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Abstract

Submillimeter emission lines produced by the interstellar medium (ISM) are strong tracers of star formation and are
some of the main targets of line intensity mapping (LIM) surveys. In this work we present an empirical multiline
emission model that simultaneously covers the mean, scatter, and correlations of [C IT], CO J = 1-0 to J = 5-4, and
[CT] lines in the redshift range 1 <z < 9. We assume that the galaxy ISM line emission luminosity versus halo
mass relations can be described by double power laws with redshift-dependent lognormal scatter. The model
parameters are then derived by fitting to the state-of-the-art semianalytic simulation results that have successfully
reproduced multiple submillimeter line observations at 0 <z <6. We cross-check the line emission statistics
predicted by the semianalytic simulation and our empirical model, finding that at z > 1 our model reproduces the
simulated line intensities with fractional error less than about 10%. The fractional difference is less than 25% for
the power spectra. Grounded on physically motivated and self-consistent galaxy simulations, this computationally
efficient model will be helpful in forecasting ISM emission-line statistics for upcoming LIM surveys.

Unified Astronomy Thesaurus concepts: Intergalactic medium (813); Diffuse radiation (383); Large-scale structure

of the universe (902)

1. Introduction

Two cosmic epochs that are of great interest for modern
astrophysics are the epoch of reionization at redshift z > 6 and
the cosmic “high noon” era, when the cosmic star formation
history peaked, at z ~ 2 (Madau & Dickinson 2014). Since the
molecular clouds distributed throughout the interstellar medium
(ISM) host star formation, and the star-forming activity in
return influences the nearby ISM environment, ISM emission
lines are unique tracers for the physical properties of the stellar
population and the star-forming environment. Among various
molecular and fine-structure lines, radiations with wavelengths
between 15 um and 1 mm, also referred to as submillimeter
emission lines, are particularly promising for observation since
they can penetrate dense molecular clouds. Some of the popular
submillimeter observational targets are the molecular ISM
tracers, including the CO rotational transitions, and [C 1] fine-
structure lines; tracers of photodissociation regions such as the
[C1] 157 pm line, which is also the brightest far-infrared line;
and tracers of HII regions, including the [O1I] 88 yum and
52 ym fine-structure lines and [N1I] 122 ym and 205 ym
transitions.

Our observational view of submillimeter emission-line
properties of galaxies in the nearby and distant universe has
exploded since the launch of the Herschel Space Observatory
and the commissioning of the Atacama Large Millimeter Array
(ALMA) in 2010. However, there is concern about whether the
bright sources observable by those instruments are representa-
tive of the general galaxy population. An emerging
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observational technique referred to as line intensity mapping
(LIM; Kovetz et al. 2017) is designed to complement
traditional galaxy surveys. Instead of resolving individual
targets with high spatial resolution, LIM measures the
aggregated emission along the line of sight with high spectral
resolution, including radiation contributed by faint galaxies.
LIM is therefore more suitable for probing the average galaxy
properties during the cosmic epochs of interest. However, since
the beam sizes of LIM surveys are generally much larger than
the target sizes, confusion is a major challenge for LIM survey
data analysis (Helou & Beichman 1990).

Up to now, LIM surveys have achieved preliminary [C II]
and CO detections at high redshift (Keating et al. 2016, 2020;
Pullen et al. 2018; Yang et al. 2019), and more surveys with
higher spectral resolution are planned in the upcoming decade
to further confirm or extend those detections. Motivated by the
prospects of these upcoming experiments, reliable submilli-
meter line emission models are needed to provide theoretical
predictions for the observational interpretation and forecasts.
Ideally, such a submillimeter model framework should connect
the line emission observables to the physical properties of the
ISM gas clouds, galaxies, and dark matter halos. It should also
simultaneously predict as many emission lines as possible to
provide a comprehensive understanding of the multiphase ISM
environment. It is difficult to construct such an analytic model
because the microphysical processes involved in different
submillimeter line emissions vary case by case. Moreover, it is
challenging to connect line emission mechanisms happening on
the atomic scale to the sub-parsec-scale molecular clouds,
kiloparsec-scale galaxies, and megaparsec-scale dark matter
halos. There are many analytic models in the literature
describing the major submillimeter LIM targets, including
CO, [C], [O 1], and [N 1] lines (e.g., Lidz et al. 2011; Gong
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et al. 2012; Pullen et al. 2013; Kamenetzky et al. 2014; Silva
et al. 2015; Mashian et al. 2015; Li et al. 2016; Pullen et al.
2018; Padmanabhan 2019; Sun et al. 2019; Yang & Lidz 2020;
Padmanabhan et al. 2021). All those models include empirical
treatments to some degree and fail to simultaneously cover all
the lines of interest. In particular, there is a lack of models that
predict the CO rotational transitions with high J quantum
states, which are the major low-redshift interlopers for many
LIM surveys.

An alternative approach is to combine numerical hydro-
dynamic galaxy formation simulations with radiative transfer,
photoionization, and photodissociation region modeling (e.g.,
Olsen et al. 2017; Moriwaki et al. 2018; Leung et al. 2020;
Olsen et al. 2021). The strength of the numerical simulation
approach is that detailed properties of the gas distribution,
temperature, and radiation field can be obtained down to the
resolution of the simulation. However, all simulations that
cover cosmological volumes have resolution considerably
coarser than the molecular cloud scales relevant for line
emission, so a “subgrid” model must be applied on top of the
simulation as part of the line emission model. Due to the rather
high computational expense of this approach, it is currently not
feasible to produce predictions for large numbers of galaxies
(state of the art is <700 galaxies) or to explore uncertainties in
the subgrid recipes for physical processes in the simulations or
in the line emission modeling interface. In addition, portability
of the numerical approach can be limited since many
simulations are not open source.

A “middle way” is provided by coupling semianalytic
models of galaxy formation with a submillimeter line emission
modeling framework (Popping et al. 2014a, 2016, 2019;
Lagache et al. 2018). The state-of-the-art submillimeter line
simulation framework is introduced in Popping et al. (2019,
hereafter P19) and Yang et al. (2021). This framework
combines the semianalytic galaxy formation model (SAM)
developed by the “Santa Cruz” group (Somerville &
Primack 1999; Somerville et al. 2008b, 2012; Porter et al.
2014; Popping et al. 2014b; Somerville et al. 2015) with a
subgrid model for molecular cloud properties and the DES-
POTIC (Krumholz 2014) spectral synthesis tool. The SAM
provides information on the global properties (gas mass,
metallicity, density) for up to millions of galaxies over a very
wide range in halo mass and redshift, and precomputed tables
from DESPOTIC provide the calculations of the thermochemical
evolution and emergent line emission from optically thick
clouds. The models include physics-grounded treatments for
ISM multiphase partitioning, molecular cloud distribution, and
cloud density profile variation. The full pipeline is many orders
of magnitude faster than a fully numerical approach and yields
results that are broadly consistent (e.g., Leung et al. 2020).
The P19 submillimeter SAM framework has successfully
reproduced the observed strength of [CII] 157 ym fine-
structure lines, multiple CO rotational transitions, and [CI]
fine-structure emissions at 0 <z < 6.

Motivated by the need for a physically grounded multiline
analytic model, in this work we present an empirical model for
[C1], CO, and [C1] line luminosity as a function of halo mass,
calibrated to accurately reproduce the updated P19 submilli-
meter SAM results. We assume that the line intensity L versus
halo mass M relations follow a double power-law trend,
together with a redshift-dependent lognormal scatter. We then
study the evolution of L(M) relations and their scatter and
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correlations over the redshift range 0<z<9. As a first
application, we use this model to predict the line intensities and
power spectra, finding that our empirical model yields results
that match the direct SAM simulation results with fractional
error better than 25% at 1 <z<9. Given that CO rotational
transitions and [CI] fine-structure lines are potentially
important low-redshift interlopers for many [C II] LIM surveys,
this model will be useful for testing the signal detectability and
interloper line removal techniques for upcoming LIM surveys
(e.g., Breysse et al. 2021; A. Pullen et al. 2022, in preparation).

We emphasize that the Santa Cruz SAM contains numerous
simplifying assumptions, and there are many uncertainties in
the physical processes, particularly those connected to stellar
and AGN feedback. This is the case for all existing a priori
models of galaxy formation, whether semianalytic or numerical
(e.g., Somerville & Davé 2015). The model assumptions are
based on phenomenology or results from numerical simula-
tions, and the fiducial model parameters have been chosen to
produce predictions that are consistent with a broad range of
observations of galaxy properties, as documented in an
extensive literature stretching over several decades (see
Section 2). Similarly, there are also uncertainties and assump-
tions that affect the predictions of the P19 submillimeter SAM
model (which have been rather extensively documented in that
work). We do not mean to suggest that these models are the
definitive “right answer”’—instead, our goal is to introduce a
framework for efficiently translating the predictions from
physically motivated models into LIM observables. This
framework is quite general and should be extensible to nearly
any physics-based model or to variations in the model physics
modules and parameters.

