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ABSTRACT 
With consideration of a full set of mechanical properties: 

elasticity, viscosity, and axial and circumferential initial 

tensions, and radial and axial motion of the arterial wall, this 

paper presents a theoretical study of pulse wave propagation in 

arteries and evaluates pulse wave velocity and transmission at 

the carotid artery (CA) and the ascending aorta (AA). The 

arterial wall is treated as an initially-tensioned, isotropic, thin-

walled membrane, and the flowing blood in the artery is treated 

as an incompressible Newtonian fluid. Pulse wave propagation 

in arteries is formulated as a combination of the governing 

equations of radial and axial motion of the arterial wall, the 

governing equations of flowing blood in the artery, and the 

interface conditions that relate the arterial wall variables to the 

flowing blood variables. We conduct a free wave propagation 

analysis of the problem and derive a frequency equation. The 

solution to the frequency equation indicates two waves: Young 

wave and Lamb wave, propagating in the arterial tree. With the 

related values at the CA and the AA, we evaluate the influence 

of arterial wall properties on their wave velocity and 

transmission, and find the opposite effects of  axial and 

circumferential initial tensions on transmission of both waves. 

Physiological implications of such influence are discussed. 

Keywords: Arterial wall, elasticity, viscosity, axial initial 

tension, circumferential initial tension, radial motion, axial 

motion, pulse wave propagation, wave velocity, wave 

transmission, atherosclerosis  

1. INTRODUCTION 
 From the physical perspective, blood circulation in the 

cardiovascular (CV) system is pulse wave propagation in the 

arterial tree. The arterial wall plays a critical role in 

determining the characteristics of pulse wave propagation in 

arteries [1]. Pathological changes in the arterial wall alter 

physical parameters of the arterial wall and cause changes in 

pulse wave propagation, which may consequently cause 

damage to the heart. This may explain why the dominant cause 

of CV disease is atherosclerosis [1].  

Radial motion of the arterial wall has been extensively 

studied, due to its clinical applications in detection and 

diagnosis of atherosclerosis [1-3]. Arterial elasticity and 

viscosity have been evaluated from radial motion of the arterial 

wall for their clinical values. Particularly, Pulse Wave Velocity 

(PWV) based on arterial elasticity has become a well-

established index in the clinical field [3]:  
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where E, h, and a denote the elasticity, thickness, and the inner 

radius of the arterial wall at diastolic blood pressure (DBP), 

respectively, and b denotes blood density. Arterial viscosity 

has not been studied as extensively as arterial elasticity, due to 

technical complexity involved in its measurement [4]. 

In recent years, the advancement of imaging technologies 

has allowed measurement of axial motion of the arterial wall. 

Clinical studies have established clinical values of axial motion 

of the arterial wall for serving as a more sensitive and possibly 

earlier measure of subclinical atherosclerosis and providing a 

comprehensive assessment of arterial health, together with 

radial motion of the arterial wall [5, 6].  

Due to its anatomy, the arterial wall contains significant 

inherent axial pre-stretch, which greatly affects the remodeling 

and growth of the arterial wall and also decreases with aging 

[7]. Axial pre-stretch translates to axial initial tension in the 

arterial wall. Meanwhile, DBP in the artery causes 

circumferential initial tension and also varies with arterial 

health condition [8]. As the arterial wall properties, axial and 

circumferential initial tensions are expected to affect pulse 

wave propagation in the artery.  

To date, numerous studies of pulse wave propagation in 

arteries have been conducted for radial motion of the arterial 

wall, with solely arterial elasticity and viscosity being 

considered [1-3]. Despite their identified clinical values, axial 

motion, axial and circumferential initial tensions of the arterial 

wall have been mostly neglected in the related theoretical 

studies [9]. This work is aimed to investigate the influence of 

arterial wall properties on pulse wave propagation in arteries 

for a better understanding of CV physiology and improved 
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applications of arterial wall properties in detection and 

diagnosis of atherosclerosis. In this work, we conduct a 

theoretical study of pulse wave propagation in  arteries, which 

includes both radial motion and axial motion of the arterial wall 

and a full set of arterial wall properties: elasticity, viscosity, and 

axial and circumferential initial tensions. The problem is 

formulated as a combination of the governing equations of 

radial and axial motion of the arterial wall, the governing 

equations of flowing blood in the artery, and the interface 

conditions that relate the arterial wall variables to the flowing 

blood variables. We conduct a free wave propagation analysis 

of the problem and derive a frequency equation, which is a 

quadratic equation of the squared wave velocity with arterial 

wall properties and geometries as coefficients. The solution to 

the frequency equation is two complex wave velocities and 

translates to the wave velocity and transmission of two waves: 

Young wave and Lamb wave, propagating in the arterial tree. 

