 



1×1 convolution with 512 output channels is applied to the concatenated layer to obtain a high-

level feature map.  

The expansion layer is used to recover the spatial size of the feature map to the size of input 

radargrams. The expansion section is composed of five convolutional blocks which correspond 

to the contraction section. Each block consists of two 3×3 convolution operations and a bilinear 

upsampling. The size of feature maps doubles, and channel numbers decrease with increasing 

expansion blocks. The low-level features are concatenated to corresponding high-level features 

to ensure features learned from the contraction section can be used for inversion. The number 

of channel numbers is the same for low-level and high-level features. Finally, the feature map is 

fed into another 3x3 convolutional operation. The spatial size of the output feature map is equal 

to input radargrams and the channel number is 1.   

 

Fig. 5 Architecture of the proposed GPR inversion network 

4. Experiments and validation 

4.1 Data augmentation 

4.1.1 Implementation details 

The network was trained on a Linux workstation with Dual NVIDIA Quadro P5000 using the 

PyTorch backend [48]. A batch size of 1 and a learning rate of 0.0002 were used to train the 

network. The learning rate started to decay linearly after 100 training epochs. In addition, a pool 

size of 50 was set to store augmented radargrams. The real GPR radiograms were collected 

using GSSI 350MHz antenna. A total number of 5,748 GPR radargrams were collected, and 

each radargram consisted of 224 traces. A set of 5,748 synthetic GPR data was randomly 

selected from 55,799 GPR-simulated radargrams to train the CycleGAN model. The sizes of the 

real and synthetic GPR data are both resized to 224×224. The network stops training when 

augmented radargrams look visually similar to real radargrams.  

 
 
  

 
 
  

 
 
  

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 

 
 
 

 
 
 

 
  

 
  

 
 
 

 
  

 
   
  

     

    

      

      

      

    
      

   

 
  

 
  

 
  

   

   

 
 
   

 
  

 
  

 
 
  

 
 
  

 
 
  

 
 
  

 
 
  

 
 
  

 
 
  

     

       
  

 
 

    

       

 
  

 
  

 
  

              
             

               

         

          

           

                     

               

               

                
      

        
      

        
      

    

       
    



4.1.2 Visual Turing test 

The visual Turing test is adopted to evaluate to which level the CycleGAN has improved the 

realism of the synthetic GPR radargrams. Specifically, we randomly sampled 150 images from 

the “Real,” “Augmented,” and “Synthetic” datasets, respectively. The samples were then 

outsourced to the Amazon Mechanical Turk platform, where workers are required to rate 

whether a given radargram is “Real” or “Fake.” Each radargram was rated by five workers. 

Before the rating started, the workers were trained with six examples. This process aims to 

enable the workers to get familiar with GPR radargrams as well as the task. Note that the 

ground–truth labels for the “Augmented” and “Synthetic” datasets are both “Fake.” 

Table 1 shows the results of the visual Turing test. It can be observed that, compared with the 

original synthetic dataset (only 10.7% misjudged as “Real”), the proportion of samples 

misjudged as “Real” was significantly increased to 27.3% after CycleGAN augmentation. This 

proportion is even greater than the 22.7% of real radargrams rated as “Real”. The results 

indicate that the realism of the synthetic GPR data has been substantially improved, which then 

led to greater confusion among the workers in distinguishing the “Real” and “Fake” samples. 

Table 1 Quantitative results of Visual Turing Test 

Dataset 
Rated as “Real” Rated as “Fake” 

Number Ratio (%) Number Ratio (%) 

Real 34 22.7 116 77.3 

Augmented 41 27.3 109 72.7 

Synthetic 16 10.7 134 89.3 

Fig. 6 presents examples of CycleGAN-augmented radargrams in comparison to synthetic 

radargrams. The augmented radargrams successfully learned realistic signal noisy features from 

real radargrams while preserving reflection signatures from subsurface structures.  



 
Fig. 6 Comparison between original radargrams and augmented radargrams.  

4.2 GPR inversion  

4.2.1 Implementation details 

The dataset contains a total of 55,799 data pairs and radargrams that were augmented by the 

CycleGAN network. The dataset was randomly split into a training set (80%), a validation set 

(10%), and a testing set (10%). In addition, a small dataset that contains a total of 1,017 

radargrams and corresponding permittivity maps were collected from rubbles of simulated 

collapsed structures. The small dataset is used to fine-tune the network for its application in 

realistic structural collapse scenarios. The RMSProp optimizer was adopted to train the network. 

