Software-Hardware Codesign for Efficient In-Memory
Regular Pattern Matching

Lingkun Kong" Qixuan Yu" Agnishom Chattopadhyay
Rice University Rice University Rice University
USA USA USA
klk@rice.edu qy12@rice.edu agnishom@rice.edu
Alexis Le Glaunec Yi Huang Konstantinos Mamouras

Rice University
USA
alexis.leglaunec@rice.edu

Rice University

USA

781013488@qqg.com

Rice University
USA
mamouras@rice.edu

Kaiyuan Yang

Rice University

USA

kyang@rice.edu

Abstract

Regular pattern matching is used in numerous application
domains, including text processing, bioinformatics, and net-
work security. Patterns are typically expressed with an ex-
tended syntax of regular expressions. This syntax includes
the computationally challenging construct of bounded repe-
tition or counting, which describes the repetition of a pattern
a fixed number of times. We develop a specialized in-memory
hardware architecture that integrates counter and bit vector
modules into a state-of-the-art in-memory NFA accelerator.
The design is inspired by the theoretical model of nonde-
terministic counter automata (NCA). A key feature of our
approach is that we statically analyze regular expressions
to determine bounds on the amount of memory needed for
the occurrences of bounded repetition. The results of this
analysis are used by a regex-to-hardware compiler in order
to make an appropriate selection of counter or bit vector
modules. We evaluate our hardware implementation using
a simulator based on circuit parameters collected by SPICE
simulation in TSMC 28nm CMOS process. We find that the
use of counter and bit vector modules outperforms unfolding
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1 Introduction

Regular pattern matching, where the patterns are expressed
with finite-state automata or regular expressions, has nu-
merous applications in text search and analysis [1], network
security [69], bioinformatics [9, 42], and runtime verification
[6, 7]. Various techniques have been developed for matching
regular patterns, many of which are based on the execution
of deterministic finite automata (DFAs) or nondeterministic
finite automata (NFAs). DFA-based techniques are generally
faster, as the processing of an input element requires a single
memory lookup, while NFA-based techniques are slower, as
they involve extending several execution paths when pro-
cessing one element. The advantage of NFAs over DFAs is
that they are typically more memory-efficient, and there
are cases where an equivalent DFA would unavoidably be
exponentially larger [34].
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Many applications require the processing of large and com-
plex NFAs on real-time streams of data collected from sen-
sors, networks, and various system traces. Energy efficiency
and memory efficiency (in terms of the memory capacity or
chip footprint needed for a given NFA) are highly desirable
for both high-performance computing and battery-powered
embedded applications. NFA processing requires frequent,
yet irregular and unpredictable, memory accesses on general-
purpose processors, leading to limited throughput and high
power on CPU and GPU architectures [27, 30, 61]. Field Pro-
grammable Gate Arrays (FPGAs) offer high speed through
hardware-level parallelism, but are often bottlenecked by
routing congestion [40, 66] and their high power, area and
cost prevent their use in mobile and embedded devices. Even
with digital application-specific integrated circuit (ASIC)
accelerators, the memory access bandwidth restricts the par-
allelism [31, 56]. The latest hardware technology that ad-
dresses these challenges is in-memory architecture, which
processes the NFA transitions directly inside memories with
massive parallelism and merged memory and computing
operations. For instance, the Automata Processor (AP) from
Micron [19, 64] outperforms x86 CPUs by 256x, GPGPUs
by 32x, and the digital accelerator XeonPhi by 62x in the
ANMLZoo benchmark suite [54, 61].

Classical regular expressions (regexes) involve operators
for concatenation -, nondeterministic choice +, and iteration
(Kleene’s star) *. They can be translated into NFAs whose
size is linear in the size of the regex [21, 57]. However, the
regexes used in practice have several additional features that
make them more succinct. One such feature is counting, writ-
ten as r{m, n}, which is also called constrained or bounded
repetition. The pattern r{m, n} expresses that the subpattern
r is repeated anywhere from m to n times. This counting
operator is ubiquitous in practical use cases of regexes. For
example, we have observed that in several datasets for net-
work intrusion detection (Snort [50] and Suricata [55]) and
motif search in biological sequences (Protomata [39, 42])
counting arises in the majority of the patterns. The naive ap-
proach for dealing with counting operators is to rewrite them
by unfolding. For example, r{n, n} is unfolded intor - r---r
(n-fold concatenation) and results in an NFA of size linear
in n (and therefore can produce a DFA of size exponential
in n). Since n can grow very large, dealing with counting
is one of the main technical challenges for successfully us-
ing hardware-based approaches to execute practical regular
patterns.

Existing in-memory NFA architectures use this naive un-
folding method to handle counting operators. This leads to
the use of a large number of STEs! to support counting. In
AP [19] and CA (Cache Automaton) [54], each STE uses 256

ISTE stands for State Transition Element [19]. It is a hardware element that
roughly corresponds to the state of a homogeneous NFA. It contains a state
bit (to indicate whether the state is active or not) and a memory array that
represents a character class.
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memory bits for 8-bit symbols. In the latest Impala [46] and
CAMA? [26] designs, each STE requires 16 to 32 memory bits.
Even with this improvement, a modest counting operator
with upper limit 1024 requires at least 16384 memory bits,
while the information required for implementing the opera-
tor may be only 10 bits in some cases. Unfolding counting
operators results in large memory and energy usage. To cir-
cumvent these problems, we explore software and hardware
co-design for integrating counter and bit vector modules
into a state-of-the-art in-memory NFA architecture.

Our design is inspired by an extension of NFAs with
counter registers called nondeterministic counter automata
(NCAs). In an NCA, a computation path involves not only
transitions between control states, but also the use of a finite
number of registers that hold nonnegative integers. Such
automata are a natural execution model for regexes with
counting, as the counters can track the number of repeti-
tions of subpatterns. When the counters are bounded, NCAs
are expressively equivalent to NFAs, but they can be expo-
nentially more succinct [34, 53]. Similar to how an NFA is
executed by maintaining the set of active states, an NCA
is executed by maintaining a set of pairs, which we call to-
kens, where the first component is the control state and the
second component specifies the values of the counters. A
key idea of our approach is that we can statically analyze
an NCA to determine which states can carry a large number
of tokens during execution. We call a control state counter-
unambiguous if it can only carry at most one token and
counter-ambiguous if it can carry more than one. In the case
of counter-unambiguity for a state ¢ with counter x, we
know that we only need to record one counter value, which
means that we need only one memory location whose size
(in bits) is logarithmic in the range M of possible counter
values. In the case of counter-ambiguity for ¢ with counter x,
we may have to record a large number of counter values (as
large as M), and our insight is to use a bit vector v of size M,
where v[i] = 1 (resp., v[i] = 0) indicates the presence (resp.,
absence) of a token at q with counter value i. So, identifying
a state as counter-unambiguous enables a massive memory
reduction for this state from O(M) to O(log M).

We design a static analysis algorithm for checking the
counter-ambiguity of NCAs and regexes by performing a
systematic exploration of the space of reachable tokens to
identify the existence of some input string for which two
different tokens are placed on the same control state. This
may lead to a large search space (exponential in the size
of the regex), and the worst case is not easy to avoid since
the problem is NP-hard. To handle difficult instances that
involve large repetition bounds, we also provide an over-
approximate algorithm that gives an inconclusive output for
some instances, while still being able to identify cases of

2CAMA abbreviates Content Addressable Memory (CAM) enabled Au-
tomata accelerator.
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counter-unambiguity for most instances from real bench-
marks. By combining the exact and over-approximate algo-
rithms, we can statically analyze within milliseconds the vast
majority of regexes in the benchmarks Snort [50], Suricata
[55], Protomata [42], SpamAssassin [3], and ClamAV [16].