With the related values at the carotid artery (CA) and the 

ascending aorta (AA), we evaluate the wave velocity and 

transmission of each wave at the two locations in the arterial 

tree and examine the influence of arterial wall properties on 

their wave velocity and transmission for physiological 

implications.  

 
2. RELATED THEORIES  

 

2.1 Five Variables in the Artery  
The anatomy of the arterial wall is rather complex [1]. For 

the purpose of gaining insights on the role of arterial wall 

properties in pulse wave propagation, the arterial wall is treated 

as an initially-tensioned, elastic, isotropic, thin-walled circular 

membrane. As shown in Fig. 1(a), the arterial wall has two 

geometrical parameters: a as the inner radius of the arterial wall 

at DBP and h as the thickness of the arterial wall. Both 

geometrical parameters remain unchanged during arterial wall 

motion. Axial initial tension per unit length and  

circumferential initial tension per unit length in the arterial wall 

are denoted by Tx0 and T0, respectively. The arterial wall 

undergoes radial motion and axial motion and thus has two 

associated variables: (t) as the radial displacement and (t) as 

the axial displacement. Flowing blood in the artery is assumed 

to be an incompressible Newtonian fluid. There are three 

variables related to the flowing blood: w(t) and u(t) as the radial 

velocity and the axial velocity, respectively, and p(t) as the 

pulsatile pressure. 

  

2.2 Problem Formulation  
Two fundamental assumptions in this subsection are that 1) 

the five variables are axisymmetric and small perturbations; 

and 2) the inner radius of the arterial wall is much smaller than 

the wavelength  of the pulse wave (a) [3, 9, 10]. 

Governing equations of flowing blood in the artery 

The governing equations of flowing blood in the artery 

include the continuity equation and the two Navier-Stokes 

equations along the radial (r-axis) and the axial (x-axis) 

directions [9]: 
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where b and  denote the density and viscosity of flowing 

blood in the artery, respectively.  

 
(a) 

 
                         (b) 

FIGURE 1: Schematic views of an artery (a) 3D view (b) 2D views 

in the axial direction and the circumferential direction, with the arterial 

wall geometries (a, h) and two initial tensions (Tx0 and T0); and three 

variables (u, w, p) of flowing blood in the artery and two variables 

(, ) of the arterial wall.  

Governing equations of the arterial wall  

As shown in Fig. 1(b), the stresses acting on the inner 

surface of the arterial wall are due to pulsatile pressure and 

shear forces of flowing blood. These stresses are: 
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where rx is commonly referred to as wall shear stress and is 

commonly denoted by w. Strains in the circumferential 

direction and the axial direction are expressed as: 

        / /r a      (4a)   /xx x      (4b) 

As shown in Fig. 1(b), during its motion, the arterial wall 

experiences the axial tension per unit length Nx and the 

circumferential tension per unit length N:  
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where E and  denote the elasticity and Poisson’s ratio of the 

arterial wall, respectively. 

The force balance analysis of the arterial wall gives rise to 

the governing equations of the arterial wall undergoing the 

radial and axial motion [10]: 
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where  denotes the arterial wall density. Since the arterial wall 

displacements are small, the actual location of the wall inner 

surface differs very little from its initial location during arterial 

wall motion. Thus, the values of stresses from flowing blood in 

the brackets in Eq. (6) are calculated at r=a. 

Blood-wall interface conditions  

Given that flowing blood in the artery needs to adhere to 

the inner surface of the arterial wall, the velocities of flowing 

blood must be equal to the velocities of the arterial wall in the 

radial and axial directions at r=a:  

  
r au

t








 (7a)           
r aw

t








 (7b)  

Note that Eq. (7) relates the two variables of the arterial wall to 

the two velocity variables of flowing blood in the artery. 