The plan of this paper is as follows: We introduce the Santa
Cruz SAM for galaxy formation in Section 2. In Section 3 we
review the DESPOTIC-based submillimeter model proposed
by P19 for estimating the submillimeter line luminosities of the
simulated galaxies, and we describe the model refinement made
in this work. We introduce the empirical L(M) relations and the
model calibration processes in Section 4. The SAM model line
statistics comparisons are presented in Section 5. We conclude
in Section 6. Throughout this work we adopt a flat ACDM
cosmology and assume cosmological parameters (2, = 0.308,
Q) =0.692, h=H,/(100kms ' Mpc™ ') = 0.678, o5 = 0.831,
and ng = 0.9665 (Planck Collaboration et al. 2016). We adopt a
baryonic fraction of f, =0.1578 and a Chabrier initial mass
function (Chabrier 2003).

2. Santa Cruz Semianalytic Model

In this work we use the SAM developed by the “Santa Cruz”
group to generate galaxy samples. The development of this
SAM framework is introduced in detail in a series of papers
(Somerville & Primack 1999; Somerville et al. 2008b, 2012;
Popping et al. 2014b; Porter et al. 2014; Somerville et al.
2015). We will only introduce the key features in this section,
and we refer our readers to Somerville et al. (2008b, 2015) for
more details.

Instead of solving the equations of gravity, hydrodynamics,
and thermodynamics for particles or grid cells, SAMs adopt
physically motivated treatments of the bulk flows of mass and
metals between different “reservoirs” (e.g., the diffuse inter-
galactic medium outside of resolved halos, hot diffuse halo gas,
cold dense ISM gas, stars), set within the framework of dark
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matter halo formation predicted by ACDM and encapsulated in
the form of “merger trees.”

First, we divide the dark matter halo mass range that we
consider in this work (10 < log(Myao/[Ms]) < 13)° into 100
log mass bins and generate 100 dark matter halos in each bin.
This halo mass range is selected because halos with mass
greater than 10" M., are very rare objects, while the SAM
predicts that halos less massive than 10'° M, are too faint to
significantly influence the submillimeter line emission statistics
(see Yang et al. 2021, Appendix A for a more detailed
discussion). The SAM then estimates the merging history of
each halo using a method based on the extended Press
—Schechter formalism (Somerville & Kolatt 1999; Somerville
et al. 2008b). The halo merger tree is evolved back in time until
the progenitors are less massive than 1% of the root halo or 10
M., whichever is smaller. Before cosmic reionization, each
halo is assigned hot gas with mass determined by the product of
the universal baryonic fraction and the halo virial mass. After
reionization, the mass filtering scale associated with UV
photoionization heating by the metagalactic background from
hydrodynamic simulations (Okamoto et al. 2008) is used to
determine the fraction of gas that is accreted as a function of
halo mass and redshift.

The SAM computes the rate that gas cools and accretes into
the ISM using a spherically symmetric standard cooling model
as described in Somerville et al. (2008b). Gas is assumed to
initially form a disk with an exponential radial density profile,
and the disk size is estimated following Somerville et al.
(2008a). The cold gas surface density profile is used along with
the gas metallicity and the local UV radiation field (assumed
proportional to the SFR) to estimate the fraction of ionized,
atomic, and molecular gas in each annulus as a function of
radius within each disk, using a prescription based on
numerical hydrodynamic simulations (Somerville et al. 2015).
The new SFR is then computed based on the surface density of
molecular gas, motivated by observations. This feature makes
Santa Cruz SAM particularly suitable for ISM line emission
predictions. The SFR, stellar mass, cold gas mass, and other
predictions of the Santa Cruz SAM have been shown to be
broadly consistent with observations from the local universe to
7~ 10 (Popping et al. 2014b; Somerville et al. 2015; Yung
et al. 2019a, 2019b, 2020a, 2020b; Somerville et al. 2021).

3. Submillimeter Emission-line Modeling

In this work we adopt the submillimeter line emission
modeling framework proposed by P19 (hereafter submillimeter
SAM), which adds a subgrid model for molecular cloud
properties to the Santa Cruz SAM and couples this cloud
population to the DESPOTIC code. As mentioned in the
introduction, one major challenge of applying submillimeter
line emission models to cosmological simulations is building
connections between physical processes happening at atomic
scales, molecular cloud scales, and the scales of galaxies. P19
developed a subgrid approach to address this problem.
Specifically, each galaxy simulated by the SAM is divided
into multiple radial annuli. In each ISM annulus, the masses of
the molecular cloud population are assigned by selecting
randomly from a power-law mass distribution with parameters
that depend on the mean density in the annulus. The molecular

5> n this work we use log to denote a base-10 logarithm, while In denotes a
natural logarithm.
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clouds are all assumed to be spherically symmetric and are
assigned a radial density profile. The [CII], CO, and [CI]
luminosities of each molecular cloud are then estimated
through the following process: First, multiple grid points are
selected in the five-dimensional parameter space, including
cloud mass, gas pressure, metallicity, external-ultraviolet and
cosmic-ray radiation field strength, and the redshift {M ouq,
Pext, Z, Fexr, 2}. To ensure convergence of the numerical
solutions, each molecular cloud is further divided into 25
regions so that the gas property within each region is close to
constant. This set of physical properties is then input to
DESPOTIC, which uses a one-zone model to compute the
dominant heating, cooling, and chemical processes. These
include grain photoelectric heating, heating of the dust by
infrared and ultraviolet radiation, thermal cooling of the dust,
cosmic-ray and X-ray heating, collisional energy exchange
between dust and gas, and a simple network for carbon
chemistry. The numerical solutions provided by DESPOTIC are
used to create a lookup table, which allows a mapping from a
set of physical properties to [CII], CO, and [CI] line
luminosity. Finally, the relevant submillimeter line luminosities
of each simulated galaxy are estimated by summing up the
radiation from all the molecular clouds within it.

The submillimeter SAM line luminosity simulation results
are somewhat sensitive to the assumed cloud radial density
profile. P19 have shown that models with a Plummer density
profile reproduce various [C IT], CO, and [CI] line observations
at redshift 0 < z < 6. However, several subsequent works have
shown that the submillimeter SAM underestimates [C II] and
[C1] luminosities compared to more recent ALMA detections
at high redshift (e.g., Béthermin et al. 2020; Valentino et al.
2020). To resolve the tension between the submillimeter SAM
predictions and recent observations, in this work we assume a
power-law radial density profile for each molecular cloud, as
first suggested by Yang et al. (2021). This change of the cloud
density profile does not significantly influence the CO
luminosity predictions, but it effectively increases the [CII]
and [CI] line strengths at high redshift such that the model
predictions are consistent with observations. We also created a
finer grid in parameter space for the DESPOTIC lookup table
calculation to ensure accurate linear interpolations. We
randomly select 115,000 test points in the five-dimensional
parameter space {10% < Mjoua/[M] < 107,
10% < Py /kg/10*[cm K] < 10°, 107° < Z/[Z.] < 10°2,
107 < F,y/[Habing] < 10*, 0 <z <9} and find that more
than 78.5% of the [C1I], CO, and [CI] linear interpolations
given by the lookup table agree with the DESPOTIC numerical
solutions with better than 20% fractional error.

4. An Empirical [C11], CO, and [C I] Model Calibrated to
the Submillimeter SAM

In order to represent the submillimeter SAM simulation
results in a more computationally efficient and portable way, in
this section we introduce an empirical model that captures the
average, dispersion, and correlation of line luminosities versus
halo mass relations L(M) simulated following the framework
introduced in Sections 2 and 3. This model reproduces SAM
line intensities and power spectra with better than 25%
fractional error at z>1. The SAM model power spectra
fractional difference further reduces to less than 15% at z > 3.
For applications that require more accurate submillimeter line
simulations, in particular at redshift z < 1, we provide tables of
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the submillimeter SAM L(M) simulation results athttps://
users.flatironinstitute.org / ~rsomerville /Data_Release /LIM/.

In this work we define the submillimeter line luminosity of
each dark matter halo as the sum of the luminosity of all
galaxies within the halo, and we treat halos as the smallest
submillimeter line emitters. The L(M) model therefore cannot
capture the submillimeter line fluctuations on scales smaller
than the size of the halo. Since the beam sizes of LIM surveys
are generally large, such a model is still suitable for making
many LIM forecasts. We leave a more careful treatment of the
“one-halo term” (which would require separate modeling of
central and satellite galaxies, along with their location within
the halo), which is crucial for galaxy spectroscopic survey
forecasts, to future works.

