
A Compositional Framework for Quantitative

Online Monitoring over Continuous-time Signals

Konstantinos Mamouras(�), Agnishom Chattopadhyay, and Zhifu Wang

Rice University, Houston, TX 77005, USA
{mamouras, agnishom, zfwang}@rice.edu

Abstract. We investigate online monitoring algorithms over dense-time
and continuous-time signals for properties written in metric temporal
logic (MTL). We consider an abstract algebraic semantics based on com-
plete lattices, which subsumes the Boolean (qualitative) semantics and
the real-valued robustness (quantitative) semantics. Our semantics also
extends to truth values that are partially ordered and allows the model-
ing of uncertainty in satisfaction. We propose a compositional approach
for the construction of online monitors based on a class of infinite-state
deterministic signal transducers that (1) are allowed to produce the out-
put signal with some bounded delay relative to the input signal, and
(2) do not introduce unbounded variability in the output signal. A key
ingredient of our monitoring framework is a novel efficient algorithm for
sliding-window aggregation over dense-time signals.

Keywords: Online monitoring · Signal temporal logic (STL) · Quanti-
tative semantics · Cyber-physical systems (CPS) · Transducers.

1 Introduction

Metric temporal logic (MTL) [38] and signal temporal logic (STL) [41] are exten-
sions of linear temporal logic (LTL) that have been widely used for specifying
properties over the execution traces of cyber-physical systems (CPS). These
traces are commonly represented as dense-time or continuous-time signals. Both
MTL and STL have been extensively used as specification formalisms in the
context of monitoring, where a system trace of finite duration is examined to
determine whether it satisfies the desired temporal specification.

Our focus here is on online monitoring, where the system trace is presented
incrementally, i.e., in a streaming fashion. This contrasts to the setting of offline
monitoring, where the system trace is available in its entirety at the beginning
of the computation. We choose MTL as the specification formalism, and we con-
sider its interpretation over signals whose domain is the set of rational numbers
(dense time) or the real numbers (continuous time). Our goal is to provide a
unifying semantic and algorithmic framework that encompasses (1) the tradi-
tional Boolean semantics and the associated monitoring with qualitative (i.e.,
Boolean) verdicts, and (2) the real-valued quantitative semantics for MTL (also
called robustness semantics) and the corresponding quantitative online monitors.

2 K. Mamouras et al.

There is a wealth of proposals for quantitative semantics for MTL, such as
[27,23,3]. We consider here the spatial robustness semantics of Fainekos and
Pappas [26,27]. This uses the set of the extended real numbers, denoted by
R±∞ = R ∪ {−∞,∞}, as the domain of truth values. A positive number indi-
cates truth, a negative number indicates falsity, and zero is ambiguous. Disjunc-
tion (resp., existential quantification) is interpreted as max (resp., supremum),
and conjunction (resp., universal quantification) is interpreted as min (resp.,
infimum). Two quantitative semantic notions are considered in [27]. The first
one is the robustness degree degree(ϕ,x) of a signal x w.r.t. a formula ϕ, which
is defined in a global way using distances between signals. This is the primary
semantics, as it captures the intuitive idea of the degree of satisfaction using
distances. The second notion is the robustness estimate ρ(ϕ,x) of a formula ϕ
w.r.t. a trace x, which is defined by induction on the structure of ϕ. As the
name suggests, the robustness estimate approximates the robustness degree; it
is, in fact, an under-approximation (see Theorem 13 in page 4268 of [27]). The
robustness estimate of [27] has been used in prior work on online monitoring
[20,19], as it is amenable to efficient evaluation. For this reason, we will be using
here the robustness estimate, not the robustness degree.

The robustness semantics of [27] can be generalized to other notions of quan-
titative truth values, as has already been done in [18] using an algebraic seman-
tics based on bounded distributive lattices (where “join”/sup/t generalizes max
and “meet”/inf/u generalizes min). The algebraic framework of [18] was devel-
oped for discrete-time signals only, since the considered class of lattices supports
only finitary suprema and infima. For this reason, it is not appropriate for in-
terpreting temporal formulas over dense-time or continuous-time signals. The
semantics of [18] has been generalized further in [45] by considering semirings as
truth domains, again in the context of discrete-time signals.

In this paper, we consider the class of complete lattices, infinitary algebraic
structures of the form (V,

⊔
,
d
), where

⊔
is an arbitrary join/supremum op-

eration (which models disjunction, existential quantification) and
d

is an ar-
bitrary meet/infimum operation (which models conjunction, universal quan-
tification). The class of complete lattices contains B = {⊥,>} (the Boolean
values), and the lattice (R±∞, sup, inf) of extended real numbers. The lattice
of intervals with join given by

⊔
i[ai, bi] = [supi ai, supi bi] and meet given byd

i[ai, bi] = [infi ai, infi bi] is an especially interesting example, as it can be used
to model uncertainty in the truth value: an element [a, b] indicates that the truth
value lies somewhere within this interval.

Using the algebraic quantitative semantics described in the previous para-
graph, we introduce a compositional framework for online monitoring over dense-
time and continuous-time signals. In order to ensure compositionality, we con-
sider monitors that are infinite-state deterministic signal transducers. A key
difference from other approaches is that our monitors do not require the input
and output to be perfectly synchronized, but they can compute with some delay
(or negative delay). That is, it is possible that the output signal falls behind the
input signal (positive delay), or that the output signal is ahead of the input sig-

Quantitative Online Monitoring over Continuous-time Signals 3

nal (negative delay). We distinguish those monitors where the delay is bounded
and fixed throughput the computation. More specifically, we introduce a typing
judgment f : delay = d, where d ∈ R, which says that the monitor f has a fixed
bounded delay d during the entire course of the computation. This concept has
been explored in [47] for discrete-time signal transducers. Another key feature of
our approach is that we distinguish monitors that do not introduce unbounded
variability. More specifically, we use a typing judgment {ivar = k}f{ovar = `} to
indicate that if the monitor f receives an input signal whose variability (number
of value changes per time unit) is bounded above by k, then the variability of its
output signal is bounded above by `. The two properties of bounded delay and
bounded signal variability are essential for constructing efficient monitors.

The monitoring of temporal formulas written in MTL (with unbounded past-
time and bounded future-time connectives) can be reduced to a small number
of computational primitives. An important fact is that we need two distribu-
tivity laws for lattices. Using the distributivity of finite meets over arbitrary
joins (resp., finite joins over arbitrary meets) we show that the monitoring of
the connective S[a,b] (resp., the dual connective S̄[a,b]) can be reduced to an on-
line aggregation over a sliding window. For every MTL formula, we construct an
online monitor by composing the following basic monitors: (1) map(op), which
applies the function op pointwise, (2) aggr(init , op), which performs a running
aggregation, (3) emit(v, dt), which emits an initial signal prefix with value v
and duration dt , (4) ignore(dt), which removes an initial prefix of duration
dt from the input signal, and (5) wnd(dt , 1⊗,⊗), which performs an associative
aggregation ⊗ over a sliding window of duration dt . Monitors are composed
using two dataflow combinators: (1) serial composition f >> g, and (2) parallel
composition par(f, g). The space efficiency of the monitors hinges on the preser-
vation of bounded delay and bounded variability. The time efficiency relies on a
novel sliding-window aggregation algorithm with O(1) amortized time-per-item.
The algorithm achieves this efficiency by maintaining partial aggregates of the
window and reusing them as much as possible as the window slides forward.