The mean squared error loss function was selected. The initial learning rate is set to 0.0001, with 

PyTorch’s ReduceLROnPlateau scheduler using max mode with patience of 20. The batch size 

is 64. The early stopping technique was used to reduce overfitting and increase the 

generalizability of the trained network. Specifically, the training set is used to train the network, 

and the trained network is evaluated on the validation set. If the performance of the network 

does not increase for 20 epochs, the network will stop training and save the best model on the 

validation set.  

4.2.2 Metrics 

In this study, three evaluation metrics, i.e., Structural Similarity Index Measure (SSIM) [49], R-

squared (R2), and Mean Absolute Error (MAE), are selected. The SSIM is an image similarity 

                                    



comparison metric considering a variety of factors such as structural information, brightness, 

and contrast ratio. The SSIM metric is defined in Eq. (2), where x and y are averages of the 

ground truth and predicted permittivity map, respectively; x and y are variances; xy is the 

covariance; and c1 and c2 are constants to stabilize the denominator.  

SSIM(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦+𝑐1)(2𝜎𝑥𝑦+𝑐2)

(𝜇𝑥
2+𝜇𝑦

2+𝑐1)(𝜎𝑥
2+𝜎𝑦

2+𝑐2)
                                           (2) 

R2 is used to measure how predicted permittivity fit the ground-truth permittivity map. The R2 

value ranges from 0 to 1, where 1 means the prediction is perfectly aligned with the ground 

truth. Eq. (3) defines R2, where xi and yi are the ground truth and predicted permittivity map, and 

n is the batch size.  

𝑅2 = 1 −
∑ (𝑥𝑖−𝑦𝑖)

2𝑛
𝑖=1

∑ (𝑥𝑖−𝜇𝑥)
2𝑛

𝑖=1

                                                         (3) 

The MAE measures the difference between each element in the predicted and ground-truth 

permittivity map. It is defined in Eq. (4).  

MAE =
1

𝑛
∑ |𝑦𝑖 − 𝑥𝑖|
𝑛
𝑖=1                                                        (4) 

4.2.3 GPR inversion results 

This section discusses the GPR inversion results. Fig. 7 presents the variation of the three 

metrics SSIM, R2, and MAE, over epochs on the validation set of synthetic and augmented 

radargrams. As the epoch number increases, the MAE decreases, and the R2 and SSIM 

increase on both validation sets. The network converges quickly and becomes stable after 

around 60 epochs.  

 
Fig. 7 SSIM, R2, and MAE over epochs during training on the validation set of synthetic and 

augmented radargrams 

Table 2 presents a comparison of synthetic and augmented radargrams. The best performances 

achieved on the validation set of augmented radargrams are 0.89, 0.76, and 1.49 for the SSIM, 

R2, and MAE metrics, respectively. For the synthetic radargrams, the inversion network achieved 

better performance, with an SSIM of 0.95, an R2 of 0.93, and an MAE of 0.73. This is because 

synthetic and augmented radargrams are associated with the same permittivity map. However, 

augmented radargrams learn realistic signal features using the GAN, which becomes more 

cluttered with random noise. Thus, the inversion task is more challenging on the augmented 

dataset compared to synthetic dataset. Note that the inversion model trained on augmented 

radargrams can be better generalized for real-world applications by learning realistic GPR 

radargram features.  

Table 2 Model performance on synthetic and augmented radargrams 



Metric SSIM R2 MAE 

Synthetic  0.95 0.93 0.73 

Augmented 0.89 0.76 1.49 

Fig. 8 presents example inversion results on the testing set of CycleGAN-augmented GPR 

radargrams. The permittivity values inverted by the network are in good agreement with the 

ground-truth permittivity map. The predicted permittivity map correctly reconstructs subsurface 

structures, which can provide important information such as void shape and location to first 

responders.  

 

Fig. 8 Example results of GPR inversion network on the testing dataset of augmented 

radargrams. A single trace with relative permittivity values is randomly selected in predicted and 

ground-truth permittivity maps for each example. 

                                    



The uncertainty of the inversion network is estimated using the Monte Carlo dropout proposed 

in [50], which can learn the predictive distribution. In the inference, a different set of neurons are 

dropped out in each layer randomly according to the layer’s dropout rate. Therefore, the model 

is slightly different in each inference. The network is trained with a dropout rate of 0, which will 

not remove any neurons in the training process. During the inference, the dropout rates of 0.05, 

0.1, and 0.2 are investigated, with a total of 1,000 runs for each rate. The variance of model 

prediction can be estimated in Eq. (5), where  is the standard deviation, N is the total number 

of inferences, θ is the average predicted permittivity, and xi is the predicted permittivity.  

