
Software-Hardware Codesign for Efficient In-Memory
Regular Pattern Matching

Lingkun Kong∗

Rice University
USA

klk@rice.edu

Qixuan Yu∗

Rice University
USA

qy12@rice.edu

Agnishom Chattopadhyay
Rice University

USA
agnishom@rice.edu

Alexis Le Glaunec
Rice University

USA
alexis.leglaunec@rice.edu

Yi Huang
Rice University

USA
781013488@qq.com

Konstantinos Mamouras
Rice University

USA
mamouras@rice.edu

Kaiyuan Yang
Rice University

USA
kyang@rice.edu

Abstract

Regular pattern matching is used in numerous application
domains, including text processing, bioinformatics, and net-
work security. Patterns are typically expressed with an ex-
tended syntax of regular expressions. This syntax includes
the computationally challenging construct of bounded repe-
tition or counting, which describes the repetition of a pattern
a fixed number of times. We develop a specialized in-memory
hardware architecture that integrates counter and bit vector
modules into a state-of-the-art in-memory NFA accelerator.
The design is inspired by the theoretical model of nonde-
terministic counter automata (NCA). A key feature of our
approach is that we statically analyze regular expressions
to determine bounds on the amount of memory needed for
the occurrences of bounded repetition. The results of this
analysis are used by a regex-to-hardware compiler in order
to make an appropriate selection of counter or bit vector
modules. We evaluate our hardware implementation using
a simulator based on circuit parameters collected by SPICE
simulation in TSMC 28nm CMOS process. We find that the
use of counter and bit vector modules outperforms unfolding

∗These authors contributed equally.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-9265-5/22/06. . . $15.00

https://doi.org/10.1145/3519939.3523456

solutions by orders of magnitude. Experiments concerning
realistic workloads show up to 76% energy reduction and 58%
area reduction in comparison to CAMA, a recently proposed
in-memory NFA accelerator.

CCS Concepts: · Theory of computation→ Formal lan-

guages and automata theory; ·Hardware→ Emerging

architectures.

Keywords: automata theory, computer architecture

ACM Reference Format:

Lingkun Kong, Qixuan Yu, Agnishom Chattopadhyay, Alexis Le

Glaunec, Yi Huang, Konstantinos Mamouras, and Kaiyuan Yang.

2022. Software-Hardware Codesign for Efficient In-Memory Regu-

lar Pattern Matching. In Proceedings of the 43rd ACM SIGPLAN

International Conference on Programming Language Design and

Implementation (PLDI ’22), June 13ś17, 2022, San Diego, CA, USA.

ACM,NewYork, NY, USA, 16 pages. https://doi.org/10.1145/3519939.

3523456

1 Introduction

Regular pattern matching, where the patterns are expressed
with finite-state automata or regular expressions, has nu-
merous applications in text search and analysis [1], network
security [69], bioinformatics [9, 42], and runtime verification
[6, 7]. Various techniques have been developed for matching
regular patterns, many of which are based on the execution
of deterministic finite automata (DFAs) or nondeterministic
finite automata (NFAs). DFA-based techniques are generally
faster, as the processing of an input element requires a single
memory lookup, while NFA-based techniques are slower, as
they involve extending several execution paths when pro-
cessing one element. The advantage of NFAs over DFAs is
that they are typically more memory-efficient, and there
are cases where an equivalent DFA would unavoidably be
exponentially larger [34].

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA L. Kong, Q. Yu, A. Chattopadhyay, A. L. Glaunec, Y. Huang, K. Mamouras, and K. Yang

Many applications require the processing of large and com-
plex NFAs on real-time streams of data collected from sen-
sors, networks, and various system traces. Energy efficiency
and memory efficiency (in terms of the memory capacity or
chip footprint needed for a given NFA) are highly desirable
for both high-performance computing and battery-powered
embedded applications. NFA processing requires frequent,
yet irregular and unpredictable, memory accesses on general-
purpose processors, leading to limited throughput and high
power on CPU and GPU architectures [27, 30, 61]. Field Pro-
grammable Gate Arrays (FPGAs) offer high speed through
hardware-level parallelism, but are often bottlenecked by
routing congestion [40, 66] and their high power, area and
cost prevent their use in mobile and embedded devices. Even
with digital application-specific integrated circuit (ASIC)
accelerators, the memory access bandwidth restricts the par-
allelism [31, 56]. The latest hardware technology that ad-
dresses these challenges is in-memory architecture, which
processes the NFA transitions directly inside memories with
massive parallelism and merged memory and computing
operations. For instance, the Automata Processor (AP) from
Micron [19, 64] outperforms x86 CPUs by 256×, GPGPUs
by 32×, and the digital accelerator XeonPhi by 62× in the
ANMLZoo benchmark suite [54, 61].

Classical regular expressions (regexes) involve operators
for concatenation ·, nondeterministic choice +, and iteration
(Kleene’s star) ∗. They can be translated into NFAs whose
size is linear in the size of the regex [21, 57]. However, the
regexes used in practice have several additional features that
make them more succinct. One such feature is counting, writ-
ten as 𝑟 {𝑚,𝑛}, which is also called constrained or bounded
repetition. The pattern 𝑟 {𝑚,𝑛} expresses that the subpattern
𝑟 is repeated anywhere from 𝑚 to 𝑛 times. This counting
operator is ubiquitous in practical use cases of regexes. For
example, we have observed that in several datasets for net-
work intrusion detection (Snort [50] and Suricata [55]) and
motif search in biological sequences (Protomata [39, 42])
counting arises in the majority of the patterns. The naive ap-
proach for dealing with counting operators is to rewrite them
by unfolding. For example, 𝑟 {𝑛, 𝑛} is unfolded into 𝑟 · 𝑟 · · · 𝑟
(𝑛-fold concatenation) and results in an NFA of size linear
in 𝑛 (and therefore can produce a DFA of size exponential
in 𝑛). Since 𝑛 can grow very large, dealing with counting
is one of the main technical challenges for successfully us-
ing hardware-based approaches to execute practical regular
patterns.

Existing in-memory NFA architectures use this naive un-
folding method to handle counting operators. This leads to
the use of a large number of STEs1 to support counting. In
AP [19] and CA (Cache Automaton) [54], each STE uses 256

1STE stands for State Transition Element [19]. It is a hardware element that

roughly corresponds to the state of a homogeneous NFA. It contains a state

bit (to indicate whether the state is active or not) and a memory array that

represents a character class.

memory bits for 8-bit symbols. In the latest Impala [46] and
CAMA2 [26] designs, each STE requires 16 to 32 memory bits.
Even with this improvement, a modest counting operator
with upper limit 1024 requires at least 16384 memory bits,
while the information required for implementing the opera-
tor may be only 10 bits in some cases. Unfolding counting
operators results in large memory and energy usage. To cir-
cumvent these problems, we explore software and hardware
co-design for integrating counter and bit vector modules
into a state-of-the-art in-memory NFA architecture.
Our design is inspired by an extension of NFAs with

counter registers called nondeterministic counter automata
(NCAs). In an NCA, a computation path involves not only
transitions between control states, but also the use of a finite
number of registers that hold nonnegative integers. Such
automata are a natural execution model for regexes with
counting, as the counters can track the number of repeti-
tions of subpatterns. When the counters are bounded, NCAs
are expressively equivalent to NFAs, but they can be expo-
nentially more succinct [34, 53]. Similar to how an NFA is
executed by maintaining the set of active states, an NCA
is executed by maintaining a set of pairs, which we call to-
kens, where the first component is the control state and the
second component specifies the values of the counters. A
key idea of our approach is that we can statically analyze
an NCA to determine which states can carry a large number
of tokens during execution. We call a control state counter-
unambiguous if it can only carry at most one token and
counter-ambiguous if it can carry more than one. In the case
of counter-unambiguity for a state 𝑞 with counter 𝑥 , we
know that we only need to record one counter value, which
means that we need only one memory location whose size
(in bits) is logarithmic in the range 𝑀 of possible counter
values. In the case of counter-ambiguity for 𝑞 with counter 𝑥 ,
we may have to record a large number of counter values (as
large as𝑀), and our insight is to use a bit vector 𝑣 of size𝑀 ,
where 𝑣 [𝑖] = 1 (resp., 𝑣 [𝑖] = 0) indicates the presence (resp.,
absence) of a token at 𝑞 with counter value 𝑖 . So, identifying
a state as counter-unambiguous enables a massive memory
reduction for this state from 𝑂 (𝑀) to 𝑂 (log𝑀).

We design a static analysis algorithm for checking the
counter-ambiguity of NCAs and regexes by performing a
systematic exploration of the space of reachable tokens to
identify the existence of some input string for which two
different tokens are placed on the same control state. This
may lead to a large search space (exponential in the size
of the regex), and the worst case is not easy to avoid since
the problem is NP-hard. To handle difficult instances that
involve large repetition bounds, we also provide an over-

approximate algorithm that gives an inconclusive output for
some instances, while still being able to identify cases of

2CAMA abbreviates Content Addressable Memory (CAM) enabled Au-

tomata accelerator.