Using the insights about NCA execution mentioned ear-
lier, we propose a hardware design that is based on existing
in-memory NFA architectures (AP, CA, Impala, CAMA) aug-
mented with (1) counter modules for counter-unambiguous
states, and (2) bit vector modules for counter-ambiguous
states. We use SPICE [52], an industry-standard simulator
for integrated circuits, to perform hardware simulation for
the counters and bit vectors and to integrate them into
the CAMA architecture. We also provide a compiler that
statically analyzes an input regex to determine counter-
(un)ambiguity and then creates a representation of an au-
tomaton with counters and bit vectors using the MNRL for-
mat [2] that can be used to program the hardware. Several
existing architectures like AP provide a counter module in
their design, but they typically do not provide a compiler that
translates regexes to hardware-recognizable programs. Also,
counter registers alone cannot deal with the challenging
instances of counting. Compared with prior works that do
not provide a bit vector module, this paper proposes a novel
design that can systematically handle counting and ensure
correct compilation in both the easy (requiring counters) and
difficult (requiring bit vectors) cases.

We modified the open-source simulator VASim [61] to
simulate the hardware performance of our counter- and bit-
vector-augmented CAMA design with implementation in
TSMC 28nm process. In microbenchmarks, we evaluated the
energy and area consumption of counters and bit vectors
against their unfolded counterparts. The results show that
our counter- and bit-vector-based design can reduce the en-
ergy usage by orders of magnitude and the area by large
margins. Furthermore, we evaluated the performance of the
augmented CAMA design using the Snort [50], Suricata [55],
Protomata [42], and SpamAssassin [3] benchmarks. For ap-
plications involving regexes with large counting bounds,
the results show as large as 76% energy reduction and 58%
area reduction. For regexes with small counting bounds, the
results show little to no overhead.

Contributions. The main contributions of this paper are
summarized below:

(1) We use the notion of counter-unambiguity in order
to identify instances of bounded repetition that can be han-
dled with a small amount of memory. We describe both an
exact and an over-approximate static analysis for counter-
(un)ambiguity which, when combined, allow us to efficiently
analyze the regexes that arise in several application domains.

(2) We propose a hardware design that augments the prior
NFA-based CAMA architecture [26] with counter and bit vec-
tor modules, which are inspired from the execution of NCAs
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and the classification of states as counter-(un)ambiguous.
This architecture achieves substantial energy and area re-
ductions compared to prior designs.

(3) We provide a compiler that enables the high-level
programming of the hardware using POSIX-style regexes.
The compiler first performs the static analysis for counter-
(un)ambiguity and then leverages the analysis results for
producing a low-level description of the automaton.

2 Preliminaries

In this section, we will give a brief overview of several well-
known concepts, including regular expressions with count-
ing and nondeterministic counter automata (NCAs). We are
not interested in NCAs with unbounded counters (which
can recognize non-regular languages), so we focus on NCAs
with bounded counters. These automata are an appropriate
model for implementing regular expressions with counting.
Differently from most definitions of NCAs in the literature,
we allow each control state of the automaton to have a differ-
ent number of counters. This flexibility allows us to carefully
bound the memory needed for NCA execution.

Let 3 be a finite alphabet. A regular expression (or regex)
over 3 is given by the grammarr :=¢ | o | r-r|r+r|r"|
r{m,n}, where o C ¥ is a predicate over the alphabet and
m, n are natural numbers. The expression r{m, n} describes
the repetition of r from m to n times, so we require that
0 < m < n. We write r{n} for r{n,n}. The concatenation
symbol is sometimes omitted, i.e., we write ryr; instead of
r1 - 2. The interpretation of a regex r is a language [[r] € =*,
which is defined in the standard way.

Notation for predicates: A predicate over the alphabet
is sometimes referred to as a character class. The predicate X
contains all symbols in the alphabet. When we use a symbol
a € ¥ in a regex, it should be understood as the singleton
predicate {a} C 3. We will also use the notation [a; . .. a,] in
aregex to represent the predicate {ay, ..., an} C 2. We write
[*a;...ay] for the predicate ¥ \ {ay, ..., a,} that contains
all symbols aside from ay, .. ., a,. For a predicate o C 3, we
write & = ¥ \ o to denote its complement.

We fix an infinite set CReg of counter registers or, sim-
ply, counters. We typically write x,y, z, . . . to denote counter
registers. For a subset V' C CReg of counters, we say that a
function § : V. — N, which assigns a value to each counter
in V, is a V-valuation.

Definition 2.1. Let X be a finite alphabet. A nondeterminis-

tic counter automaton (NCA) with input alphabet X is a tuple

A =(Q,R, A, I F), where

— Q is a finite set of states,

— R: Q — P(CReg) is a function that maps each state to a
finite set of counters,

— A is the transition relation, which contains finitely many
transitions of the form (p, o, ¢, q, 3), where p is the source
state, o C X is a predicate over the alphabet, ¢ C (R(p) —
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N) is a predicate over R(p)-valuations, q is the destination
state, and & : (R(p) —» N) — (R(q) — N),

— I is the initialization function, a partial function defined
on the subset dom(I) € Q of initial states that specifies
an initial valuation I(q) : R(q) — N for each initial state
q, and

— F is the finalization function, a partial function defined
on the subset dom(F) C Q of final states that specifies a
predicate F(q) € R(q) — N for each final state q.

We say that a state g € Q is pure if R(q) = 0, that is, it has
no counter associated with it.

We remark that the states in an NCA of Definition 2.1 do
not necessarily have the same counters. In fact, some states
may not have any counter at all. In a transition (p, 0, ¢, g, 3),
we will call the predicate ¢ a guard because it may restrict
a transition based on the values of the counters, and we
will call the function & an action, because it describes how
to assign counter values in the destination state given the
counter values in the source state.

We convert regexes (with counting) to NCAs that rec-
ognize the same language using a variant of the Glushkov
construction [20, 21]. In contrast to Thompson’s construc-
tion [57], Glushkov’s construction results in e-free automata
that are also homogeneous, i.e., all incoming transitions of a
state are labeled with the same predicate over the alphabet.
We present below several examples of NCAs.

Example 2.2. Consider the regex r, = X*0y0,{n} with
n > 1, where o1, 0y are predicates over the alphabet3. The
following automaton recognizes the language of ry:

(35 )"

o1
@
> 02, X < n/x++

The automaton above has three states: qi, g2, and g;. We
write g3 : x to indicate that R(g3;) = {x}. Notice that ¢; has
no annotation with counters, which means that R(q;) = 0
(i.e., g1 is pure). We annotate each edge p — ¢ with an
expression of the form o, ¢ / 9, where o is a predicate over 2,
¢ is a guard over the counters of p, and ¢ is an assignment
for the counters of ¢ using the counters of p. If the guard
¢ is omitted, then it is always true. The action & is omitted
only when R(g) € R(p), and the omission indicates that
the counters R(q) retain the values from the previous state.
We can also indicate this explicitly by writing “x = x”. We
write “x = n” for the guard that checks whether the value
of counter x is equal to n, and we write “x := n” to denote
the assignment (action) of the value n to the counter x. We
use double circle notation to indicate that a state is final (see
state g3 above). An arrow emanating from a final state q is

oy /x =1

3In order to make the example more concrete, suppose that o; = [ab] and
o2 = ["a]. So, the regular expression r; is the same as .* [ab][*a] {n} using
POSIX notation [38]. Note that 3* is the same as .™ in POSIX notation.
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annotated with the predicate F(q) over counter valuations
(recall that F is the finalization function).