𝜎2 =
∑ (𝑥𝑖−𝜃)

2𝑁
𝑖=1

𝑁
                                                              (5) 

Fig. 9 presents example results of standard deviations of the network prediction with different 

dropout rates. The radargram is randomly selected from the testing set of augmented 

radargrams. The results indicate that a higher dropout rate leads to a greater standard deviation 

of predicted permittivity values. A large standard deviation value represents a prediction with 

high variability. The prediction with the standard deviation can be used to capture the 

uncertainty of the network prediction. 

 

Fig. 9 Standard deviation of predicted permittivity map. The second row is the standard 

deviation with different dropout rates. 

4.2.4 Void detection results 

Since void spaces are critical for first responders to searching for trapped victims, the 

performance of the inversion network in predicting voids is further evaluated based on 

precision, recall, and F1 score. In particular, precision measures the ratio of accurately 

predicted pixels to all predictions; recall measures the ratio of accurately predicted pixels to all 

pixels in the ground truth; F1 score is the harmonic average of recall and precision. The testing 

sets of synthetic and augmented radargrams are used for the evaluation with a total of 5,579 

                               

                                  



radargrams along with permittivity maps. The permittivity maps without voids and with small 

voids are excluded, resulting in a total of 4,516 pairs of data.  

Theoretically, the relative permittivity of the void should equal 1 in the permittivity map. 

However, the value could be either greater or smaller than 1 in the predicted permittivity map. 

This is because the proposed inversion network is used to predict permittivity maps from GPR 

radargrams, which could lead to an offset of relative permittivity for voids depending on 

radargram features. Therefore, the areas with relative permittivity values smaller than a specific 

permittivity threshold in the predicted permittivity map could be void spaces. Note that 

increasing the permittivity threshold for the void can increase the number of true positives but 

also lead to an increase in false positives. In this study, relative permittivity thresholds from 1.1 

to 2.5 are investigated. Fig. 10 shows the variation of precision, recall, and F1 under different 

permittivity thresholds on synthetic and augmented radargrams. On the synthetic radargrams, 

the results indicate that the F1 score reaches a maximum of 64.34% when the permittivity 

threshold is set to 1.5. At the threshold of 1.5, the precision and recall are 63.06% and 71.84%, 

respectively. With respect to augmented radargrams, the maximum F1 score is 45.2% at the 

threshold of 2. The precision and recall are 45.35% and 53.99% at the pixel level, respectively. 

The promising results indicate the inversion network’s ability to detect voids from GPR 

radargrams. 

 
Fig. 10 Precision, recall, and F1 variation with relative permittivity thresholds on synthetic and 

augmented radargrams 

5. Case study 

The performance of the network is qualitatively evaluated on simulated radargrams collected 

from collapsed structures generated using a building collapse simulator named the Bullet 

Constraints Builder (BCB) [51]. The BCB is a suitable tool to simulate the effects of major 

structural deficiencies in composite reinforced concrete structures such as incapacitated load-

bearing elements such as pillars, walls, beams, slabs, etc. The toolset is integrated in 

conjunction with the Bullet physics engine in the software Blender. The BCB has been validated 

by comparing it to a few real collapses of buildings, in which the simulation results showed good 

agreement with the real-world collapse shapes [51]. A multistory apartment building collapse 

caused by an earthquake was simulated using the BCB tool. Fig. 11 presents the 3D model of 

the collapsed structure. 

                          



 

Fig. 11 3D model of the collapsed structure generated using the BCB 

Two target locations with potential trapped victims are selected from the collapsed structure, 

and corresponding cross-sectional models are extracted. The permittivity values for subsurface 

structures in the cross-sectional model are randomly sampled from 4 to 16, which is consistent 

with permittivity of typical building materials [7]. Fig. 12 shows two target locations and their 

corresponding cross-sectional permittivity maps. The horizontal distance of the cross-sectional 

model is 2.24 m, and the depth is 6.9 m. As indicated, the two cross-sectional models are both 

irregular and cluttered with void spaces, which can be considered as the pancake void. Pancake 

collapses occur frequently after major earthquakes or severe damage to the building, which 

makes conducting search-and-rescue operations dangerous and difficult. The building collapse 

that happened in Miami, Florida, was a pancake collapse, where emergency responders 

struggled to identify void spaces under the rubble to reach entrapped victims.  