Software-Hardware Codesign for Efficient In-Memory Regular Pattern Matching PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

counter-unambiguity for most instances from real bench-
marks. By combining the exact and over-approximate algo-
rithms, we can statically analyze within milliseconds the vast
majority of regexes in the benchmarks Snort [50], Suricata
[55], Protomata [42], SpamAssassin [3], and ClamAV [16].
Using the insights about NCA execution mentioned ear-

lier, we propose a hardware design that is based on existing
in-memory NFA architectures (AP, CA, Impala, CAMA) aug-
mented with (1) counter modules for counter-unambiguous
states, and (2) bit vector modules for counter-ambiguous
states. We use SPICE [52], an industry-standard simulator
for integrated circuits, to perform hardware simulation for
the counters and bit vectors and to integrate them into
the CAMA architecture. We also provide a compiler that
statically analyzes an input regex to determine counter-
(un)ambiguity and then creates a representation of an au-
tomaton with counters and bit vectors using the MNRL for-
mat [2] that can be used to program the hardware. Several
existing architectures like AP provide a counter module in
their design, but they typically do not provide a compiler that
translates regexes to hardware-recognizable programs. Also,
counter registers alone cannot deal with the challenging
instances of counting. Compared with prior works that do
not provide a bit vector module, this paper proposes a novel
design that can systematically handle counting and ensure
correct compilation in both the easy (requiring counters) and
difficult (requiring bit vectors) cases.
We modified the open-source simulator VASim [61] to

simulate the hardware performance of our counter- and bit-
vector-augmented CAMA design with implementation in
TSMC 28nm process. In microbenchmarks, we evaluated the
energy and area consumption of counters and bit vectors
against their unfolded counterparts. The results show that
our counter- and bit-vector-based design can reduce the en-
ergy usage by orders of magnitude and the area by large
margins. Furthermore, we evaluated the performance of the
augmented CAMA design using the Snort [50], Suricata [55],
Protomata [42], and SpamAssassin [3] benchmarks. For ap-
plications involving regexes with large counting bounds,
the results show as large as 76% energy reduction and 58%
area reduction. For regexes with small counting bounds, the
results show little to no overhead.

Contributions. The main contributions of this paper are
summarized below:
(1) We use the notion of counter-unambiguity in order

to identify instances of bounded repetition that can be han-
dled with a small amount of memory. We describe both an
exact and an over-approximate static analysis for counter-
(un)ambiguity which, when combined, allow us to efficiently
analyze the regexes that arise in several application domains.
(2) We propose a hardware design that augments the prior

NFA-based CAMA architecture [26] with counter and bit vec-
tor modules, which are inspired from the execution of NCAs

and the classification of states as counter-(un)ambiguous.
This architecture achieves substantial energy and area re-
ductions compared to prior designs.
(3) We provide a compiler that enables the high-level

programming of the hardware using POSIX-style regexes.
The compiler first performs the static analysis for counter-
(un)ambiguity and then leverages the analysis results for
producing a low-level description of the automaton.

2 Preliminaries

In this section, we will give a brief overview of several well-
known concepts, including regular expressions with count-
ing and nondeterministic counter automata (NCAs). We are
not interested in NCAs with unbounded counters (which
can recognize non-regular languages), so we focus on NCAs
with bounded counters. These automata are an appropriate
model for implementing regular expressions with counting.
Differently from most definitions of NCAs in the literature,
we allow each control state of the automaton to have a differ-
ent number of counters. This flexibility allows us to carefully
bound the memory needed for NCA execution.

Let Σ be a finite alphabet. A regular expression (or regex)
over Σ is given by the grammar 𝑟 ::= 𝜀 | 𝜎 | 𝑟 · 𝑟 | 𝑟 + 𝑟 | 𝑟∗ |
𝑟 {𝑚,𝑛}, where 𝜎 ⊆ Σ is a predicate over the alphabet and
𝑚,𝑛 are natural numbers. The expression 𝑟 {𝑚,𝑛} describes
the repetition of 𝑟 from 𝑚 to 𝑛 times, so we require that
0 ≤ 𝑚 ≤ 𝑛. We write 𝑟 {𝑛} for 𝑟 {𝑛, 𝑛}. The concatenation
symbol is sometimes omitted, i.e., we write 𝑟1𝑟2 instead of
𝑟1 · 𝑟2. The interpretation of a regex 𝑟 is a language ⟦𝑟⟧ ⊆ Σ

∗,
which is defined in the standard way.

Notation for predicates: A predicate over the alphabet
is sometimes referred to as a character class. The predicate Σ
contains all symbols in the alphabet. When we use a symbol
𝑎 ∈ Σ in a regex, it should be understood as the singleton
predicate {𝑎} ⊆ Σ. We will also use the notation [𝑎1 . . . 𝑎𝑛] in
a regex to represent the predicate {𝑎1, . . . , 𝑎𝑛} ⊆ Σ. We write
[^𝑎1 . . . 𝑎𝑛] for the predicate Σ \ {𝑎1, . . . , 𝑎𝑛} that contains
all symbols aside from 𝑎1, . . . , 𝑎𝑛 . For a predicate 𝜎 ⊆ Σ, we
write 𝜎 = Σ \ 𝜎 to denote its complement.

We fix an infinite set CReg of counter registers or, sim-
ply, counters. We typically write 𝑥,𝑦, 𝑧, . . . to denote counter
registers. For a subset 𝑉 ⊆ CReg of counters, we say that a
function 𝛽 : 𝑉 → N, which assigns a value to each counter
in 𝑉 , is a 𝑉 -valuation.

Definition 2.1. Let Σ be a finite alphabet. A nondeterminis-

tic counter automaton (NCA) with input alphabet Σ is a tuple
A = (𝑄, 𝑅,Δ, 𝐼 , 𝐹), where

− 𝑄 is a finite set of states,
− 𝑅 : 𝑄 → P(CReg) is a function that maps each state to a

finite set of counters,
− Δ is the transition relation, which contains finitely many

transitions of the form (𝑝, 𝜎, 𝜑, 𝑞, 𝜗), where 𝑝 is the source
state, 𝜎 ⊆ Σ is a predicate over the alphabet,𝜑 ⊆ (𝑅(𝑝) →

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA L. Kong, Q. Yu, A. Chattopadhyay, A. L. Glaunec, Y. Huang, K. Mamouras, and K. Yang

N) is a predicate over 𝑅(𝑝)-valuations, 𝑞 is the destination
state, and 𝜗 : (𝑅(𝑝) → N) → (𝑅(𝑞) → N),

− 𝐼 is the initialization function, a partial function defined
on the subset dom(𝐼) ⊆ 𝑄 of initial states that specifies
an initial valuation 𝐼 (𝑞) : 𝑅(𝑞) → N for each initial state
𝑞, and

− 𝐹 is the finalization function, a partial function defined
on the subset dom(𝐹) ⊆ 𝑄 of final states that specifies a
predicate 𝐹 (𝑞) ⊆ 𝑅(𝑞) → N for each final state 𝑞.

We say that a state 𝑞 ∈ 𝑄 is pure if 𝑅(𝑞) = ∅, that is, it has
no counter associated with it.

We remark that the states in an NCA of Definition 2.1 do
not necessarily have the same counters. In fact, some states
may not have any counter at all. In a transition (𝑝, 𝜎, 𝜑, 𝑞, 𝜗),
we will call the predicate 𝜑 a guard because it may restrict
a transition based on the values of the counters, and we
will call the function 𝜗 an action, because it describes how
to assign counter values in the destination state given the
counter values in the source state.
We convert regexes (with counting) to NCAs that rec-

ognize the same language using a variant of the Glushkov
construction [20, 21]. In contrast to Thompson’s construc-
tion [57], Glushkov’s construction results in 𝜀-free automata
that are also homogeneous, i.e., all incoming transitions of a
state are labeled with the same predicate over the alphabet.
We present below several examples of NCAs.

Example 2.2. Consider the regex 𝑟1 = Σ
∗𝜎1𝜎2{𝑛} with

𝑛 ≥ 1, where 𝜎1, 𝜎2 are predicates over the alphabet
3. The

following automaton recognizes the language of 𝑟1:

𝑞1 𝑞2 𝑞3 : 𝑥

Σ

𝜎1 𝜎2 / 𝑥 B 1

𝜎2, 𝑥 < 𝑛 / 𝑥++

𝑥 = 𝑛

The automaton above has three states: 𝑞1, 𝑞2, and 𝑞3. We
write 𝑞3 : 𝑥 to indicate that 𝑅(𝑞3) = {𝑥}. Notice that 𝑞1 has
no annotation with counters, which means that 𝑅(𝑞1) = ∅
(i.e., 𝑞1 is pure). We annotate each edge 𝑝 → 𝑞 with an
expression of the form 𝜎, 𝜑 /𝜗 , where 𝜎 is a predicate over Σ,
𝜑 is a guard over the counters of 𝑝 , and 𝜗 is an assignment
for the counters of 𝑞 using the counters of 𝑝 . If the guard
𝜑 is omitted, then it is always true. The action 𝜗 is omitted
only when 𝑅(𝑞) ⊆ 𝑅(𝑝), and the omission indicates that
the counters 𝑅(𝑞) retain the values from the previous state.
We can also indicate this explicitly by writing ł𝑥 B 𝑥ž. We
write ł𝑥 = 𝑛ž for the guard that checks whether the value
of counter 𝑥 is equal to 𝑛, and we write ł𝑥 B 𝑛ž to denote
the assignment (action) of the value 𝑛 to the counter 𝑥 . We
use double circle notation to indicate that a state is final (see
state 𝑞3 above). An arrow emanating from a final state 𝑞 is

3In order to make the example more concrete, suppose that 𝜎1 = [𝑎𝑏] and
𝜎2 = [^𝑎]. So, the regular expression 𝑟1 is the same as .∗ [ab] [^a] {n} using

POSIX notation [38]. Note that Σ∗ is the same as .∗ in POSIX notation.

annotated with the predicate 𝐹 (𝑞) over counter valuations
(recall that 𝐹 is the finalization function).