 

2.3 Solution of the Problem   
Under the condition that finite axial velocity at the center 

(r=0) of the artery and a, the solution to the governing 

equations of flowing blood, Eq. (2), has been well established 

[9]. Here, we assume that each variable propagates along the 

positive x-axis. Then, the wave expressions for the three 

variables of flowing blood in the artery become [9]: 
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A and B are two constants associated with the amplitudes of 

these three variables. Similarly, the wave expressions for the 

two variables of the arterial wall are:        
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where C and D are the amplitudes of the radial and axial 

variables of the arterial wall, respectively. 

There are four unknown constants: A, B, C, and D, in the 

five variables in Eq. (8). Now, we substitute these wave 

expressions into the governing equations of the arterial wall, Eq. 

(6), and the two blood-wall interface conditions, Eq. (7), 

yielding the following four equations: 
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where  10 1 0 0 0 02 ( ) / ( )F J J   . We further re-organize the 

above four equations into a 44 matrix equation with a vector 

of the four unknowns, Eq. (10), where the axial and 

circumferential initial tensions per unit length are both 

normalized as below: 
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Evidently, if a nontrivial solution is pursued for the four 

unknowns, the determinant of the 44 matrix in Eq. (10) must 

be equal to zero. With a, we can obtain a frequency 

equation, Eq. (12), where  
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Getting rid of axial and circumferential initial tensions in Eq. 

(12) leads to the same frequency equation derived in the well-

cited Womersley’s 1955 paper [9].  

Here, we provide the frequency equation, Eq. (14), for 

pulse wave propagation in arteries without blood viscosity and 

the two initial tensions. In Eq. (14), Bb denotes the bulk 

modulus of blood and cL denotes the elastic in-plane wave 

velocity [11]: 
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2.4 Wave Velocity and Transmission   
Eq. (12) is essentially a quadratic equation of (c0/c)

2
, with 

arterial wall properties and geometries as coefficients. Note that 

F10 in Eq. (12) results from blood viscosity and is complex. 

Thus, the solution to Eq. (12) is two complex roots of c: c1 and 

c2. While the first root, c1, represents the Young wave, the 

second root, c2,  represents the Lamb wave. The complex root 

c is further expressed in terms of its real and imaginary values: 
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where X and Y take real values. While the real value, 

real(c)=c0/X, represents the wave velocity (or phase velocity) 

and wave transmission per wavelength is then calculated as 

exp(2Y/X). The wavelength is related to the wave velocity by: 
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Eq. (14) is a quadratic equation of (/c)
2
. Since blood 

viscosity is not considered, no complex values are involved in 

the coefficients of the equation, and thus the solution to Eq. (14) 

are two real roots of c, indicating co-existence of the two waves 

and also no transmission loss (or 100% transmission) for both 

waves.  

It should be noted that when radial motion and axial 

motion of the arterial wall are separately considered and blood 

viscosity is not considered, the wave velocities associated with 

the Young wave and the Lamb wave are c0 and cL, respectively. 

 
3. RESULTS AND DISCUSSION 

In this section, based on the frequency equations, Eq. (12) 

and (14), we evaluate pulse wave velocity and transmission at 

the CA and the AA, analyze the difference between them, as 

well as examine the influence of blood viscosity and arterial 

wall properties on their wave velocity and transmission. Table 

1 summarizes the physical properties and geometrical 

parameters of the CA and the AA and the physical properties of 

flowing blood. With a heart rate of 70 beats per minute (bpm), 

all of the calculations are conducted in MATLAB.  

 

3.1  Influence of Blood Viscosity 
Table 2 summarizes the calculated values of the wave 

velocity, wave transmission per unit length, and wavelength at 

the AA and the CA with and without blood viscosity. Although 

the AA and the CA are initially tensioned in the axial and 

circumferential directions, the values of these initial tensions 

are unknown and thus are assumed to be zero here. At the AA, 

while the influence of blood viscosity on the Young wave 

velocity is negligible, blood viscosity moderately reduces the 

Lamb wave velocity. Blood viscosity reduces the Young wave 

transmission by roughly 10%, and cuts the Lamb wave 

transmission from 100% to about 50%, indicating that blood 

viscosity plays a more important role in the Lamb wave 

transmission. At the CA, blood viscosity moderately reduces 

the Young wave velocity, but causes a large reduction in the 

Lamb wave velocity. Blood viscosity reduces the Young and 

Lamb wave transmissions to about 50% and about 25%, 

respectively. When blood viscosity is not considered, the 

Young wave velocity and the Lamb velocity at the AA and the 

CA are very close to c0 and cL, respectively, indicating the 

important role of wall shear stress in pulse wave propagation.