 

Fig. 12 Target locations and corresponding permittivity maps  

The cross-sectional model is then fed into the gprMax simulator using a 350 MHz antenna to 

generate synthetic radargrams. The simulation spatial step is set to 0.01 m, and the time window 

is 2.35865e-11s. The number of iterations is set to 3,000. The synthetic radargrams are 

preprocessed with time-zero correction and exponential time gain. The permittivity map is 

converted into the time-depth domain using Eq. (1). The synthetic radargrams after GAN 

         

          

  

  

  

  

                                        

      

        



augmentation are fed into the network to predict the corresponding permittivity map. The GPR 

inversion results using the network are shown in Fig. 13. Note that the inverted permittivity map 

is smoothed using a Gaussian filter with a standard deviation of 3. The results indicate that large 

void spaces can be located in the inverted permittivity map. In particular, for the first target 

location, the inversion result can identify the two large voids that are close to the top and bottom 

in the permittivity map. For the second target location, the large void space located at the 

bottom can be identified in the predicted permittivity map. Some small voids can be also 

located, though they become noncontinuous in the predicted permittivity map. The results 

demonstrate that the network has the potential to be employed for subsurface reconstruction in 

complex disaster rubbles.  

 

Fig. 13 Inversion results of the radargrams collected at locations #1 and #2. The first row is for 

location #1, and the second row is for location #2. 

6. Discussions 

6.1 Comparison with state-of-the-art methods 

Reconstructing subsurface interior scenarios in disaster rubbles provides critical information to 

first responders regarding subsurface conditions. In this study, we developed a deep neural 

network (DNN)-based GPR data inversion approach and trained it on CycleGAN-augmented 

radargrams to infer the interiors of collapsed structures from reconstructed permittivity maps. In 

[52], the as-built Building Information Model (BIM) was fed into a collapse simulation engine to 

simulate a variety of damage patterns of the building, which formed a virtual collapse structure 

database. The as-damaged exterior model was compared with the dataset, and the best-

matching collapse structure was retrieved for use as the as-damaged interior model. However, 

the method required the as-built BIM of the damaged building, which cannot be obtained for 

most of the old buildings. Furthermore, the validity of the simulation engine is questionable for 

complex building structures such as those in the real world. Our solution is more robust and 

                                           



reliable, which can provide in-situ information regarding subsurface interior scenarios. In 

addition, our method can be generalized to different types of collapsed structures and provide 

interior layouts and permittivity distributions, which have not been achieved in [6].  

The CycleGAN network was innovatively applied to the synthetic GPR data to improve their 

realism while preserving signal features. In our study, 5,748 synthetic and real GPR radargrams 

were used to train the CycleGAN. The realism of the augmented radargrams is substantially 

improved as indicated by the visual Turing test. In [47], the authors used around 700 images 

from each domain, and the resulting proportions of samples rated as “Real” were 23% and 52% 

for the GAN-augmented and real dataset, respectively. In another study conducted by Maeda et 

al. [53], the respective proportions of samples rated as “Real” were 25% and 12% when the 

number of training images was 1,200. Compared to these studies, our network was trained with 

a much larger dataset, which has the potential to produce more robust performance. 

Furthermore, many studies have utilized synthetic GPR data to detect subsurface defects [9,10], 

rebar [54], and underground utilities [55]. The synthetic and real GPR data have different signal 

characteristics because real GPR data often suffer from noisy signals and signal scattering. 

However, these studies have not investigated the domain gap between synthetic and real GPR 

radargrams, which could hamper their application in real-world scenarios. The CycleGAN 

network utilized in our study can reduce the domain gap and thus promote developed 

algorithms to real-world scenarios.  

6.2 Robustness of the inversion network 

In real-world applications, GPR data often suffer from random noise that can affect the signal-to-

noise ratio and blur useful signatures. In this section, we evaluate the robustness of our 

inversion network by predicting radargrams with random Gaussian noise. Specifically, random 

Gaussian noise with mean  and standard deviation 0.5σ is added to the original radargram, 

where  and σ are the mean and standard deviation of the original radargram, respectively. Fig. 

14 shows example prediction results on radargrams with random Gaussian noise. The results 

indicate that predicted permittivity maps can properly reconstruct void spaces as well as interior 

layouts, which demonstrates the robustness of the proposed method. 



