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ABSTRACT

With consideration of a full set of mechanical properties:
elasticity, viscosity, and axial and circumferential initial
tensions, and radial and axial motion of the arterial wall, this
paper presents a theoretical study of pulse wave propagation in
arteries and evaluates pulse wave velocity and transmission at
the carotid artery (CA) and the ascending aorta (AA). The
arterial wall is treated as an initially-tensioned, isotropic, thin-
walled membrane, and the flowing blood in the artery is treated
as an incompressible Newtonian fluid. Pulse wave propagation
in arteries is formulated as a combination of the governing
equations of radial and axial motion of the arterial wall, the
governing equations of flowing blood in the artery, and the
interface conditions that relate the arterial wall variables to the
flowing blood variables. We conduct a free wave propagation
analysis of the problem and derive a frequency equation. The
solution to the frequency equation indicates two waves: Young
wave and Lamb wave, propagating in the arterial tree. With the
related values at the CA and the AA, we evaluate the influence
of arterial wall properties on their wave velocity and
transmission, and find the opposite effects of axial and
circumferential initial tensions on transmission of both waves.
Physiological implications of such influence are discussed.

Keywords: Arterial wall, elasticity, viscosity, axial initial
tension, circumferential initial tension, radial motion, axial
motion, pulse wave propagation, wave velocity, wave
transmission, atherosclerosis

1. INTRODUCTION

From the physical perspective, blood circulation in the
cardiovascular (CV) system is pulse wave propagation in the
arterial tree. The arterial wall plays a critical role in
determining the characteristics of pulse wave propagation in
arteries [1]. Pathological changes in the arterial wall alter
physical parameters of the arterial wall and cause changes in
pulse wave propagation, which may consequently cause
damage to the heart. This may explain why the dominant cause
of CV disease is atherosclerosis [1].

Radial motion of the arterial wall has been extensively
studied, due to its clinical applications in detection and

diagnosis of atherosclerosis [1-3]. Arterial elasticity and
viscosity have been evaluated from radial motion of the arterial
wall for their clinical values. Particularly, Pulse Wave Velocity
(PWYV) based on arterial elasticity has become a well-
established index in the clinical field [3]:
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2p,a

PWV = (1

where E, h, and a denote the elasticity, thickness, and the inner
radius of the arterial wall at diastolic blood pressure (DBP),
respectively, and p, denotes blood density. Arterial viscosity
has not been studied as extensively as arterial elasticity, due to
technical complexity involved in its measurement [4].

In recent years, the advancement of imaging technologies
has allowed measurement of axial motion of the arterial wall.
Clinical studies have established clinical values of axial motion
of the arterial wall for serving as a more sensitive and possibly
earlier measure of subclinical atherosclerosis and providing a
comprehensive assessment of arterial health, together with
radial motion of the arterial wall [5, 6].

Due to its anatomy, the arterial wall contains significant
inherent axial pre-stretch, which greatly affects the remodeling
and growth of the arterial wall and also decreases with aging
[7]. Axial pre-stretch translates to axial initial tension in the
arterial wall. Meanwhile, DBP in the artery causes
circumferential initial tension and also varies with arterial
health condition [8]. As the arterial wall properties, axial and
circumferential initial tensions are expected to affect pulse
wave propagation in the artery.