Table 1 Physical properties and geometrical parameters of the carotid artery (CA) and the ascending aorta (AA) and physical 

properties of flowing blood [12, 13] 

 Parameter Symbol Carotid artery (CA) Ascending aorta (AA) 

Arterial wall 

Radius a 3.3mm 14.7mm 

Thickness h 0.62mm 1.63mm 

Elasticity E 771kPa 400kPa 

Poisson’s ratio  0.5 

Density  1055kg/m3 

Blood 

Density b 1055kg/m3 

Viscosity  0.0032Pas 

Bulk modulus Bb 2.2GPa 
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Table 2 Influence of blood viscosity on wave velocity, wave transmission, and wavelength at the CA and the AA 

 
CA 

(0=0 and x0=0) 

AA 

(0=0 and x0=0) 

Parameter With blood viscosity Without blood viscosity With blood viscosity Without blood viscosity 

real(c1) (m/s)  7.68 8.18 4.48 4.5844 

real(c2) (m/s)  22.30 31.61 19.66 22.65 

exp(2Y1/X1)   0.52 1 0.89 1 

exp(2Y2/X2)  0.23 1 0.48 1 

1 (m) 6.59 7.01 3.84 3.90 

2 (m) 19.11 27.09 16.85 19.41 

c0 8.29 4.58 

cL 31.20 22.48 

Blood viscosity manifests in wall shear stress acting on the 

arterial wall along the axial direction. While the Young wave is 

a fluid-dominant wave, the Lamb wave is a wall-dominant 

wave. These might explain why blood viscosity affects the 

lamb wave velocity and transmission to a much larger extent 

than the Young wave velocity and transmission. Yet, given that 

the AA has a much larger size than the CA, the influence of 

wall shear stress on pulse wave velocity and transmission is 

much less prominent at the AA than at the CA.  

With blood viscosity, the Young wave transmission is 

more efficient than the Lamb wave transmission at both the AA 

and the CA. Although the value of each wave transmission is 

much less than 100%, the overall transmission loss is expected 

to be low, given that the wavelength of each wave is well above 

the arterial tree length. The transmission of each wave is much 

lower at the CA than at the AA, but the wavelength of each 

wave is much higher at the CA than at the AA. Consequently, 

the overall transmission loss of the two waves might be 

comparable between the CA and the AA. 

3.2 Influence of Arterial Elasticity and Viscosity 
As shown in Fig. 2, the velocities of the two waves both 

increase with arterial elasticity. The elasticities of the AA and 

the CA start from their normal values in Table 1 and are 

increased by 200kPa. Overall, the Young wave velocity at the 

AA is lower than at the CA, and the Lamb wave velocity at the 

AA is comparable with that at the CA. The transmission of the 

two waves is not affected by arterial elasticity. With blood 

viscosity, the transmission of each wave is much higher at the 

AA than at the CA. Note that the transmission of both waves at 

the AA and the CA without blood viscosity is also included in 

Fig. 2(b) for the influence of blood viscosity on the wave 

transmission at the AA and the CA. 

Fig. 3 compares the difference in the influence of arterial 

elasticity on the wave velocities between with and without 

blood viscosity at the AA and the CA. At the AA and the CA, 

the influence of blood viscosity on the two wave velocities 

remains the same, as arterial elasticity goes up. 

To consider the influence of arterial viscosity on wave 

velocity and transmission, a complex arterial elasticity E is 

defined as below: 

                     

(a)  

  

                         (b) 

FIGURE 2: The influence of arterial elasticity on (a) wave velocity 

and (b) transmission per wavelength at the CA and the AA with blood 

viscosity (blacklines: AA; red lines: CA; dashed lines: the Young 

wave; solid lines: the Lamb wave; blue lines: without blood viscosity)  

                     'E E i E                         (18) 

By keeping arterial elasticity in Table 1 for the AA and the CA 

as constant, the influence of arterial viscosity is plotted in Fig. 