The regex 𝑟2 = Σ
∗𝜎1 (𝜎2𝜎3){𝑚,𝑛}𝜎4 with 1 ≤ 𝑚 ≤ 𝑛 is

recognized by the following automaton:

𝑞1 𝑞2 𝑞3 : 𝑥 𝑞4 : 𝑥 𝑞5

Σ

𝜎1 𝜎2 / 𝑥 B 1

𝜎3

𝜎2, 𝑥 < 𝑛 / 𝑥++
𝜎4,𝑚 ≤ 𝑥 ≤ 𝑛

The regex 𝑟3 = 𝜎1{𝑚}Σ∗𝜎2{𝑛} with𝑚,𝑛 ≥ 1 is recognized
by the following automaton:

𝑞1 𝑞2 𝑞3 : 𝑥 𝑞4 : 𝑥
𝜎1 / 𝑥 B 1

𝜎1, 𝑥 <𝑚 / 𝑥++

Σ, 𝑥 =𝑚

𝜎2, 𝑥 =𝑚 / 𝑥 B 1

Σ

𝜎2 / 𝑥 B 1

𝜎2, 𝑥 < 𝑛 / 𝑥++

𝑥 = 𝑛

All automata so far use one counter. For the regex 𝑟4 =

Σ
∗𝜎1 (𝜎2 (𝜎3𝜎4){𝑚,𝑛}𝜎5){𝑘}𝜎6 with 1 ≤ 𝑚 ≤ 𝑛 and 𝑘 ≥ 1

we need two counters. See Fig. 1.

Nondeterministic semantics. LetA be anNCA. A token

forA is a pair (𝑞, 𝛽), where 𝑞 is a state and 𝛽 : 𝑅(𝑞) → N is a
counter valuation for 𝑞. The set of all tokens forA is denoted
by Tk(A). For a letter 𝑎 ∈ Σ, we define the token transition

relation →𝑎 on Tk(A) as follows: (𝑝, 𝛽) →𝑎 (𝑞,𝛾) if there
is a transition (𝑝, 𝜎, 𝜑, 𝑞, 𝜗) ∈ Δ with 𝑎 ∈ 𝜎 such that 𝛽 ∈ 𝜑

and 𝛾 = 𝜗 (𝛽). A token (𝑞, 𝛽) is initial if the state 𝑞 is initial.
A token (𝑞, 𝛽) is final if the state 𝑞 is final and 𝛽 ∈ 𝐹 (𝑞). A
run of A on a string 𝑎1𝑎2 . . . 𝑎𝑛 ∈ Σ

∗ is a sequence

(𝑞0, 𝛽0)
𝑎1
−−→ (𝑞1, 𝛽1)

𝑎2
−−→ (𝑞2, 𝛽2)

𝑎3
−−→ · · ·

𝑎𝑛
−−→ (𝑞𝑛, 𝛽𝑛),

where each (𝑞𝑖 , 𝛽𝑖) is a token, 𝑞0 is an initial state and 𝛽0 =

𝐼 (𝑞0), and (𝑞𝑖−1, 𝛽𝑖−1) →𝑎 (𝑞𝑖 , 𝛽𝑖) for every 𝑖 = 1, . . . , 𝑛. A
run is accepting if it ends with a final token. The NCA A
accepts a string if there is an accepting run on it. We write
⟦A⟧ ⊆ Σ

∗ for the set of strings that A accepts.
Notice that, for a NCA A, the set of tokens Tk(A) to-

gether with the transition relations→𝑎 forms a labeled tran-
sition system. The family of transition relations (→𝑎)𝑎∈Σ can
be represented as a ternary relation→ ⊆ Tk(A)×Σ×Tk(A).
Notation for tokens: For a pure state 𝑞 (i.e., a state with

no counter, see Definition 2.1), there is only one valuation,
denoted 0N : ∅ → N, which carries no information. So, we
will often abuse notation and simply write 𝑞 for the token
(𝑞, 0N). Similarly, for a state 𝑞 with one counter, i.e., 𝑅(𝑞) =
{𝑥} for some 𝑥 ∈ CReg, a valuation 𝛽 (of type {𝑥} → N) for
𝑞 specifies only one value 𝑐 = 𝛽 (𝑥) for the unique variable
𝑥 for 𝑞. For this reason, we will sometimes write (𝑞, 𝑐) for a
token for the state 𝑞.

Semantics using configurations. Let A be an NCA. A
configuration for A is a set of tokens for A. We write C(A)
for the set of all configurations for A. Define the configura-
tion transition function 𝛿 : C(A) × Σ → C(A) as follows:

𝛿 (𝑆, 𝑎) = {(𝑞,𝛾) | (𝑝, 𝛽) →𝑎 (𝑞,𝛾) for some (𝑝, 𝛽) ∈ 𝑆}.

Software-Hardware Codesign for Efficient In-Memory Regular Pattern Matching PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

𝑞1 𝑞2 𝑞3 : 𝑥 𝑞4 : 𝑥,𝑦 𝑞5 : 𝑥,𝑦 𝑞6 : 𝑥 𝑞7

Σ

𝜎1 𝜎2 / 𝑥 B 1 𝜎3 / 𝑦 B 1 𝜎4

𝜎3, 𝑦 < 𝑛 / 𝑦++

𝜎5,𝑚 ≤ 𝑦 ≤ 𝑛

𝜎2, 𝑥 < 𝑘 / 𝑥++

𝜎6, 𝑥 = 𝑘

Figure 1. NCA with two counters (𝑥 and 𝑦) for the regex Σ
∗𝜎1 (𝜎2 (𝜎3𝜎4){𝑚,𝑛}𝜎5){𝑘}𝜎6 with 1 ≤ 𝑚 ≤ 𝑛 and 𝑘 ≥ 1.

We extend the transition function to 𝛿 : C(A)×Σ∗ → C(A)
by 𝛿 (𝑆, 𝜀) = 𝑆 and 𝛿 (𝑆, 𝑥𝑎) = 𝛿 (𝛿 (𝑆, 𝑥), 𝑎) for every 𝑥 ∈ Σ

∗

and 𝑎 ∈ Σ. Let 𝑆0 be the set of all initial tokens, which we
call the initial configuration, and define [A] : Σ∗ → C(A)
by [A](𝑥) = 𝛿 (𝑆0, 𝑥). This semantics coincides with ⟦A⟧ in
the following sense: for every 𝑥 ∈ Σ

∗, 𝑥 ∈ ⟦A⟧ iff [A](𝑥)
contains some final token.

Bounded counters. Let A be a NCA, and 𝑛 ∈ N be a
constant. We say that a token (𝑞, 𝛽) is 𝑛-bounded if 𝛽 (𝑥) ≤ 𝑛

for every counter 𝑥 ∈ 𝑅(𝑞). We also say that A (resp., a
state 𝑞) is 𝑛-bounded if every token (resp., token on state
𝑞) reachable from some initial token is 𝑛-bounded. Finally,
the NCA A is said to have bounded counters if there exists
some constant 𝑛 ∈ N such that A is 𝑛-bounded. Notice that
NCAs with bounded counters have the same expressiveness
as finite-state automata (i.e., DFAs and NFAs), but they are
potentially more succinct [53].

As mentioned earlier, the automata that we consider here
are obtained from regexes with counting using the Glushkov
construction. A consequence of this is that every counter
incrementation action of the form 𝑥++ is guarded by some
test 𝑥 < 𝑛 because it corresponds to a subexpression of
the form 𝑟 {𝑚,𝑛}. It follows that an automaton thus con-
structed has bounded counters. Moreover, for every con-
trol state and every counter, we can read an upper bound
from the automaton. For example, in Figure 1, the counter
𝑥 is bounded above by 𝑘 (at all states 𝑞3, 𝑞4, 𝑞5, 𝑞6) because
(𝑞6, 𝜎2, ł𝑥 < 𝑘ž, 𝑞3, ł𝑥++ž) is the only transition that incre-
ments 𝑥 . Similarly, the counter 𝑦 is bounded above by 𝑛 (at
all states𝑞4, 𝑞5) because (𝑞5, 𝜎3, ł𝑦 < 𝑛ž, 𝑞4, ł𝑦++ž) is the only
transition that increments 𝑦.

3 Static Analysis

In this section, we will see how to perform a static analy-
sis over regexes to check counter-(un)ambiguity. It is well-
known that the presence of counting in regexes can cause
a blow-up in the amount of memory that is needed for the
streamingmembership problem (checking if a stringmatches
the regex in a single left-to-right pass) [34] (more results
about regexes with counting are given in [35, 53]). There
are, however, many cases that do not exhibit this worst-case
behavior. In this section, we will describe a static analysis for
identifying occurrences of bounded repetition {𝑚,𝑛} which
can be implemented using memory that is logarithmic in 𝑛.
This enables a significant reduction in thememory that needs

to be reserved for the membership problem. In order to iden-
tify the easier cases of bounded repetition, we use the con-
cept of counter-unambiguity, which informally says that the
nondeterminism of the automaton is constrained. We then
develop two algorithms for deciding counter-unambiguity
(one exact and one approximate), and we provide experimen-
tal results showing that they are effective in practice.
Let A = (𝑄, 𝑅,Δ, 𝐼 , 𝐹) be an NCA. For a state 𝑞 ∈ 𝑄 and

a subset 𝑇 ⊆ Tk(A) of tokens for the automaton, define
𝑇 |𝑞 = 𝑇 ∩ ({𝑞} × (𝑅(𝑞) → N)). That is, 𝑇 |𝑞 contains exactly
those tokens of 𝑇 whose first component is the state 𝑞. The
operational intuition is that [A](𝑥) |𝑞 is the set of tokens
that we get at state 𝑞 when we execute the automaton A on
input 𝑥 . When it is possible to have more than two tokens
on the same state 𝑞 after consuming an input string, we say
that the state exhibits counter-ambiguity. We will now define
this concept and other related notions more formally.

Definition 3.1 (Degree of Counter-Ambiguity). Let A
be an NCA with bounded counters and 𝑞 be a state. The
(counter-ambiguity) degree (which we will also call degree of
counter-ambiguity) of 𝑞 is defined as

degree(𝑞) = sup𝑥 ∈Σ∗
(

size of [A](𝑥) |𝑞
)

.