The regex r; = >*01(0p03){m,n}o, with1 < m < nis
recognized by the following automaton:

L o9, x < n[x++

—> oum<x<n
> o

The regex r3 = o1{m}>*0y{n} with m,n > 1 is recognized
by the following automaton:

o1 /x:=1 3, x = o[ x:=1 =
_)@ 1/ O SlaliNeress 2/ (@)X =n
”Z

o, x <m/x++
L / o x=m/x:=1

09, x < n /[ x++

All automata so far use one counter. For the regex ry =
>*01(0o(0304){m, n}os){k}os with1 < m < nand k > 1
we need two counters. See Fig. 1.

Nondeterministic semantics. Let A be an NCA. A token
for A is a pair (g, f), where g is a state and f : R(q) — Nisa
counter valuation for q. The set of all tokens for A is denoted
by Tk(A). For a letter a € 3, we define the token transition
relation —% on Tk(A) as follows: (p, f) —¢ (q,y) if there
is a transition (p, 0, ¢,q,J) € A with a € o such that f € ¢
and y = 3(f). A token (g, ) is initial if the state g is initial.
A token (g, f) is final if the state g is final and € F(q). A
run of A on a string a;a; ... a, € >*isa sequence

(90 Bo) — (1, B1) — (g, B2) — -+ =5 (qns B,

where each (g;, B;) is a token, g is an initial state and fy =
I(qo), and (q;-1, fi-1) —* (q;, Bi) forevery i = 1,...,n. A
run is accepting if it ends with a final token. The NCA A
accepts a string if there is an accepting run on it. We write
[A] € =* for the set of strings that A accepts.

Notice that, for a NCA A, the set of tokens Tk(A) to-
gether with the transition relations —¢ forms a labeled tran-
sition system. The family of transition relations (—¢)4ex can
be represented as a ternary relation — C Tk(A)xXEXTk(A).

Notation for tokens: For a pure state q (i.e., a state with
no counter, see Definition 2.1), there is only one valuation,
denoted Oy : @ — N, which carries no information. So, we
will often abuse notation and simply write g for the token
(g, Oy). Similarly, for a state g with one counter, i.e., R(q) =
{x} for some x € CReg, a valuation f (of type {x} — N) for
q specifies only one value ¢ = f(x) for the unique variable
x for g. For this reason, we will sometimes write (g, ¢) for a
token for the state q.

Semantics using configurations. Let A be an NCA. A
configuration for A is a set of tokens for A. We write C(A)
for the set of all configurations for A. Define the configura-
tion transition function § : C(A) X X — C(A) as follows:

6(S,a) = {(g.y) | (p, p) = (¢, y) for some (p,f) € S}.
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=1
ol x (T o)

o1 3/y=1
—(q1) q2 qs : qa %,y q5 %Y :
> 03,y <n/y+t 02, x < k [ x++
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04
os,m<y<n — o6, x =k
g6 * X (97)

Figure 1. NCA with two counters (x and y) for the regex ¥* (02 (0304){m,n}os){k}os with1 <m < mnand k > 1.

We extend the transition function to § : C(A)xZ* — C(A)
by 8(S,¢) = S and (S, xa) = 8(5(S, x), a) for every x € 2*
and a € 3. Let Sy be the set of all initial tokens, which we
call the initial configuration, and define [A] : 2% — C(A)
by [A](x) = 5(So, x). This semantics coincides with [ A] in
the following sense: for every x € £*, x € [(A] iff [A](x)
contains some final token.

Bounded counters. Let A be a NCA, and n € N be a
constant. We say that a token (g, f) is n-bounded if f(x) < n
for every counter x € R(q). We also say that A (resp., a
state q) is n-bounded if every token (resp., token on state
q) reachable from some initial token is n-bounded. Finally,
the NCA A is said to have bounded counters if there exists
some constant n € N such that A is n-bounded. Notice that
NCAs with bounded counters have the same expressiveness
as finite-state automata (i.e., DFAs and NFAs), but they are
potentially more succinct [53].

As mentioned earlier, the automata that we consider here
are obtained from regexes with counting using the Glushkov
construction. A consequence of this is that every counter
incrementation action of the form x++ is guarded by some
test x < n because it corresponds to a subexpression of
the form r{m, n}. It follows that an automaton thus con-
structed has bounded counters. Moreover, for every con-
trol state and every counter, we can read an upper bound
from the automaton. For example, in Figure 1, the counter
x is bounded above by k (at all states gs, g4, g5, ) because
(gs, 02, “x < k7, g3, “x++”) is the only transition that incre-
ments x. Similarly, the counter y is bounded above by n (at
all states gy, gs) because (gs, 03, “y < n”, q4, “y++”) is the only
transition that increments y.

3 Static Analysis

In this section, we will see how to perform a static analy-
sis over regexes to check counter-(un)ambiguity. It is well-
known that the presence of counting in regexes can cause
a blow-up in the amount of memory that is needed for the
streaming membership problem (checking if a string matches
the regex in a single left-to-right pass) [34] (more results
about regexes with counting are given in [35, 53]). There
are, however, many cases that do not exhibit this worst-case
behavior. In this section, we will describe a static analysis for
identifying occurrences of bounded repetition {m, n} which
can be implemented using memory that is logarithmic in n.
This enables a significant reduction in the memory that needs

to be reserved for the membership problem. In order to iden-
tify the easier cases of bounded repetition, we use the con-
cept of counter-unambiguity, which informally says that the
nondeterminism of the automaton is constrained. We then
develop two algorithms for deciding counter-unambiguity
(one exact and one approximate), and we provide experimen-
tal results showing that they are effective in practice.

Let A = (Q,R A, I F) be an NCA. For a state ¢ € Q and
a subset T C Tk(A) of tokens for the automaton, define
T|qg =T N ({g} X (R(q) — N)). That is, T|, contains exactly
those tokens of T whose first component is the state g. The
operational intuition is that [A](x)|q is the set of tokens
that we get at state ¢ when we execute the automaton A on
input x. When it is possible to have more than two tokens
on the same state g after consuming an input string, we say
that the state exhibits counter-ambiguity. We will now define
this concept and other related notions more formally.

Definition 3.1 (Degree of Counter-Ambiguity). Let A
be an NCA with bounded counters and q be a state. The
(counter-ambiguity) degree (which we will also call degree of
counter-ambiguity) of q is defined as

degree(q) = sup, .y (size of [A](x)]q)-
We say that q is counter-unambiguous when degree(q) < 1,
and that q is counter-ambiguous when degree(q) > 2.

Notice that if the degree of a state q is equal to zero, then
the state g is unreachable.