We provide an implementation of our monitoring framework in Rust. Our
experiments show that our monitors scale reasonably well and they compare fa-
vorably against the monitoring tool Reelay [52]. We chose Reelay for comparison
because (1) it supports dense-time traces as input, (2) it uses a temporal seman-
tics for specifications that is consistent with ours, and (3) it is implemented in
a low-overhead compiled language (C++).

2 Algebraic Semantics with Complete Lattices

In this section, we present a quantitative semantics for MTL that uses complete
lattices for the truth values. Using algebraic reasoning, we show that the tem-
poral connectives of MTL can be rewritten into equivalent forms that suggest a
simple approach for online monitoring. In particular, we show later in Proposi-
tion 4 that some distributivity laws are needed to deal with the “Since” temporal
connective and its dual. Using the distributivity of finite meets over arbitrary

4 K. Mamouras et al.

joins (resp., finite joins over arbitrary meets) we can reduce the monitoring of
S[a,b] (resp., its dual S̄[a,b]) to a sliding-window join (resp., meet). This suggests
the class of (co)infinitely distributive complete lattices as an appropriate alge-
braic generalization of the Boolean and real-valued semantic domains.

A lattice is a partial order in which every two elements have a least upper
bound and a greatest lower bound. We will use an equivalent algebraic definition.
A lattice (V,t,u) is a set V together with associative and commutative binary
operations t and u, called join and meet respectively, that satisfy the absorption
laws, i.e, xt (xu y) = x and xu (xt y) = x for all x, y ∈ V . Define the relation
≤ as follows: x ≤ y iff x t y = y for all x, y ∈ A. The relation ≤ is a partial
order. It also holds that x ≤ y iff x u y = x. A lattice V is said to be bounded
if there exists a bottom element ⊥ ∈ V and a top element > ∈ V such that
⊥ t x = x and x u > = x (equivalently, ⊥ ≤ x ≤ >) for every x ∈ V . Let V be
a bounded lattice. It is easy to check that x t > = > and x u ⊥ = ⊥ for every
x ∈ V . A lattice V is said to be distributive if xu (y t z) = (xu y)t (xu z) and
x t (y u z) = (x t y) u (x t z) for all x, y, z ∈ V .

Example 1. Consider the two-element set B = {>,⊥} of Boolean values, where
> represents truth and ⊥ represents falsity. The set B, together with disjunction
as join and conjunction as meet, is a bounded and distributive lattice. The set
T = {⊥, ?,>} can be endowed with bounded lattice structure in a unique way
so that ⊥ ≤ ? ≤ >. It can be easily verified that T is distributive. The structure
T is used to give a three-valued interpretation of formulas (? is inconclusive).

The set R of real numbers, together with min as meet and max as join,
is a distributive lattice. However, (R,max,min) is not a bounded lattice. It is
commonplace to adjoin the elements ∞ and −∞ to R so that they serve as the
top and bottom element respectively. The structure (R±∞,max,min,−∞,∞) is
a bounded distributive lattice. We interpret the max-min lattice R±∞ as degrees
of truth, where positive means true and negative means false.

A complete lattice is a partially ordered set V in which all subsets have both
a supremum (join) and an infimum (meet). For a subset S ⊆ V , the join is
denoted by

⊔
S and the meet is denoted by

d
S. Notice that

⊔
∅ is the bottom

element of V and
d
∅ is the top element of V . We say that V is infinitely

distributive if x u (
⊔

i∈Iyi) =
⊔

i∈I(x u yi) for every index set I (finite meets
distribute over arbitrary joins). We say that V is co-infinitely distributive if
x t (

d
i∈Iyi) =

d
i∈I(x t yi) for every index set I (finite joins distribute over

arbitrary meets). We will say that V is (co)infinitely distributive if it is both
infinitely and co-infinitely distributive. The lattices B and R±∞ are complete
and (co)infinitely distributive.

Example 2 (Uncertainty). We will consider now an example of quantitative
semantics that goes beyond linear orders, and therefore it cannot be directly
handled by prior monitoring frameworks based on truth values from B or R±∞.

Suppose we want to identify a notion of quantitative truth values in situations
where we interpret formulas over a signal x(t) that is not known with perfect
accuracy, but we can put an upper and lower bound on each sample, i.e., a ≤

Quantitative Online Monitoring over Continuous-time Signals 5

ρ(ϕ ∨ ψ,x, t) = ρ(ϕ,x, t) t ρ(ψ,x, t) ρ(ϕ ∧ ψ,x, t) = ρ(ϕ,x, t) u ρ(ψ,x, t)

ρ(PIϕ,x, t) =
⊔

u∈t−I, u∈dom(x) ρ(ϕ,x, u) ρ(HIϕ,x, t) =
d

u∈t−I, u∈dom(x) ρ(ϕ,x, u)

ρ(FIϕ,x, t) =
⊔

u∈t+I, s∈dom(x) ρ(ϕ,x, u) ρ(GIϕ,x, t) =
d

u∈t+I, u∈dom(x) ρ(ϕ,x, u)

ρ(ϕ SI ψ,x, t) =
⊔

u∈t−I, u∈dom(x)

(

ρ(ψ,x, u) u
d

v∈(u,t]ρ(ϕ,x, v)
)

ρ(ϕ S̄I ψ,x, t) =
d

u∈t−I, u∈dom(x)

(

ρ(ψ,x, u) t
⊔

v∈(u,t]ρ(ϕ,x, v)
)

ρ(ϕ UI ψ,x, t) =
⊔

u∈t+I, u∈dom(x)

(d
v∈[t,u)ρ(ϕ,x, v) u ρ(ψ,x, u)

)

ρ(ϕ ŪI ψ,x, t) =
d

u∈t+I, u∈dom(x)

(

⊔

v∈[t,u)ρ(ϕ,x, v) t ρ(ψ,x, u)
)

Fig. 1. Quantitative semantics for MTL based on complete lattices.

x(t) ≤ b. For example, suppose that we know that 99.9 ≤ x(0) ≤ 100.1 and we
want to evaluate the atomic predicate p = “x ≥ 99” at time 0. The truth value
can be taken to be the interval [0.9, 1.1] in this case, since there is uncertainty
in the distance of signal value from the threshold.

In order to model this kind of uncertainty, we consider the set I(R±∞) of
intervals of the form [a, b] with a ≤ b and a, b ∈ R±∞. An interval [a, b] ⊆ R±∞

can be thought of as an uncertain truth value (it can be any one of those con-
tained in [a, b]). For an arbitrary family of intervals [ai, bi] we define

⊔
i[ai, bi] =

[supi ai, supi bi] and
d

i[ai, bi] = [infi ai, infi bi]. The structure (I(R
±∞),

⊔
,
d
) is

a (co)infinitely distributive complete lattice.

The lattice I(R±∞) is a partial order and therefore does not fit in existing
monitoring frameworks that consider only linear orders (e.g., the max-min lattice
R±∞ of the extended reals and the associated sliding-max/min algorithms).

Let T be the time domain. This can be chosen to be either Q≥0, the set of
nonnegative rational numbers, or R≥0, the set of nonnegative real numbers.

An A-valued infinite signal is a function x : T → A. We write ISig(A) to
denote the set of all A-valued infinite signals. An A-valued finite signal is a
function x : [0, t) → A or x : [0, t] → A, where t ∈ T . We denote the set of all
A-valued finite signals by FSig(A). We write Sig(A) = FSig(A) ∪ ISig(A). The
duration of a finite signal x : [0, t) → A or x : [0, t] → A is |x| = t. The duration
of an infinite signal x : T → A is |x| = ∞. The empty signal is ε : ∅ → A.