We say that 𝑞 is counter-unambiguous when degree(𝑞) ≤ 1,
and that 𝑞 is counter-ambiguous when degree(𝑞) ≥ 2.

Notice that if the degree of a state 𝑞 is equal to zero, then
the state 𝑞 is unreachable.

3.1 Deciding Counter-Ambiguity

According to Definition 3.1, the degree of counter-ambiguity
of a state 𝑞 is the maximum number of different tokens that
can end up at 𝑞 during a computation. A state 𝑞 is counter-
ambiguous iff there is a string 𝑎1𝑎2 . . . 𝑎𝑛 ∈ Σ

∗ and two
different runs on 𝑎1𝑎2 . . . 𝑎𝑛

(𝑞0, 𝛽0)
𝑎1
−−→ (𝑞1, 𝛽1)

𝑎2
−−→ (𝑞2, 𝛽2)

𝑎3
−−→ · · ·

𝑎𝑛
−−→ (𝑞𝑛, 𝛽𝑛)

(𝑞′0, 𝛽
′
0)

𝑎1
−−→ (𝑞′1, 𝛽

′
1)

𝑎2
−−→ (𝑞′2, 𝛽

′
2)

𝑎3
−−→ · · ·

𝑎𝑛
−−→ (𝑞′𝑛, 𝛽

′
𝑛),

such that 𝑞 = 𝑞𝑛 = 𝑞′𝑛 and 𝛽𝑛 ≠ 𝛽 ′𝑛 .
Let 𝐺 be the labeled transition system of tokens Tk(A)

and token transitions of the form 𝑡1 →
𝑎 𝑡2, where 𝑡1, 𝑡2 are

tokens and 𝑎 ∈ Σ. Define 𝐺2
= 𝐺 ×𝐺 to be the product tran-

sition system with states Tk(A) × Tk(A), which contains a
transition ⟨𝑡1, 𝑡2⟩ →

𝑎 ⟨𝑡 ′1, 𝑡
′
2⟩ iff 𝑡1 →

𝑎 𝑡 ′1 and 𝑡2 →
𝑎 𝑡 ′2. A pair

⟨𝑡1, 𝑡2⟩ is initial if both 𝑡1 and 𝑡2 are initial tokens. According
to the characterization of the previous paragraph, a state
𝑞 of A is counter-ambiguous iff there exists a path in 𝐺2

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA L. Kong, Q. Yu, A. Chattopadhyay, A. L. Glaunec, Y. Huang, K. Mamouras, and K. Yang

that ends with some pair ⟨(𝑞, 𝛽), (𝑞, 𝛽 ′)⟩, where 𝛽 ≠ 𝛽 ′. This
idea can be extended to characterize the situation where
a state 𝑞 has degree at least 𝑑 ≥ 2: there exists a path in
the 𝑑-fold Cartesian product 𝐺𝑑 that ends with some tuple
⟨(𝑞, 𝛽1), . . . , (𝑞, 𝛽𝑑)⟩, where 𝛽1, . . . , 𝛽𝑑 are all distinct.
Algorithm for Counter-Ambiguity: When the product

transition system 𝐺𝑑 is finite, we can decide whether the
counter-ambiguity degree of a state is ≥ 𝑑 with a straightfor-
ward reachability algorithm. For deciding counter-ambiguity,
we check whether the degree is ≥ 2, and therefore it suffices
to consider only𝐺2. Notice that for the bounded counter au-
tomata that we consider,𝐺𝑑 is always finite. We just need to
exercise care to avoid a blowup in the number of transitions.
In our automata, the transitions are annotated with predi-
cates over the alphabet, not symbols of the alphabet. This is a
succinct way to represent transitions, and we want to main-
tain such a representation in the graphs 𝐺𝑑 (assuming that
we also use such a representation for 𝐺). This can be done
by considering the intersections of predicates and checking
whether they are empty. More specifically, for every pair of
transitions 𝑡1 →𝜎1 𝑡 ′1 and 𝑡2 →𝜎2 𝑡 ′2, we add the transition

⟨𝑡1, 𝑡2⟩ →
𝜎1∩𝜎2 ⟨𝑡 ′1, 𝑡

′
2⟩ in 𝐺

2 when 𝜎1 ∩ 𝜎2 is nonempty.

Example 3.2. We will discuss here how to check counter-
(un)ambiguity for the regex Σ

∗𝜎{2}. First, we construct the
NCA for this regex, which is seen below:

𝑞1 𝑞2 : 𝑥

Σ

𝜎 / 𝑥 B 1

𝜎, 𝑥 < 2 / 𝑥++

𝑥 = 2

Based on this NCA, we construct the transition system of
tokens seen below, where 𝑞1 is abbreviation for the token
(𝑞1, 0N) (𝑞1 is a pure state), and (𝑞2, 𝑛) is abbreviation for the
token (𝑞2, 𝑥 ↦→ 𝑛) (the counter assignment maps 𝑥 to 𝑛).

𝑞1 (𝑞2, 1) (𝑞2, 2)

Σ

𝜎 𝜎

The token transition system is essentially an NFA, where the
final state (token) is indicated with a double circle.

To check the counter-ambiguity of a state 𝑞, we build the
product transition system and check whether there exists a
path that ends in a pair of tokens ⟨(𝑞, 𝛽), (𝑞, 𝛽 ′)⟩ with 𝛽 ≠ 𝛽 ′.
The figure below shows the product transition system where
the presence of the pair ⟨(𝑞2, 1), (𝑞2, 2)⟩ or ⟨(𝑞2, 2), (𝑞2, 1)⟩
(colored in gray) witnesses the counter-ambiguity.

⟨𝑞1, 𝑞1 ⟩ ⟨𝑞1, (𝑞2, 1) ⟩ ⟨𝑞1, (𝑞2, 2) ⟩

⟨(𝑞2, 1), 𝑞1 ⟩ ⟨(𝑞2, 1), (𝑞2, 1) ⟩ ⟨(𝑞2, 1), (𝑞2, 2) ⟩

⟨(𝑞2, 2), 𝑞1 ⟩ ⟨(𝑞2, 2), (𝑞2, 1) ⟩ ⟨(𝑞2, 2), (𝑞2, 2) ⟩

Σ

𝜎

𝜎
𝜎

𝜎

𝜎

𝜎
𝜎 𝜎

Because of symmetry, some states and transitions can be
safely removed from the product automaton. Notice, for
example, that we do not need to explore both ⟨(𝑞2, 1), 𝑞1⟩

and ⟨𝑞1, (𝑞2, 1)⟩. Therefore, in future examples, we will omit
part of the product automaton.

The exact analysis halts as soon as it finds a token pair
that witnesses counter-ambiguity. So, not all pairs are gener-
ated during the static analysis, unless the regex is counter-
unambiguous.

Consider a regex 𝑟 that contains an occurrence of counting
of the form (𝑎𝑏𝑐𝑑){𝑚,𝑛}. When the repetition bounds are
sufficiently large, in the automaton A for 𝑟 , the four states
that correspond to 𝑎𝑏𝑐𝑑 are either all counter-unambiguous
or they are all counter-ambiguous. For this reason, the notion
of counter-(un)ambiguity can be defined with respect to
instances of bounded repetition in regexes. We will also
call a regex counter-ambiguous if it contains at least one
occurrence of bounded repetition that is counter-ambiguous
(equivalently, the NCA for the expression has at least one
counter-ambiguous state).

Lemma3.3 (CheckingCounter-Ambiguity IsHard). Let
CAmbiguity be the following problem: Given a regex 𝑟 as
input, is 𝑟 counter-ambiguous? CAmbiguity is NP-hard.

Proof. Consider the alphabet Σ = {𝑎, 𝑏, #}. We will give a
polynomial-time reduction from the subset sum problem to
CAmbiguity. Let 𝑆 = {𝑛1, 𝑛2, . . . 𝑛𝑚} be a set of natural num-
bers and 𝑇 be a natural number. Recall that the subset sum
problem asks whether there is a subset 𝑆 ′ ⊆ 𝑆 of numbers
whose sum is equal to 𝑇 . Consider the regex

(((𝑎{𝑛1} + 𝜀) · · · (𝑎{𝑛𝑚} + 𝜀)#𝑏) + (𝑎{𝑇 }#𝑏𝑏))𝑏{2}.

We focus on the rightmost occurrence of bounded repeti-
tion (i.e., 𝑏{2}). We claim that this occurrence is counter-
ambiguous if and only if there is a subset 𝑆 ′ ⊆ 𝑆 whose
sum is 𝑇 . Consider the corresponding Glushkov automaton
and the state 𝑞 which leads to the final state at the end that
recognizes the 𝑏{2}. A word witnessing a path to 𝑞 would
have to be of the form 𝑎𝑥#𝑏𝑦 for some natural numbers 𝑥,𝑦.
If 𝑥 ≠ 𝑇 , then the word has no path through the branch
(𝑎{𝑇 }#𝑏𝑏). So, the only value it can induce on the counter
at the end is (𝑦 − 2). If 𝑥 = 𝑇 , and there exists a subset 𝑆 ′ of
𝑆 such that

∑

𝑆 ′ = 𝑇 , then 𝑎{𝑇 }#𝑏𝑏𝑏 could either take the
path (𝑎{𝑇 }#𝑏𝑏) and set the counter to 1, or it could take the
other path and set the counter to 2. If 𝑥 = 𝑇 and there is
no such subset 𝑆 ′, then the only path the word can take is
through the branch (𝑎{𝑇 }#𝑏𝑏) which would set the counter
to (𝑦 − 2). □

3.2 Over-Approximate Analysis

In ğ3.1, we presented an (exact) algorithm for deciding the
counter-(un)ambiguity of regexes and NCAs. The algorithm
operates on the transition system of tokens of anNCA,whose
size can be exponential in the size of the regex, because of
the counter valuations. For example, the regex Σ

∗ · 𝑎 · Σ{𝑛}
has size Θ(log𝑛) (because the repetition bound 𝑛 is repre-
sented succinctly in binary or decimal notation) and the

Software-Hardware Codesign for Efficient In-Memory Regular Pattern Matching PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

corresponding token transition system has size Θ(𝑛). From
this it follows that the exact algorithm may need exponential
time in the worst case. Unfortunately, this worst-case behav-
ior is not easy to avoid given the NP-hardness of the prob-
lem (Lemma 3.3). For this reason, we propose here a heuris-
tic algorithm that performs an łover-approximatež analysis,
which can give two outputs: it either declares that a state is
counter-unambiguous, or it says that the analysis is incon-
clusive. In other words, there are cases where the algorithm
may suspect that a state is counter-ambiguous, but it cannot
conclusively declare it so.