3.1 Deciding Counter-Ambiguity

According to Definition 3.1, the degree of counter-ambiguity
of a state ¢ is the maximum number of different tokens that
can end up at g during a computation. A state q is counter-
ambiguous iff there is a string a;az...a, € >* and two
different runs on aja, ... a,

(q0 o) — (g1, Br1) —> (g2 o) —> -+ =5 (g fin)

(a6 B3) = (a3, B) = (g5 B3) = - = (47 o).
such that ¢ = q, = q;, and B, # B,

Let G be the labeled transition system of tokens Tk(A)
and token transitions of the form t; —¢ t,, where t;, t; are
tokens and a € 3. Define G = G x G to be the product tran-
sition system with states Tk(A) X Tk(A), which contains a
transition (t1, t,) —¢ (t],t;) iff t; —¢ t] and t, —¢ t;. A pair
(t1, t2) is initial if both t; and ¢, are initial tokens. According
to the characterization of the previous paragraph, a state
q of A is counter-ambiguous iff there exists a path in G?
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that ends with some pair ((q, f), (¢, f’)), where  # f’. This
idea can be extended to characterize the situation where
a state g has degree at least d > 2: there exists a path in
the d-fold Cartesian product G¢ that ends with some tuple
(g, P1),---,(q, Ba)), where by, ..., fq are all distinct.

Algorithm for Counter-Ambiguity: When the product
transition system G is finite, we can decide whether the
counter-ambiguity degree of a state is > d with a straightfor-
ward reachability algorithm. For deciding counter-ambiguity,
we check whether the degree is > 2, and therefore it suffices
to consider only G?. Notice that for the bounded counter au-
tomata that we consider, G¢ is always finite. We just need to
exercise care to avoid a blowup in the number of transitions.
In our automata, the transitions are annotated with predi-
cates over the alphabet, not symbols of the alphabet. This is a
succinct way to represent transitions, and we want to main-
tain such a representation in the graphs G¢ (assuming that
we also use such a representation for G). This can be done
by considering the intersections of predicates and checking
whether they are empty. More specifically, for every pair of
transitions t; —°' t; and t; —% t;, we add the transition
(1, t2) =% (t], 17) in G* when 01 N 07 is nonempty.

Example 3.2. We will discuss here how to check counter-
(un)ambiguity for the regex ~*o{2}. First, we construct the
NCA for this regex, which is seen below:

o/x:=1 =
‘)%> / /ﬁ/ﬁqzzx x=2
% Ucr,x<2/x++

Based on this NCA, we construct the transition system of
tokens seen below, where g, is abbreviation for the token
(g1, 0w) (g1 is a pure state), and (qz, n) is abbreviation for the
token (g2, x — n) (the counter assignment maps x to n).

The token transition system is essentially an NFA, where the
final state (token) is indicated with a double circle.

To check the counter-ambiguity of a state g, we build the
product transition system and check whether there exists a
path that ends in a pair of tokens (g, ), (¢, ")) with § # .
The figure below shows the product transition system where
the presence of the pair {((q2, 1), (g2, 2)) or {(ga, 2), (g2, 1))
(colored in gray) witnesses the counter-ambiguity.

(q1,(q2,2))

(Uaz.90) (g2, (g2.1)) (g2 1), (¢2,2))
o

lg \ o
XD (<<qz,z>,<q2,l>>)\m

Because of symmetry, some states and transitions can be
safely removed from the product automaton. Notice, for
example, that we do not need to explore both ((gs, 1), g1)
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and (q1, (g2, 1)). Therefore, in future examples, we will omit
part of the product automaton.

The exact analysis halts as soon as it finds a token pair
that witnesses counter-ambiguity. So, not all pairs are gener-
ated during the static analysis, unless the regex is counter-
unambiguous.

Consider a regex r that contains an occurrence of counting
of the form (abcd){m, n}. When the repetition bounds are
sufficiently large, in the automaton A for r, the four states
that correspond to abcd are either all counter-unambiguous
or they are all counter-ambiguous. For this reason, the notion
of counter-(un)ambiguity can be defined with respect to
instances of bounded repetition in regexes. We will also
call a regex counter-ambiguous if it contains at least one
occurrence of bounded repetition that is counter-ambiguous
(equivalently, the NCA for the expression has at least one
counter-ambiguous state).

Lemma 3.3 (Checking Counter-Ambiguity Is Hard). Let
CAMBIGUITY be the following problem: Given a regex r as
input, is r counter-ambiguous? CAMBIGUITY is NP-hard.

Proof. Consider the alphabet X = {a, b, #}. We will give a
polynomial-time reduction from the subset sum problem to
CAMBIGUITY. Let S = {ny, na, ... ny} be a set of natural num-
bers and T be a natural number. Recall that the subset sum
problem asks whether there is a subset " C S of numbers
whose sum is equal to T. Consider the regex

(((afn1} +&) - - (a{nm} + £)#b) + (a{T}#bb))b{2}.
We focus on the rightmost occurrence of bounded repeti-
tion (i.e., b{2}). We claim that this occurrence is counter-
ambiguous if and only if there is a subset S’ € S whose
sum is T. Consider the corresponding Glushkov automaton
and the state g which leads to the final state at the end that
recognizes the b{2}. A word witnessing a path to ¢ would
have to be of the form a*#bY for some natural numbers x, y.
If x # T, then the word has no path through the branch
(a{T}#bb). So, the only value it can induce on the counter
at the end is (y — 2). If x = T, and there exists a subset S” of
S such that )} S’ = T, then a{T }#bbb could either take the
path (a{T}#bb) and set the counter to 1, or it could take the
other path and set the counter to 2. If x = T and there is
no such subset S’, then the only path the word can take is
through the branch (a{T}#bb) which would set the counter
to (y — 2). O

3.2 Over-Approximate Analysis

In §3.1, we presented an (exact) algorithm for deciding the
counter-(un)ambiguity of regexes and NCAs. The algorithm
operates on the transition system of tokens of an NCA, whose
size can be exponential in the size of the regex, because of
the counter valuations. For example, the regex ¥ - a - 2{n}
has size ©(logn) (because the repetition bound n is repre-
sented succinctly in binary or decimal notation) and the
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corresponding token transition system has size ©(n). From
this it follows that the exact algorithm may need exponential
time in the worst case. Unfortunately, this worst-case behav-
ior is not easy to avoid given the NP-hardness of the prob-
lem (Lemma 3.3). For this reason, we propose here a heuris-
tic algorithm that performs an “over-approximate” analysis,
which can give two outputs: it either declares that a state is
counter-unambiguous, or it says that the analysis is incon-
clusive. In other words, there are cases where the algorithm
may suspect that a state is counter-ambiguous, but it cannot
conclusively declare it so.

The idea is to over-approximate all occurrences of {m, n}
(constrained repetition) with * (unconstrained repetition),
except for the one that we are analyzing. If we think of
this transformation in terms of NCAs, we see that it adds
more paths to the token transition graph, because more tran-
sitions are now enabled. A consequence of this is that if
the over-approximate automaton is counter-unambiguous,
then surely the original automaton (which has less paths) is
also counter-unambiguous. On the other hand, if the over-
approximate automaton is counter-ambiguous, then we can-
not infer that the original automaton is counter-ambiguous.