We will consider formulas of Metric Temporal Logic (MTL) interpreted over
signals with domain T . We consider a set D of signal values, a complete lattice
V whose elements represent quantitative truth values, and unary quantitative
predicates p : D → V . We write 1, 0 : D → V for the predicates given by
1(d) = > and 0(d) = ⊥ for every d ∈ D. The set MTL(D,V) of temporal
formulas is built from the atomic predicates p : D → V using the Boolean
connectives ∨ and ∧, the unary temporal connectives PI , HI , FI , GI , and the
binary temporal connectives SI , S̄I , UI , ŪI , where I is an interval of the form [s, t]
or [t,∞) with s, t ∈ T . For every temporal connective X ∈ {P,H, S, S̄,F,G,U, Ū},
we write Xt as an abbreviation for X[t,t] and X as an abbreviation for X[0,∞).

6 K. Mamouras et al.

P[a,∞)ϕ ≡ PaP[0,∞)ϕ H[a,∞)ϕ ≡ HaH[0,∞)ϕ ϕ S[a,∞) ψ ≡ Pa(ϕ S[0,∞) ψ) ∧ H[0,a)ϕ

P[a,b]ϕ ≡ PaP[0,b−a]ϕ H[a,b]ϕ ≡ HaH[0,b−a]ϕ ϕ S[a,b] ψ ≡ Pa(ϕ S[0,b−a] ψ) ∧ H[0,a)ϕ

F[a,b]ϕ ≡ FbP[0,b−a]ϕ G[a,b]ϕ ≡ GbH[0,b−a]ϕ ϕ U[a,b] ψ ≡ G[0,a)ϕ ∧ Fa(ϕ U[0,b−a] ψ)

Fig. 2. Equivalences between temporal formulas.

We interpret the formulas in MTL(D,V) over traces from Sig(D) and at spe-
cific time points. For the interpretation function ρ : MTL(D,V)×Sig(D)×T →
V , the value ρ(ϕ,x, t) is defined when t ∈ dom(x). The base case is ρ(p,x, t) =
p(x(t)) and the rest are shown in Fig. 1. We say that the formulas ϕ and ψ are
equivalent, and we write ϕ ≡ ψ, if ρ(ϕ,x, t) = ρ(ψ,x, t) for every x ∈ Sig(D) and
t ∈ dom(x). For every formula ϕ and every interval I, it holds that PIϕ ≡ 1SI ϕ,
HIϕ ≡ 0 S̄I ϕ, FIϕ ≡ 1 UI ϕ, and GIϕ ≡ 0 ŪI ϕ. So, the temporal connectives
PI ,HI ,FI ,GI can be defined as abbreviations in terms of SI , S̄I ,UI , ŪI .

Lemma 3. Let D be a set of data items and V be a complete lattice. The
identities of Fig. 2 hold for all formulas ϕ, ψ ∈ MTL(D,V).

The identities of Fig. 2 are shown using the axioms of complete lattices. The
identities below can reduce the monitoring of S[a,b]/S̄[a,b] to P[a,b]/H[a,b].

ϕ S[0,b] ψ ≡ P[0,b]ψ ∧ (ϕ S ψ) (1)

ϕ S[a,b] ψ ≡ P[a,b]ψ ∧ (ϕ S[a,∞) ψ) (2)

ϕ S̄[0,b] ψ ≡ H[0,b]ψ ∨ (ϕ S̄ ψ) (3)

ϕ S̄[a,b] ψ ≡ H[a,b]ψ ∨ (ϕ S̄[a,∞) ψ) (4)

Earlier occurrences of this idea are found in [25] (for the Boolean semantics) and
in [22] (for the real-valued quantitative semantics), where the authors consider
the future-time form ϕ U[a,b] ψ ≡ F[a,b]ψ ∧ (ϕ U[a,∞) ψ). Prior work on efficient
monitoring [19] uses an algorithm based on it. Specifically, [19] uses a sliding-
max algorithm [39], which can be applied to the lattice R±∞ and other similar
linear orders, but is not applicable to partial orders.

Proposition 4. Let D be a set and V be a complete lattice. Then, we have:
(1) If V is infinitely distributive, then the identities (1) and (2) hold.
(2) If V is co-infinitely distributive, then the identities (3) and (4) hold.

Proposition 4 suggests the class of (co)infinitely distributive complete lat-
tices as an appropriate algebraic generalization of R±∞ for efficient quantitative
online monitoring, as the monitoring of S[a,b] and S̄[a,b] can be reduced to sliding
aggregations (for which we present an efficient algorithm later in Fig. 7).

3 Monitors

In this section, we define the class of transducers that we will use for online moni-
toring. We consider infinite-state deterministic signal transducers. The transduc-
ers that we use operate on representations of piecewise constant signals, which

Quantitative Online Monitoring over Continuous-time Signals 7

are alternating sequences of points and open (left-open and right-open) segments.
Our transducers are allowed to have output that is not perfectly synchronized
with the input, that is, the output can either fall behind or run ahead of the
input. We distinguish those transducers that have a bounded and fixed delay and
we use a typing judgment f : delay = d to indicate that the transducer f has fixed
delay d. We also distinguish those transducers that do not introduce unbounded
variability into the output signal. More specifically, we use a typing judgment of
the form {ivar = k}f{ovar = `} to indicate that if the monitor f receives input
with variability at most k then it will produce output with variability at most `.

Let A be a set. We define the set Item(A) = {Pt(a) | a ∈ A} ∪ {Seg(a, dt) |
a ∈ A and dt ∈ T} of data items. A data item is either a point of the form Pt(a),
where a ∈ A, or an open segment of the form Seg(a, dt), where a ∈ A and dt ∈ T
is a time delta. When no confusion arises we write a instead of Pt(a), and adt

instead of Seg(a, dt). We also consider PCSig(A) = Pt(A) · (Seg(A, T) ·Pt(A))∗ ·
({ε} ∪ Seg(A, T)) ⊆ Item(A)∗, the set of alternating point-segment sequences of
data items that start with a point. An element of PCSig(A) represents a finite
piecewise constant signal. We will use the term trace to refer to elements of
Item(A)∗ in order to differentiate them from the signals that they represent. For
a trace x, we write |x| ∈ N to denote its length, that is, the number of items
that is contains. We write dur(x) ∈ T to denote its duration, that is, the total
amount of time that it spans. More formally, dur(ε) = 0, dur(xa) = dur(x) and
dur(xadt) = dur(x) + dt for every x ∈ Item(A)∗, a ∈ A and dt ∈ T .

We define the variability of a trace x ∈ Item(A)∗ as the maximum number
of items that fall within any one time interval of unit duration. For example, the
variability of the trace ab1 cd1 is 3, and the variability of the trace ab0.5 cd0.5ef0.5

is 5. Intuitively, the variability is the maximum number of times that the value
of the signal can change within any one unit interval.

Let A and B be sets. A monitor of type M(A,B) is a state machine f =
(St, init, o, next, out), where St is a set of states, init ∈ St is the initial state,
o ∈ Item(B)∗ is the initial output, next : St × Item(A) → St is the transition
function, and out : St × A → Item(B) is the output function. The monitor
denotes the transduction JfK : Item(A)∗ → Item(B)∗. We require additionally
that a monitor respects the representation of piecewise constant signals, that is:
JfK(x) ∈ PCSig(B) for every x ∈ PCSig(A). In other words, if the input stream
is an alternating sequence of points and segments, then so is the output stream.