 
Fig. 14 Prediction results on radargrams with random Gaussian noise 

 

To further assess the generalizability of the inversion network, the fine-tuned model is applied to 

a tall building collapse. Specifically, a total of 1,017 radargrams with ground-truth permittivity 

maps were collected from the collapsed structure in Fig. 11 to fine-tune the inversion network. 

The dataset was randomly split into a training set (90%) and a validation set (10%). The initial 

learning rate was set to 0.0001, with PyTorch’s ReduceLROnPlateau scheduler using max mode 

with patience of 20. The batch size was 64. The loss function is mean squared error. The 
network will stop training when the loss value does not decrease for 10 epochs on the validation 

set. The best performance achieved on the validation set was used to perform inference on the 

new collapsed building. Fig. 15 shows the variation of SSIM, R2, and MAE over epochs during 

the training stage on the training and validation sets. 

               

                                                      



 
Fig. 15 SSIM, R2, and MAE over epochs during the fine-tuning process on the training and 

validation sets 

 

The collapse due to structural failure was simulated using the BCB tool. Fig. 16 shows the 3D 

model of the collapsed structure and two selected locations. The permittivity maps for the two 

locations were extracted and fed into the gprMax simulator to generate corresponding 

radargrams.  

 

 
Fig. 16 3D model of the collapsed structure and target GPR survey locations for the simulated 

tall building collapse 

 

Fig. 17 shows CycleGAN-augmented radargrams and ground-truth permittivity maps in the time-

depth domain of target locations #1 and #2 shown in Fig. 16. The radargrams were fed into the 

inversion network to predict permittivity maps. The results indicate that the predicted permittivity 

map can point out large void spaces as highlighted by the black boxes. This can be viewed as 

an indicator of the generalization ability of the proposed method. However, it should also be 

noted that the model’s performance on simulated collapsed buildings is worse compared to its 

results on the synthetic dataset. This is because a realistic building collapse could be more 

complex than a structural collapse generated by the random collapse generator with random 

parameters, such as the number of layers, subsurface void shape, size, and location. The 

performance on realistic building collapses can be improved by integrating prior knowledge 

regarding real collapse structure features in the collapse structure generation stage. 

Specifically, building collapses can be categorized into one of five patterns: lean-to, V-shape, 

pancake, cantilever floor, and A-frame. Each type of collapse is associated with the type of voids 

         

          

  

  



formed underneath, which is critical for first responders to determine suitable operations. The 

characteristics of different types of collapses could be incorporated into the structural collapse 

simulation in the future to improve the model’s performance in real-world applications. 

 
Fig. 17 Inversion results of the radargrams collected at locations #1 and #2. The first row is for 

location #1, and the second row is for location #2. 

 

6.3 Applicability and contribution 

The proposed method achieved an R2 value of 0.76, an SSIM of 0.89, and an MAE of 1.49 in 

inferring the material permittivity from augmented radargrams. The inference time of the 

network is around 8 ms for a single radargram using NVIDIA Quadro P5000. The promising 

performance of our method demonstrates its potential to be applied to search-and-rescue 

operations. The proposed method was validated in simulations of a multistory apartment 

collapse and a tall building collapse, which produced complex and realistic collapsed structures. 

The predicted permittivity map can point out large void spaces, which can provide actionable 

information for search-and-rescue operations. Current practices for locating buried survivors 

consist of physical void searching, audible callouts, infrared/thermal imaging, electronic listening 

devices, and canine searching. The proposed method could be a great complement to current 

search-and-rescue practices by pointing out potential survivable spaces for victims. 

Furthermore, the proposed method can be integrated with existing robot platforms to survey 

disaster areas. For instance, GPR can be mounted on unmanned aerial vehicles (UAVs) such as 

DJI Matrice 600 to scan over uneven and heterogeneous structural collapses. The UAVs offer 

enough speed and flight time to cover a large disaster area. The network could be integrated 

into the onboard computers of UAVs to achieve nearly real-time inversion given the fast 

inference time of the network. The inversion results could also be leveraged to optimize 

scanning trajectory and parameters to map 3D subsurface structures.  