4.1. The Average L(M) Model

The main observables of LIM surveys, including the
intensity of line emission and the two-halo term of the auto-
power spectrum, can be estimated through a combination of the
average line luminosity versus halo mass L(M) model and a
halo model, which provides the number density and bias of
halos as a function of their mass and redshift. The L(M)
relations and their redshift evolution have been studied via
many different approaches in the literature. Although upcoming
LIM surveys that cover large cosmic volumes and capture
radiation of faint emitters will result in stronger constraints on
the L(M) relations, the slopes of L(M) relations at very high and
low halo mass are currently poorly determined owing to a lack
of observational data for very massive halos with
M > 10"*[M_] and very faint sources with M < 10"'[M_]. As
a result, current empirical L(M) models in the literature range
from linear to power-law relations (e.g., Lidz et al. 2011; Pullen
et al. 2013; Padmanabhan 2019). In this work we assume a
double power-law L(M) relation as suggested by Padmanabhan
(2018):

-« A
Loy M [(M/[M@]) +(M/[M@]” W

[Lo] M) M, M,

where the four free parameters My, N, «, and 3 control the mass
of the turnover, amplitude, slope at M/[M] < M, and slope at
M/[Ms] > M, for the L(M) relation. A schematic diagram of
how {M,, N, a, B} control the shape of the L(M) model is
presented in Figure 1. A double power-law relation has
frequently been used in the literature to describe galaxy—dark
matter connections, including stellar mass or luminosity versus
halo mass relations (Yang et al. 2012; Moster et al. 2013).
Stellar mass—halo mass empirical models that are consistent
with observational constraints (e.g., Behroozi et al.
2010, 2013, 2019) indicate that the halo star formation
efficiency increases with halo mass from M~ 10'° M, to a
redshift-dependent threshold M. For more massive halos, the
star formation efficiency decreases with halo mass instead,
leading to a shallower SFR-M slope. Massive star/supernova
(SN) feedback drives the slope of the galaxy—halo relation at
masses below M, and active galactic nucleus (AGN) feedback
is the main driver at higher halo masses. Specifically, stellar
feedback depletes the cold gas reservoir of low-mass halos via
strong outflows, which are less efficient at removing gas in
more massive halos with deeper potential wells. On the other
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log(NM;)

log(L/[Lo])

log(M,)
log(M/[Ms])

Figure 1. Sketch of the double power-law L(M) relation characterized by
parameters {M,, N, «, (3} introduced in Equation (1). M, controls the mass of
the turnover of the L(M) relation, N characterizes its amplitude, and « and 3
control the slopes of the L(M) relation at halo mass range M/[M.] < M, and
M/[M:] > M, respectively. Adapted from Moster et al. (2013).

hand, massive halos are more likely to harbor massive bulge-
dominated galaxies, which host supermassive black holes.
These black holes drive AGN feedback in the form of
radiation-pressure-driven winds, which can remove cold gas
from the galaxy, and powerful jets, which can heat the hot gas
in the halo and suppress or quench cooling. As a result, the
dependence of the efficiency of stellar-driven winds on galaxy
circular velocity is expected to determine the slope of the
double power law at M < M, («), the efficiency of the jet mode
AGN feedback coupling with the hot gas is expected to
determine the slope at M > M, and the relative importance of
these two feedback channels determines where they cross,
which determines the value of M;. Since the ISM submillimeter
lines considered in this work all trace relatively dense star-
forming gas, the line luminosities are strongly correlated to
SFR. It is therefore natural to expect the average L(M, z)
relations to follow similar trends.

In each of the 91 redshift slices uniformly distributed in
0<z<9, we divide 10* halos simulated by the submillimeter
SAM into 30 mass bins. The submillimeter line luminosity of
each halo is determined by the total luminosity of all the
galaxies within the halo. We then select star-forming halos
whose central galaxy satisfies sSFR > 1/(314(2)) to calculate
the average L(M) relation. Here sSFR is the specific star
formation rate defined as the ratio between the galaxy SFR and
stellar mass, and t(z) is the Hubble time at the halo redshift.
We then fit for the values of the parameters in Equation (1)
using the tabulated L(M) relations from the submillimeter SAM
through a nonlinear least-squares approach. We find that the
average L(M) statistic predicted by the submillimeter SAM is
well represented by the double power-law relation. The redshift
evolution of the parameters {M,, N, «, 3} is summarized in
Table 1. In order to describe the redshift evolution of the
double power-law model parameters with simple functions, we
bin the results into coarser redshift bins 1 <z <4, 4<z<5,
5<z<9 and model the parameter redshift dependence
separately. As one example, in Figure 2 we show the
comparison between {M;, N, a, 3} best-fit values (blue points)
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Table 1
Redshift Evolution of Parameters in the L(M) Double Power-law Model Equation (1)
1.0<z<40
Line logM, logN « 15}
cu 12117004105 —0.907 exp(—z/0.867) — 3.04 1.35 4 0.450z — 0.0805z° 2.57exp(—2z/1.55) + 0.0575
COJ=1-0 12.13 — 0.1678z —6.855 + 0.2366z — 0.050137% 1.642 + 0.1663z — 0.032387° 1.77 exp(—z/2.72) — 0.0827
CO J=2-1 12.12 — 0.17047 —5.95 4 0.278z — 0.05212> 1.69 4 0.126z — 0.0280z> 1.80exp(—z/2.76) — 0.0678
COJ=3=2 12.1 —0.171z —5.53 4 0.329z — 0.0570z2 1.843 + 0.08405z — 0.024857 1.88exp(—z/2.74) — 0.0623
CO J=4-3 12.09 — 0.1662 —5.35 + 0.404z — 0.06577° 2.24 — 0.0891z 2.017 exp(—z/2.870) — 0.1127
COJ=54 12.12 — 0.17967 —5.37 + 0.515z — 0.08027° 2.14 + 0.110z — 0.03712 2.39 exp(—z/2.55) — 0.0890
ClJ=1-0 1.026 exp(—z/2.346) + 11.20 —1.451exp(—z/1.893) — 5.046 —0.741 exp(—z/0.739) + 1.86 1.26 — 0.198z
ClJ=2-1 1.135exp(—z/2.616) + 11.13 —2.03exp(—z/1.80) — 4.44 —1.16 exp(—2z/0.706) + 2.00 1.54 — 0.259z
40<z<50
Cu 8.69 4 1.267 — 0.1437% —5.467 + 1.056z7 — 0.11337° 6.135 — 1.786z + 0.1837z° 0.443 — 0.0521z
COJ=1-0 11.75 — 0.068337 —6.554 — 0.037257 3.73 — 0.833z + 0.08847 0.598 — 0.0710z
CO J=2-1 11.74 — 0.07050z —5.57 — 0.0250z 4.557 — 1.215z + 0.13007> 0.657 — 0.0794z
COJ=3-2 11.74 — 0.07228z —5.06 — 0.0150z 5.253 — 1.502z 4 0.1609z° 0.707 — 0.0879z
CO J=4-3 11.73 — 0.07457z —4.784 5.74 — 1.67z + 0.1787% 0.762 — 0.0984z
COJ=54 11.73 — 0.07798z —3.81 — 0.359z + 0.04197° 6.12 — 177z + 0.1887° 0.846 — 0.1157
ClJ=1-0 8.54 4 1.33z — 0.1577% —6.96 + 0.750z — 0.0807z° 8.42 — 2.91z + 0.3207% 0.837 — 0.1037
CIJ=2-1 8.823 + 1.206z — 0.14457° —4.906 + 0.05632z 9.275 — 3.225z 4 0.35437° 0.94 — 0.12z7
7225
cu 11.92 — 0.10687 —2.37 — 0.130z 2.82 — 0.298z + 0.01967* 1760 exp(—z/0.520) + 0.0782
COJ=1-0 11.63 — 0.04943 —6.274 — 0.09087z 2.56 — 0.2237 + 0.01427% 33.4exp(—z/0.846) + 0.160
COJ=2-1 11.63 — 0.052667 —5.26 — 0.0849z 2.47 — 0210z + 0.01327% 383 exp(—z/0.841) + 0.169
COJ=32 11.62 — 0.05507 —4.72 — 0.0808z 2.53 — 0.220z + 0.01397 31.5exp(—z/0.879) + 0.170
CO J=4-3 11.6 — 0.0529z —4.40 — 0.07447 2.59 — 0.206z + 0.01207* 41.6 exp(—z/0.843) + 0.172
COJ=54 11.58 — 0.05359z —4.21 — 0.06747 2.87 — 0.257z + 0.01577% 21.8exp(—z/0.957) + 0.168
CIJ=1-0 4.294 exp(—z/2.479) + 10.68 1.89exp(—z/5.73) — 6.03 1.04 4 0.165z 2090 exp(—2z,/0.520) + 0.204
CIJ=2-1 437 exp(—z/2.38) + 10.7 1.48exp(—z/6.14) — 5.31 1.17 + 0.169z 3960 exp(—z,/0.487) + 0.221

and our model summarized in Table 1 (red curves) for the CO
J=1-0 line.

We find that in the redshift range 1 < z < 9 the characteristic
halo mass M, that corresponds to the star formation efficiency
peak decreases from 10'? to 10'' M., in agreement with
Behroozi et al. (2013). The parameter N that controls the
overall amplitude of L(M, z) peaks at z ~ 2, consistent with the
observed cosmic star formation rate density redshift evolution.
The parameter « that controls the L(M) slope on the M < M,
side shows a relatively weak redshift dependence. This is
because the slope of the dependence of the mass loading of
stellar-driven winds on galaxy circular velocity is assumed to
be a fixed value in these models. There is a weak dependence
on redshift due to the weakly evolving relationship between
halo mass and galaxy circular velocity. The parameter 3 that
characterizes the L(M) relation slope on the high halo mass end
increases much more significantly from z~6 to z=1,
indicating that, on average, the star formation activity within
massive halos becomes less efficient as time goes by. This is
because in the SC SAM black hole growth is tied to bulge
growth, and massive bulges build up at late times via gas-poor
mergers. The radio jet power is assumed to be proportional to
the black hole mass, motivated by observations (Somerville
et al. 2008b). As the black hole mass increases over time, the
gas heating rate due to these jets can approach or exceed the
cooling rate in massive halos, leading to quenching of star
formation and a decrease of the L(M) slope on the high-
mass end.

