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A B S T R A C T   

Hurricane evacuations involve many interacting physical-social factors and uncertainties that evolve with time as 
the storm approaches and arrives. Because of these complex and uncertain dynamics, improving the hurricane- 
forecast-evacuation system remains a formidable challenge for researchers and practitioners alike. This article 
introduces a modeling framework built to holistically investigate the complex dynamics of the hurricane- 
forecast-evacuation system i.e., to determine which factors are most important and how they interact across a 
range of real or synthetic scenarios. The modeling framework, called FLEE, includes models of the natural hazard 
(hurricane), the human system (information flow, evacuation decisions), the built environment (road infra
structure), and connections between systems (forecasts and warning information, traffic). In this paper, we 
describe FLEE’s conceptualization and implementation and present proof-of-concept experiments illustrating its 
behaviors when key parameters are modified. In doing so, we show how FLEE is capable of examining the dy
namics of the hurricane-forecast-evacuation system from a new perspective that is informed-by and builds-upon 
empirical work. This information can support researchers and practitioners in hazard risk management, mete
orology, and related disciplines, thereby offering the promise of direct applications to mitigate hurricane losses.   

1. Introduction 

Hurricanes Irma (2017) and Rita (2005) demonstrate how, in the 
mainland US, the forecast-evacuation system is uncertain, dynamic, and 
complex. For example, Irma’s 3-10-day forecasts indicated the storm 
was likely to make landfall as a major hurricane somewhere in Florida, 
with the most likely track near Miami, triggering the largest evacuation 
in US history [1]. However, the forecast track shifted slightly westward 
as the storm approached, with eventual landfall near Tampa Bay–St. 
Petersburg, a common evacuation destination in the event, while leav
ing Miami largely unscathed [2,3]. Similarly, uncertainties in Hurricane 
Rita’s track and intensity forecasts, combined with the aftermath of 
Hurricane Katrina, led to mass evacuations and severe traffic jams in 
Houston–Galveston. The worst of the storm missed the area, but had Rita 
struck Houston–Galveston directly, the consequences could have been 
severe, as many evacuees were stranded on area roads [4,5]. 

The events are relevant since the forecasts were fairly accurate, with 
the westward shift of Irma’s track falling within the National Hurricane 
Center’s (NHC) cone of uncertainty [2], and Rita’s forecast track being 
less erroneous than most [5]. However, forecasts were less successful in 

providing useful guidance for many affected by the events, despite being 
as useful as one can expect given current forecast skill. These cases 
illustrate the complexities of people using inevitably imperfect forecasts 
to make evacuation decisions well before the storm arrives, and they 
demonstrate how evacuations involve many interacting physical-social 
parts and uncertainties which evolve over time [6–9]. Because of 
these complex dynamics, safe and efficient evacuations can be a 
formidable challenge. 

Empirical studies provide insight to different aspects of hurricane 
evacuations, such as how forecasts, warnings, and other factors influ
ence evacuation decisions [10–12]. However, it is difficult to empiri
cally study all aspects of evacuations across multiple cases. 
Computational models, on the other hand, provide a complementary 
tool where empirical knowledge can be codified and used to run virtual 
experiments for many different hurricane scenarios, real and synthetic 
[6,13]. Recent research demonstrates the potential of modeling the 
hurricane evacuation system together in one framework [13,14]. With 
that we ask: can a modeling framework be designed to holistically 
investigate the complex dynamics of the hurricane-forecast-warning 
system i.e., to determine which factors are important and how they 
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interact across a range of scenarios? 
To answer this question, we introduce a new modeling framework, 

FLEE (Forecasting Laboratory for Exploring the Evacuation-system). 
FLEE includes several empirically-informed models representing key, 
interwoven aspects of real-world hurricane evacuations: the natural 
hazard (hurricane), the human system (information flow, evacuation 
decisions), the built environment (road infrastructure), and connections 
between systems (forecasts and warning information, traffic, impact 
zones). The hurricane and forecast information are represented using 
data and products from the National Hurricane Center (NHC), a 
component of the U.S. National Weather Service which is the leading 
authority for real-time hurricane forecasting. Two agent-based models 
(ABMs) replicate 1) the flow of information and evacuee decision- 
making, and 2) evacuation infrastructure, routing, and traffic. These 
models are conceptually and numerically interconnected as shown in 
Fig. 1. 