To date, numerous studies of pulse wave propagation in
arteries have been conducted for radial motion of the arterial
wall, with solely arterial elasticity and viscosity being
considered [1-3]. Despite their identified clinical values, axial
motion, axial and circumferential initial tensions of the arterial
wall have been mostly neglected in the related theoretical
studies [9]. This work is aimed to investigate the influence of
arterial wall properties on pulse wave propagation in arteries
for a better understanding of CV physiology and improved
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applications of arterial wall properties in detection and
diagnosis of atherosclerosis. In this work, we conduct a
theoretical study of pulse wave propagation in arteries, which
includes both radial motion and axial motion of the arterial wall
and a full set of arterial wall properties: elasticity, viscosity, and
axial and circumferential initial tensions. The problem is
formulated as a combination of the governing equations of
radial and axial motion of the arterial wall, the governing
equations of flowing blood in the artery, and the interface
conditions that relate the arterial wall variables to the flowing
blood variables. We conduct a free wave propagation analysis
of the problem and derive a frequency equation, which is a
quadratic equation of the squared wave velocity with arterial
wall properties and geometries as coefficients. The solution to
the frequency equation is two complex wave velocities and
translates to the wave velocity and transmission of two waves:
Young wave and Lamb wave, propagating in the arterial tree.
With the related values at the carotid artery (CA) and the
ascending aorta (AA), we evaluate the wave velocity and
transmission of each wave at the two locations in the arterial
tree and examine the influence of arterial wall properties on
their wave velocity and transmission for physiological
implications.

2. RELATED THEORIES

2.1 Five Variables in the Artery

The anatomy of the arterial wall is rather complex [1]. For
the purpose of gaining insights on the role of arterial wall
properties in pulse wave propagation, the arterial wall is treated
as an initially-tensioned, elastic, isotropic, thin-walled circular
membrane. As shown in Fig. I(a), the arterial wall has two
geometrical parameters: a as the inner radius of the arterial wall
at DBP and h as the thickness of the arterial wall. Both
geometrical parameters remain unchanged during arterial wall
motion. Axial initial tension per unit length and
circumferential initial tension per unit length in the arterial wall
are denoted by Ty, and Ty, respectively. The arterial wall
undergoes radial motion and axial motion and thus has two
associated variables: n(t) as the radial displacement and &(t) as
the axial displacement. Flowing blood in the artery is assumed
to be an incompressible Newtonian fluid. There are three
variables related to the flowing blood: w(t) and u(t) as the radial
velocity and the axial velocity, respectively, and Ap(t) as the
pulsatile pressure.

2.2 Problem Formulation

Two fundamental assumptions in this subsection are that 1)
the five variables are axisymmetric and small perturbations;
and 2) the inner radius of the arterial wall is much smaller than
the wavelength A of the pulse wave (a<<A) [3, 9, 10].

Governing equations of flowing blood in the artery
The governing equations of flowing blood in the artery
include the continuity equation and the two Navier-Stokes

equations along the radial (r-axis) and the axial (x-axis)
directions [9]:
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where p, and p denote the density and viscosity of flowing
blood in the artery, respectively.

(b)
FIGURE 1: Schematic views of an artery (a) 3D view (b) 2D views
in the axial direction and the circumferential direction, with the arterial
wall geometries (a, h) and two initial tensions (T,yand Tg); and three
variables (u, w, Ap) of flowing blood in the artery and two variables
(n, &) of the arterial wall.

Governing equations of the arterial wall

As shown in Fig. 1(b), the stresses acting on the inner
surface of the arterial wall are due to pulsatile pressure and
shear forces of flowing blood. These stresses are:
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where G, is commonly referred to as wall shear stress and is
commonly denoted by t,. Strains in the circumferential
direction and the axial direction are expressed as:

Ep=0n/0Or=nla(da) ¢ ,=05/0x (4b)

As shown in Fig. 1(b), during its motion, the arterial wall
experiences the axial tension per unit length N, and the

circumferential tension per unit length Ng:
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where E and v denote the elasticity and Poisson’s ratio of the
arterial wall, respectively.

The force balance analysis of the arterial wall gives rise to
the governing equations of the arterial wall undergoing the
radial and axial motion [10]:
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where p denotes the arterial wall density. Since the arterial wall
displacements are small, the actual location of the wall inner
surface differs very little from its initial location during arterial
wall motion. Thus, the values of stresses from flowing blood in
the brackets in Eq. (6) are calculated at r=a.

Blood-wall interface conditions

Given that flowing blood in the artery needs to adhere to
the inner surface of the arterial wall, the velocities of flowing
blood must be equal to the velocities of the arterial wall in the
radial and axial directions at r=a:

L C w =95 (7v)
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Note that Eq. (7) relates the two variables of the arterial wall to
the two velocity variables of flowing blood in the artery.