We present example comparisons between L(M) relations
from the submillimeter SAM and our empirical model for
[Cm], COJ=1-0 to J=5-4, and [CI] /J=1-0 to J=2-1
lines in Figure 3, with fractional differences
(Lsam — Limode1)/Lsam specified in the inset of each panel.
Our double power-law L(M, z) model generally recovers the
submillimeter SAM predictions with better than 20% accuracy,
but the fractional difference can be large at low halo mass.
Since halos with M < 10'" M, are very faint submillimeter line
emission sources, we will show in Section 5 that the inaccuracy
of our L(M) model at M < 10'"" M., does not corrupt its LIM
summary statistics predictions.

4.2. Halo Duty Cycle Factor

As mentioned in Section 4.1, we have removed quenched
dark matter halos that are not forming stars rapidly and
therefore are not likely to be luminous in [C1I], CO, and [C 1]
lines from the L(M) model fitting, so another important part of
our empirical treatment is to model the fraction of star-forming
halos f4,y in each halo mass bin and redshift slice. We calculate
fauyy as the fraction of halos in each mass and redshift bin with a
central galaxy that satisfies the condition sSFR > 1/(3#4(2)), as
introduced above:

Nsp(M, 2)

Fiuey M, 2) = ,
duty Niota (M, 2)

2
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Figure 2. Redshift evolution of parameters {M;, N, «, 3} introduced in Equation (1) for CO J = 1-0. Blue points show the best-fit parameter values, while the red

curves are our models summarized in Table 1.

where Ngg is the number of star-forming halos, while N, 18
the total number of dark matter halos in the corresponding
redshift and halo mass bin. We find that the fu,,(M) relation
can be described by a double power law at redshift 1 <z < 4:

—Ml/w] - ifl<z<4
fuy = 1+ (H4010) 3
1, if4<z<9
with redshift evolution given by

logM,(z) =11.73 + 0.6634z,
7v(z) = 1.37 — 0.190z + 0.0215z>. 4

The gas accretion rate into halos decreases at z < 1 owing to the
onset of the accelerating cosmic expansion. As a result, central
galaxies living in less massive halos (M < 10" M) start to
become quenched by stellar feedback, causing a more
complicated fg,y(M) behavior at low halo mass that cannot
be fully captured by this simple double power-law relation. We
show example comparisons between the fy,y(M) relations
predicted by the submillimeter SAM and this model in
Figure 4, with fractional difference
for = (Fam® = Finede) [ specified in the inset. The
accuracy of our fy,y, model is better than 20% in redshift
range 1 <z<9 and halo mass range 10'° Mo <M< 10'23
M_,,. The strong redshift dependence of fq,, at high halo masses

is driven by the growth of massive black holes and the
corresponding increase in the efficiency of AGN feedback, as
described earlier.

4.3. L(M) Scatter and Multiline Correlations

With the average line luminosity versus halo mass L(M)
model and the halo duty cycle factor fyu, (M) model introduced
in Sections 4.1 and 4.2, key LIM observables can be calculated
quantitatively by combining these with halo models (e.g.,
Cooray & Sheth 2002; Schaan & White 2021). The intensities
of [C1I], CO, and [CT1] lines can be estimated through

c dn
1@ = —— [am“™ 1., 2f,, . 5
© 47w?H(z)f ang - M vy ®)

where i is an index for submillimeter lines considered in this
work, 1 is the rest-frame frequency of the target emission line,
and dn/dM is the halo mass function. In this work we choose
the Sheth & Tormen (2002) halo mass function model since it
matches well with halo abundances at high redshift predicted
by hydrogen reionization simulations (Zahn et al. 2007).
However, the L(M) model introduced in this work can also be
combined with other halo mass function models that are
calibrated to simulations and observations at lower redshifts.
Two-halo terms of the auto/cross-power spectrum can also be
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Figure 3. Comparisons of the average value of L(M) between the submillimeter SAM simulation predictions (solid lines) and the double power-law empirical model
(dashed lines) at 1 <z < 9. The inset in each panel shows the fractional difference of L(M) relations between submillimeter SAM and the empirical model

Serr = (Lsam — Liode1) /Lsam-

estimated through
P70k, 2) = L@ L) (bi(2) (@) Pin(k, 2, (6)

where Py, is the linear theory density power spectrum, i and j
are indices for submillimeter lines considered in this work, and
(b) is the luminosity weighted halo bias,

(bi(2)) = fde_A’jlﬁimyLi(M, 2)b(M, 2)
| fde_l\nlﬁiuty L;(M, z) )

)

In this work we use the halo bias model b(M) proposed by
Sheth et al. (2001). At small scales where Poisson noise
dominates the power spectrum term, models for the scatter and
correlations of L(M) relations become important for the shot-
noise power spectrum estimation:

2
P~S~h0l ( Z) — c 1
v 47H (z) V? V(}

d
x f de—;[<L,»(M, LM, D) fouy M, 2, (8)

where (LM, z)L{M, z)) denotes the average line i and line j
luminosity product of all star-forming halos at a given halo
mass at redshift z.

We find that in the submillimeter SAM simulations the
luminosity distribution of star-forming halos within a narrow
halo mass bin is close to lognormal with a mean given by
Equation (1) and a dispersion of o dex:

a1
dlogl  o\27

1(10g£10gL+ln(10)02/2)2 o

exp

(2

Here we use L to denote the halo luminosities predicted by the
submillimeter SAM. L denotes the average halo luminosity
given by the model presented in Section 4.1. Note that this
approximation only holds if we remove quenched galaxies
from our distributions, necessitating the inclusion of the above
fauy factor. This differs from previous works that tend to
include one or the other of a scattering or duty cycle effect (see,
e.g., Keating et al. 2016).
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Figure 4. fy.,(M) comparisons between SAM simulations and the double
power-law empirical model predictions at 1 < z < 4. The solid curves show L
(M) relations simulated by SAM -+ submillimeter SAM, while the dashed lines
are given by the empirical model in Equation (3). The inset shows the fractional
difference of fy. (M) relations between SAM and the empirical model
e = (Fam = Fawodeh) [fam". Atz < 1, the SAM fuu(M) relations become
more complicated than a double power law owing to low mass halo quenching
by stellar feedback, as shown by the black curve.

The average line luminosity product under this assumption
on the L(M) distribution is given by

<Li(M, Z)L](M’ Z)>

— (py N 100077 — 1010 | 1 1)L(M, 2)L,(MI@)

where p;; is the correlation coefficient between LM, z) and
LM, z). Consider the i =j case, where we study the variance
of one emission line. In this case, p will always be unity and
Equation (10) reduces to

(LEM, 2)) = 1000097 1,20 7). (11)

We ignore the halo mass dependence of the dispersion in L(M).
Instead of constructing a comprehensive o(M, z) empirical
model for the dispersion, we equate the shot-noise power
spectrum simulated by the submillimeter SAM to the empirical
model prediction and solve for a characteristic L(M) scatter. We
summarize the redshift evolution of ¢ for each submillimeter
emission line as follows:

ocn(z) = 0.32exp(—z/1.5) + 0.18,

ocoJ =1 —0(z) =0.357 — 0.0701z + 0.00621z2,

ocoJ =2 — 1(z) = 0.36 — 0.072z + 0.0064z2,

oco J =3 — 2(z) =0.40 — 0.083z + 0.0070z2,

oco J =4 — 3(z) =0.42 — 0.091z + 0.0079z2,

oco J =5 — 4(z) =0.44 — 0.085z + 0.0063z2,

oc1 J =1 — 0(z) = 0.39 — 0.076z + 0.0063z2,

oct J =2 — 1(z) = 0.46 — 0.096z + 0.0079z2. (12)
We present the o(z) comparisons between submillimeter SAM
and Equation (12) for [C1I], CO J=1-0, and [CI] J=1-0 in
Figure 5.

Assuming a lognormal L(M) distribution, another quantity

we need to model is the correlation coefficient p. Through
studying the correlation among [C1], CO, and [CI] lines

Yang et al.
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Figure 5. Comparisons of the line emission scatter o(z) between the
submillimeter SAM simulation predictions (solid lines) and the model given
by Equation (12) (dashed lines) at 1 <z <9 for [C1I] (red), CO J=1-0
(green), and [C I] J = 1-0 (blue).