The idea is to over-approximate all occurrences of {𝑚,𝑛}
(constrained repetition) with ∗ (unconstrained repetition),
except for the one that we are analyzing. If we think of
this transformation in terms of NCAs, we see that it adds
more paths to the token transition graph, because more tran-
sitions are now enabled. A consequence of this is that if
the over-approximate automaton is counter-unambiguous,
then surely the original automaton (which has less paths) is
also counter-unambiguous. On the other hand, if the over-
approximate automaton is counter-ambiguous, then we can-
not infer that the original automaton is counter-ambiguous.

Example 3.4. We show the static analysis for a counter-
unambiguous regex 𝑟 = Σ

∗(𝜎1𝜎1{𝑛} + 𝜎2𝜎2{𝑛}), where 𝑛 is
a constant. For this regex, the over-approximate analysis is
more efficient than the exact analysis. To illustrate this, we
first construct the NCA:

𝑞1 𝑞2

𝑞3

𝑞4 : 𝑥

𝑞5 : 𝑥
Σ

𝜎̄1

𝜎̄2

𝜎1 / 𝑥 B 1

𝜎1, 𝑥 < 𝑛 / 𝑥++

𝜎2 / 𝑥 B 1

𝜎2, 𝑥 < 𝑛 / 𝑥++

𝑥 = 𝑛

𝑥 = 𝑛

The exact analysis constructs the token transition system:

𝑞1 𝑞2

𝑞3

(𝑞4, 1)

(𝑞5, 1)

...

...

(𝑞4, 𝑛)

(𝑞5, 𝑛)
Σ

𝜎̄1

𝜎̄2

𝜎1

𝜎2

𝜎1

𝜎2

𝜎1

𝜎2

To determine whether the regex is counter-unambiguous,
the exact analysis explores all possible token pairs in the
product transition system. In this example, the number of
explored pairs is Θ(𝑛2). Below is a part of the product tran-
sition system, in which all token pairs ⟨(𝑞5, 𝑖), (𝑞4, 𝑗)⟩ with
1 ≤ 𝑖 < 𝑗 ≤ 𝑛 (colored in gray) will be explored.

⟨𝑞1, 𝑞1 ⟩ ⟨𝑞1, 𝑞2 ⟩

⟨𝑞3, (𝑞4, 1) ⟩

⟨𝑞1, (𝑞4, 1) ⟩

⟨(𝑞5, 1), (𝑞4, 2) ⟩

⟨𝑞3, (𝑞4, 2) ⟩ ⟨(𝑞5, 1), (𝑞4, 3) ⟩

⟨(𝑞5, 2), (𝑞4, 3) ⟩

...

...

...

Σ

𝜎̄1

𝜎̄2 ∩ 𝜎1

𝜎1

𝜎2 ∩ 𝜎1

𝜎̄2 ∩ 𝜎1

𝜎2 ∩ 𝜎1

𝜎2 ∩ 𝜎1

We have observed that regexes of the form 𝑟 = Σ
∗(𝜎1𝜎1{𝑛}+

𝜎2𝜎2{𝑛}), where 𝑛 is a large number, can be found in the

Snort and Suricata benchmarks. For these regexes, the ex-
act analysis may require a long computation. Fortunately,
the over-approximate analysis is substantially faster. We
approximate the regex as 𝑟 ′ = Σ

∗(𝜎1𝜎1{𝑛} + 𝜎2𝜎
∗
2) and

𝑟 ′′ = Σ
∗(𝜎1𝜎

∗
1 + 𝜎2𝜎2{𝑛}) and check the counter-ambiguity

of 𝑟 ′ and 𝑟 ′′ using the exact analysis. The regex 𝑟 is de-
termined to be counter-unambiguous if both 𝑟 ′ and 𝑟 ′′ are
counter-unambiguous. Below, we construct the token transi-
tion system 𝐺 for 𝑟 ′. Only Θ(𝑛) token pairs are explored in
the product transition system 𝐺2.

𝑞1 𝑞2

𝑞3

(𝑞4, 1) ... (𝑞4, 𝑛)

Σ

𝜎̄1

𝜎̄2
𝜎2

𝜎1 𝜎1 𝜎1

The over-approximate analysis checks the counter-ambiguity
of 𝑟 ′, 𝑟 ′′. So, it reduces the complexity from Θ(𝑛2) to Θ(𝑛).

3.2.1 NCAExecutionwithBit Vectors. If the static anal-
ysis determines that an NCA state 𝑞 is counter-ambiguous,
then this implies that the execution of the automaton may
require several memory locations to store tokens of the form
(𝑞, 𝛽). Assuming that 𝑞 has only one counter register 𝑥 (i.e.,
𝑅(𝑞) = {𝑥}) and that 𝑞 is 𝑛-bounded, we know that there are
at most 𝑛 different possible tokens. In order to compactly
represent a set of tokens, the idea is to use a bit vector that
indicates the presence or the absence of a specific token on
𝑞. So, a bit vector 𝑣 encodes a set of tokens on 𝑞 as follows:
𝑣 [𝑖] = 1 iff the token (𝑞, 𝑖) is active. We can also think of
a bit vector as a representation for part of the automaton
configuration (recall the configuration semantics from ğ2).
It remains to see how the execution of the automaton

can be described using these bit vectors to represent the
configuration. Example 2.2 shows the NCA for the regex
Σ
∗𝜎1 (𝜎2𝜎3){𝑚,𝑛}𝜎4. This NCA is general enough to illus-

trate the main ways in which we manipulate bit vectors:
(1) Consider a transition 𝑝 → 𝑞, annotated with ł𝜎 / 𝑥 B

𝑐ž, where 𝑝 is pure and 𝑅(𝑞) = {𝑥}. A token on 𝑝 is
transformed into a bit vector 𝑣 for 𝑞 that is everywhere
0 except that 𝑣 [𝑐] = 1.

(2) Let 𝑝 → 𝑞 be a transition, annotated with 𝜎 , where
𝑅(𝑝) = 𝑅(𝑞) = {𝑥}. Since the transition does not change
the counter valuations, a bit vector 𝑣 on 𝑝 is passed along
unchanged to 𝑞.

(3) We will deal now with a transition 𝑝 → 𝑞, annotated
with ł𝜎, 𝑥 < 𝑛 /𝑥++ž, where 𝑅(𝑝) = 𝑅(𝑞) = {𝑥}. Assume
further that both 𝑝 and 𝑞 are 𝑛-bounded, which means
that each state carries a bit vector of size𝑛. This transition
corresponds to performing a shift operation to the bit
vector 𝑣 of 𝑝 , resulting in a new bit vector 𝑣 ′ for 𝑞. We
have: 𝑣 ′[1] = 0 and 𝑣 ′[𝑖+1] = 𝑣 [𝑖] for ever 𝑖 = 2, . . . , 𝑛−1.

(4) Finally, let us consider a transition 𝑝 → 𝑞, annotated
with ł𝜎,𝑚 ≤ 𝑥 ≤ 𝑛ž, where 𝑅(𝑝) = {𝑥} and 𝑞 is pure. If 𝑣
is the current bit vector for 𝑝 , then taking this transition
produces a token for 𝑞 if and only if one of 𝑣 [𝑚], 𝑣 [𝑚 +

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA L. Kong, Q. Yu, A. Chattopadhyay, A. L. Glaunec, Y. Huang, K. Mamouras, and K. Yang

Table 1. Analysis of regexes in the benchmarks.

Benchmark # total # supported # counting # c-ambiguous

Protomata 2338 2338 1675 1675

Snort 5839 5315 1934 282

Suricata 4480 3728 1510 246

SpamAssassin 3786 3690 459 279

ClamAV 100472 100472 4823 3626

1], . . . , 𝑣 [𝑛 − 1], 𝑣 [𝑛] is equal to 1. In other words, we
have to compute the disjunction 𝑣 [𝑚] ∨ · · · ∨ 𝑣 [𝑛].

The above cases involve the main operations that we use for
bit vectors: setting the least significant bit (case 1), shifting
left by one position (case 3), and computing the disjunction
of some of the most significant bits (case 4).

The way bit vectors are used (setting the lowest-order bit,
shifting, and reading high-order bits) is similar to how queues
and sliding windows are used for runtime verification with
metric temporal logic (MTL) [7, 15, 32, 33]. We note that MTL
involves constructs that specify time durations with intervals
of the form [𝑚,𝑛], which are akin to the bounded repetition
operators {𝑚,𝑛} of regexes. This explains the similarity in
the implementation.