2.3 Solution of the Problem

Under the condition that finite axial velocity at the center
(r=0) of the artery and a<<A, the solution to the governing
equations of flowing blood, Eq. (2), has been well established
[9]. Here, we assume that each variable propagates along the
positive x-axis. Then, the wave expressions for the three
variables of flowing blood in the artery become [9]:
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A and B are two constants associated with the amplitudes of
these three variables. Similarly, the wave expressions for the
two variables of the arterial wall are:
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where C and D are the amplitudes of the radial and axial
variables of the arterial wall, respectively.

There are four unknown constants: A, B, C, and D, in the
five variables in Eq. (8). Now, we substitute these wave
expressions into the governing equations of the arterial wall, Eq.
(6), and the two blood-wall interface conditions, Eq. (7),
yielding the following four equations:
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where EO:ZJI(%)/[%JO(%)]. We further re-organize the

above four equations into a 4x4 matrix equation with a vector
of the four unknowns, Eq. (10), where the axial and
circumferential initial tensions per unit length are both
normalized as below:
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Evidently, if a nontrivial solution is pursued for the four
unknowns, the determinant of the 4x4 matrix in Eq. (10) must
be equal to zero. With a<<4, we can obtain a frequency
equation, Eq. (12), where

Eh
2p,a
Getting rid of axial and circumferential initial tensions in Eq.
(12) leads to the same frequency equation derived in the well-
cited Womersley’s 1955 paper [9].

K =ph/(p,a) and c,=PWV =

(13)

Here, we provide the frequency equation, Eq. (14), for
pulse wave propagation in arteries without blood viscosity and
the two initial tensions. In Eq. (14), B, denotes the bulk
modulus of blood and c; denotes the elastic in-plane wave

velocity [11]:
o= [E (15)
p(1-v%)

2.4 Wave Velocity and Transmission

Eq. (12) is essentially a quadratic equation of (co/c)’, with
arterial wall properties and geometries as coefficients. Note that
Fio in Eq. (12) results from blood viscosity and is complex.
Thus, the solution to Eq. (12) is two complex roots of ¢: ¢; and
c,. While the first root, c;, represents the Young wave, the
second root, c,, represents the Lamb wave. The complex root
c is further expressed in terms of its real and imaginary values:

cle=X+Yi (16)
where X and Y take real values. While the real value,
real(c)=cy/X, represents the wave velocity (or phase velocity)
and wave transmission per wavelength is then calculated as
exp(2nY/X). The wavelength is related to the wave velocity by:

2=27740 (17)
@
Eq. (14) is a quadratic equation of (w/c)>. Since blood
viscosity is not considered, no complex values are involved in
the coefficients of the equation, and thus the solution to Eq. (14)

2
+ (kay ~1+0* = B} %+ k2 {1~ (k,a + B} =0 with k, =w/|[B,/p, ,ﬂ:%(l,uz), k,=wlc, (14)
C

are two real roots of c, indicating co-existence of the two waves
and also no transmission loss (or 100% transmission) for both
waves.

It should be noted that when radial motion and axial
motion of the arterial wall are separately considered and blood
viscosity is not considered, the wave velocities associated with
the Young wave and the Lamb wave are ¢, and ¢, respectively.

3. RESULTS AND DISCUSSION

In this section, based on the frequency equations, Eq. (12)
and (14), we evaluate pulse wave velocity and transmission at
the CA and the AA, analyze the difference between them, as
well as examine the influence of blood viscosity and arterial
wall properties on their wave velocity and transmission. Table
1 summarizes the physical properties and geometrical
parameters of the CA and the AA and the physical properties of
flowing blood. With a heart rate of 70 beats per minute (bpm),
all of the calculations are conducted in MATLAB.