simulated by the submillimeter SAM, we find that the
correlation coefficient generally shows weak dependence over
log(M/[M:]) < 11 and z < 4, as presented in the left panel of
Figure 6. The CO-[CI] line correlation weakens at high
redshift and in the high halo mass range for the following
reason: the molecular gas and stellar mass surface density of
individual galaxies in this part of parameter space are high
owing to rapid gas accretion and relatively weak stellar and
AGN feedback. Since the submillimeter SAM assumes the UV
radiation field strength to be proportional to the star formation
rate surface density, molecular clouds in halos with
log(M/[Mz]) > 11 and z>4 are subjected to strong UV
radiation fields. As a result, a large amount of carbon is singly
ionized, leaving limited volume where CI and CO compete
with each other. We define the characteristic correlation
coefficient p; between two target lines as a value that equates
the shot-noise power spectrum given by the SAM and the
empirical model:

dn
f dInM——=(Li(M, LM, 2) fauy

:(pij(z)\/10111(10)0,2 _ 1\/101'1(10)”% -1 + 1)

dn
xfdlnMdlnMLi(M, DL (M, sy (13)
The resulting cross-correlation p factors averaged over all
redshift snapshots are presented in the right panel of Figure 6.
The characteristic correlation coefficients simulated by the
submillimeter SAM are mostly consistent with the empirical
galaxy generator (EGG) simulation results (Schaan &
White 2021). Despite adopting independent simulation
approaches, we find that the correlation coefficients both
among CO and among [C1I] lines are close to unity. This is a
natural prediction because CO lines are all emitted by the CO
molecules. The luminosity ratios among CO lines are therefore
less sensitive to gas-phase metallicity, external radiation field,
and many other environmental variables. The same argument is
also applicable to [C 1] lines. However, we find that the pco, c1
factors predicted by the submillimeter SAM are slightly lower
compared to the predictions of the EGG simulator, while
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Figure 6. Cross-correlation coefficients p among submillimeter emission lines considered in this work. The outer x- and y-axis labels specify the target emission lines.
Left: the inner x-axis of each cell shows the halo mass 10 < log(M/[M;]) < 13, divided into 30 log mass bins. The y-axis shows the redshift of the submillimeter
SAM simulation output 0 < z < 9, divided into 18 bins. The color map specifies p of star-forming halos in the corresponding halo mass and redshift bin. Besides the
Pcoxcr lines at z > 6 and log(M /[Ms]) 2 11, we find that the cross-correlation coefficients show weak mass and redshift dependence. Right: the [C 11], CO, and [C 1]
line cross-correlation coefficients of all the star-forming halos in the submillimeter SAM.

peico and pen e factors predicted by the submillimeter SAM
are significantly higher than EGG’s predictions. The pco, cr
difference could be caused by the fact that the EGG correlation
coefficients are only studied out to redshift z =4, while our
work extends to z=29. Note that both the ionized and neutral
ISM phases contribute to the [CI] line radiation. The
difference among pcnco and pencr could be caused by our
different assumptions about the molecular cloud masses. If the
molecular clouds are assumed to be small, the galaxy star
formation activity can ionize the whole cloud such that it
becomes [C II] luminous while very faint in CO and [C I] lines.
This will lead to small or even negative correlations among
[C11], CO, and [CT] lines. On the other hand, if the molecular
clouds in a simulation are large enough such that an increase of
HIl region volume will not significantly influence the
molecular gas reservoir, increasing the SFR will boost the
strength of all the submillimeter lines considered in this work.
In this case we expect [C 1], CO, and [C 1] lines to be strongly
positively correlated, as suggested by the submillimeter SAM.
This illustrates the sensitivity of these kinds of predictions to
the uncertain details of the assumed subgrid model.

We also compare the LeoJ=5—4 versus LcoJ=2—1
relation and LooJ=5—4/LcoJ =2 — 1 ratios predicted by
the SAM with observational measurements as a test of the
robustness of the correlation predictions. Specifically, we
combine the SAM + submillimeter SAM adopted in this work
with the 2 deg” mock light cone introduced in Yang et al.
(2021) to simulate submillimeter line luminosities of star-
forming galaxies. We then compare the CO J = 54 versus CO
J=2-1 spectral line energy distribution (SLED) predicted by
the SAM with observations at z ~ 2 (Valentino et al. 2020). We
find that the SAM + submillimeter SAM CO SLED predictions
at high [CI] J= 1-0 luminosity are in reasonable agreement

with the observed LooJ=5—4/LcoJ=2—1 scatter, as
shown in Figure 7. Some of the scatter in the observed relation
may of course be due to observational errors.

5. Summary Statistic Cross-check between Submillimeter
SAM and the Empirical Model

In this section we cross-check the LIM statistics predicted by
the submillimeter SAM and the empirical model introduced in
Section 4 in order to test how accurately our model represents
the SAM simulation results, as judged by commonly used
summary statistics.

We first compare the line intensity predictions. Specifically,
we combine the L(M, z) and fu,y(M, z) relations given by the
submillimeter SAM simulation with the halo model
Equation (5) to calculate the submillimeter line intensity
predictions. We compute the line intensity predictions of the
empirical model in a similar way, using the L(M, z) and fq,, (M,
z) relations from Equations (1) and (3) instead of the
submillimeter SAM predictions for these quantities. We present
the line intensity comparisons in Figure 8. In the redshift range
1 <z<9, our empirical model predictions agree with the
submillimeter SAM simulations to generally better than 10%
accuracy. Fractional differences between the submillimeter
SAM and this model’s predictions jump at z=4 and z =35, as
shown in the bottom panel of Figure 8. This is caused by the
fact that we fit for parameters in this empirical L(M, z) model in
redshift intervals 1<z<4, 4<z<5, and 5<z<9 (see
Table 1), ie., the L(M, z) model parameters behave
discontinuously at z=4 and z=35.

We then check the line emission auto- and cross-power
spectra. As mentioned in Section 4, the LIM analyses in this
work are all calculated at scales larger than those of dark matter
halos, so we will ignore the one-halo term in the power
spectrum. For simplicity we also ignore the redshift space
distortion. =~ We calculate the power spectrum as
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Figure 7. CO SLED comparisons between submillimeter SAM simulations and
observations at 1.1 < z < 1.3. Gray points are submillimeter line luminosities
of star-forming galaxies predicted by the submillimeter SAM adopted in this
work combined with a 2 deg? mock light cone introduced in Yang et al. (2021).
Red data points are from Table 2 of Valentino et al. (2020). Top: CO J = 5-4
vs. CO J=2-1 luminosity relation. Bottom: luminosity ratios between CO
J=5-4 and CO J =2-1 line vs. [CI] J = 1-0 luminosity.

Py(k, z) = P} ™°(k, z) + P;"(z), where the two-halo term
and the shot-noise term are given by Equations (6) and (8). We
use LM, 2), fauy, and (L{M, 2)L{M, z)) given by the
submillimeter SAM for the simulation power spectra calcula-
tions. For the empirical model power spectrum estimation we
use the L(M, 2), faury, L(M) scatter, and correlation coefficient
models introduced in Section 4. In Figure 9 we show example
comparisons between the submillimeter SAM and the empirical
model for the auto- and cross-power spectra among the [C IT],
CO J=1-0, and [C1] J = 1-0 lines. We find that the empirical
model power spectrum predictions are in agreement with the
submillimeter SAM simulations with fractional error less than
25% at z> 1. The SAM model agreement increases to better
than 15% at z > 3.

To further test our approach, we also compare with the
predictions of a 2 deg? mock light cone where halos have been
extracted from a dissipationless N-body simulation and filled
with galaxies using the submillimeter SAM approach, as
described by Yang et al. (2021). In order to assess the
differences between the modeling approaches relative to the
precision of upcoming LIM experiments, we use as a fiducial

10
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Figure 8. Integrated line intensity comparisons between submillimeter SAM
simulations and the empirical model predictions at 1 < z < 9, for various lines
as shown in the plot label. Top: the solid curves show line intensities from the
submillimeter SAM, while dashed lines are obtained from the empirical
models. Bottom: the fractional differences between submillimeter SAM and
empirical model predictions for the integrated line intensity.

example a COMAP-like survey with parameters taken from Li
et al. (2016). Specifically, we create LIM mock data in the
frequency range 30 < v/[GHz] < 34 with frequency resolution
Av=40MHz and angular resolution 6, = 0/6. We then
smooth the mock data with a Gaussian beam with FWHM
Orwam = 6’ such that the smoothed map spatial resolution
matches that of COMAP. We assume a map sensitivity 41.5 uK
MHz!/? and estimate the COMAP instrumental noise as a
Gaussian probability density distribution with zero mean and
standard deviation oy, where oy is calculated as the map
sensitivity multiplied by 10/ 81In(2) Av. Due to the limited
cosmic volume and sensitivity of this mock data, we only
compare power spectra predicted by different models in the
range 0.1 <k/[Mpc ']1<0.3. On smaller scales the mock is
dominated by the instrumental noise.

We present the CO J=1-0 power spectra from the
submillimeter SAM light cone and the empirical model
introduced in this work in Figure 10. We show cases in which
the submillimeter SAM power spectrum is computed from all
galaxies in the light cone compared with a case where we
exclude galaxies in quenched halos (using the same criterion
presented in Section 4). We also compare the CO J=1-0
power spectrum using the predictions of submillimeter line
luminosities and scatter predicted by the empirical model
introduced in Section 4. The error bars show the COMAP lo
measurement error contributed by the instrumental noise, CO
J=2-1, and CO J=3-2 interloper lines. We find that the
amplitude decrease of the power spectrum in the submillimeter
SAM caused by ignoring quenched halos is much smaller than
the measurement error, indicating that the star-forming halos
dominate the LIM statistics. This justifies our treatment of
quenched halos in the empirical model. The power spectrum
predicted by our empirical model has amplitude 8%—12%
lower than the submillimeter SAM full COMAP power
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Figure 9. Power spectrum comparisons between submillimeter SAM simulations and the empirical model predictions at 1 < z <9 among [C 11], CO J = 1-0, and
[C 1] J = 1-0 lines. The first row shows LIM auto-power spectra, while the bottom row shows the cross-power spectra comparisons. In the upper section of each panel,
the solid curves are given by the submillimeter SAM, while dashed lines are predictions of the empirical models. The lower panel shows the power spectrum fractional

difference between submillimeter SAM and the empirical model.

spectrum and 3%-7% lower than the SAM star-forming power
spectrum. Reduced X tests show that these three sets of power
spectra are indistinguishable considering the measurement
error.