In Fig. 3 we give several examples of simple monitors that can be used as
building blocks. The monitor map(op) applies the function op : A→ B element-
wise. The monitor aggr(b, op) applies a running aggregation to the input trace
that is specified by the initial aggregate b ∈ B and the aggregation function
op : B × A → B (similar to the fold combinator used in functional program-
ming). The monitor emit(v, t) emits a (left-closed, right-open) segment with
duration t ∈ T and value v ∈ A upon initialization and then echoes the input
trace. The monitor ignore(t) discards the initial (left-closed, right-open) signal
segment of duration t ∈ T and proceeds to echo the rest of the signal. The
monitor wnd(∆, 1⊗,⊗) (described later in Fig. 6 and Fig. 7 with pseudocode)

8 K. Mamouras et al.

map(op) : M(A,B)

St = Unit

init = u

o = ε

next(s, a) = s

next(s, adt) = s

out(s, a) = op(a)

out(s, adt) = op(a)dt

aggr(b, op) : M(A,B)

St = B

init = b

o = ε

next(s, a) = op(s, a)

next(s, adt) = op(s, a)

out(s, a) = op(s, a)

out(s, adt) = op(s, a)dt

aggrV(b, op) : M(A,B)

St = B

init = b

o = ε

next(s, a) = op(s, a)

next(s, adt) = op(s, a)

out(s, a) = s

out(s, adt) = op(s, a)dt

emit(v, t) : M(A,A)

St = Unit

init = u

o = 〈v, vt〉

next(s, x) = s

out(s, x) = x

ignore(t) : M(A,A)

St = T out(s, a) = ε, if s < t

init = 0 out(s, a) = a, if t ≤ s

o = ε out(s, adt) = ε, if s+ dt ≤ t

next(s, a) = s out(s, adt) = a
dt−(t−s)

, if s < t < s+ dt

next(s, adt) = s+ dt out(s, adt) = a
dt
, if t ≤ s

Fig. 3. Basic building blocks for constructing temporal quantitative monitors.

performs an aggregation, given by the associative function ⊗ : A×A→ A, over
a sliding window of time duration ∆. The value 1⊗ is a left and right identity
for ⊗. We combine monitors using the operations

f : M(A,B) g : M(B,C)

f >> g : M(A,B)

f : M(A,B) g : M(A,C)

par(f, g) : M(A,B × C)

serial composition >> and parallel composition par. In the serial composition
f >> g the output signal of f is propagated as input signal to g. In the parallel
composition par(f, g) the input signal is copied to two concurrently executing
monitors f and g and their output signals are combined. Both combinators >>
and par are given by variants of the product construction on state machines. In
the case of par the output traces of f and gmay not be synchronized (one may be
ahead of the other), which requires buffering in order to properly align them. This
amount of buffering is bounded when the input signal and the monitors satisfy
the conditions that ensure bounded variability of their outputs. A construction
similar to the one for par is described in [47] (in a discrete-time setting). Some
of the basic monitors of Fig. 3 are similar to queries of the StreamQL language
[37], which has been proposed for the processing of streaming time series.

Monitors and Delay. Let f : M(A,B) be a monitor. We define the delay of the
monitor f at x ∈ PCSig(A) to be the signed time duration delay(f)(x) = dur(x)−
dur(f(x)). We say that f has a fixed (positive) delay d if delay(f)(x) = dur(x)
when dur(x) ≤ d and delay(f)(x) = d when dur(x) > d. We indicate this by
writing f : delay = d. Similarly, we say that f has a fixed (negative) delay −d if
delay(f)(x) = −d for every x. We indicate this by writing f : delay = −d.

Quantitative Online Monitoring over Continuous-time Signals 9

{ivar = k}map(op){ovar = k}

{ivar = k}aggr(b, op){ovar = k}

{ivar = k}emit(v, t){ovar = k + 1}

{ivar = k}ignore(t){ovar = k}

{ivar = k}wnd(∆, 1⊗,⊗){ovar = ck}

{ivar = k}f{ovar = `} {ivar = `}g{ovar = m}

{ivar = k}f >> g{ovar = m}

{ivar = k}f{ovar = `} {ivar = k}g{ovar = m}

{ivar = k}par(f, g){ovar = `+m}

Fig. 4. Typing judgments for the preservation of finite variability.

All the monitors defined in Fig. 3 have a fixed (positive or negative) delay.
Moreover, the combinators >> and par preserve this property.

map(op) : delay = 0 aggr(b, op) : delay = 0 emit(v, t) : delay = −t

ignore(t) : delay = t wnd(∆, 1⊗,⊗) : delay = 0

f : delay = s g : delay = t

f >> g : delay = s+ t

f : delay = s g : delay = t

par(f, g) : delay = max(s, t)

This means that any monitor built from the basic ones (monitors of Fig. 3 and
Fig. 7) using serial and/or parallel composition has fixed delay.

Monitors and Input/Output Variability. We are especially interested in
monitors that do not introduce unbounded variability in their output. For a
monitor f : M(A,B) we write the typing judgment {ivar = k}f{ovar = `} to
indicate that for every input trace x ∈ PCSig(A) with variability at most k, the
ouput trace f(x) of the monitor has variability at most `. In other words, this
says that the monitor does not introduce unbounded variability.

Lemma 5. The typing judgments of Fig. 4 hold.

None of the monitors of Fig. 3 introduces unbounded variability. Moreover,
the combinators >> and par preserve this property. The typing judgments of
Fig. 4 imply that every monitor built from the basic ones (Fig. 3) using >> and
par preserves the bounded variability of the input signal.

Bounded memory footprint. Notice that map(op) and emit(v, t) are stateless,
which means that they need no memory. The monitor aggr(b, op) needs one
memory location to store the running aggregate. The monitor ignore(t) needs
one memory location for a clock that records the amount of time that has passed
since the start of the computation. The sliding-window monitor wnd(∆, 1⊗,⊗)
needs 2·∆·Var memory locations, where Var is the variability of the input trace,
for the buffers bufL, bufR, bufL agg used by the sliding window algorithm (see
Fig. 6 and Fig. 7 later). The combinator >> does not require additional memory.
The combinator par, on the other hand, needs buffers that can store pending
input from either input channel. Consider the monitoring par(f1, f2) with

f1 : delay = d1 {ivar = k}f1{ovar = `1}

f2 : delay = d2 {ivar = k}f2{ovar = `2}.

10 K. Mamouras et al.

If d2 ≥ d1 (the second channel is behind the first channel), then we need a buffer
of size dd2 − d1e · `1 for buffering the first channel. If d1 ≥ d2 (the first channel
is behind the second channel), then we need a buffer of size dd1 − d2e · `2 for
buffering the second channel.

Notice that both bounded delay and bounded variability are crucial for
putting a bound of the size of buffers used by par and wnd.

4 MTL Monitoring

In this section, we will see how temporal formulas are translated into monitors
using the combinators of Sect. 3. Since we focus in this paper on online monitor-
ing, we restrict attention to the future-bounded fragment of MTL, where the
future-time temporal connectives are bounded. That is, every UI connective is
of the form U[a,b] for a ≤ b <∞ (and similarly for FI , GI , ŪI).