Example 3.4. We show the static analysis for a counter-
unambiguous regex r = 2*(&,01{n} + 6,02{n}), where n is
a constant. For this regex, the over-approximate analysis is
more efficient than the exact analysis. To illustrate this, we
first construct the NCA:

a1 — O1/x=1 —— x=n
q1 {92 ) (94 : x)

_ o, x <n/x++
3 2

oy /x:=1 =
s (@ ) ="

o2, x <n/x++

The exact analysis constructs the token transition system:

((q4.1) ) 2,2 (q4,n)

(g5 D)2 - —2 (g m)

To determine whether the regex is counter-unambiguous,
the exact analysis explores all possible token pairs in the
product transition system. In this example, the number of
explored pairs is ©(n?). Below is a part of the product tran-
sition system, in which all token pairs {(gs, i), (g4, j)) with
1 <i < j < n(colored in gray) will be explored.

(q1,(q4,1))

02 N oy

(a2 (9.2 ) (a5 V. (@0:3))—> -

(g3, (qs,1))

oy N oy

oz N oy
((g5,1), (g4, 2)) ((g5,2), (q4,3))

We have observed that regexes of the form r = 2*(6,01{n} +
G202{n}), where n is a large number, can be found in the
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Snort and Suricata benchmarks. For these regexes, the ex-
act analysis may require a long computation. Fortunately,
the over-approximate analysis is substantially faster. We
approximate the regex as r’ = 2*(5101{n} + 6,0,) and
r"” = £%(610] + 6;02{n}) and check the counter-ambiguity
of r" and r”” using the exact analysis. The regex r is de-
termined to be counter-unambiguous if both r’ and r”" are
counter-unambiguous. Below, we construct the token transi-
tion system G for r’. Only ©(n) token pairs are explored in
the product transition system G*.

01 o1 o/ 01 o1
—(1 (22) ((q4,1) } (g4, m)
Y & 72

The over-approximate analysis checks the counter-ambiguity
of ', r”. So, it reduces the complexity from ©(n?) to @(n).

3.2.1 NCA Execution with Bit Vectors. If the static anal-
ysis determines that an NCA state g is counter-ambiguous,
then this implies that the execution of the automaton may
require several memory locations to store tokens of the form

(g, ). Assuming that ¢ has only one counter register x (i.e.,

R(q) = {x}) and that q is n-bounded, we know that there are

at most n different possible tokens. In order to compactly

represent a set of tokens, the idea is to use a bit vector that
indicates the presence or the absence of a specific token on

g. So, a bit vector v encodes a set of tokens on g as follows:

o[i] = 1iff the token (g, i) is active. We can also think of

a bit vector as a representation for part of the automaton

configuration (recall the configuration semantics from §2).

It remains to see how the execution of the automaton
can be described using these bit vectors to represent the
configuration. Example 2.2 shows the NCA for the regex
>*01(0203){m, n}oy. This NCA is general enough to illus-
trate the main ways in which we manipulate bit vectors:

(1) Consider a transition p — ¢, annotated with “o / x =
¢”, where p is pure and R(q) = {x}. A token on p is
transformed into a bit vector v for q that is everywhere
0 except that o[c] = 1.

(2) Let p — q be a transition, annotated with o, where
R(p) = R(q) = {x}. Since the transition does not change
the counter valuations, a bit vector v on p is passed along
unchanged to g.

(3) We will deal now with a transition p — ¢, annotated
with “o,x < n/x++”, where R(p) = R(q) = {x}. Assume
further that both p and g are n-bounded, which means
that each state carries a bit vector of size n. This transition
corresponds to performing a shift operation to the bit
vector v of p, resulting in a new bit vector v’ for g. We
have:v’[1] = 0ando’[i+1] = v[i] foreveri=2,...,n—1.

(4) Finally, let us consider a transition p — ¢, annotated
with “o,m < x < n”, where R(p) = {x} and q is pure. If v
is the current bit vector for p, then taking this transition
produces a token for g if and only if one of v[m],v[m +
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Table 1. Analysis of regexes in the benchmarks.

Benchmark #total # supported # counting # c-ambiguous
Protomata 2338 2338 1675 1675
Snort 5839 5315 1934 282
Suricata 4480 3728 1510 246
SpamAssassin 3786 3690 459 279
ClamAV 100472 100472 4823 3626
1],...,0[n — 1],0[n] is equal to 1. In other words, we

have to compute the disjunction o[m] V --- V v[n].
The above cases involve the main operations that we use for
bit vectors: setting the least significant bit (case 1), shifting
left by one position (case 3), and computing the disjunction
of some of the most significant bits (case 4).

The way bit vectors are used (setting the lowest-order bit,
shifting, and reading high-order bits) is similar to how queues
and sliding windows are used for runtime verification with
metric temporal logic (MTL) 7, 15, 32, 33]. We note that MTL
involves constructs that specify time durations with intervals
of the form [m, n], which are akin to the bounded repetition
operators {m, n} of regexes. This explains the similarity in
the implementation.

3.3 Implementation and Experiments

We have implemented a Java program that statically analyzes
regexes to determine if they are counter-(un)ambiguous.
We will call this program the counter-ambiguity checker.
The implementation includes both the exact and the over-
approximate analyses. As the approximate analysis may be
unable to verify the counter-ambiguity of some instances,
our checker implements a hybrid analysis. First, it checks
the counter-(un)ambiguity of each instance of bounded repe-
tition in the regex using the over-approximate analysis. If it
finds a potentially counter-ambiguous instance, then it halts
the over-approximate analysis and uses the exact algorithm
to check the regex. Otherwise, it determines that the regex
is counter-unambiguous.

The checker not only determines if a regex is counter-
ambiguous but also provides a counter-ambiguity witness,
which is a string over the alphabet. If the NCA is executed on
the witness, then at least two tokens with different counter
valuations will end up on some state of the NCA. The checker
supports the analysis of counter-ambiguity for each instance
of bounded repetition inside a regex. For example, given
a regex o1{m}>*0,{n}, it can check the first instance (i.e.,
{m}), which is counter-unambiguous, and the second in-
stance (i.e., {n}), which is counter-ambiguous.

We evaluate the performance of our counter-ambiguity
checker using five benchmarks, which contain regexes col-
lected from real applications. These benchmarks are: (1) the
Snort [50] and (2) Suricata benchmarks [55] that contain
patterns for network traffic, (3) the Protomata benchmark
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that includes 1309 protein motifs from the PROSITE data-
base [39, 42], (4) the ClamAV benchmark [16] that contains
patterns that indicate the presence of viruses, and (5) the
SpamAssassin benchmark [3] that includes patterns for
detecting spam email.

Table 1 shows some statistics for the regexes included
in the benchmarks. In the Snort, Suricata, and SpamAssas-
sin benchmarks, some of the collected regexes may con-
tain backreferences [38], which is not a regular operator
(i.e., it can give rise to non-regular languages). We filter out
regexes with backreferences from the datasets and perform
the static analysis on the remaining regexes (which contain
the supported regular operators). Table 1 provides the fol-
lowing information: the total number of regexes for each
benchmark, the number of regexes with supported (regular)
operators, the number of regexes with at least one occur-
rence of constrained repetition (counting), and the number
of counter-ambiguous regexes.

Experimental setup. The experiments were executed in
Ubuntu 20.04 on a desktop computer equipped with an Intel
Xeon(R) E3-1241 v3 CPU (4 cores) with 16 GB of memory
(DDR3 at 1600 MHz). We used OpenJDK 17 and set the max-
imum heap size to 4 GB. For each regex, we executed 20
trials and selected the mean runtime as the value used the
reported results (excluding the first 10 “warm-up” trials).