                                           



This study contributes to the body of knowledge in two aspects. First, to address the lack of 

training data with correct labels, synthetic radargrams were generated from simulated scenarios 

of collapsed structures. The CycleGAN network was applied to reduce the domain gap between 

synthetic and real radargrams and augment the realism of synthetic radargrams for training, 

providing a new mechanism for preparing and augmenting data that are difficult to collect during 

disasters. The augmented radargrams can then be used to train the GPR inversion network, thus 

not only improving the capability of the network for inferring a large number of complex 

scenarios but also the scalability of the deep learning methods to real GPR data. Second, 

instead of detecting and segmenting nonintuitive features in GPR radargrams, a new DNN-based 

inversion network based on an encoder-decoder structure was trained using the augmented 

GPR radargrams to directly reconstruct permittivity maps corresponding to the cross-sections of 

collapsed structures. The Atrous Spatial Pyramid Pooling (ASPP) module was integrated into the 

network to capture neighboring GPR trace information in different scales by varying dilation 

rates. This paper offers a new method for complex and nonintuitive GPR data processing, 

particularly in time-critical missions. Moving beyond current techniques, the proposed method 

can rapidly process a large amount of nonintuitive GPR radargrams, reconstruct the interior 

scenarios, and infer important regions from the material permittivity such as void spaces in 

rubble, providing the interior layouts of collapsed structures to first responders and improving 

the effectiveness, efficiency, and safety of current search-and-rescue practices. 

6.4 Limitations and future research 

This study suffers from several limitations that deserve future study. Given the unavailability of 

field GPR data and its corresponding permittivity map, this study is focused on demonstrating 

the feasibility of the inversion network using collapsed structures simulated with a building 

collapse engine. The performance of the network in real disaster sites with complex collapsed 

structures remains to be evaluated. Therefore, in the future, extensive experiments should be 

conducted to test if the network can correctly reconstruct the interior models of collapsed 

structures at disaster sites. Second, while the permittivity map can provide critical information 

regarding interior scenarios such as survivable void spaces, materials of structures remain 

unexplored. Materials of subsurface structures are important for emergency responders to 

designate appropriate rescue strategies to reach potential trapped victims. For instance, 

concrete typically requires a greater effort to remove compared to wood. Therefore, future study 

is needed to obtain information on subsurface structure materials from GPR data with advanced 

algorithms. Third, the building collapse simulation was conducted using the BCB tool. The BCB 

is open-source software, which is well-maintained and can be accessed by practitioners in urban 

search-and-rescue organizations. It should also be noted that more-advanced physics engines 

are available, such as Extreme Loading for Structure (ELS) and Abaqus software. These 

advanced simulators have the potential to generate more realistic structural collapse 

simulations. Furthermore, using collapse simulators to create different types of structural 

collapse scenarios and generate a large amount of GPR data to train the inversion network is a 

promising research direction.  

7. Conclusions 

Significant efforts are needed to search for and rescue victims trapped in collapsed structures 

after natural and man-made disasters such as earthquakes, hurricanes, and explosions. 

Knowledge of the interiors of collapsed structures is not made available to first responders by 

existing techniques, hindering efficient, effective, and safe search-and-rescue operations. To 

address this urgent need, this paper proposed a DNN-based GPR data inversion approach to 



reconstruct permittivity maps, which can be used to infer the interiors of collapsed structures. A 

large amount of synthetic GPR radargrams with ground-truth permittivity maps were simulated 

and augmented using the CycleGAN network to improve the realism of the synthetic 

radargrams. A DNN-based inversion network was designed based on an encoder-decoder 

structure and trained using the augmented radargrams to reconstruct permittivity maps 

corresponding to the cross-sections of collapsed structures. The result of the visual Turing test 

indicated that the realism of augmented radargrams is substantially improved using the GAN. 

Notably, the proportion of augmented radargrams misjudged as “Real” was 27.3%, which is 

even higher than the proportion of real radargrams judged as “Real” (22.7%). The proposed 

inversion method achieved an R2 value of 0.93, an MAE of 0.73, and an SSIM of 0.95 in inferring 

the material permittivity of collapsed structures from synthetic radargrams. Furthermore, the 

predicted permittivity map was used to infer voids, achieving an F1 score of 64.34%, a precision 

of 63.06%, and a recall of 71.84% at the pixel level. On the augmented radargrams, the network 

achieved an R2 value of 0.76, an MAE of 1.49, and an SSIM of 0.89 in predicting the permittivity 

map. The void detection on augmented radargrams achieved an F1 score of 45.2%, a precision 

of 45.35%, and a recall of 53.99% at the pixel level. The proposed GPR inversion network in 

reconstructing subsurface permittivity maps was further validated on two collapsed multistory 

structures simulated using a building collapse simulator. 
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