This paper has two primary objectives. First, to overview the 
conceptualization and implementation of FLEE. This includes describing 
the model components, which are designed to represent key aspects of 
real-world hurricane evacuations, while remaining sufficiently idealized 
to build fundamental and practical knowledge (e.g., see Refs. [13,15]; 
discussion in Section 2). The paper’s second aim is to show results from 
experiments demonstrating how FLEE is uniquely positioned to examine 
the hurricane-forecast-warning system dynamics. That is, how it can 
explore the effects of altering different factors, interactions among sys
tem components, and to show how large-scale patterns of evacuation 
can emerge from individual decisions of many heterogeneous agents 
interacting with each other and with their physical-informational 
environments. 

Experiments are performed on a simplified representation of the 
Florida peninsula – a place frequently visited by tropical systems [16] – 
and for Hurricane’s Irma and Dorian, which affected these areas in 2017 
and 2019. FLEE was designed to be flexible, however, and thus the 
modeling framework can be modified to study other regions, hurricane 
scenarios, and multi-hazards e.g. hurricanes followed by flooding or 

cascading failures such as loss of power networks, damage to roads etc. 
This research builds on previous work which models the hurricane 

evacuation system by expanding the components of the full system 
represented within the same modeling framework. For example, one 
body of work uses ABMs to study evacuation planning [17–23]. Such 
work focuses on evacuation traffic while using highly idealized repre
sentations of the forecast and warning information and evacuation 
decision-making. Meanwhile another body of work uses ABMs and other 
models to study information flow and evacuation decision making but 
does not include representations of evacuation routing and traffic [6,13, 
24–27]. Arguably the most comprehensive model of the hurricane 
evacuation system is Blanton et al. [14] and Davidson et al. [28]; as they 
integrate the forecast, evacuation decisions, and evacuation traffic into 
one system. However, its representation of information flow and evac
uation decision making were fairly simplistic as these models were 
designed for operational use. 

Modeling frameworks like FLEE, which represent the entire 
hurricane-forecast-warning system, can support researchers, practi
tioners, and policy-makers in a variety of disciplines. This includes 
hazard risk management, which would benefit from increased knowl
edge of the relative effectiveness of evacuation management strategies. 
The evacuation modeling community would benefit from improved 
understanding of evacuation, which provides better rationale for vari
able selection in future models. In meteorology, modeling frameworks 
like FLEE can provide a societally-relevant alternative to traditional 
measures of forecast accuracy, by showing how forecasts influence 
evacuation success. Lastly, by looking at the system holistically, these 
modeling frameworks can cultivate shared understanding across these 
disciplines, a need emphasized by Bostrom et al. [29]. 

2. Modeling framework and implementation 

This section describes FLEE’s components and design [30]. The 
modeling framework was developed using Fortran due to familiarity 
with the language but could be developed using existing agent-based 

Fig. 1. A conceptual overview of FLEE which in
cludes models of the three interconnected systems of 
hurricane evacuations: (a) the natural hazard (b) the 
human system, and (c) the built environment, repre
sented by NHC forecast products and two ABMs, 
respectively (italics). Forecast and warning informa
tion (purple), evacuation traffic (light blue), and 
impact zones (gold) serve as conceptual links between 
systems. Coupling the individual models (a–c) via 
these links makes FLEE a hybrid agent-based and 
system dynamics model [54] uniquely positioned to 
perform experiments impossible to conduct in the 
real-world.   
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software. For further details, the commented code, a model description, 
and input files are available for download at the CoMSES model library 
(https://www.comses. 
net/codebase-release/4cd05855-f387-48bd-8899-9d62375518cb/). 

FLEE can run on multiple operating systems, including MacOS, 
Linux, and Windows, and on computers with average memory and cores 
(e.g., we used computers with 2 cores and 4 GB memory). Simulations 
typically require 3–5 days of real-time. Though it cannot run in quasi- 
real time on a desktop computer, the paper’s goal is proof of concept – 
improving run time is a key next step for more practical use. 

The modeling framework includes a spatially explicit virtual world 
representing a geographical area of interest (described in section 2.1); a 
dynamic hurricane – and forecast information about it – that passes 
through that world (section 2.2); a multi-agent model where informa
tion is interpreted by millions of heterogenous agents and used to make 
evacuation decisions (section 2.3); and a traffic model where agents 
move across the virtual world as the hurricane approaches (section 2.4). 

ABMs were chosen to represent the human system (Fig. 1b) and the 
built environment (Fig. 1c) as the models capture individual’s decision- 
making processes and interactions between agents, making them 
excellent tools for investigating complex system dynamics [7,9,31,32]. 
Another reason is that ABMs have proven capable of simulating evacu
ation decisions in hurricanes [6,13,18,24–26], and hurricane traffic 
dynamics [33–36]. One drawback of ABMs is their high computational 
expense, which makes them less suitable for operational use (e.g., pro
s/cons in Ref. [37]). 