Performance: Running Time. We evaluate the perfor-
mance of the static analysis over regexes that have non-
nested instances of constrained repetition. We report the
running time of the static analysis and we consider its de-
pendence on the following “measure of complexity” for a
regex r: the maximum repetition upper bound over all oc-
currences of {m, n} in a regex, which we denote by u(r). For
example, the regex r = 01{1, 5}0,03{4} has two occurrences
of constrained repetition, and the maximum repetition up-
per bound is p(r) = max(5,4) = 5. In general, we expect the
running time for the analysis of a regex r to depend on p(r),
since checking counter-ambiguity involves the generation
of token pairs whose number increases as u(r) increases.

Figure 2(a) shows the running time of the static analysis
indexed by the measure p. The results are shown in 20 plots,
which are organized in a 5 X 4 grid. There are 5 rows, one for
each benchmark: Snort, Suricata, Protomata, SpamAssassin,
ClamAV. There are 4 columns, one for each variant of the
static analyzer: exact, approximate, hybrid, and hybrid with
witness reporting. Each of these 20 plots contains multiple
points, one for each regex of the benchmark. For every regex
r, the corresponding point has horizontal coordinate equal to
u(r) and vertical coordinate equal to the running time of the
analysis (in milliseconds). We observe that the running time
for analyzing a regex r generally increases as p(r) increases.

In the Snort and Suricata benchmarks, the checker takes
more than 100 seconds to perform the exact analysis for
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Figure 2. The (a) running time and the (b) # of created token pairs of static analysis for regexes with different maximum upper
bounds of repetitions. E means exact analysis, A means approximate analysis, H means hybrid analysis, HW means hybrid
analysis with reporting inputs that witness the ambiguity. E.g., “Snort E” means the exact analysis in Snort benchmark.
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analyses on the Snort and Suricata benchmarks.

several counter-unambiguous regexes. See the top-right out-
liers in the plots labeled “Snort E” and “Suricata E” in Fig-
ure 2(a). This information is seen more promimently in Fig-
ure 3, where the exact and hybrid analyses are compared on
the Snort and Suricata benchmarks. The points with hori-
zontal coordinate >10° (msec) are noteworthy. They are sub-
stantially below the diagonal, which means that the hybrid
analysis offers significant improvement in terms of running
time. Some of these regexes are of the form £*(5,01{m} +
G202{n}+---), where m, n, ... are large numbers. When per-
forming exact analysis on these regexes, the checker needs to

explore a large number of token pairs, which makes the anal-
ysis time-consuming. However, as discussed in Example 3.4,
the over-approximate analysis can greatly reduce the cost
of the computation. We observe that the over-approximate
analysis reduces the running time of expensive regexes by
over 100 times in both the Snort and Suricata benchmarks.
Moreover, as these regexes are counter-unambiguous, the
result of their over-approximate analysis is accurate. This
explains why the hybrid analysis also reduces the running
time of these challenging regexes.

The fourth column in Figure 2(a) shows the performance
(in terms of running time) of a variant of the static analyzer
that reports a witness (input string) when a regex is counter-
ambiguous. We observe that finding and reporting a counter-
ambiguity witness add a very small overhead to the static
analysis. This is because recording the witness amounts to
simply storing a transition symbol whenever the analysis
moves from one token pair to another.

Performance: Memory Footprint. The checker analyzes
the counter-ambiguity of a regex by exploring token pairs
in a product transition system. These token pairs are cre-
ated on the fly, as the transition system is being explored.
We estimate the memory footprint of the static analysis by
measuring the number of token pairs that the checker cre-
ates. Figure 2(b) shows the results for five benchmarks and
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four different variants of the static analysis. Similarly to the
case of running time, the over-approximate analysis greatly
reduces the worst-case cost of analyzing several counter-
unambiguous regexes in the Snort and Suricata benchmarks.

4 Hardware Implementation and
Experiments

In this section, we present our hardware design for effi-
ciently executing NCAs. We augment a state-of-the-art in-
memory NFA acceleration architecture called CAMA [26]
with counter and bit vector modules. We report hardware
simulation results in both microbenchmarks and application
benchmarks.

4.1 Hardware Design

Existing in-memory automata accelerators adopt a two-phase
architecture: a state matching phase that finds the current
active states, and a state transition phase that calculates the
available states in the next cycle. AP-style accelerators, such
as AP [19], CA [54], and eAP* [47], perform state matching
by reading from read-access memories (RAMs) that store bit
vector representations of states in memory columns. Each
column in the RAM represents one state, which is called a
State Transition Element (STE). Using 8-bit symbols as an
example, each RAM entry is 256-bit and the i-th position
has value 1 iff the symbol i is associated with the state®. Ad-
ditionally, the connections between states are programmed
into a switch network where existing state transitions are
realized as physical connections.

Each processing cycle begins in the state matching phase,
where an input symbol is encoded as a one-hot representa-
tion® and used as the address to read from the state matching
memory. The columns that read out ‘1’s indicate successful
matches between the input symbol and the STEs. With a
logical AND operation between the available states reported
from the last cycle and the matched states reported by the
memory in the current cycle, matching results of the active
states in the current cycle are determined. Next, in the state
transition phase, the current active states pass through the
programmed switch network to create the next vector which
stores available states for the next cycle.

However, AP-style accelerators severely under-utilize the
state matching memories in realistic NFAs across common
benchmarks, because this approach is optimal only for the
worst case of purely random NFAs. Impala [46] and CAMA

4eAP stands for embedded Automata Processor.

SRecall from §2 that we consider homogeneous automata, which means
that all transitions leading to a state q are labeled with the same predicate
o over the alphabet. The RAM entry is a representation of the predicate o.
The one-hot representation of an 8-bit symbol i consists of 28 = 256 bits,
where the i-th bit has value 1 and the others are 0.

L. Kong, Q. Yu, A. Chattopadhyay, A. L. Glaunec, Y. Huang, K. Mamouras, and K. Yang

[26] made critical improvements by proposing special en-
coding schemes to reduce the state matching memory re-
quirements. CAMA further employs specialized content-
addressable memories (CAM) to perform state matching
with lower energy and memory footprints than all other
designs using RAM. As a result, the memory requirement for
256 STEs is reduced from one 256X256 6-transistor SRAM
in AP and CA, to two 16X256 6-transistor SRAMs in Impala
and approximately one 16x256 8-transistor CAM in CAMA.
Moreover, CAMA optimizes a reduced-crossbar switch net-
work that was first proposed by eAP, which largely reduces
the area and energy costs of state transitions. Compared with
prior NFA in-memory architectures, CAMA achieves leading
throughput, energy, and area efficiency. CAMA’s throughput
is 2.14GBps, 1.18x better than CA, 9.5x better than FPGA-
based Grapefruit [40], and 2-4 orders better than CPU/GPU
solutions. CAMA’s energy efficiency is 4.91nJ/Byte, over 10x
better than most efficient alternatives, i.e. Grapefruit (FPGA)
and AP. This paper uses the latest memory- and energy-
efficient CAMA architecture as the baseline and augments it
with our proposed counter and bit vector modules.