3.1 Influence of Blood Viscosity

Table 2 summarizes the calculated values of the wave
velocity, wave transmission per unit length, and wavelength at
the AA and the CA with and without blood viscosity. Although
the AA and the CA are initially tensioned in the axial and
circumferential directions, the values of these initial tensions
are unknown and thus are assumed to be zero here. At the AA,
while the influence of blood viscosity on the Young wave
velocity is negligible, blood viscosity moderately reduces the
Lamb wave velocity. Blood viscosity reduces the Young wave
transmission by roughly 10%, and cuts the Lamb wave
transmission from 100% to about 50%, indicating that blood
viscosity plays a more important role in the Lamb wave
transmission. At the CA, blood viscosity moderately reduces
the Young wave velocity, but causes a large reduction in the
Lamb wave velocity. Blood viscosity reduces the Young and
Lamb wave transmissions to about 50% and about 25%,
respectively. When blood viscosity is not considered, the
Young wave velocity and the Lamb velocity at the AA and the
CA are very close to ¢y and cp, respectively, indicating the
important role of wall shear stress in pulse wave propagation.

Table 1 Physical properties and geometrical parameters of the carotid artery (CA) and the ascending aorta (AA) and physical

properties of flowing blood [12, 13]

Parameter Symbol | Carotid artery (CA) | Ascending aorta (AA)
Radius a 3.3mm 14.7mm
Thickness h 0.62mm 1.63mm
Arterial wall Elasticity E 771kPa 400kPa
Poisson’s ratio v 0.5
Density p 1055kg/m’
Density Py 1055kg/m’
Blood Viscosity u 0.0032Pa-s
Bulk modulus B, 2.2GPa
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Table 2 Influence of blood viscosity on wave velocity, wave transmission, and wavelength at the CA and the AA

CA AA
(169=0 and t,y=0) (169=0 and t,,=0)
Parameter With blood viscosity | Without blood viscosity | With blood viscosity | Without blood viscosity
real(c;) (m/s) 7.68 8.18 4.48 4.5844
real(cy) (m/s) 22.30 31.61 19.66 22.65
exp(2nY /X)) 0.52 1 0.89 1
exp(2nY/Xs) 0.23 1 0.48 1
A1 (m) 6.59 7.01 3.84 3.90
A, (M) 19.11 27.09 16.85 19.41
Co 8.29 4.58
cL 31.20 22.48

Blood viscosity manifests in wall shear stress acting on the
arterial wall along the axial direction. While the Young wave is
a fluid-dominant wave, the Lamb wave is a wall-dominant
wave. These might explain why blood viscosity affects the
lamb wave velocity and transmission to a much larger extent
than the Young wave velocity and transmission. Yet, given that
the AA has a much larger size than the CA, the influence of
wall shear stress on pulse wave velocity and transmission is
much less prominent at the AA than at the CA.

With blood viscosity, the Young wave transmission is
more efficient than the Lamb wave transmission at both the AA
and the CA. Although the value of each wave transmission is
much less than 100%, the overall transmission loss is expected
to be low, given that the wavelength of each wave is well above
the arterial tree length. The transmission of each wave is much
lower at the CA than at the AA, but the wavelength of each
wave is much higher at the CA than at the AA. Consequently,
the overall transmission loss of the two waves might be
comparable between the CA and the AA.

3.2 Influence of Arterial Elasticity and Viscosity

As shown in Fig. 2, the velocities of the two waves both
increase with arterial elasticity. The elasticities of the AA and
the CA start from their normal values in Table 1 and are
increased by 200kPa. Overall, the Young wave velocity at the
AA is lower than at the CA, and the Lamb wave velocity at the
AA is comparable with that at the CA. The transmission of the
two waves is not affected by arterial elasticity. With blood
viscosity, the transmission of each wave is much higher at the
AA than at the CA. Note that the transmission of both waves at
the AA and the CA without blood viscosity is also included in
Fig. 2(b) for the influence of blood viscosity on the wave
transmission at the AA and the CA.

Fig. 3 compares the difference in the influence of arterial
elasticity on the wave velocities between with and without
blood viscosity at the AA and the CA. At the AA and the CA,
the influence of blood viscosity on the two wave velocities
remains the same, as arterial elasticity goes up.