To design and implement FLEE, we integrated across multiple rele
vant areas of expertise, including agent-based modeling, meteorology, 
emergency management, protective decision making, risk communica
tion, social vulnerabilities, and traffic modeling. As in any modeling 
effort, aspects of FLEE are simplified and some real-world processes are 
not represented. Decisions about what to include were based on our 
research goals (e.g., to explore the broad system dynamics), review of 
relevant literature, and discussions among our research team. These 
decisions are discussed throughout Sections 2.1–2.4. 

2.1. The virtual world 

FLEE’s virtual world is a 10 x 4 cellular representation of the north- 
south axis of Florida, an area susceptible to hurricanes [16] and which 
has experienced mass evacuations such as Irma (2017). The grid spacing 
is coarse by design (40 grid spaces of 69-km x 69-km each) as the pro
ject’s goal is to explore the broader system dynamics, and to provide a 
starting point for more complex experiments. Census data informs the 
spatial distribution of agent households on the abstracted grid as well as 
household characteristics (which then influence evacuation decisions as 
discussed in section 2.3). For the built infrastructure, virtual highways 
and interstates designed to simulate key aspects of Florida’s road 
network are overlaid on the model grid (section 2.4). These roads allow 
agents to move between grid cells for evacuation. Details regarding the 
construction of each model system (i.e., the natural hazard, the human 
system, and the built environment) and the key connections between 
them is provided in the next three subsections. 

2.2. The natural hazard (hurricane, forecasts, and warning information) 

FLEE includes a hurricane that approaches and can move through the 
model domain (Fig. 1a). The storm and its forecasts can be real or syn
thetic; here we simulate real, historical storms using archived NHC 
forecast products which were issued in real-time. The products include 
information about the observed storm characteristics (Table 1) and 
official forecast information (Table 2), both of which update every 6-h 
(both in FLEE and in the real-world). When taken together, the prod
ucts capture the critical storm information and its evolution as the storm 
approaches. We chose to use NHC products in this implementation 
rather than meteorological model ensembles (as used in Refs. [14,28]) 

because they more closely resemble forecasts seen by the public [38], 
and can be systematically perturbed to assess the evacuation’s sensi
tivities to the forecast. Note, the NHC products are a starting point, but 
FLEE can be extended to include additional or more complex informa
tion about the storm and forecasts and warnings, if desired. In this 
article, NHC forecast products are obtained for Hurricanes Irma (2017) 
and Dorian (2019), which represent forecast scenarios with different 
tracks, speeds, forecast errors, and subsequently, different evacuation 
behaviors [3,39,40]. 

Each time a new forecast is entered into the model, information from 
the NHC products is synthesized into a “light system” forecast of the 
three major hazards known to drive hurricane evacuation decisions: 
wind, storm surge1, and rain. The approach resembles the Meteoalarm 
web platform (http://www.meteoalarm.eu) where hazard risk are dis
played in traffic-light color-coding (green, yellow, orange, red). Reds are 
reserved for severe and rare events, while also capturing some degree of 
immanency (i.e., reds are warnings, yellows are watches) [41]. We 
chose to use this type of light system in the modeling system because it 
(1) represents a synthesis of the forecast for public consumption like TV 
personnel do [42], and (2) provides means to connect forecast products 
with the model grid where evacuation decisions are made (Fig. 1b). 

Table 1 
Observed storm characteristics used in FLEE and the NHC products from 
which the data are located. Storm characteristics includes the storm’s observed 
location, size, intensity, and forward speed as it moves across the virtual world 
(left). This information was taken from archived NHC forecast products (right) 
which were issued in real time (available at https://www.nhc.noaa.gov/gis/). 
Consistent with the wind speeds in the NHC data, winds are discussed here in the 
unit knots (nautical miles per hour, equivalent to approximately 1.15 mph or 
1.85 km/h).  