For an infinite input signal x, the output of the monitor for the time instant
t should be ρ(ϕ,x, t), but the monitor has to compute it by observing only a
finite prefix of x. In order for the output value of the monitor to agree with the
standard temporal semantics over infinite traces we may need to delay an output
item until some part of the future input is seen. For example, in the case of F1p
we need to wait for one time unit: the output at time t is given after the input
item at time t+ 1 is seen. In other words, the monitor for F1p has a delay (the
output is falling behind the input) of one time unit. Symmetrically, we can allow
monitors to emit output early when the correct value is known. For example,
the output value for P1p is ⊥ in the beginning and the value at time t is already
known from time t − 1. So, we also allow monitors to have negative delay (the
output is running ahead of the input). The function dl : MTL → T gives the
amount of delay required to monitor a formula. It is defined by dl(p) = 0 and

dl(ϕ ∧ ψ) = max(dl(ϕ), dl(ψ)) dl(ϕ S[a,b] ψ) = max(dl(ϕ), dl(ψ))− a

dl(ϕ S[a,∞) ψ) = max(dl(ϕ), dl(ψ))− a dl(ϕ U[a,b] ψ) = max(dl(ϕ), dl(ψ)) + b.

TL(ϕ) is a signal transducer. If dl(ϕ) = 0, the TL(ϕ) is transducer where the input
and output signals are perfectly synchronized. If dl(ϕ) > 0, then TL(ϕ) emits
no output for the first dl(ϕ) time units and then behaves like a synchronized
transducer. If dl(ϕ) < 0, then TL(ϕ) emits a signal prefix of duration dl(ϕ) upon
initialization and continues to behave like synchronized transducer.

The identities of Fig. 2 suggest that MTL monitoring can be reduced to a
small set of computational primitives. The primitives of Sect. 3 are sufficient to
specify the monitors, as shown in Fig. 5. We write π1 : A × B → A for the left
projection and π2 : A×B → B for the right projection. Observe that the tempo-
ral connectives X[0,∞) are encoded with aggr (running aggregation), whereas the
temporal connectives X(0,∞) are encoded with aggrV (a slight variant of running
aggregation). The connectives Pa and Ha are encoded using emit. The connective
P[0,a] (resp., H[0,a]) is encoded using the sliding-window monitor wnd of Fig. 7,
where the sliding aggregation is t (resp., u). Similarly, the connectives X[0,a),

Quantitative Online Monitoring over Continuous-time Signals 11

TL(p) = map(p)

TL(ϕ ∨ ψ) = par(TL(ϕ), TL(ψ)) >> map(t)

TL(ϕ ∧ ψ) = par(TL(ϕ), TL(ψ)) >> map(u)

TL(P[0,∞)ϕ) = TL(ϕ) >> aggr(⊥,t) and TL(H[0,∞)ϕ) = TL(ϕ) >> aggr(>,u)

TL(P(0,∞)ϕ) = TL(ϕ) >> aggrV(⊥,t) and TL(H(0,∞)ϕ) = TL(ϕ) >> aggrV(>,u)

TL(Paϕ) = TL(ϕ) >> emit(⊥, a) and TL(Haϕ) = TL(ϕ) >> emit(>, a)

TL(P[a,∞)ϕ) = TL(PaP[0,∞)ϕ) and TL(H[a,∞)ϕ) = TL(HaH[0,∞)ϕ)

TL(P[0,b]ϕ) = wnd(b,⊥,t) and TL(H[0,b]ϕ) = wnd(b,>,u)

TL(P[a,b]ϕ) = TL(PaP[0,b−a]ϕ) and TL(H[a,b]ϕ) = TL(HaH[0,b−a]ϕ)

TL(ϕ S ψ) = par(TL(ϕ), TL(ψ)) >> aggr(⊥, opS)

opS : V × (V × V)→ V , where opS(s, 〈x, y〉) = (s u x) t y

TL(ϕ S[a,∞) ψ) = TL(Pa(ϕ S ψ) ∧ H[0,a)ϕ)

TL(ϕ S[0,b] ψ) = TL(P[0,b]ψ ∧ (ϕ S ψ))

TL(ϕ S[a,b] ψ) = TL(Pa(ϕ S[0,b−a] ψ) ∧ H[0,a)ϕ)

TL(Faϕ) = TL(ϕ) >> ignore(a) and TL(Gaϕ) = TL(ϕ) >> ignore(a)

TL(F[a,b]ϕ) = TL(FbP[0,b−a]ϕ) and TL(G[a,b]ϕ) = TL(GbH[0,b−a]ϕ)

TL(ϕ U[0,b] ψ) = par(TL(ϕ), TL(ψ)) >> wnd(b, 1⊗U
,⊗U) >> map(π2) >> ignore(b)

TL(ϕ U[a,b] ψ) = TL(Fa(ϕ U[0,b−a] ψ) ∧ G[0,a)ϕ)

Fig. 5. Online monitors for bounded-future MTL formulas.

X(0,a], X(0,a) can be encoded with a sliding aggregation that is a minor variant
of the algorithm of Fig. 7 (the only difference is how the leftmost and rightmost
points of the window are handled). Each connective of the form X〈a,b〉 is reduced
to the connectives Xa and X〈0,b−a〉. The “since” connectives S[a,∞), S[0,b], S[a,b]
are reduced to other simpler temporal connectives. The future connectives Fa

and Ga are encoded using ignore. The connective F[a,b] is encoded using Fb and
P[0,b−a], and similarly for G[a,b]. Finally, the “until” connective U[a,b] is reduced
to U[0,b−a], which in turn is monitored using a sliding-window aggregation that
we describe below. The connectives U[0,b), U(0,b], U(0,b) are handled similarly.

Let x ∈ Sig(D). If dur(x) ≥ t+a then ρ(ϕU[0,a]ψ,x, t) = ρ(ϕUψ,x|[t,t+a], 0),
where x|[t,t+a] is the restriction of x to the interval [t, t+ a] (also translated so
that the left endpoint is at 0). So, we can implement a monitor for the connective
U[0,a] by computing U over a window of duration exactly a time units.

Proposition 6 (Aggregation for Until). Let V be a (co)infinitely distribu-
tive complete lattice. For every piecewise constant trace x ∈ PCSig(V × V)
whose underlying sequence of values is val(x) = (x0, y0)(x1, y1) . . . (xn, yn) ∈
(V × V)+, the value ρ(π1 U π2,x, 0) can be written as an aggregate of the form
π2((x0, y0)⊗ (x1, y1)⊗ · · · ⊗ (xn, yn)).

Proposition 6 justifies the translation of U[0,b] into the monitor shown in
Fig. 5. Now, we will describe the data structure that performs the sliding aggre-
gation, which is used in wnd(∆, 1⊗,⊗). The implementation is shown in Fig. 6

12 K. Mamouras et al.

// size = size(bufL) + size(bufR)

// Invariant: if size > 0 then size(bufL) > 0.

bufL← [] // empty left buffer (items)

bufL agg ← [] // empty left buffer (aggregates)

bufR ← [Pt(1⊗), Seg(1⊗, ∆)] // right buffer (items)

aggR ← 1⊗ // aggregate of right buffer

agg ← 1⊗ // initial overall aggregate

dur ← ∆ // time duration of window

Reverse() // restore the invariant

Function Reverse():
// Called when size(bufL) = 0 and size(bufR) > 0.