3.3 Implementation and Experiments

We have implemented a Java program that statically analyzes
regexes to determine if they are counter-(un)ambiguous.
We will call this program the counter-ambiguity checker.
The implementation includes both the exact and the over-
approximate analyses. As the approximate analysis may be
unable to verify the counter-ambiguity of some instances,
our checker implements a hybrid analysis. First, it checks
the counter-(un)ambiguity of each instance of bounded repe-
tition in the regex using the over-approximate analysis. If it
finds a potentially counter-ambiguous instance, then it halts
the over-approximate analysis and uses the exact algorithm
to check the regex. Otherwise, it determines that the regex
is counter-unambiguous.
The checker not only determines if a regex is counter-

ambiguous but also provides a counter-ambiguity witness,
which is a string over the alphabet. If the NCA is executed on
the witness, then at least two tokens with different counter
valuations will end up on some state of the NCA. The checker
supports the analysis of counter-ambiguity for each instance
of bounded repetition inside a regex. For example, given
a regex 𝜎1{𝑚}Σ∗𝜎2{𝑛}, it can check the first instance (i.e.,
{𝑚}), which is counter-unambiguous, and the second in-
stance (i.e., {𝑛}), which is counter-ambiguous.
We evaluate the performance of our counter-ambiguity

checker using five benchmarks, which contain regexes col-
lected from real applications. These benchmarks are: (1) the
Snort [50] and (2) Suricata benchmarks [55] that contain
patterns for network traffic, (3) the Protomata benchmark

that includes 1309 protein motifs from the PROSITE data-
base [39, 42], (4) the ClamAV benchmark [16] that contains
patterns that indicate the presence of viruses, and (5) the
SpamAssassin benchmark [3] that includes patterns for
detecting spam email.
Table 1 shows some statistics for the regexes included

in the benchmarks. In the Snort, Suricata, and SpamAssas-
sin benchmarks, some of the collected regexes may con-
tain backreferences [38], which is not a regular operator
(i.e., it can give rise to non-regular languages). We filter out
regexes with backreferences from the datasets and perform
the static analysis on the remaining regexes (which contain
the supported regular operators). Table 1 provides the fol-
lowing information: the total number of regexes for each
benchmark, the number of regexes with supported (regular)
operators, the number of regexes with at least one occur-
rence of constrained repetition (counting), and the number
of counter-ambiguous regexes.

Experimental setup. The experiments were executed in
Ubuntu 20.04 on a desktop computer equipped with an Intel
Xeon(R) E3-1241 v3 CPU (4 cores) with 16 GB of memory
(DDR3 at 1600 MHz). We used OpenJDK 17 and set the max-
imum heap size to 4 GB. For each regex, we executed 20
trials and selected the mean runtime as the value used the
reported results (excluding the first 10 łwarm-upž trials).

Performance: Running Time. We evaluate the perfor-
mance of the static analysis over regexes that have non-
nested instances of constrained repetition. We report the
running time of the static analysis and we consider its de-
pendence on the following łmeasure of complexityž for a
regex 𝑟 : the maximum repetition upper bound over all oc-
currences of {𝑚,𝑛} in a regex, which we denote by 𝜇 (𝑟). For
example, the regex 𝑟 = 𝜎1{1, 5}𝜎2𝜎3{4} has two occurrences
of constrained repetition, and the maximum repetition up-
per bound is 𝜇 (𝑟) = max(5, 4) = 5. In general, we expect the
running time for the analysis of a regex 𝑟 to depend on 𝜇 (𝑟),
since checking counter-ambiguity involves the generation
of token pairs whose number increases as 𝜇 (𝑟) increases.
Figure 2(a) shows the running time of the static analysis

indexed by the measure 𝜇. The results are shown in 20 plots,
which are organized in a 5× 4 grid. There are 5 rows, one for
each benchmark: Snort, Suricata, Protomata, SpamAssassin,
ClamAV. There are 4 columns, one for each variant of the
static analyzer: exact, approximate, hybrid, and hybrid with
witness reporting. Each of these 20 plots contains multiple
points, one for each regex of the benchmark. For every regex
𝑟 , the corresponding point has horizontal coordinate equal to
𝜇 (𝑟) and vertical coordinate equal to the running time of the
analysis (in milliseconds). We observe that the running time
for analyzing a regex 𝑟 generally increases as 𝜇 (𝑟) increases.
In the Snort and Suricata benchmarks, the checker takes

more than 100 seconds to perform the exact analysis for

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA L. Kong, Q. Yu, A. Chattopadhyay, A. L. Glaunec, Y. Huang, K. Mamouras, and K. Yang

four different variants of the static analysis. Similarly to the
case of running time, the over-approximate analysis greatly
reduces the worst-case cost of analyzing several counter-
unambiguous regexes in the Snort and Suricata benchmarks.

4 Hardware Implementation and
Experiments

In this section, we present our hardware design for effi-
ciently executing NCAs. We augment a state-of-the-art in-
memory NFA acceleration architecture called CAMA [26]
with counter and bit vector modules. We report hardware
simulation results in both microbenchmarks and application
benchmarks.

4.1 Hardware Design

Existing in-memory automata accelerators adopt a two-phase
architecture: a state matching phase that finds the current
active states, and a state transition phase that calculates the
available states in the next cycle. AP-style accelerators, such
as AP [19], CA [54], and eAP4 [47], perform state matching
by reading from read-access memories (RAMs) that store bit
vector representations of states in memory columns. Each
column in the RAM represents one state, which is called a
State Transition Element (STE). Using 8-bit symbols as an
example, each RAM entry is 256-bit and the 𝑖-th position
has value 1 iff the symbol 𝑖 is associated with the state5. Ad-
ditionally, the connections between states are programmed
into a switch network where existing state transitions are
realized as physical connections.

Each processing cycle begins in the state matching phase,
where an input symbol is encoded as a one-hot representa-
tion6 and used as the address to read from the state matching
memory. The columns that read out ‘1’s indicate successful
matches between the input symbol and the STEs. With a
logical AND operation between the available states reported
from the last cycle and the matched states reported by the
memory in the current cycle, matching results of the active
states in the current cycle are determined. Next, in the state
transition phase, the current active states pass through the
programmed switch network to create the next vector which
stores available states for the next cycle.

However, AP-style accelerators severely under-utilize the
state matching memories in realistic NFAs across common
benchmarks, because this approach is optimal only for the
worst case of purely random NFAs. Impala [46] and CAMA

4eAP stands for embedded Automata Processor.
5Recall from ğ2 that we consider homogeneous automata, which means

that all transitions leading to a state 𝑞 are labeled with the same predicate

𝜎 over the alphabet. The RAM entry is a representation of the predicate 𝜎 .
6The one-hot representation of an 8-bit symbol 𝑖 consists of 28 = 256 bits,

where the 𝑖-th bit has value 1 and the others are 0.

[26] made critical improvements by proposing special en-
coding schemes to reduce the state matching memory re-
quirements. CAMA further employs specialized content-
addressable memories (CAM) to perform state matching
with lower energy and memory footprints than all other
designs using RAM. As a result, the memory requirement for
256 STEs is reduced from one 256×256 6-transistor SRAM
in AP and CA, to two 16×256 6-transistor SRAMs in Impala
and approximately one 16×256 8-transistor CAM in CAMA.
Moreover, CAMA optimizes a reduced-crossbar switch net-
work that was first proposed by eAP, which largely reduces
the area and energy costs of state transitions. Compared with
prior NFA in-memory architectures, CAMA achieves leading
throughput, energy, and area efficiency. CAMA’s throughput
is 2.14GBps, 1.18x better than CA, 9.5x better than FPGA-
based Grapefruit [40], and 2-4 orders better than CPU/GPU
solutions. CAMA’s energy efficiency is 4.91nJ/Byte, over 10x
better than most efficient alternatives, i.e. Grapefruit (FPGA)
and AP. This paper uses the latest memory- and energy-
efficient CAMA architecture as the baseline and augments it
with our proposed counter and bit vector modules.

Figure 4(a) shows the Glushkov NCA for the counter-
unambiguous regex 𝑎(𝑏𝑐){1, 3}𝑐 . The Glushkov construction
ensures that the NCA is homogeneous (all transitions en-
tering a state are labeled with the same predicate over the
alphabet). This property allows us to convert the NCA to
a hardware-friendly representation by omitting the initial
state and pushing the predicates from the edges to the states,
thus transforming NCA states into STEs. For example, we
push the predicate 𝑎 into state 𝑞𝑎 so that in Figure 4(b) we
have a state labeled with the predicate 𝑎, which becomes an
STE that is activated to fire signals only when the input satis-
fies the predicate 𝑎. The original CAMA design, as shown in
Figure 4(c), only supports NCAs by fully unfolding bounded
repetitions. In our augmented CAMA, two types of hardware
modules, counters and bit vectors, are added to accelerate
the execution of NCAs. As shown in Figure 4(d), both mod-
ules take input from STEs related to counting and produce
output signals to the switch network. Counters are inserted
to support counter-unambiguous repetitions, while bit vec-
tors are reserved for counter-ambiguous repetitions (recall
ğ3.2.1). Compared to CAMA, the additional counters and bit
vectors retain all necessary processing information while
avoiding the cost of unfolding (which results in additional
STEs). In Section 4.2, we will further explain the design and
the input/output ports of the counter and bit vector modules.
Figure 5 shows the structure of an augmented CAMA

bank. The overall architecture of CAMA is preserved, and
the functionalities of existing components remain the same.
Each bank consists of an input/output buffer and 16 process-
ing arrays. Each array has a global switch and 8 processing
elements (PEs). Each PE contains two 256-STE CAM arrays,
two local switches, and 8 counters, and it may contain a bit
vector depending on the configuration from users. Note that

Software-Hardware Codesign for Efficient In-Memory Regular Pattern Matching PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

[10] Ronald Book, Shimon Even, Sheila Greibach, and Gene Ott. 1971. Am-

biguity in Graphs and Expressions. IEEE Trans. Computers C-20, 2

(1971), 149ś153. https://doi.org/10.1109/T-C.1971.223204

[11] Benjamin C Brodie, David E Taylor, and Ron K Cytron. 2006. A Scal-

able Architecture for High-throughput Regular-expression Pattern

Matching. ACM SIGARCH computer architecture news 34, 2 (2006),

191ś202.