Observed storm characteristics Archived NHC products where 
the data are located 

Observed wind radii (i.e., 64, 50, and 34 knot 
wind speeds in each of 4 quadrants) 

Advisory Wind Field 

Observed maximum sustained winds (i.e., current 
storm category) 

Advisory Forecast Track 

Observed forward speed Advisory Forecast Track  

Table 2 
Forecast information used in FLEE and the NHC products from which the data 
are located. The forecast information (left) includes the storm’s expected track, 
category, size, the amount of uncertainty associated with the forecast track (i.e., 
the cone of uncertainty), and the expected arrival time of the storm. Specific 
archived NHC products where the data was taken is shown (right) and is 
available for download at https://www.nhc.noaa.gov/gis/. Note: the cone of 
uncertainty represents the probable track of the center of a tropical cyclone, and 
is formed by enclosing the area swept out by a set of circles along the forecast 
track (at 12, 24, 36 h, etc.). The size of each circle is set so that two-thirds of 
historical official forecast errors over a 5-year sample fall within the circle (see 
full explanation at https://www.nhc.noaa.gov/aboutcone.shtml).  

Forecast information Archived NHC products where 
the data are located 

Forecast track Advisory Forecast Track 
Forecast maximum sustained winds (i.e., forecast 

storm category) 
Advisory Wind Field 

Forecast wind radii (i.e., 64, 50, and 34 knot 
wind speeds in each of 4 quadrants) 

Forecast Wind Radii 

Uncertainty in forecast track Cone of Uncertainty 
Expected arrival time Arrival time of tropical storm 

force winds  

1 Storm surge is defined by the National Oceanic and Atmospheric Associa
tion (NOAA) as the abnormal rise in seawater level during a storm, measured as 
the height of the water above the normal predicted astronomical tide. The surge 
is caused primarily by a storm’s winds pushing water onshore. 
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Light system forecasts are created with ArcGIS by overlaying prod
ucts onto the 10 x 4 model grid. Then, at each grid cell, forecast products 
are combined and weighted to estimate risk for wind, surge, and rain. 
Weights are based on current knowledge of the contributions of different 
factors to these types of hazards ([43,44]; team expertise in meteorology 
and risk perception), combined with an empirical validation that the 
progression of hazard risks for Irma and Dorian is reasonable. Sensitivity 
tests on the light system weighting (not shown) indicated that shifts in 
the weightings of the different factors did not have a significant effect on 
evacuations. The exact process of combining and weighting information 
to create light system forecasts is provided as Supplementary Tables 1-3. 

Fig. 2 presents the light system forecasts for Hurricane Irma (2017) at 
24 h intervals. The early NHC forecasts depict the most likely scenario as 
a landfalling major hurricane near Miami. However, the forecasts 

shifted westward as the storm approached Florida, with the storm 
eventually making one mainland U.S. landfall in the Florida Keys and a 
second in southwest Florida near Naples. The light system captures the 
gradual westward shift in threats. Moreover, as the storm approaches 
Florida and track uncertainty decreases (confidence increases), the light 
system estimates increased risk focused on areas inside the narrowing 
cone of uncertainty. Because of these features, the light system appears 
to be a reasonable way of representing the risks associated with hurri
cane hazards and is good enough to proceed. As a result, FLEE becomes 
the first to use synthesized NHC products with ABMs, and alongside 
Watts et al. [13] and Morss et al. [6], contains one of the most sophis
ticated representations of hurricane forecast information in models of 
the hurricane evacuation system to date. 

Fig. 2. Light system forecasts for Hurricane Irma (2017) as the storm approaches and travels through the Florida-like, model grid. Forecasts are shown at 24 h 
intervals, but update every 6 h in the model simulations (not shown). Left column: Evolving NHC forecast track (black center line), category (numbers), cone of 
uncertainty (edges are outer black lines), and current wind radii at 34 (white), 50 (pink), and 64+ (red) knot intervals. Right three columns: The light-system threats 
for wind, surge, and rain are shown for equivalent times in the simulation, with the forecast track (center black line) and cone of uncertainty (outer black lines) 
included for reference. Note: threats are highest when near the center of the forecast cone and when hazards are most imminent, among other factors. 
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2.3. The human system (information flow, evacuation-related decisions) 

With the synthesized light system forecasts as inputs, an ABM sim
ulates the “human system” i.e., information flow and evacuation-related 
decisions (Fig. 1b). This system includes two types of agents: emergency 
management agents who issue evacuation orders, and household agents 
(i.e., the public) who collect information, assess risks, and make pro
tective decisions. An overview of the agents and their decision-making 
algorithms, which run every 30 min in FLEE, is described in this section. 