// This function restores the window invariant.

bufL← bufR // move right buffer to left

bufR ← [] // empty right buffer

aggR ← 1⊗ // identity value

tmp agg ← 1⊗ // running aggregate

bufL agg ← [] // empty left buffer of aggregates

for i← size(bufL)− 1 to 0 do // calculate partial aggregates

tmp agg ← bufL[i].value ⊗ tmp agg // new aggregate

bufL agg ← [tmp agg] · bufL agg // prepend partial aggregate

agg ← bufL agg [0] // update overall aggregate

Function AddRight(x):
// item x is either a point or a segment

bufR ← bufR · [x] // add new item to the right

aggR ← aggR ⊗ x.value // update right aggregate

agg ← bufL agg [0]⊗ aggR // update overall aggregate

dur ← dur + x.duration // update window duration

// dur does not change when adding a point: Pt(a).duration = 0

Function AddLeft(x):
tmp agg ← x.value ⊗ bufL agg [0] // new partial aggregate

bufL← [x] · bufL // add new item to the left

bufL agg ← [tmp agg] · bufL agg // prepend partial aggregate

agg ← bufL agg [0]⊗ aggR // update overall aggregate

dur ← dur + x.duration // update window duration

Function Remove():
// remove oldest item from window

old ← bufL[0] // the oldest item

bufL← tail(bufL) // remove oldest item from bufL

bufL agg ← tail(bufL agg) // remove corresponding aggregate

if size(bufL) = 0 then
Reverse() // restore the invariant

else // size(bufL) > 0
agg ← bufL agg [0]⊗ aggR // update overall aggregate

dur ← dur − old .duration // update window duration

Fig. 6. Auxiliary functions for the sliding-window aggregation algorithm of Fig. 7.

Quantitative Online Monitoring over Continuous-time Signals 13

Function NextP(a):
AddRight(Pt(a)) // add new point to the right

Emit(Pt(agg)) // emit an output point

Remove() // remove oldest item (it should be a point)

Function NextS(a, dt):
AddRight(Seg(a, dt)) // add new segment to the right

over ← dur −∆ // calculate extra duration

while over > 0 do
old ← bufL[0] // the oldest item

if old = Pt(a′) then
Emit(Pt(agg)) // emit an output point

Remove() // remove oldest item (it should be a point)

else if old = Seg(a′, dt ′) then
if dt ′ ≤ over then

Emit(Seg(agg , dt ′)) // emit output segment

Remove() // remove old segment

else // dt ′ > over

Emit(Seg(agg , over)) // emit output segment

// modify oldest segment to reduce its duration by over

bufL[0]← Seg(a′, dt ′ − over) // update

dur ← dur − over // update duration

AddLeft(Pt(a′)) // add a point back to the left

over ← dur −∆ // recalculate extra duration

Fig. 7. Sliding aggregation over a continuous-time signal with wnd(∆, 1⊗,⊗).

(state, initialization of monitor, auxiliary funtions) and Fig. 7 (transition when
a point or a segment is received). Suppose that the current window (of duration
∆) is bufL · bufR, where bufL = [x1, x2, . . . , xm] and bufR = [xm+1, . . . , xm+n].
That is, the window is split into two buffers: bufL (left buffer) contains older
elements, and bufR (right buffer) contains newer elements. We maintain a buffer
of partial aggregates for the older elements: bufL agg = [y1, y2, . . . , ym], where
yi = xi ⊗ · · · ⊗ xm. We also maintain the aggregate aggR = xm+1 ⊗ · · · ⊗ xm+n

of the right buffer. So, the overall aggregate (for the entire window) is agg =
y1 ⊗ aggR. When a new point Pt(a) arrives, we add it to the right buffer, we
update aggR and agg , and we evict the oldest point from the window. When a
new open segment Seg(a, dt) arrives, we add it to the right buffer, update aggR,
agg and the current duration of the window, and then we evict as many old
items as necessary in order to bring the window back to its desired duration
∆. Whenever the left buffer becomes empty, we convert the entire right buffer
into a left buffer by performing all partial aggregations from right to left. We
call this a “reversal” and it requires O(n) applications of ⊗, where n is the
size of window. If the variability of the input signal is bounded by a constant,
then a reversal occurs only once every Θ(n) items. So, the algorithm needs O(1)
amortized time-per-item.

Quantitative Online Monitoring over Continuous-time Signals 17

the assumption that the interpretation of each predicate has bounded variabil-
ity (i.e, changes at most a constant number of times in each interval of fixed
length). In [43], the models are restricted to signals whose time domain can be
covered by left-closed right-open intervals. We consider a larger class of signals
by representing our time domain in the form of a sequence of alternating points
and open segments.

Fainekos and Pappas [27] defined a robustness semantics which quantifies
the degree to which a given signal satisfies a specification. This semantics was
generalized in [18] by using bounded distributive lattices for truth domains. The
present paper employs a similar semantics, where complete lattices are used to
accommodate dense and continuous time. The papers [35,45] consider two dif-
ferent algebraic semantics of temporal formulas using semirings, both of which
only apply to the discrete-time setting. In [53], a dense-time online monitor-
ing framework is presented with quantitative semiring-based semantics using
weighted automata. In the frameworks given by [35] and [53], the semantics is
based on shortest distances (i.e., standard semantics of weighted automata) as
opposed to an inductive definition on formula structure like ours.

In [13,16] some generalizations of the Boolean semantics to finite lattices
are considered in the context of runtime verification. It is worth noting that
the standard algorithms used for Boolean semantics can be easily adopted to a
semantics using finite lattices with a small number of elements. However, this is
not the case with the infinite lattices, such as (R±∞, sup, inf), that we consider.
The problem of parametric identification for STL [12] (where the syntax of STL
is extended with symbolic parameters) is related to the problem of monitoring
when the truth values are sets of possible parameter assignments/valuations.
In this setting, the truth values form a complete lattice with union as join and
intersection as meet. This suggests a relationship to our algebraic framework.

Timed automata [4] are a formalism for specifying real-time properties of
systems. A discussion of the past and future fragments of MITL and their con-
nection to timed automata can be found in [43]. The notion of a temporal tester
is used in [42,31]. Temporal testers [49] are transducers which output the truth
value of a temporal formula at each position. In these papers, the authors provide
a compositional framework to construct testers from MITL formulas. We also
consider a compositional transducer framework here, but our model of compu-
tation is more general and can support online quantitative monitoring that goes
beyond temporal logic (e.g., general running and sliding-window aggregations
with aggr and wnd respectively).

The line of work on SRV (Stream Runtime Verification) [50,32] is also rel-
evant, because SRV languages can be used to encode quantitative monitoring
algorithms. The stream-based specification language RTLola [30] provides a con-
struct for aggregation over a sliding window. In contrast to our sliding windows,
RTLola relies on the periodic partitioning and pre-aggregation along the time
axis (an idea described earlier in [40]) in order to reduce the space requirements.
So, the output signal can be viewed as a fixed-rate approximation of the desired
sliding aggregation. This technique is therefore not suitable for implementing the

18 K. Mamouras et al.

temporal connectives (e.g., P[0,b] and H[0,b]) of the logical formalism that we con-
sider here. The StreamLAB tool [29], which is used for monitoring cyber-physical
systems, uses RTLola as its specification language. Closely related to the afore-
mentioned works on SRV are other formalisms and domain-specific languages
for data stream processing. Quantitative regular expressions (QREs) [46] (see
also [7] and [10]) have been used to express algorithms for medical monitoring
[1,2]. The relationship between QREs and automata-theoretic models with reg-
isters is investigated in [8,9,6]. The synchronous languages [17,15,14] are based
on Kahn’s dataflow [36] and have been used for embedded controller design.