4. The influence of arterial viscosity on the Young wave 

velocity is slight but is moderate on the Lamb wave velocity at 

the AA and the CA. However, transmission of both waves 

decreases significantly with arterial viscosity, with the Young 

wave transmission decreasing even faster. Without blood 

viscosity, transmission of the two waves at the CA and the AA 

is the same and is also plotted in Fig. 4(b) for comparison. Note 

that blood viscosity dramatically decreases the Lamb wave 

transmission while moderately reducing the Young wave 

transmission at the AA and the CA. As arterial viscosity 
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increases, the influence of blood viscosity on each wave 

transmission becomes less prominent. 

  

(a) 

  

(b) 

FIGURE 3: The influence of arterial elasticity on wave velocities (a) 

at the AA and (b) at the CA with/without blood visocity (blacklines: 

AA; red lines: CA; dashed lines: the Young wave; solid lines: the 

Lamb wave; blue lines: without blood viscosity) 

  
 

(a) 

  
 

 (b) 

FIGURE 4: The influence of arterial viscosity on (a) wave velocity 

and (b) transmission per wavelength with blood viscosity at the CA 

and the AA (blackline: AA; red lines: CA; dashed lines: the Young 

wave; solid lines: the Lamb wave; blue line: without blood viscosity)  

Fig. 5 compares the difference in the influence of arterial 

viscosity on the wave velocities at the AA and the CA between 

with and without blood viscosity. At both the AA and the CA, 

arterial viscosity does not affect the Young wave velocity, 

regardless of whether blood viscosity is considered. Yet, with 

blood viscosity, arterial viscosity greatly increases the Lamb 

wave velocity at the AA and the CA. 

 

  
 

(a) 

  

(b) 

FIGURE 5: The influence of arterial viscosity on wave velocities (a) 

at the AA and (b) at the CA with/without blood viscosity (blackline: 

AA; red lines: CA; dashed lines: the Young wave; solid lines: the 

Lamb wave; blue lines: without blood viscosity) 

 

3.3 Influence of Axial and Circumferential Initial 
Tensions 

As shown in Fig. 6, the influence of axial initial tension on 

the Lamb wave velocity is negligible at the AA and the CA. 

However, axial initial tension reduces the Young wave velocity 

at the CA to a larger extent than that at the AA. Axial initial 

tension moderately reduces the Lamb wave transmission at the 

AA and the CA to the same extent, but increases the Young 

wave transmission to a much larger extent at the CA than at the 

AA.  

As shown in Fig. 7, similar to axial initial tension, the 

influence of circumferential initial tension on the Lamb wave 

velocity is negligible at the CA and the AA. However, 

circumferential initial tension reduces the Young wave velocity 

to a larger extent at the CA than at the AA. The Lamb wave 

transmission is moderately increased by circumferential initial 

tension and such increase is very similar at the CA and the AA. 
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Circumferential initial tension reduces the Young wave 

transmission to a larger extent at the CA than at the AA. 

 
 

(a) 

 
 

(b) 

FIGURE 6: The influence of axial initial tension on (a) wave 

velocity and (b) transmission per wavelength with blood viscosity at 

the CA and the AA (blacklines: AA; red lines: CA; dashed lines: the 

Young wave; solid lines: the Lamb wave) 

 

 
 

(a) 

 
 

(b) 

FIGURE 7 The influence of circumferential initial tension on (a) 

wave velocity and (b) transmission per wavelength with blood 

viscosity at the CA and the AA (blacklines: AA; red lines: CA; dashed 

lines: the Young wave; solid lines: the Lamb wave) 

3.4 Physiological Implications  

The physiological implication of arterial elasticity has been 

well established. Increase in arterial elasticity (or arterial 

stiffening) causes an increase in PWV, which undermines blood 

circulation and eventually increases burden to the heart. 