6. Discussion and Conclusion

Submillimeter LIM is an emerging observational technique
that has the potential to constrain many important features of
galaxy evolution and cosmology. Computationally efficient,
physically grounded theoretical submillimeter line emission
models that accurately capture the strength, scatter, and
correlations of multiple lines are crucial for forecasting and
interpreting the results of these experiments. In this work, we
refine the state-of-the-art multiline submillimeter SAM

11

simulation framework proposed in P19 and construct a simple
empirical model calibrated to this physically motivated
simulation. Specifically, we model the simulated submillimeter
line luminosity versus halo mass relation of star-forming halos
as a double power law and provide carefully calibrated models
for the halo duty cycle factor, the dispersion in luminosity at
fixed halo mass, and the correlations among different
submillimeter lines.

We find that our empirical model can reproduce the
integrated line intensity and power spectrum of [CII], CO
J=1-0to J=5-4, and [C1] J=1-0 to J=2-1 predicted by
the submillimeter SAM simulation with less than 10% and 25%
fractional error at z>1. This model provides a very
computationally efficient yet physically grounded approach
for CO high-J interloper line removal, molecular hydrogen
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Figure 10. Top: fiducial COMAP CO J = 1-0 power spectrum predictions
obtained from the submillimeter SAM run within a light cone extracted from a
dissipationless N-body simulation, compared with the prediction from the
empirical model presented in this work. The red lines show the predictions
from the submillimeter SAM light cone including all the simulated galaxies,
while the blue lines show the light cone results only including galaxies in star-
forming halos. The green dashed line shows the power spectrum predicted by
applying the empirical model introduced in this work to the star-forming dark
matter halos in the mock light cone. The error bars show lo measurement
errors typical of the COMAP experiment. Bottom: the red curve shows the CO
power spectrum fractional difference between submillimeter SAM and this
work. The blue curve shows the fractional difference between CO power
spectrum predicted by submillimeter SAM, where only galaxies living in the
star-forming halos are considered, and the power spectrum predicted by
this work.

density constraints, and other [CI] and CO LIM survey
forecasts (Breysse et al. 2021; A. Pullen et al. 2022, in
preparation). For applications that may require greater accuracy
than that of our current empirical model, we also provide the
full tabulated L(M, z), fauy(M, 2z), and the covariances among
[C], CO, and [CI] lines from the submillimeter SAM
predictions at 0 <z<9 in https://users.flatironinstitute.org/
~rsomerville/Data_Release/LIM/.

A careful comparison between the SAM + submillimeter
SAM L(M, z) relations and other models (including Righi et al.
2008; Visbal & Loeb 2010; Pullen et al. 2013; Silva et al. 2015;
Li et al. 2016; Pullen et al. 2018; Padmanabhan 2019) can be
found in Yang et al. (2021, Section 3.2). As discussed in Yang
et al. (2021), various L(M, z) models are in reasonable
agreement at 11.5 < log(M/[Ms]) < 12 but can be signifi-
cantly different beyond this halo mass range. This is caused by
a lack of submillimeter observational results at very low and
high halo masses. The submillimeter line targets selected by
galaxy surveys are mainly galaxies with
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SFR ~ 10'-10°[M_, yr '] and halo mass
M ~10""°-10"*[M_]. Halos more massive than this range
are very rare objects, while galaxies living in halos less massive
than this range are generally too faint to be resolved. The
upcoming LIM surveys that cover large cosmic volume and
faint submillimeter emitter contributions will provide stronger
constraints to the shape of L(M, z) relations beyond
11.5 < log(M/[M:)) < 12. The main advantage of parameter-
izing L(M, z) relations into a double power law is that we can
capture the shape of L(M, z) at very low and high halo masses
by parameters « and (3, which are sensitive to the strength of
stellar feedback and AGN feedback. We leave a study that
connects the double power-law L(M, z) relation slopes to
various feedback strengths to future works.

The empirical models for these emission lines will be tested
by upcoming surveys. For example, preliminary detections of
[C11] and CO intensity (Keating et al. 2016; Pullen et al. 2018;
Yang et al. 2019) using auto- and cross-power spectra have
been used along with priors informed by luminosity functions
to constrain empirical models for these lines (Padmanab-
han 2018, 2019). Upcoming line intensity mapping surveys
will be able to measure power spectra and intensities at much
higher precision, which will constrain these models even
further. Future works that can connect the parameters in
empirical models to physical processes will then be able to
measure the physics of galaxies.

We note the major caveats and uncertainties of the models
we present here. First, all a priori simulation-based predictions
of submillimeter line emission are sensitive to assumptions
about the subgrid physics incorporated into the simulation,
which govern the physics of star formation, stellar feedback,
black hole feedback, etc., shaping the star formation history,
gas content, and quenching of galaxies. Significant uncertain-
ties in these physical processes and how to implement them
through subgrid prescriptions in cosmological simulations still
persist (e.g., Somerville & Davé 2015). Moreover, even for a
given set of underlying kiloparsec-scale galaxy properties, the
submillimeter line predictions are also sensitive to the
assumptions about the properties of the ISM (e.g., the mass
distribution and radial profiles of molecular clouds), which are
in general not directly resolved in these simulations or in
observations except for a few very nearby galaxies. The
submillimeter SAM approach used here is no exception, but
with the advantage that it is computationally efficient enough to
explore the sensitivity to these assumptions, as was done
extensively in P19. A further limitation of the P19 approach is
that DESPOTIC only computes the line emission from gas in
molecular clouds. Some of the observed [CII] emission can
also arise from more diffuse cirrus gas, and this is not included
in our current models.

We find that the correlation coefficients among CO lines and
[C1] lines simulated by the submillimeter SAM framework
agree with the EGG simulation results reported in Schaan &
White (2021). The value of pcocr predicted by the sub-
millimeter SAM is slightly lower than EGG’s predictions. This
is because Schaan & White (2021) only study pco.cr up to
z=4, while this work covers a wider redshift range 0 <z <9.
More specifically, at z > 4, galaxies are more compact and gas-
rich and have higher star formation surface density. Since the
submillimeter SAM assumes the UV radiation field strength to
be proportional to the galaxy star formation rate surface
density, carbon atoms in high-redshift molecular clouds tend to
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be mostly ionized, leaving limited material that can produce
CO and [CT] lines. In this case, CO and [CI] lines can be
weakly or even negatively correlated. We also find that pcy co
and pcpcr predicted by the submillimeter SAM are signifi-
cantly higher than the predictions of the EGG simulator.
Considering the fact that the [CII] fine-structure line comes
from multiple ISM phases, while CO and [C 1] lines are only
emitted by dense molecular ISM regions, we believe that this
difference may be caused by different assumptions about the
molecular cloud properties implemented in the submillimeter
SAM and EGG. The limitations on modeling the ionized gas
phase in the submillimeter SAM can also lead to biased
estimates of the correlation coefficients between [CII] and
molecular ISM tracers. Empirically constraining these proper-
ties would be a valuable target for future LIM cross-correlation
observations. However, the submillimeter SAM does success-
fully reproduce [CT], CO, and [CI] observational scaling
relations at redshift 0 <z <6, and we emphasize that the
simulation results we used for model calibration in this work
are consistent with current observations of individual sub-
millimeter sources.

An additional limitation is that we do not attempt to model
the correlation of the residuals in the L(M) relations with
higher-order halo properties. For example, for stellar masses
and star formation rates, it is known that the residual of these
quantities from the mean at a given halo mass is correlated with
other halo properties, such as formation history (e.g., Matthee
et al. 2017), that are known to be correlated with the halo
clustering strength via a process called assembly bias (Croton
et al. 2007). We can think of these as limitations of the standard
halo model approach, which could be relatively easily over-
come by using SAMs run within merger trees extracted from
dissipationless simulations, which we have done in other work
(e.g., Gabrielpillai et al. 2021; Hadzhiyska et al. 2021).

Due to the low angular resolution of LIM surveys, interloper
lines and continuum foreground contamination, including the
Milky Way emission and the cosmic infrared background, are
the main challenges for LIM data analysis. Cross-correlating
LIM surveys with galaxy surveys that have much higher spatial
resolution is one of the best options for removing these
contaminants. In this work, we model the aggregate emission
of all the galaxies within a halo and do not attempt to separately
model central and satellite galaxies or the spatial distribution of
satellite galaxies within halos. However, there is no reason in
principle that the SAM approach (which also produces
predictions for optical properties of individual galaxies) could
not be used to develop joint models for traditional galaxy
surveys and LIM surveys. We leave this to a future work.

We thank Shenglong Wang for IT support. We thank
Dongwoo Chung for useful comments on a draft manuscript.
ARP. was supported by NASA under award Nos
80ONSSC18K1014 and NNH17ZDAOOIN. R.S.S. is supported
by the Simons Foundation. P.C.B. was supported by the James
Arthur Postdoctoral Fellowship.