Originally, discussions involving offline monitoring, such as in [22] have only
consisted of future-time connectives. This choice is made because the temporal
formulas are interpreted at the beginning of the trace. In the context of on-
line monitoring, however, different approaches have been taken towards future
temporal connectives. While [20] assumes the availability of a predictor to inter-
pret future connectives, [24] considers robustness intervals: the tightest intervals
which cover the robustness of all possible extensions of the available trace prefix.
The tool Reelay [52] uses only past-time temporal connectives. The tool RTAMT
[48] pastifies a future-time formula by converting it into a past-time formula. The
inductive definition of pastification is detailed in [44].

It was observed in [22] that the key ingredient for efficiently monitoring STL
is an online algorithm for calculating the maximum/minimum over a sliding
window. The commonly used algorithm [39] maintains a so-called monotonic
wedge of values. In contrast, we use a more general algorithm, which applies to
any associative aggregation (not only max/min) and does not require the domain
of values to be totally ordered.

7 Conclusion

We have presented a new efficient algorithm for the online monitoring of MTL
properties over dense-time and continuous-time signals. We have used an ab-
stract algebraic semantics based on complete lattices satisfying certain infinitary
distributivity laws, which can be instantiated to the widely-used Boolean (qual-
itative) and robustness (quantitative) semantics, as well as to other partially
ordered truth values. Our monitoring framework is compositional in the sense
that we construct monitors from formulas using a set of combinators on moni-
tors. A key feature that enables compositionality and efficiency in our framework
is the use of monitors that are deterministic signal transducers with associated
typing judgments for ensuring that: (1) each monitor has a bounded and fixed
delay, and (2) each monitor produces output of bounded variability given input
of bounded variability. We have provided an implementation of our algebraic
monitoring framework, and we have shown experimentally that our monitors
scale reasonably well and are competitive against the tool Reelay [52].

Acknowledgments. This research was supported in part by US National Sci-
ence Foundation award 2008096.

Quantitative Online Monitoring over Continuous-time Signals 19

References

1. Abbas, H., Alur, R., Mamouras, K., Mangharam, R., Rodionova, A.: Real-time
decision policies with predictable performance. Proceedings of the IEEE, Special
Issue on Design Automation for Cyber-Physical Systems 106(9), 1593–1615 (2018).
https://doi.org/10.1109/JPROC.2018.2853608

2. Abbas, H., Rodionova, A., Mamouras, K., Bartocci, E., Smolka, S.A., Grosu, R.:
Quantitative regular expressions for arrhythmia detection. IEEE/ACM Trans-
actions on Computational Biology and Bioinformatics 16(5), 1586–1597 (2019).
https://doi.org/10.1109/TCBB.2018.2885274

3. Akazaki, T., Hasuo, I.: Time robustness in MTL and expressivity in hybrid system
falsification. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9207,
pp. 356–374. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21668-
3 21

4. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science
126(2), 183–235 (1994). https://doi.org/10.1016/0304-3975(94)90010-8

5. Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. Journal
of the ACM 43(1), 116–146 (1996). https://doi.org/10.1145/227595.227602

6. Alur, R., Fisman, D., Mamouras, K., Raghothaman, M., Stanford, C.: Stream-
able regular transductions. Theoretical Computer Science 807, 15–41 (2020).
https://doi.org/10.1016/j.tcs.2019.11.018

7. Alur, R., Mamouras, K.: An introduction to the StreamQRE language. Depend-
able Software Systems Engineering 50, 1–24 (2017). https://doi.org/10.3233/978-
1-61499-810-5-1

8. Alur, R., Mamouras, K., Stanford, C.: Automata-based stream processing. In:
ICALP 2017. Leibniz International Proceedings in Informatics (LIPIcs), vol. 80,
pp. 112:1–112:15. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl,
Germany (2017). https://doi.org/10.4230/LIPIcs.ICALP.2017.112

9. Alur, R., Mamouras, K., Stanford, C.: Modular quantitative monitoring. Pro-
ceedings of the ACM on Programming Languages 3(POPL), 50:1–50:31 (2019).
https://doi.org/10.1145/3290363

10. Alur, R., Mamouras, K., Ulus, D.: Derivatives of quantitative regular expressions.
In: Aceto, L., Bacci, G., Bacci, G., Ingólfsdóttir, A., Legay, A., Mardare, R. (eds.)
Models, Algorithms, Logics and Tools: Essays Dedicated to Kim Guldstrand Larsen
on the Occasion of His 60th Birthday, LNCS, vol. 10460, pp. 75–95. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-63121-9 4

11. Annapureddy, Y., Liu, C., Fainekos, G., Sankaranarayanan, S.: S-TaLiRo: A tool
for temporal logic falsification for hybrid systems. In: Abdulla, P.A., Leino, K.R.M.
(eds.) TACAS 2011. LNCS, vol. 6605, pp. 254–257. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19835-9 21

12. Bakhirkin, A., Ferrère, T., Maler, O.: Efficient parametric identification for
STL. In: HSCC 2018. pp. 177–186. ACM, New York, NY, USA (2018).
https://doi.org/10.1145/3178126.3178132

13. Bauer, A., Leucker, M., Schallhart, C.: Comparing LTL semantics for run-
time verification. Journal of Logic and Computation 20(3), 651–674 (2010).
https://doi.org/10.1093/logcom/exn075

14. Benveniste, A., Le Guernic, P., Jacquemot, C.: Synchronous programming with
events and relations: The SIGNAL language and its semantics. Science of
Computer Programming 16(2), 103–149 (1991). https://doi.org/10.1016/0167-
6423(91)90001-E

20 K. Mamouras et al.

15. Berry, G., Gonthier, G.: The Esterel synchronous programming language: De-
sign, semantics, implementation. Science of Computer Programming 19(2), 87–152
(1992). https://doi.org/10.1016/0167-6423(92)90005-V

16. Bonakdarpour, B., Fraigniaud, P., Rajsbaum, S., Rosenblueth, D.A., Travers,
C.: Decentralized asynchronous crash-resilient runtime verification. In:
Desharnais, J., Jagadeesan, R. (eds.) CONCUR 2016. Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), vol. 59, pp. 16:1–16:15. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2016).
https://doi.org/10.4230/LIPIcs.CONCUR.2016.16

17. Caspi, P., Pilaud, D., Halbwachs, N., Plaice, J.A.: LUSTRE: A declarative language
for real-time programming. In: POPL 1987. pp. 178–188. ACM, New York, NY,
USA (1987). https://doi.org/10.1145/41625.41641

18. Chattopadhyay, A., Mamouras, K.: A verified online monitor for metric
temporal logic with quantitative semantics. In: Deshmukh, J., Ničković, D.
(eds.) RV 2020. LNCS, vol. 12399, pp. 383–403. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-60508-7 21

19. Deshmukh, J.V., Donzé, A., Ghosh, S., Jin, X., Juniwal, G., Seshia, S.A.: Ro-
bust online monitoring of signal temporal logic. Formal Methods in System Design
51(1), 5–30 (2017). https://doi.org/10.1007/s10703-017-0286-7

20. Dokhanchi, A., Hoxha, B., Fainekos, G.: On-line monitoring for temporal logic ro-
bustness. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734, pp.
231–246. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11164-3 19