Therefore, a low Young wave velocity is favorable for 

facilitating blood circulation and alleviating the burden to the 

heart. With this as the guidance, both axial and circumferential 

initial tensions decrease the Young wave velocity and thus are 

both favorable for facilitating blood circulation. Yet, axial 

initial tension increases the Young wave transmission, while the 

circumferential initial tension reduces the Young wave 

transmission. Given that high wave transmission indicates high 

efficiency in blood circulation and low burden to the heart. 

Thus, circumferential initial tension undermines blood 

circulation and increases the workload of the heart. 

Circumferent initial tension results from DBP and is positively 

related to DBP. Recently, diastolic pressure hypertension was 

linked to cardiovascular risks in young adults [8]. Meanwhile, 

axial initial tension is inherent and decreases with aging. As 

such, it might be concluded that while axial initial tension is 

inherent in facilitating the Young wave propagation, DBP 

hypertension is a passive reaction of the artery to facilitate the 

Young wave propagation.  

Although axial motion of the arterial wall has been studied 

[5, 6], the Lamb wave velocity has not been measured and 

studied for its clinical values. Nonetheless, axial and 

circumferential initial tensions have very slight influence on the 

Lamb wave velocity. However, axial initial tension reduces the 

Lamb wave transmission, circumferential initial tension has just 

the opposite effect. The dominant wave in blood circulation is 

the Young wave. Thus, although the reduced Lamb wave 

transmission is not preferred, it does not cause much burden to 

the heart. In contrast, although circumferential initial tension 

improves the Lamb wave transmission, its influence on the 

Young wave transmission is more prominent.    

To date, there are no direct measures on arterial viscosity 

and indirect measures of arterial viscosity found that arterial 

viscosity increases with aging [4]. As predicted by this study, 

although the influence of arterial viscosity on the two wave 

velocities is negligible, arterial viscosity has a large influence 

on the transmissions of the two waves. As such, increased 

arterial viscosity translates to reduced efficiency in blood 

circulation and causes increased burden to the heart.  

 
3.5 Study Limitations 

There are two major study limitations in this work. First, 

the arterial wall is treated as an isotropic, thin-walled 

membrane. In reality, the arterial wall has a thin-layered 

anatomical structure and thus is orthotropic in nature. The 

radius/thickness ratio (a/h) of the AA and the CA are 9.0 and 

5.3, respectively. According to the literature [14], when the 

radius/thickness ratio is above 10, there is no difference in the 

calculated values between a thin-walled model and a thick-
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walled model. Although the calculated values are off, the 

influence of arterial wall properties on pulse wave propagation 

in arteries is illustrated. Certainly, a thick-walled model with 

orthotropic properties will improve the accuracy in the 

calculated values, but also greatly increase the mathemetical 

complexity and may prevent a better illustration of such 

influence.  

Second, this study does not consider the excitation source 

at the heart and also wave reflection. As mentioned above, the 

goal of this work is to gain insights in the influence of arterial 

wall properties on pulse wave propagation and thus improve 

their clinical applications in detection and diagnosis of arterial 

abnormalities. Neglect of the excitation source and wave 

reflection may affect the calculated values, but are not expected 

to change the nature of the influence.    
 

4. CONCLUSION    
We have presented a free wave propagation analysis of 

pulse wave propagation in arteries, with a full set of mechanical 

properties: elasticity, viscosity, and axial and circumferential 

initial tensions, and radial and axial motion of the arterial wall. 

The frequency equation resulting from the analysis indicates 

the co-existence of two waves: the Young wave and the Lamb 

wave, propagating in the arterial tree. The obtained two 

complex roots of the frequency equation relate the wave 

velocity and transmission of both waves to arterial wall 

properties. The wave velocities and transmissions at the CA 

and the AA show a large difference, due to their significant 

difference in size and mechanical properties.  

Based on the frequency equation, the influence of arterial 

wall properties on pulse wave propagation is revealed. The 

physiological implications of such influence are then discussed. 

In particular, axial and circumferential initial tensions are found 

to make their own non-negligible contributions to the efficiency 

of blood circulation and the heart.   

 
ACKNOWLEDGEMENTS 

This work is partially supported by the National Science 

Foundation (NSF) under Grant #1936005. 

REFERENCES 

[1] Mitchell, Gary F., Shih-Jen Hwang, Ramachandran S. 

Vasan, Martin G. Larson, Daniel Levy, Emelia J. Benjamin, 

Michael J. Pencina, Naomi M. Hamburg, and Joseph A. 