ORCID iDs

Gergd Popping @ https: //orcid.org/0000-0003-1151-4659
Patrick C. Breysse @ https: //orcid.org/0000-0001-8382-5275
Abhishek S. Maniyar ® https: //orcid.org/0000-0002-
4617-9320

13

Yang et al.
References

Behroozi, P., Wechsler, R. H., Hearin, A. P., & Conroy, C. 2019, MNRAS,
488, 3143

Behroozi, P. S., Conroy, C., & Wechsler, R. H. 2010, ApJ, 717, 379

Behroozi, P. S., Wechsler, R. H., & Conroy, C. 2013, ApJ, 770, 57

Béthermin, M., Fudamoto, Y., Ginolfi, M., et al. 2020, A&A, 643, A2

Breysse, P. C., Yang, S., Somerville, R. S., et al. 2021, arXiv:2106.14904

Chabrier, G. 2003, PASP, 115, 763

Cooray, A., & Sheth, R. 2002, PhR, 372, 1

Croton, D. J., Gao, L., & White, S. D. M. 2007, MNRAS, 374, 1303

Gabrielpillai, A., Somerville, R. S., Genel, S., et al. 2021, arXiv:2111.03077

Gong, Y., Cooray, A., Silva, M., et al. 2012, ApJ, 745, 49

Hadzhiyska, B., Liu, S., Somerville, R. S., et al. 2021, MNRAS, 508, 698

Helou, G., & Beichman, C. A. 1990, in Liege Int. Astrophysical Collog. 29,
From Ground-Based to Space-Borne Sub-mm Astronomy, ed. B. Kaldeich
(Paris: ESA), 117

Kamenetzky, J., Rangwala, N., Glenn, J., Maloney, P. R., & Conley, A. 2014,
Apl, 795, 174

Keating, G. K., Marrone, D. P., Bower, G. C., et al. 2016, ApJ, 830, 34

Keating, G. K., Marrone, D. P., Bower, G. C., & Keenan, R. P. 2020, ApJ,
901, 141

Kovetz, E. D., Viero, M. P., Lidz, A., et al. 2017, arXiv:1709.09066

Krumholz, M. R. 2014, MNRAS, 437, 1662

Lagache, G., Cousin, M., & Chatzikos, M. 2018, A&A, 609, A130

Leung, T. K. D., Olsen, K. P., Somerville, R. S., et al. 2020, ApJ, 905, 102

Li, T. Y., Wechsler, R. H., Devaraj, K., & Church, S. E. 2016, ApJ, 817, 169

Lidz, A., Furlanetto, S. R., Oh, S. P., et al. 2011, ApJ, 741, 70

Madau, P., & Dickinson, M. 2014, ARA&A, 52, 415

Mashian, N., Sturm, E., Sternberg, A., et al. 2015, ApJ, 802, 81

Matthee, J., Schaye, J., Crain, R. A., et al. 2017, MNRAS, 465, 2381

Moriwaki, K., Yoshida, N., Shimizu, I., et al. 2018, MNRAS, 481, L84

Moster, B. P., Naab, T., & White, S. D. M. 2013, MNRAS, 428, 3121

Okamoto, T., Gao, L., & Theuns, T. 2008, MNRAS, 390, 920

Olsen, K., Greve, T. R., Narayanan, D., et al. 2017, ApJ, 846, 105

Olsen, K. P., Burkhart, B., Mac Low, M.-M,, et al. 2021, ApJ, 922, 88

Padmanabhan, H. 2018, MNRAS, 475, 1477

Padmanabhan, H. 2019, MNRAS, 488, 3014

Padmanabhan, H., Breysse, P., Lidz, A., & Switzer, E. R. 2021, arXiv:2105.
12148

Planck Collaboration, Ade, P. A. R., Aghanim, N., et al. 2016, A&A, 594, A13

Popping, G., Narayanan, D., Somerville, R. S., Faisst, A. L., &
Krumholz, M. R. 2019, MNRAS, 482, 4906

Popping, G., Pérez-Beaupuits, J. P., Spaans, M., Trager, S. C., &
Somerville, R. S. 2014a, MNRAS, 444, 1301

Popping, G., Somerville, R. S., & Trager, S. C. 2014b, MNRAS, 442, 2398

Popping, G., van Kampen, E., Decarli, R., et al. 2016, MNRAS, 461, 93

Porter, L. A., Somerville, R. S., Primack, J. R., & Johansson, P. H. 2014,
MNRAS, 444, 942

Pullen, A. R., Chang, T.-C., Doré, O., & Lidz, A. 2013, ApJ, 768, 15

Pullen, A. R., Serra, P., Chang, T.-C., Doré, O., & Ho, S. 2018, MNRAS,
478, 1911

Righi, M., Hernandez-Monteagudo, C., & Sunyaev, R. A. 2008, A&A,
489, 489

Schaan, E., & White, M. 2021, JCAP, 2021, 068

Sheth, R. K., Mo, H. J., & Tormen, G. 2001, MNRAS, 323, 1

Sheth, R. K., & Tormen, G. 2002, MNRAS, 329, 61

Silva, M., Santos, M. G., Cooray, A., & Gong, Y. 2015, ApJ, 806, 209

Somerville, R. S., Barden, M., Rix, H.-W., et al. 2008a, ApJ, 672, 776

Somerville, R. S., & Davé, R. 2015, ARA&A, 53, 31

Somerville, R. S., Gilmore, R. C., Primack, J. R., & Dominguez, A. 2012,
MNRAS, 423, 1992

Somerville, R. S., Hopkins, P. F., Cox, T. J., Robertson, B. E., & Hernquist, L.
2008b, MNRAS, 391, 481