To consider the influence of arterial viscosity on wave
velocity and transmission, a complex arterial elasticity E' is
defined as below:
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400000 600000 800000 1000000
E (Pa)
(b)

FIGURE 2: The influence of arterial elasticity on (a) wave velocity
and (b) transmission per wavelength at the CA and the AA with blood
viscosity (blacklines: AA; red lines: CA; dashed lines: the Young
wave; solid lines: the Lamb wave; blue lines: without blood viscosity)

E'=E+iwyE (18)

By keeping arterial elasticity in Table 1 for the AA and the CA
as constant, the influence of arterial viscosity is plotted in Fig.
4. The influence of arterial viscosity on the Young wave
velocity is slight but is moderate on the Lamb wave velocity at
the AA and the CA. However, transmission of both waves
decreases significantly with arterial viscosity, with the Young
wave transmission decreasing even faster. Without blood
viscosity, transmission of the two waves at the CA and the AA
is the same and is also plotted in Fig. 4(b) for comparison. Note
that blood viscosity dramatically decreases the Lamb wave
transmission while moderately reducing the Young wave
transmission at the AA and the CA. As arterial viscosity
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increases, the influence of blood viscosity on each wave
transmission becomes less prominent.
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FIGURE 3: The influence of arterial elasticity on wave velocities (a)
at the AA and (b) at the CA with/without blood visocity (blacklines:
AA; red lines: CA; dashed lines: the Young wave; solid lines: the
Lamb wave; blue lines: without blood viscosity)
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FIGURE 4: The influence of arterial viscosity on (a) wave velocity
and (b) transmission per wavelength with blood viscosity at the CA
and the AA (blackline: AA; red lines: CA; dashed lines: the Young
wave; solid lines: the Lamb wave; blue line: without blood viscosity)

Fig. 5 compares the difference in the influence of arterial
viscosity on the wave velocities at the AA and the CA between
with and without blood viscosity. At both the AA and the CA,
arterial viscosity does not affect the Young wave velocity,
regardless of whether blood viscosity is considered. Yet, with
blood viscosity, arterial viscosity greatly increases the Lamb
wave velocity at the AA and the CA.
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FIGURE 5: The influence of arterial viscosity on wave velocities (a)
at the AA and (b) at the CA with/without blood viscosity (blackline:
AA; red lines: CA; dashed lines: the Young wave; solid lines: the
Lamb wave; blue lines: without blood viscosity)

3.3 Influence of Axial and Circumferential Initial
Tensions

As shown in Fig. 6, the influence of axial initial tension on
the Lamb wave velocity is negligible at the AA and the CA.
However, axial initial tension reduces the Young wave velocity
at the CA to a larger extent than that at the AA. Axial initial
tension moderately reduces the Lamb wave transmission at the
AA and the CA to the same extent, but increases the Young
wave transmission to a much larger extent at the CA than at the
AA.

As shown in Fig. 7, similar to axial initial tension, the
influence of circumferential initial tension on the Lamb wave
velocity is negligible at the CA and the AA. However,
circumferential initial tension reduces the Young wave velocity
to a larger extent at the CA than at the AA. The Lamb wave
transmission is moderately increased by circumferential initial
tension and such increase is very similar at the CA and the AA.
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Circumferential initial tension reduces the Young wave
transmission to a larger extent at the CA than at the AA.
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FIGURE 6: The influence of axial initial tension on (a) wave
velocity and (b) transmission per wavelength with blood viscosity at
the CA and the AA (blacklines: AA; red lines: CA; dashed lines: the
Young wave; solid lines: the Lamb wave)
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FIGURE 7 The influence of circumferential initial tension on (a)
wave velocity and (b) transmission per wavelength with blood
viscosity at the CA and the AA (blacklines: AA; red lines: CA; dashed
lines: the Young wave; solid lines: the Lamb wave)