Figure 4(a) shows the Glushkov NCA for the counter-
unambiguous regex a(bc){1, 3}c. The Glushkov construction
ensures that the NCA is homogeneous (all transitions en-
tering a state are labeled with the same predicate over the
alphabet). This property allows us to convert the NCA to
a hardware-friendly representation by omitting the initial
state and pushing the predicates from the edges to the states,
thus transforming NCA states into STEs. For example, we
push the predicate a into state g, so that in Figure 4(b) we
have a state labeled with the predicate a, which becomes an
STE that is activated to fire signals only when the input satis-
fies the predicate a. The original CAMA design, as shown in
Figure 4(c), only supports NCAs by fully unfolding bounded
repetitions. In our augmented CAMA, two types of hardware
modules, counters and bit vectors, are added to accelerate
the execution of NCAs. As shown in Figure 4(d), both mod-
ules take input from STEs related to counting and produce
output signals to the switch network. Counters are inserted
to support counter-unambiguous repetitions, while bit vec-
tors are reserved for counter-ambiguous repetitions (recall
§3.2.1). Compared to CAMA, the additional counters and bit
vectors retain all necessary processing information while
avoiding the cost of unfolding (which results in additional
STEs). In Section 4.2, we will further explain the design and
the input/output ports of the counter and bit vector modules.

Figure 5 shows the structure of an augmented CAMA
bank. The overall architecture of CAMA is preserved, and
the functionalities of existing components remain the same.
Each bank consists of an input/output buffer and 16 process-
ing arrays. Each array has a global switch and 8 processing
elements (PEs). Each PE contains two 256-STE CAM arrays,
two local switches, and 8 counters, and it may contain a bit
vector depending on the configuration from users. Note that
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Figure 4. (a) Glushkov NCA for regex a(bc){1,3}d. (b) Cor-
responding NCA with STEs. (c) Original hardware using
unfolding. (d) Augmented hardware with counter or bit vec-
tor.

the input ports to the counter and bit vector modules are
connected to fixed groups of STEs. For example, as shown
on the right, port pre is connected to STEs 0 to 7, port fst
is connected to STEs 8 to 16, and so on. When enabled, an
STE within the group can pass signals to the connected port.
We use an efficient mapping algorithm to build the connec-
tion between ports and STE groups so that we maintain the
generality of the design but reduce the complexity of routing.

It is worth mentioning that our proposed counters and
bit vectors are not only suitable for the CAMA architec-
ture. Other in-memory automata architectures, like CA, can
also be augmented for NCAs with minor hardware design
changes. Specifically, these changes are: (1) counters and bit
vectors need to be allowed to connect to elements that repre-
sent states, and (2) the routing network needs to be extended
to store the transitions from counters and bit vectors.

Software-Hardware Codesign. The initial motivation for
our hardware design came from the observation that sev-
eral instances of bounded repetition require significantly
less memory than what is suggested by a naive unfolding.
This led to the formalization of counter-(un)ambiguity in
NCAs and the corresponding static analysis. For the counter-
unambiguous case, it suffices to use simple counter modules
that keep track of the number of repetitions. For the counter-
ambiguous case, the use of bit vectors is a very natural choice
for a hardware representation of sets of tokens. These consid-
erations led to the design of the counter and bit vector mod-
ules. Physical constraints imposed by the hardware call for
minimizing the connections between STEs and the counting
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Figure 5. Abstraction of proposed augmented CAMA bank,
where PE is abbreviation for Processing Element.

modules. For this reason, we have chosen to use bit vectors
for counter-ambiguous repetitions of the form o{m, n} and
use (partial) unfolding for other cases. The vast majority of
counter-ambiguous repetitions in real-world benchmarks
are of this form, so this approach offers efficiency (due to
an optimized hardware implementation) without sacrificing
generality (since the remaining cases can be handled at the
level of the software/compiler).

4.2 Compilation from Regex to MNRL

To program the hardware, we provide a description of the
automata in the MNRL language [2]. Our compiler takes a
source regex and produces the MNRL file with the following
steps: (1) First, the compiler parses the regex and simpli-
fies it with certain rewrite rules, including the unfolding
of repetitions with upper bound < 2 and the merging of
character classes inside simple alternations (e.g., [a]|[b]
is rewritten to [ab]). (2) Then, the compiler performs the
static analysis of §3 and annotates the regex with the counter-
(un)ambiguity result for each occurrence of repetition. (3)
Finally, the compiler generates the MNRL file using these
annotations, distinguishing cases where a counter suffices
(counter-unambiguous) from cases where a bit vector is nec-
essary (counter-ambiguous).

MNRL provides an element called upCounter for repre-
senting simple counters [2, 19]. However, there is no distinc-
tion between counter-ambiguous and counter-unambiguous
repetition. We have therefore extended the MNRL format by
adding syntax for counters and bit vectors.

Figure 6 presents an abstraction of the counter module
(enclosed by a dashed line) by showing how it is used to
implement the counter-unambiguous regex a(bc){m, n}d in
hardware. A counter has three incoming ports pre, fst, and
1st, and two outgoing ports en_fst and en_out, where
ports are labeled with red dots in Figure 6. The input port
pre (i.e., pre-counting) is connected to the STE (labeled with
a) located right before the repetition, fst (i.e., first) is con-
nected to the first STE (labeled with b) in the repetition, and
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counting unit

incr <=n

shift register

reset

shift disjunct

setFirst

Figure 7. Use of bit vector to implement [ab]*a[ab]{m, n}b.

1st (i.e., last) is linked to the last STE (labeled with c) in the
repetition. The output port en_out (i.e., enable output STE)
activates the STE (labeled with d) located right after the rep-
etition, and en_f'st (i.e., enable first STE) activates the first
STE (labeled with b) in the repetition. The counter module
consists of a synchronous counting unit using D flip-flop
and two digital comparators. The module is designed to meet
four constraints: (1) The counter value is reset to 0 when pre
was active in the previous cycle and fst is currently active.
This corresponds to the initialization of the repetition. (2)
The counter value is incremented by 1 when fst is active but
pre was not active in the previous cycle. This corresponds
to one complete cycle. (3) en_out fires if 1st is active and
the counter value is within the expected range (i.e., [m, n]).
(4) en_fst fires if 1st is active and the counter value is < n.

Figure 7 presents an abstraction of the bit vector mod-
ule by showing how the regex [ab]*a[ab]{m, n}b is imple-
mented in hardware. The core component of the bit vector is
a serial-in-parallel-out shift register. It supports four primary
operations: (1) reset, which resets all bits in the vector to 0,
(2) setFirst, which sets the first bit of the vector to 1, (3)
shift, which shifts the vector by one bit, and (4) disjunct,
which computes the disjunction of a sub-array of bits from
index m to n (if one of the bits in the sub-array is 1, the
output signal fires).
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Table 2. Hardware component parameters

Component Energy (f]) Delay (ps) Area (um?)
CAMA Bank 16780 325 3919
17-bit counter 288 101 237

2000-bit vector 3340 71 6382
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Figure 8. Energy (upper two figures) and area (bottom two)
trade-off of unfolding vs using counter (left two figures) and
bit vector (right two), where axis is log-scaled.

4.3 Hardware Evaluation

We modified the open-source simulator VASim [61] to simu-
late the hardware performance of our augmented CAMA. We
include 17-bit counters for supporting unambiguous count-
ing, and 2000-bit vectors for supporting ambiguous count-
ing, where the bit vector can be broken down to segments
and used separately for counting with small upper bounds.
We use a TSMC 28nm CMOS technology and the industry-
standard SPICE circuit simulator [52] to obtain the energy, de-
lay, and area parameters of each component (Table 2). Since
state transition is the critical path in CAMA, state matching
and counter/bit-vector operations can be performed within
a single clock cycle in the augmented CAMA, maintaining
the same clock frequency of 2.14 GHz and throughput as
CAMA-T (CAMA version optimized for high throughput)
without performance penalties.