Somerville, R. S., & Kolatt, T. S. 1999, MNRAS, 305, 1

Somerville, R. S., Olsen, C., Yung, L. Y. A, et al. 2021, MNRAS, 502, 4858

Somerville, R. S., Popping, G., & Trager, S. C. 2015, MNRAS, 453, 4337

Somerville, R. S., & Primack, J. R. 1999, MNRAS, 310, 1087

Sun, G., Hensley, B. S., Chang, T.-C., Doré, O., & Serra, P. 2019, ApJ,
887, 142

Valentino, F., Magdis, G. E., Daddi, E., et al. 2020, ApJ, 890, 24

Visbal, E., & Loeb, A. 2010, JCAP, 2010, 016

Yang, S., & Lidz, A. 2020, MNRAS, 499, 3417

Yang, S., Pullen, A. R., & Switzer, E. R. 2019, MNRAS, 489, L53

Yang, S., Somerville, R. S., Pullen, A. R., et al. 2021, ApJ, 911, 132


https://orcid.org/0000-0003-1151-4659
https://orcid.org/0000-0003-1151-4659
https://orcid.org/0000-0003-1151-4659
https://orcid.org/0000-0003-1151-4659
https://orcid.org/0000-0003-1151-4659
https://orcid.org/0000-0003-1151-4659
https://orcid.org/0000-0003-1151-4659
https://orcid.org/0000-0003-1151-4659
https://orcid.org/0000-0001-8382-5275
https://orcid.org/0000-0001-8382-5275
https://orcid.org/0000-0001-8382-5275
https://orcid.org/0000-0001-8382-5275
https://orcid.org/0000-0001-8382-5275
https://orcid.org/0000-0001-8382-5275
https://orcid.org/0000-0001-8382-5275
https://orcid.org/0000-0001-8382-5275
https://orcid.org/0000-0002-4617-9320
https://orcid.org/0000-0002-4617-9320
https://orcid.org/0000-0002-4617-9320
https://orcid.org/0000-0002-4617-9320
https://orcid.org/0000-0002-4617-9320
https://orcid.org/0000-0002-4617-9320
https://orcid.org/0000-0002-4617-9320
https://orcid.org/0000-0002-4617-9320
https://orcid.org/0000-0002-4617-9320
https://doi.org/10.1093/mnras/stz1182
https://ui.adsabs.harvard.edu/abs/2019MNRAS.488.3143B/abstract
https://ui.adsabs.harvard.edu/abs/2019MNRAS.488.3143B/abstract
https://doi.org/10.1088/0004-637X/717/1/379
https://ui.adsabs.harvard.edu/abs/2010ApJ...717..379B/abstract
https://doi.org/10.1088/0004-637X/770/1/57
https://ui.adsabs.harvard.edu/abs/2013ApJ...770...57B/abstract
https://doi.org/10.1051/0004-6361/202037649
https://ui.adsabs.harvard.edu/abs/2020A&A...643A...2B/abstract
http://arxiv.org/abs/2106.14904
https://doi.org/10.1086/376392
https://ui.adsabs.harvard.edu/abs/2003PASP..115..763C/abstract
https://doi.org/10.1016/S0370-1573(02)00276-4
https://ui.adsabs.harvard.edu/abs/2002PhR...372....1C/abstract
https://doi.org/10.1111/j.1365-2966.2006.11230.x
https://ui.adsabs.harvard.edu/abs/2007MNRAS.374.1303C/abstract
http://arxiv.org/abs/2111.03077
https://doi.org/10.1088/0004-637X/745/1/49
https://ui.adsabs.harvard.edu/abs/2012ApJ...745...49G/abstract
https://doi.org/10.1093/mnras/stab2564
https://ui.adsabs.harvard.edu/abs/2021MNRAS.508..698H/abstract
https://ui.adsabs.harvard.edu/abs/1990LIACo..29..117H/abstract
https://doi.org/10.1088/0004-637X/795/2/174
https://ui.adsabs.harvard.edu/abs/2014ApJ...795..174K/abstract
https://doi.org/10.3847/0004-637X/830/1/34
https://ui.adsabs.harvard.edu/abs/2016ApJ...830...34K/abstract
https://doi.org/10.3847/1538-4357/abb08e
https://ui.adsabs.harvard.edu/abs/2020ApJ...901..141K/abstract
https://ui.adsabs.harvard.edu/abs/2020ApJ...901..141K/abstract
http://arxiv.org/abs/1709.09066
https://doi.org/10.1093/mnras/stt2000
https://ui.adsabs.harvard.edu/abs/2014MNRAS.437.1662K/abstract
https://doi.org/10.1051/0004-6361/201732019
https://ui.adsabs.harvard.edu/abs/2018A&A...609A.130L/abstract
https://doi.org/10.3847/1538-4357/abc25e
https://ui.adsabs.harvard.edu/abs/2020ApJ...905..102L/abstract
https://doi.org/10.3847/0004-637X/817/2/169
https://ui.adsabs.harvard.edu/abs/2016ApJ...817..169L/abstract
https://doi.org/10.1088/0004-637X/741/2/70
https://ui.adsabs.harvard.edu/abs/2011ApJ...741...70L/abstract
https://doi.org/10.1146/annurev-astro-081811-125615
https://ui.adsabs.harvard.edu/abs/2014ARA&A..52..415M/abstract
https://doi.org/10.1088/0004-637X/802/2/81
https://ui.adsabs.harvard.edu/abs/2015ApJ...802...81M/abstract
https://doi.org/10.1093/mnras/stw2884
https://ui.adsabs.harvard.edu/abs/2017MNRAS.465.2381M/abstract
https://doi.org/10.1093/mnrasl/sly167
https://ui.adsabs.harvard.edu/abs/2018MNRAS.481L..84M/abstract
https://doi.org/10.1093/mnras/sts261
https://ui.adsabs.harvard.edu/abs/2013MNRAS.428.3121M/abstract
https://doi.org/10.1111/j.1365-2966.2008.13830.x
https://ui.adsabs.harvard.edu/abs/2008MNRAS.390..920O/abstract
https://doi.org/10.3847/1538-4357/aa86b4
https://ui.adsabs.harvard.edu/abs/2017ApJ...846..105O/abstract
https://doi.org/10.3847/1538-4357/ac20d4
https://ui.adsabs.harvard.edu/abs/2021ApJ...922...88O/abstract
https://doi.org/10.1093/mnras/stx3250
https://ui.adsabs.harvard.edu/abs/2018MNRAS.475.1477P/abstract
https://doi.org/10.1093/mnras/stz1878
https://ui.adsabs.harvard.edu/abs/2019MNRAS.488.3014P/abstract
http://arxiv.org/abs/2105.12148
http://arxiv.org/abs/2105.12148
https://doi.org/10.1051/0004-6361/201525830
https://ui.adsabs.harvard.edu/abs/2016A&A...594A..13P/abstract
https://doi.org/10.1093/mnras/sty2969
https://ui.adsabs.harvard.edu/abs/2019MNRAS.482.4906P/abstract
https://doi.org/10.1093/mnras/stu1506
https://ui.adsabs.harvard.edu/abs/2014MNRAS.444.1301P/abstract
https://doi.org/10.1093/mnras/stu991
https://ui.adsabs.harvard.edu/abs/2014MNRAS.442.2398P/abstract
https://doi.org/10.1093/mnras/stw1323
https://ui.adsabs.harvard.edu/abs/2016MNRAS.461...93P/abstract
https://doi.org/10.1093/mnras/stu1434
https://ui.adsabs.harvard.edu/abs/2014MNRAS.444..942P/abstract
https://doi.org/10.1088/0004-637X/768/1/15
https://ui.adsabs.harvard.edu/abs/2013ApJ...768...15P/abstract
https://doi.org/10.1093/mnras/sty1243
https://ui.adsabs.harvard.edu/abs/2018MNRAS.478.1911P/abstract
https://ui.adsabs.harvard.edu/abs/2018MNRAS.478.1911P/abstract
https://doi.org/10.1051/0004-6361:200810199
https://ui.adsabs.harvard.edu/abs/2008A&A...489..489R/abstract
https://ui.adsabs.harvard.edu/abs/2008A&A...489..489R/abstract
https://doi.org/10.1088/1475-7516/2021/05/068
https://ui.adsabs.harvard.edu/abs/2021JCAP...05..068S/abstract
https://doi.org/10.1046/j.1365-8711.2001.04006.x
https://ui.adsabs.harvard.edu/abs/2001MNRAS.323....1S/abstract
https://doi.org/10.1046/j.1365-8711.2002.04950.x
https://ui.adsabs.harvard.edu/abs/2002MNRAS.329...61S/abstract
https://doi.org/10.1088/0004-637X/806/2/209
https://ui.adsabs.harvard.edu/abs/2015ApJ...806..209S/abstract
https://doi.org/10.1086/523661
https://ui.adsabs.harvard.edu/abs/2008ApJ...672..776S/abstract
https://doi.org/10.1146/annurev-astro-082812-140951
https://ui.adsabs.harvard.edu/abs/2015ARA&A..53...51S/abstract
https://doi.org/10.1111/j.1365-2966.2012.20490.x
https://ui.adsabs.harvard.edu/abs/2012MNRAS.423.1992S/abstract
https://doi.org/10.1111/j.1365-2966.2008.13805.x
https://ui.adsabs.harvard.edu/abs/2008MNRAS.391..481S/abstract
https://doi.org/10.1046/j.1365-8711.1999.02154.x
https://ui.adsabs.harvard.edu/abs/1999MNRAS.305....1S/abstract
https://doi.org/10.1093/mnras/stab231
https://ui.adsabs.harvard.edu/abs/2021MNRAS.502.4858S/abstract
https://doi.org/10.1093/mnras/stv1877
https://ui.adsabs.harvard.edu/abs/2015MNRAS.453.4337S/abstract
https://doi.org/10.1046/j.1365-8711.1999.03032.x
https://ui.adsabs.harvard.edu/abs/1999MNRAS.310.1087S/abstract
https://doi.org/10.3847/1538-4357/ab55df
https://ui.adsabs.harvard.edu/abs/2019ApJ...887..142S/abstract
https://ui.adsabs.harvard.edu/abs/2019ApJ...887..142S/abstract
https://doi.org/10.3847/1538-4357/ab6603
https://ui.adsabs.harvard.edu/abs/2020ApJ...890...24V/abstract
https://doi.org/10.1088/1475-7516/2010/11/016
https://ui.adsabs.harvard.edu/abs/2010JCAP...11..016V/abstract
https://doi.org/10.1093/mnras/staa3000
https://ui.adsabs.harvard.edu/abs/2020MNRAS.499.3417Y/abstract
https://doi.org/10.1093/mnrasl/slz126
https://ui.adsabs.harvard.edu/abs/2019MNRAS.489L..53Y/abstract
https://doi.org/10.3847/1538-4357/abec75
https://ui.adsabs.harvard.edu/abs/2021ApJ...911..132Y/abstract

THE ASTROPHYSICAL JOURNAL, 929:140 (14pp), 2022 April 20 Yang et al.

Yang, X., Mo, H. J., van den Bosch, F. C., Zhang, Y., & Han, J. 2012, ApJ, Yung, L. Y. A., Somerville, R. S., Popping, G., et al. 2019b, MNRAS,
752, 41 490, 2855

Yung, L. Y. A, Somerville, R. S., Finkelstein, S. L., et al. 2020a, MNRAS, Yung, L. Y. A, Somerville, R. S., Popping, G., & Finkelstein, S. L. 2020b,
496, 4574 MNRAS, 494, 1002

Yung, L. Y. A., Somerville, R. S., Finkelstein, S. L., Popping, G., & Davé, R. Zahn, O., Lidz, A., McQuinn, M., et al. 2007, ApJ, 654, 12

2019a, MNRAS, 483, 2983

14


https://doi.org/10.1088/0004-637X/752/1/41
https://ui.adsabs.harvard.edu/abs/2012ApJ...752...41Y/abstract
https://ui.adsabs.harvard.edu/abs/2012ApJ...752...41Y/abstract
https://doi.org/10.1093/mnras/staa1800
https://ui.adsabs.harvard.edu/abs/2020MNRAS.496.4574Y/abstract
https://ui.adsabs.harvard.edu/abs/2020MNRAS.496.4574Y/abstract
https://doi.org/10.1093/mnras/sty3241
https://ui.adsabs.harvard.edu/abs/2019MNRAS.483.2983Y/abstract
https://doi.org/10.1093/mnras/stz2755
https://ui.adsabs.harvard.edu/abs/2019MNRAS.490.2855Y/abstract
https://ui.adsabs.harvard.edu/abs/2019MNRAS.490.2855Y/abstract
https://doi.org/10.1093/mnras/staa714
https://ui.adsabs.harvard.edu/abs/2020MNRAS.494.1002Y/abstract
https://doi.org/10.1086/509597
https://ui.adsabs.harvard.edu/abs/2007ApJ...654...12Z/abstract

	1. Introduction
	2. Santa Cruz Semianalytic Model
	3. Submillimeter Emission-line Modeling
	4. An Empirical [C ii], CO, and [C i] Model Calibrated to the Submillimeter SAM
	4.1. The Average L(M) Model
	4.2. Halo Duty Cycle Factor
	4.3. L(M) Scatter and Multiline Correlations

	5. Summary Statistic Cross-check between Submillimeter SAM and the Empirical Model
	6. Discussion and Conclusion
	References