3.4 Physiological Implications

The physiological implication of arterial elasticity has been
well established. Increase in arterial elasticity (or arterial
stiffening) causes an increase in PWYV, which undermines blood
circulation and eventually increases burden to the heart.
Therefore, a low Young wave velocity is favorable for
facilitating blood circulation and alleviating the burden to the
heart. With this as the guidance, both axial and circumferential
initial tensions decrease the Young wave velocity and thus are
both favorable for facilitating blood circulation. Yet, axial
initial tension increases the Young wave transmission, while the
circumferential initial tension reduces the Young wave
transmission. Given that high wave transmission indicates high
efficiency in blood circulation and low burden to the heart.
Thus, circumferential initial tension undermines blood
circulation and increases the workload of the heart.
Circumferent initial tension results from DBP and is positively
related to DBP. Recently, diastolic pressure hypertension was
linked to cardiovascular risks in young adults [8]. Meanwhile,
axial initial tension is inherent and decreases with aging. As
such, it might be concluded that while axial initial tension is
inherent in facilitating the Young wave propagation, DBP
hypertension is a passive reaction of the artery to facilitate the
Young wave propagation.

Although axial motion of the arterial wall has been studied
[5, 6], the Lamb wave velocity has not been measured and
studied for its clinical values. Nonetheless, axial and
circumferential initial tensions have very slight influence on the
Lamb wave velocity. However, axial initial tension reduces the
Lamb wave transmission, circumferential initial tension has just
the opposite effect. The dominant wave in blood circulation is
the Young wave. Thus, although the reduced Lamb wave
transmission is not preferred, it does not cause much burden to
the heart. In contrast, although circumferential initial tension
improves the Lamb wave transmission, its influence on the
Young wave transmission is more prominent.

To date, there are no direct measures on arterial viscosity
and indirect measures of arterial viscosity found that arterial
viscosity increases with aging [4]. As predicted by this study,
although the influence of arterial viscosity on the two wave
velocities is negligible, arterial viscosity has a large influence
on the transmissions of the two waves. As such, increased
arterial viscosity translates to reduced efficiency in blood
circulation and causes increased burden to the heart.

3.5 Study Limitations

There are two major study limitations in this work. First,
the arterial wall is treated as an isotropic, thin-walled
membrane. In reality, the arterial wall has a thin-layered
anatomical structure and thus is orthotropic in nature. The
radius/thickness ratio (a/h) of the AA and the CA are 9.0 and
5.3, respectively. According to the literature [14], when the
radius/thickness ratio is above 10, there is no difference in the
calculated values between a thin-walled model and a thick-
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walled model. Although the calculated values are off, the
influence of arterial wall properties on pulse wave propagation
in arteries is illustrated. Certainly, a thick-walled model with
orthotropic properties will improve the accuracy in the
calculated values, but also greatly increase the mathemetical
complexity and may prevent a better illustration of such
influence.

Second, this study does not consider the excitation source
at the heart and also wave reflection. As mentioned above, the
goal of this work is to gain insights in the influence of arterial
wall properties on pulse wave propagation and thus improve
their clinical applications in detection and diagnosis of arterial
abnormalities. Neglect of the excitation source and wave
reflection may affect the calculated values, but are not expected
to change the nature of the influence.

4. CONCLUSION

We have presented a free wave propagation analysis of
pulse wave propagation in arteries, with a full set of mechanical
properties: elasticity, viscosity, and axial and circumferential
initial tensions, and radial and axial motion of the arterial wall.
The frequency equation resulting from the analysis indicates
the co-existence of two waves: the Young wave and the Lamb
wave, propagating in the arterial tree. The obtained two
complex roots of the frequency equation relate the wave
velocity and transmission of both waves to arterial wall
properties. The wave velocities and transmissions at the CA
and the AA show a large difference, due to their significant
difference in size and mechanical properties.

Based on the frequency equation, the influence of arterial
wall properties on pulse wave propagation is revealed. The
physiological implications of such influence are then discussed.
In particular, axial and circumferential initial tensions are found
to make their own non-negligible contributions to the efficiency
of blood circulation and the heart.
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