[12] Anne Brüggemann-Klein and Derick Wood. 1992. Deterministic Regu-

lar Languages. In STACS 92. Springer, Heidelberg, 173ś184.

[13] Anne Brüggemann-Klein and Derick Wood. 1998. One-Unambiguous

Regular Languages. Inf. Comput. 140, 2 (1998), 229ś253. https://doi.

org/10.1006/inco.1997.2688

[14] Niccolo’ Cascarano, Pierluigi Rolando, Fulvio Risso, and Riccardo Sisto.

2010. iNFAnt: NFA Pattern Matching on GPGPU Devices. ACM

SIGCOMM Computer Communication Review 40, 5 (2010), 20ś26.

[15] Agnishom Chattopadhyay and Konstantinos Mamouras. 2020. A Ver-

ified Online Monitor for Metric Temporal Logic with Quantitative

Semantics. In Runtime Verification (RV) (LNCS, Vol. 12399), Jyotir-

moy Deshmukh and Dejan Ničković (Eds.). Springer, Cham, 383ś403.

https://doi.org/10.1007/978-3-030-60508-7_21

[16] ClamAV 2022. ClamAV®: An Open-source Antivirus Engine for

Detecting Trojans, Viruses, Malware & Other Malicious Threats.

https://www.clamav.net/.

[17] Thomas Colcombet. 2015. Unambiguity in Automata Theory. In

Descriptional Complexity of Formal Systems. Springer, Cham, 3ś18.

https://doi.org/10.1007/978-3-319-19225-3_1

[18] Russ Cox. 2010. Regular Expression Matching in the Wild. https:

//swtch.com/~rsc/regexp/regexp3.html.

[19] Paul Dlugosch, Dave Brown, Paul Glendenning, Michael Leventhal,

and Harold Noyes. 2014. An Efficient and Scalable Semiconductor

Architecture for Parallel Automata Processing. IEEE Transactions

on Parallel and Distributed Systems 25, 12 (2014), 3088ś3098. https:

//doi.org/10.1109/TPDS.2014.8

[20] Wouter Gelade, Marc Gyssens, and Wim Martens. 2009. Regular Ex-

pressions with Counting: Weak versus Strong Determinism. In Mathe-

matical Foundations of Computer Science 2009. Springer, Heidelberg,

369ś381.

[21] Victor Mikhaylovich Glushkov. 1961. The Abstract Theory of Au-

tomata. Russian Math. Surveys 16, 5 (1961), 1ś53. https://doi.org/10.

1070/RM1961v016n05ABEH004112

[22] Vaibhav Gogte, Aasheesh Kolli, Michael J. Cafarella, Loris D’Antoni,

and Thomas F. Wenisch. 2016. HARE: Hardware Accelerator for Reg-

ular Expressions. In 2016 49th Annual IEEE/ACM International Sym-

posium on Microarchitecture (MICRO). IEEE, 1ś12. https://doi.org/10.

1109/MICRO.2016.7783747

[23] Lukáš Holík, Ondřej Lengál, Olli Saarikivi, Lenka Turoňová, Margus

Veanes, and Tomáš Vojnar. 2019. Succinct Determinisation of Counting

Automata via Sphere Construction. In Programming Languages and

Systems, Anthony Widjaja Lin (Ed.). Springer, Cham, 468ś489. https:

//doi.org/10.1007/978-3-030-34175-6_24

[24] Dag Hovland. 2009. Regular Expressions with Numerical Constraints

and Automata with Counters. In Theoretical Aspects of Computing -

ICTAC 2009. Springer, Heidelberg, 231ś245. https://doi.org/10.1007/

978-3-642-03466-4_15

[25] Dag Hovland. 2012. The Membership Problem for Regular Expressions

with Unordered Concatenation and Numerical Constraints. In Lan-

guage and Automata Theory and Applications. Springer, Heidelberg,

313ś324.

[26] Yi Huang, Zhiyu Chen, Dai Li, and Kaiyuan Yang. 2021. CAMA:

Energy and Memory Efficient Automata Processing in Content-

Addressable Memories. https://doi.org/10.48550/arXiv.2112.00267

arXiv:2112.00267 [cs.AR]

[27] Marzieh Lenjani and Mahmoud Reza Hashemi. 2014. Tree-based

Scheme for Reducing Shared Cache Miss Rate Leveraging Regional,

Statistical and Temporal Similarities. IET Computers & Digital Tech-

niques 8, 1 (2014), 30ś48. https://doi.org/10.1049/iet-cdt.2011.0066

[28] Hongyuan Liu, Mohamed Ibrahim, Onur Kayiran, Sreepathi Pai, and

Adwait Jog. 2018. Architectural Support for Efficient Large-Scale

Automata Processing. In 2018 51st Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO). IEEE, New York, NY, USA,

908ś920. https://doi.org/10.1109/MICRO.2018.00078

[29] Hongyuan Liu, Sreepathi Pai, and Adwait Jog. 2020. Why GPUs Are

Slow at Executing NFAs and How to Make Them Faster. In Proceedings

of the Twenty-Fifth International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS ’20). ACM,

New York, NY, USA, 251ś265. https://doi.org/10.1145/3373376.3378471

[30] T. Liu, Y. Yang, Y. Liu, Y. Sun, and Li Guo. 2011. An Efficient Regular

Expressions Compression Algorithm from a New Perspective. In 2011

Proceedings IEEE INFOCOM. IEEE, New York, NY, USA, 2129ś2137.

https://doi.org/10.1109/INFCOM.2011.5935024

[31] Jan Van Lunteren, Christoph Hagleitner, Timothy Heil, Giora Biran,

Uzi Shvadron, and Kubilay Atasu. 2012. Designing a Programmable

Wire-Speed Regular-Expression Matching Accelerator. In 2012 45th

Annual IEEE/ACM International Symposium on Microarchitecture. IEEE,

New York, NY, USA, 461ś472. https://doi.org/10.1109/MICRO.2012.49

[32] Konstantinos Mamouras, Agnishom Chattopadhyay, and Zhifu Wang.

2021. Algebraic Quantitative Semantics for Efficient Online Tem-

poral Monitoring. In Tools and Algorithms for the Construction and

Analysis of Systems (TACAS) (LNCS, Vol. 12651), Jan Friso Groote

and Kim Guldstrand Larsen (Eds.). Springer, Cham, 330ś348. https:

//doi.org/10.1007/978-3-030-72016-2_18

[33] Konstantinos Mamouras and Zhifu Wang. 2020. Online Signal Mon-

itoring with Bounded Lag. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems 39, 11 (2020), 3868ś3880.

https://doi.org/10.1109/TCAD.2020.3013053

[34] Albert R. Meyer and Michael J. Fischer. 1971. Economy of Description

by Automata, Grammars, and Formal Systems. In 2013 IEEE 54th An-

nual Symposium on Foundations of Computer Science. IEEE Computer

Society, Los Alamitos, CA, USA, 188ś191. https://doi.org/10.1109/

SWAT.1971.11

[35] Albert R. Meyer and Larry J. Stockmeyer. 1972. The Equivalence

Problem for Regular Expressions with Squaring Requires Exponential

Space. In 13th Annual Symposium on Switching and Automata Theory

(SWAT 1972). IEEE Computer Society, Los Alamitos, CA, USA, 125ś129.

https://doi.org/10.1109/SWAT.1972.29

[36] Hiroki Nakahara, Tsutomu Sasao, and Munehiro Matsuura. 2011. A

Regular Expression Matching Circuit Based on a Decomposed Automa-

ton. In Reconfigurable Computing: Architectures, Tools and Applications.

Springer, Heidelberg, 16ś28. https://doi.org/10.1007/978-3-642-19475-

7_4

[37] PCRE 2021. PCRE - Perl Compatible Regular Expressions. https:

//www.pcre.org/.

[38] Posix Syntax in PCRE 2022. Posix Syntax in PCRE. https://www.pcre.

org/original/doc/html/pcrepattern.html.

[39] PROSITE 2022. PROSITE: Database of Protein Domains, Families and

Functional Sites. https://prosite.expasy.org/.

[40] Reza Rahimi, Elaheh Sadredini, Mircea Stan, and Kevin Skadron.

2020. Grapefruit: An Open-Source, Full-Stack, and Customizable

Automata Processing on FPGAs. In 2020 IEEE 28th Annual Interna-

tional Symposium on Field-Programmable Custom Computing Machines

(FCCM). IEEE, New York, NY, USA, 138ś147. https://doi.org/10.1109/

FCCM48280.2020.00027

[41] RE2 2021. RE2: Google’s regular expression library. https://github.

com/google/re2.

[42] Indranil Roy and Srinivas Aluru. 2016. Discovering Motifs in Bio-

logical Sequences Using the Micron Automata Processor. IEEE/ACM

Transactions on Computational Biology and Bioinformatics 13, 1 (2016),

99ś111. https://doi.org/10.1109/TCBB.2015.2430313

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA L. Kong, Q. Yu, A. Chattopadhyay, A. L. Glaunec, Y. Huang, K. Mamouras, and K. Yang

[43] Indranil Roy, Ankit Srivastava, Matt Grimm, Marziyeh Nourian,

Michela Becchi, and Srinivas Aluru. 2019. Evaluating High Perfor-

mance Pattern Matching on the Automata Processor. IEEE Trans. Com-

put. 68, 8 (2019), 1201ś1212. https://doi.org/10.1109/TC.2019.2901466

[44] RustRegex 2021. Regex: A Rust Library for Parsing, Compiling, and

Executing Regular Expressions. https://github.com/rust-lang/regex.