Micro-benchmarks. Figure 8 shows the trade-off of un-
folding vs. using counter and bit vector modules. In the left
two sub-figures, we consider regexes a{n} with different
values of n. These regexes are counter-unambiguous — the
hardware implementation only needs a single counter mod-
ule to perform the matching, while unfolding creates n STEs.
The upper-left (resp., bottom-left) sub-figure shows the en-
ergy (resp., area) cost of using a counter module compared
with unfolding, where we always use a 17-bit counter mod-
ule to represent counter values regardless of their different
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Figure 9. Total number of MNRL nodes with different un-
folding thresholds (both axes are log-scaled).

repetition bounds. In the right two sub-figures, we consider
regexes % *a{n}. These regexes are counter-ambiguous, so
the hardware needs to use a bit vector to perform matching,
while unfolding creates n STEs. In this comparison, we set the
length of the bit vector to be equal to n for each data point
(this implies that bits are wasted). The upper-right (resp.,
bottom-right) sub-figure shows the energy (resp., area) cost
of using a bit vector compared with unfolding. From the re-
sults shown in Figure 8, we observe that using a counter/bit
vector provides better performance compared to unfolding
even for repetitions with small upper bounds. It consistently
reduces energy usage by orders of magnitude and areas by
large margins.

Application benchmarks. We use the same benchmarks
as described in Section 3.3 (except for ClamAV). Figure 9
shows the number of MNRL nodes (which is linear in the
number of STEs) for different unfolding thresholds. For each
benchmark and each point in the corresponding curve, the
x coordinate is an unfolding threshold k and the y coordi-
nate is the number of MNRL nodes that are obtained from
compiling the entire benchmark after bounded repetitions
up to k have been unfolded. The rightmost point on each
benchmark curve shows the unfolding threshold that results
in full unfolding for all regexes of the benchmark and the
resulting number of MNRL nodes.

We have simulated the area and the energy consumption
of our augmented CAMA by feeding compiled MNRL files
with different unfolding thresholds to the modified VASim.
Figure 10 shows the per-input-byte energy consumption and
the total area cost of the augmented CAMA. The results
show up to 76% energy reduction and 58% area reduction in
benchmarks with an abundance of instances of bounded rep-
etition with large upper bounds (i.e., Snort and Suricata). In
benchmarks that generally include bounded repetitions with
small upper bounds (i.e., Protomata and SpamAssassin), the
augmented CAMA hardware still outperforms pure CAMA
with little to no overhead. We observe that for the Protomata
and SpamAssassin benchmarks, our hardware implementa-
tion provides less energy and area reduction compared with
Snort and Suricata. This is because, in general, the regexes
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in Protomata and SpamAssassin have small repetition upper
bounds. The wasted area in Figure 10 corresponds to unused
bits in the bit vector modules.

5 Related Work

There is a rich set of prior works that define (un)ambiguity
on regular expressions. Book et al. [10] have defined unam-
biguous regexes using Glushkov automata [21]. Bruggemann-
Klein and Wood have expressed the related notions of deter-
ministic [12] and I-unambiguous [13] regexes. Hovland [24]
has defined the class of counter-1-unambiguous for regexes
with counting. Hovland et al. [25] have further considered a
strongly 1-unambiguous class where the membership prob-
lem, for regexes with counting and unordered concatena-
tions, can be solved in polynomial time. Gelade et al. [20]
have defined strong and weak determinism and shown that
weakly deterministic regexes are exponentially more suc-
cinct than the strongly deterministic ones. A survey of un-
ambiguity in automata theory can be found at [17].

Several different automata models and automata-based
techniques have been proposed to handle the matching of
regexes with counting. DFAs and NFAs have been extended
by [23] and [8] respectively by introducing counting oper-
ations and guards as an alternative to unfolding for large
repetition bounds. An implementation of a class of counter
automata, proposed in [59], is based on queues for repre-
senting sets of counter values. A variety of software regex
matchers, including RE2 [18, 41], Rust’s Regex [44], PCRE
[37], SRM [45], and Hyperscan [65] support the matching of
regexes with counting. These matchers are typically based on
the execution of DFAs or NFAs. Matchers like RE2 and SRM
unfold constrained repetitions when performing on-the-fly
determinization or computing derivatives.

A series of ASIC hardware architectures [11, 58] have
been designed to reach high throughput for network applica-
tions relying on pattern matching algorithms. The IBM regX
[31] accelerator extends the idea of representing regexes
with compressed DFAs [8, 36, 68], which are hybrids between
DFAs and NFAs, and its parallelized architecture improves
performance on large workloads. Dlugosch et al. [19] de-
signed the Automata Processor (AP), a reconfigurable ASIC
hardware based on bit-parallellism [4] that simulates NFAs
in parallel. Liu et al. [28] developed SparseAP to provide
support for AP to efficiently execute large-scale applications.
AP can support many regexes found in real-life applications
[61, 62]. However, it provides restricted support for regexes
with counting (when upper bounds are larger than 512 they
are considered unbounded [43]). Other major ASIC works
are based on the Aho-Corasick algorithm [1] including [58],
HAWK [56], and HARE [22]. They compute partial matches
for all possible alignments and merge them to find a global
match. HARE achieves a 32Gbps throughput but has lim-
ited support for Kleene operators (which only allow single
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Figure 10. Per-input-byte energy consumption (left) and total area cost (right) of the augmented CAMA hardware

character class repetition), and it provides no support for
unbounded counting.

Many prior works [5, 48] focus on FPGA and GPU hard-
ware architectures to take advantage of their configurabil-
ity and parallelism. [67] and [51] provide support for regexes
with counting on FPGA hardware. [63] extends the DFA am-
biguity expressed in [49] to NFA with counters by defining
the character class ambiguity, a problem that arises when
the intersection between two adjacent character class with
constraint repetitions (CCR) is non-empty. A min-max algo-
rithm with two counters for every CCR keeps track of all
possible matches. Our notion of counter-ambiguity is formu-
lated more generally, and our simulation based on bit vectors
handles character class ambiguity. Finally, there are several
works that implement regex matching algorithms on GPUs
[14, 29, 60, 70].

6 Conclusion

We have investigated hardware acceleration for regular pat-
tern matching, where the patterns are specified by regexes
with an extended syntax that involves bounded repetitions of
the form r{m, n}. We have developed a design that integrates
counter and bit vector modules into an in-memory NFA-
based hardware architecture. This design is inspired from
the theoretical model of nondeterministic counter automata
(NCAs) and the observation that some instances of bounded
repetitions require only a small amount of memory. We for-
malize this idea using the notion of counter-unambiguity.
We have implemented a regex-to-hardware compiler that
performs a static analysis for counter-(un)ambiguity over
aregex and then creates a representation of an automaton
with counters and bit vectors that can be deployed on the
hardware. Our experiments show that using counters and bit
vectors outperforms unfolding solutions by orders of magni-
tude. Moreover, in experiments with realistic workloads, we
have observed that our design can provide up to 76% energy
reduction and 58% area reduction in comparison to CAMA
[26], a state-of-the-art in-memory NFA processor.
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