Vita. “Response to Letters Regarding Article, ‘Arterial 

Stiffness and Cardiovascular Events: The Framingham 

Heart Study.’” Circulation 122, no. 19 (February 2, 2010): 

505–11.  

[2] Tanaka, Hirofumi. “Various Indices of Arterial Stiffness: 

Are They Closely Related or Distinctly Different?” Pulse 5, 

no. 1-4 (March 6, 2018): 1–6.  

[3] Pereira, Tânia, Carlos Correia, and João Cardoso. “Novel 

Methods for Pulse Wave Velocity Measurement.” Journal 

of Medical and Biological Engineering 35, no. 5 (October 

2015): 555–65.  

[4] Kawano, Hiroshi, Kenta Yamamoto, Yuko Gando, 

Michiya Tanimoto, Haruka Murakami, Yumi Ohmori, 

Kiyoshi Sanada, Izumi Tabata, Mitsuru Higuchi, and 

Motohiko Miyachi. “Lack of Age-Related Increase in 

Carotid Artery Wall Viscosity in Cardiorespiratory Fit 

Men.” Journal of Hypertension 31, no. 12 (2013): 2370–79.  

[5] Taivainen, S. H., H Yli-Ollila, M Juonala, M Kähönen, O 

T Raitakari, T M Laitinen, and T P Laitinen. “Influence of 

Cardiovascular Risk Factors on Longitudinal Motion of the 

Common Carotid Artery Wall.” Atherosclerosis 272 

(2018): 54–59.  

[6] Au, Jason S., Paula A. Bochnak, Sydney E. Valentino, Jem 

L. Cheng, Eric J. Stöhr, and Maureen J. MacDonald. 

“Cardiac and Haemodynamic Influence on Carotid Artery 

Longitudinal Wall Motion.” Experimental Physiology 103, 

no. 1 (2017): 141–52.  

[7] Horný, Lukáš, Tomáš Adámek, and Markéta Kulvajtová. 

“A Comparison of Age-Related Changes in Axial 

Prestretch in Human Carotid Arteries and in Human 

Abdominal Aorta.” Biomechanics and Modeling in 

Mechanobiology 16, no. 1 (May 17, 2016): 375–83.  

[8] Lee, Hokyou, Yuichiro Yano, So Mi Cho, Jong Heon Park, 

Sungha Park, Donald M. Lloyd-Jones, and Hyeon Chang 

Kim. “Cardiovascular Risk of Isolated Systolic or Diastolic 

Hypertension in Young Adults.” Circulation 141, no. 22 

(June 2, 2020): 1778–86.  

[9] Womersley, J.R. “XXIV. Oscillatory Motion of a Viscous 

Liquid in a Thin-Walled Elastic Tube—I: The Linear 

Approximation for Long Waves.” The London, Edinburgh, 

and Dublin Philosophical Magazine and Journal of 

Science 46, no. 373 (1955): 199–221.  

[10] Atabek, H.B., and H.S. Lew. “Wave Propagation through a 

Viscous Incompressible Fluid Contained in an Initially 

Stressed Elastic Tube.” Biophysical Journal 6, no. 4 (1966): 

481–503.  

[11] Pinnington, R.J., and A.R. Briscoe. “Externally Applied 

Sensor for Axisymmetric Waves in a Fluid Filled Pipe.” 

Journal of Sound and Vibration 173, no. 4 (1994): 503–16.  

[12] Jagielska, K., D. Trzupek, M. Lepers, A. Pelc, and P. 

Zieliński. “Effect of Surrounding Tissue on Propagation of 

Axisymmetric Waves in Arteries.” Physical Review E 76, 

no. 6 (2007): 066304.  

[13] Riley, W A, R W Barnes, G W Evans, and G L Burke. 

“Ultrasonic Measurement of the Elastic Modulus of the 

Common Carotid Artery. The Atherosclerosis Risk in 

Communities (ARIC) Study.” Stroke 23, no. 7 (1992): 

952–56.  

[14] Cox, Robert H. “Comparison of Linearized Wave 

Propagation Models for Arterial Blood Flow Analysis.” 

Journal of Biomechanics 2, no. 3 (1969): 251–65.  