[45] Olli Saarikivi, Margus Veanes, Tiki Wan, and Eric Xu. 2019. Sym-

bolic Regex Matcher. In Tools and Algorithms for the Construction

and Analysis of Systems (LNCS, Vol. 11427). Springer, Cham, 372ś378.

https://doi.org/10.1007/978-3-030-17462-0_24

[46] E. Sadredini, R. Rahimi, M. Lenjani, M. Stan, and K. Skadron. 2020. Im-

pala: Algorithm/Architecture Co-Design for In-Memory Multi-Stride

Pattern Matching. In 2020 IEEE International Symposium on High Per-

formance Computer Architecture (HPCA). IEEE, New York, NY, USA,

86ś98. https://doi.org/10.1109/HPCA47549.2020.00017

[47] Elaheh Sadredini, Reza Rahimi, Vaibhav Verma, Mircea Stan, and Kevin

Skadron. 2019. eAP: A Scalable and Efficient In-Memory Accelerator

for Automata Processing. In Proceedings of the 52nd Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO ’52). ACM, New

York, NY, USA, 87Ð-99. https://doi.org/10.1145/3352460.3358324

[48] Reetinder Sidhu and Viktor K Prasanna. 2001. Fast Regular Expression

Matching Using FPGAs. In The 9th Annual IEEE Symposium on Field-

Programmable Custom Computing Machines (FCCM ’01). IEEE, New

York, NY, USA, 227ś238.

[49] Randy Smith, Cristian Estan, Somesh Jha, and Shijin Kong. 2008. De-

flating the Big Bang: Fast and Scalable Deep Packet Inspection with

Extended Finite Automata. In Proceedings of the ACM SIGCOMM 2008

Conference on Data Communication (SIGCOMM ’08). ACM, New York,

NY, USA, 207ś218. https://doi.org/10.1145/1402958.1402983

[50] Snort 2022. Snort Intrusion Detection System. https://www.snort.org/.

[51] Ioannis Sourdis, Joao Bispo, Joao MP Cardoso, and Stamatis Vassil-

iadis. 2008. Regular Expression Matching in Reconfigurable Hard-

ware. Journal of Signal Processing Systems 51, 1 (2008), 99ś121.

https://doi.org/10.1007/s11265-007-0131-0

[52] SPICE 2022. SPICE: A General-purpose Circuit Simulation Program

for Nonlinear DC, Nonlinear Transient, and Linear AC Analyses. http:

//bwrcs.eecs.berkeley.edu/Classes/IcBook/SPICE.

[53] Larry J. Stockmeyer and Albert R. Meyer. 1973. Word Problems Requir-

ing Exponential Time (Preliminary Report). In Proceedings of the Fifth

Annual ACM Symposium on Theory of Computing (STOC ’73). ACM,

New York, NY, USA, 1ś9. https://doi.org/10.1145/800125.804029

[54] Arun Subramaniyan, Jingcheng Wang, Ezhil R. M. Balasubramanian,

David Blaauw, Dennis Sylvester, and Reetuparna Das. 2017. Cache

Automaton. In Proceedings of the 50th Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO-50 ’17). ACM, New York, NY,

USA, 259ś272. https://doi.org/10.1145/3123939.3123986

[55] Suricata 2022. Suricata Threat Detection Engine. https://suricata.io/.

[56] Prateek Tandon, Faissal M Sleiman, Michael J Cafarella, and Thomas F

Wenisch. 2016. Hawk: Hardware Support for Unstructured Log Pro-

cessing. In 2016 IEEE 32nd International Conference on Data Engineering

(ICDE). IEEE, New York, NY, USA, 469ś480. https://doi.org/10.1109/

ICDE.2016.7498263

[57] Ken Thompson. 1968. Programming Techniques: Regular Expression

Search Algorithm. Commun. ACM 11, 6 (1968), 419ś422. https://doi.

org/10.1145/363347.363387

[58] N. Tuck, T. Sherwood, B. Calder, and G. Varghese. 2004. Deterministic

Memory-efficient String Matching Algorithms for Intrusion Detection.

In IEEE INFOCOM 2004, Vol. 4. IEEE, New York, NY, USA, 2628ś2639

vol.4. https://doi.org/10.1109/INFCOM.2004.1354682

[59] Lenka Turoňová, Lukáš Holík, Ondřej Lengál, Olli Saarikivi, Margus

Veanes, and Tomáš Vojnar. 2020. Regex Matching with Counting-

Set Automata. Proceedings of the ACM on Programming Languages 4,

OOPSLA, Article 218 (2020), 30 pages. https://doi.org/10.1145/3428286

[60] Giorgos Vasiliadis, Michalis Polychronakis, Spiros Antonatos, Evange-

los P. Markatos, and Sotiris Ioannidis. 2009. Regular Expression Match-

ing on Graphics Hardware for Intrusion Detection. In Recent Advances

in Intrusion Detection, Engin Kirda, Somesh Jha, and Davide Balzarotti

(Eds.). Springer, Heidelberg, 265ś283. https://doi.org/10.1007/978-3-

642-04342-0_14

[61] Jack Wadden, Vinh Dang, Nathan Brunelle, Tommy Tracy II, Deyuan

Guo, Elaheh Sadredini, Ke Wang, Chunkun Bo, Gabriel Robins, Mircea

Stan, and Kevin Skadron. 2016. ANMLZoo: A Benchmark Suite for Ex-

ploring Bottlenecks in Automata Processing Engines andArchitectures.

In 2016 IEEE International Symposium on Workload Characterization

(IISWC). IEEE, 1ś12. https://doi.org/10.1109/IISWC.2016.7581271

[62] Jack Wadden, Tommy Tracy, Elaheh Sadredini, Lingxi Wu, Chunkun

Bo, Jesse Du, Yizhou Wei, Jeffrey Udall, Matthew Wallace, Mircea

Stan, and Kevin Skadron. 2018. AutomataZoo: A Modern Automata

Processing Benchmark Suite. In 2018 IEEE International Symposium on

Workload Characterization (IISWC). IEEE, New York, NY, USA, 13ś24.

https://doi.org/10.1109/IISWC.2018.8573482

[63] Hao Wang, Shi Pu, Gabriel Knezek, and Jyh-Charn Liu. 2010. A Modu-

lar NFA Architecture for Regular Expression Matching. In Proceedings

of the 18th Annual ACM/SIGDA International Symposium on Field Pro-

grammable Gate Arrays (FPGA ’10). ACM, New York, NY, USA, 209ś218.

https://doi.org/10.1145/1723112.1723149

[64] Ke Wang, Kevin Angstadt, Chunkun Bo, Nathan Brunelle, Elaheh

Sadredini, Tommy Tracy, Jack Wadden, Mircea Stan, and Kevin

Skadron. 2016. An Overview of Micron’s Automata Processor. In

Proceedings of the Eleventh IEEE/ACM/IFIP International Conference on

Hardware/Software Codesign and System Synthesis (CODES ’16). ACM,

New York, NY, USA, Article 14, 3 pages. https://doi.org/10.1145/

2968456.2976763

[65] Xiang Wang, Yang Hong, Harry Chang, KyoungSoo Park, Geoff Lang-

dale, Jiayu Hu, and Heqing Zhu. 2019. Hyperscan: A Fast Multi-Pattern

Regex Matcher for Modern CPUs. In 16th USENIX Symposium on

Networked Systems Design and Implementation (NSDI ’19). USENIX

Association, 631ś648. https://www.usenix.org/conference/nsdi19/

presentation/wang-xiang

[66] Ted Xie, Vinh Dang, Jack Wadden, Kevin Skadron, and Mircea Stan.

2017. REAPR: Reconfigurable Engine for Automata Processing. In

2017 27th International Conference on Field Programmable Logic and

Applications (FPL). IEEE, New York, NY, USA, 1ś8. https://doi.org/10.

23919/FPL.2017.8056759

[67] Yi-Hua E. Yang, Weirong Jiang, and Viktor K. Prasanna. 2008. Compact

Architecture for High-Throughput Regular Expression Matching on

FPGA. In Proceedings of the 4th ACM/IEEE Symposium on Architectures

for Networking and Communications Systems (ANCS ’08). ACM, New

York, NY, USA, 30ś39. https://doi.org/10.1145/1477942.1477948

[68] Yi-Hua E. Yang and Viktor K. Prasanna. 2011. Space-time Tradeoff in

Regular ExpressionMatchingwith Semi-deterministic Finite Automata.

In 2011 Proceedings IEEE INFOCOM. IEEE, New York, NY, USA, 1853ś

1861. https://doi.org/10.1109/INFCOM.2011.5934986

[69] Fang Yu, Zhifeng Chen, Yanlei Diao, T. V. Lakshman, and Randy H.

Katz. 2006. Fast and Memory-Efficient Regular Expression Matching

for Deep Packet Inspection. In Proceedings of the 2006 ACM/IEEE Sym-

posium on Architecture for Networking and Communications Systems

(ANCS ’06). ACM, New York, NY, USA, 93ś102. https://doi.org/10.

1145/1185347.1185360

[70] Yuan Zu, Ming Yang, Zhonghu Xu, Lin Wang, Xin Tian, Kunyang

Peng, and Qunfeng Dong. 2012. GPU-Based NFA Implementation

for Memory Efficient High Speed Regular Expression Matching. In

Proceedings of the 17th ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming (PPoPP ’12). ACM, New York, NY,

USA, 129ś140. https://doi.org/10.1145/2145816.2145833

	Abstract
	1 Introduction
	2 Preliminaries
	3 Static Analysis
	3.1 Deciding Counter-Ambiguity
	3.2 Over-Approximate Analysis
	3.3 Implementation and Experiments

	4 Hardware Implementation and Experiments
	4.1 Hardware Design
	4.2 Compilation from Regex to MNRL
	4.3 Hardware Evaluation

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