21. Donzé, A.: Breach, a toolbox for verification and parameter synthesis of hybrid sys-
tems. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
167–170. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-
6 17

22. Donzé, A., Ferrère, T., Maler, O.: Efficient robust monitoring for STL. In: Shary-
gina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 264–279. Springer,
Heidelberg (2013)

23. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals.
In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp.
92–106. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15297-9 9

24. Dreossi, T., Dang, T., Donzé, A., Kapinski, J., Jin, X., Deshmukh, J.V.: Effi-
cient guiding strategies for testing of temporal properties of hybrid systems. In:
Havelund, K., Holzmann, G., Joshi, R. (eds.) NFM 2015. LNCS, vol. 9058, pp.
127–142. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17524-9 10

25. D’Souza, D., Tabareau, N.: On timed automata with input-determined guards. In:
Lakhnech, Y., Yovine, S. (eds.) FTRTFT 2004, FORMATS 2004. LNCS, vol. 3253,
pp. 68–83. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-
3 7

26. Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications.
In: Havelund, K., Núñez, M., Roşu, G., Wolff, B. (eds.) FATES 2006,
RV 2006. LNCS, vol. 4262, pp. 178–192. Springer, Heidelberg (2006).
https://doi.org/10.1007/11940197 12

27. Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications for
continuous-time signals. Theoretical Computer Science 410(42), 4262–4291 (2009).
https://doi.org/10.1016/j.tcs.2009.06.021

28. Faulhaber, J.: Boost library documentation: Interval container library. https://
www.boost.org/doc/libs/1 76 0/libs/icl/doc/html/index.html (2021), [Online; ac-
cessed August 20, 2021]

Quantitative Online Monitoring over Continuous-time Signals 21

29. Faymonville, P., Finkbeiner, B., Schledjewski, M., Schwenger, M., Stenger, M.,
Tentrup, L., Torfah, H.: StreamLAB: Stream-based monitoring of cyber-physical
systems. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp. 421–431.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4 24

30. Faymonville, P., Finkbeiner, B., Schwenger, M., Torfah, H.: Real-time stream-based
monitoring. CoRR abs/1711.03829 (2017), http://arxiv.org/abs/1711.03829

31. Ferrère, T., Maler, O., Ničković, D., Pnueli, A.: From real-time logic
to timed automata. Journal of the ACM 66(3), 19:1–19:31 (2019).
https://doi.org/10.1145/3286976

32. Gorostiaga, F., Sánchez, C.: Striver: Stream runtime verification for real-time
event-streams. In: Colombo, C., Leucker, M. (eds.) RV 2018. LNCS, vol. 11237, pp.
282–298. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03769-7 16

33. Hoxha, B., Abbas, H., Fainekos, G.E.: Benchmarks for temporal logic require-
ments for automotive systems. In: Frehse, G., Althoff, M. (eds.) ARCH@CPSWeek
2014, 2015. EPiC Series in Computing, vol. 34, pp. 25–30. EasyChair (2014).
https://doi.org/10.29007/xwrs

34. Hoxha, B., Bach, H., Abbas, H., Dokhanchi, A., Kobayashi, Y., Fainekos, G.:
Towards formal specification visualization for testing and monitoring of cyber-
physical systems. In: International Workshop on Design and Implementation of
Formal Tools and Systems. DIFTS 2014 (2014)

35. Jakšić, S., Bartocci, E., Grosu, R., Ničković, D.: An algebraic frame-
work for runtime verification. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 37(11), 2233–2243 (2018).
https://doi.org/10.1109/TCAD.2018.2858460

36. Kahn, G.: The semantics of a simple language for parallel programming. Informa-
tion Processing 74, 471–475 (1974)

37. Kong, L., Mamouras, K.: StreamQL: A query language for processing streaming
time series. Proceedings of the ACM on Programming Languages 4(OOPSLA),
183:1–183:32 (2020). https://doi.org/10.1145/3428251

38. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-
Time Systems 2(4), 255–299 (1990). https://doi.org/10.1007/BF01995674

39. Lemire, D.: Streaming maximum-minimum filter using no more than three com-
parisons per element. CoRR abs/cs/0610046 (2006), http://arxiv.org/abs/cs/
0610046

40. Li, J., Maier, D., Tufte, K., Papadimos, V., Tucker, P.A.: No pane, no gain: Efficient
evaluation of sliding-window aggregates over data streams. SIGMOD Record 34(1),
39–44 (2005). https://doi.org/10.1145/1058150.1058158

41. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals.
In: Lakhnech, Y., Yovine, S. (eds.) FTRTFT 2004, FORMATS 2004. LNCS,
vol. 3253, pp. 152–166. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-30206-3 12

42. Maler, O., Nickovic, D., Pnueli, A.: Real time temporal logic: Past, present, future.
In: Pettersson, P., Yi, W. (eds.) FORMATS 2005. LNCS, vol. 3829, pp. 2–16.
Springer, Heidelberg (2005). https://doi.org/10.1007/11603009 2

43. Maler, O., Nickovic, D., Pnueli, A.: From MITL to timed automata. In: Asarin,
E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 274–289. Springer,
Heidelberg (2006). https://doi.org/10.1007/11867340 20

44. Maler, O., Ničković, D., Pnueli, A.: On synthesizing controllers from bounded-
response properties. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS,
vol. 4590, pp. 95–107. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-73368-3 12

22 K. Mamouras et al.

45. Mamouras, K., Chattopadhyay, A., Wang, Z.: Algebraic quantitative seman-
tics for efficient online temporal monitoring. In: Groote, J.F., Larsen, K.G.
(eds.) TACAS 2021. LNCS, vol. 12651, pp. 330–348. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-72016-2 18

46. Mamouras, K., Raghothaman, M., Alur, R., Ives, Z.G., Khanna, S.: StreamQRE:
Modular specification and efficient evaluation of quantitative queries over stream-
ing data. In: PLDI 2017. pp. 693–708. ACM, New York, NY, USA (2017).
https://doi.org/10.1145/3062341.3062369

47. Mamouras, K., Wang, Z.: Online signal monitoring with bounded lag. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems (2020).
https://doi.org/10.1109/TCAD.2020.3013053

48. Ničković, D., Yamaguchi, T.: RTAMT: Online robustness monitors from STL.
In: Hung, D.V., Sokolsky, O. (eds.) ATVA 2020. LNCS, vol. 12302, pp. 564–571.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59152-6 34

49. Pnueli, A., Zaks, A.: On the Merits of Temporal Testers, LNCS, vol. 5000, pp. 172–
195. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69850-0 11

50. Sánchez, C.: Online and offline stream runtime verification of synchronous systems.
In: Colombo, C., Leucker, M. (eds.) RV 2018. LNCS, vol. 11237, pp. 138–163.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03769-7 9

51. The Valgrind Developers: Valgrind: An instrumentation framework for building
dynamic analysis tools. https://valgrind.org/ (2021), [Online; accessed August 20,
2021]

52. Ulus, D.: The Reelay monitoring tool. https://doganulus.github.io/reelay/ (2020),
[Online; accessed August 20, 2020]

53. Waga, M.: Online quantitative timed pattern matching with semiring-valued
weighted automata. In: André, É., Stoelinga, M. (eds.) FORMATS 2019. LNCS,
vol. 11750, pp. 3–22. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
29662-9 1

	A Compositional Framework for Quantitative Online Monitoring over Continuous-time Signals