As the hurricane approaches the coastline, emergency management 
agents (EMs) decide whether to issue evacuation orders for each grid cell. 
The decision-making process is represented schematically in Fig. 3 and is 
based on research by Demuth et al. [38], Dye et al. [45], and Bostrom 
et al. [29], as well as the analysis in Cutter [46]. Clearance times are 
subjectively assigned to FLEE’s grid cells using data from the Florida 
Statewide Regional Evacuation Study Program [47] which accounts for 
available road networks and the number expected to evacuate per county 
(based on population density and forecast intensity). For example, high 
clearance times (40–60 h) are located in Miami and Tampa Bay for 
intense (red) surge forecasts; low clearance times (5–20 h) occur in rural 
areas upstate with less intense (yellow) surge forecasts. Since surge is not 
expected inland, only coastal EMs issue evacuation orders in FLEE. 

The second type of agent, household agents, represent groups of 4 
individuals, bringing the number of estimated households in FLEE to 4.1 
million (note: the literature suggests people generally make household- 
based evacuation decisions e.g., summary in Ref. [48]). This is a 
simplification to reduce model run-time, as the average household size 
in Florida is estimated at 2.7. Since the paper’s goals are to describe 
FLEE and demonstrate its capabilities, we believe this assumption is 
okay, for now. Future experiments building fundamental knowledge of 
the system dynamics should accurately reflect household size. 

Household agents collect information about the hurricane, assess risk 
posed by the storm, and decide whether the risk warrants evacuation. 
The design of the evacuation decision-making algorithms prescribed to 
these agents was adapted from conceptual models of protective decision- 
making for hazards, such as the Protective Action Decision Model 
(PADM [11]; see hurricane applications in Refs. [13,49,50]), and find
ings from empirical research on decision-making for hurricanes [10,12, 

51–59]. As noted in Watts et al. [13], a major challenge is to synthesize 
the conceptual PADM model and information from empirical analyses 
into simple yet sufficiently specific instructions for agents. For the 
purposes of our model, we are not seeking a fully realistic algorithm, but 
one that captures the main processes underlying public evacuation de
cisions in the context of the modeling system so we can examine the 
broader evacuation dynamics holistically. 

To develop the household decision algorithm, we synthesized the 
relevant literature which suggests that people generally evacuate when 
they believe that the hurricane poses a risk to themselves or their family, 
and that different people perceive risk differently and have different 
evacuation barriers [12,49,52]. This literature also finds that factors with 
the strongest, most consistent influence on evacuation decisions include 
the risks indicated by forecast information and evacuation orders, as well 
as household characteristics associated with risk perceptions and evac
uation barriers [10]. Thus, we construct the decision-making algorithms 
by combining time-varying information about the evolving risk (from 
light system forecasts and EM’s evacuation orders) and household 
characteristics related to perceived and actual risk (age, mobile home 
residence) to form a risk assessment. This risk assessment is then 
compared with evacuation barriers (socioeconomic status, car owner
ship) which vary across the agent population and the model grid. Un
decided agents seek information and update decisions every 30 min, 
making agents active participants in the evacuation decision making 
process [6,13,60,61]. A high-level schematic of the decision-making al
gorithm is presented in Fig. 4; details regarding the algorithm’s variables 
and formulation is provided in Supplementary Table 4. 

Agent’s household characteristics are prescribed by subjectively 
projecting county-level census and social vulnerability data regarding 
mobile home ownership, age, car ownership, and socioeconomic status 
(which includes poverty rates, unemployment, and income) onto FLEE’s 
model grid (Supplementary Figure 1; [62]). Once the geographical 
distribution of variables is sorted between cells, specific characteristics 
are stochastically assigned to individual households (Supplementary 
Table 5). The idea is to not perfectly represent the real-world charac
teristics, but to generally capture its geographical distribution, and have 
an appropriately wide range of household characteristics within grid 
cells. This results in many heterogeneous agents with unique preferences 
and characteristics. 

To account for complexities in how people process and value 
different information, factors influencing a household’s risk assessment 
are weighed differently between households (Supplementary Table 6). 
For example, some agents are concerned about evacuation orders while 
others are not; some are concerned about their mobile home’s durability 
while others are not, and so on. Varying the weights captures these 
differences. In addition, varying the weights indirectly represents other 
factors such as culture and worldviews which are sometimes important 
[63,64]. Weight distributions are stochastically generated for each 
household with specified ranges informed by the literature [53,58, 
65–69]. The idea is to reflect the relative importance of each factor (e.g., 
evacuation orders, forecast information, mobile home ownership, and 
age, in that order) as established in Huang et al. [10]. 

One noteworthy simplification of the decision-making algorithm is 
that households do not share forecast information with other agents. In 
other words, everyone has the exact same forecast and evacuation order 
information i.e., it is a world with perfect, instantaneous communication 
of updated forecast information. Another is that they do not consider 
social cues, such as seeing other people evacuate, which can increase 
one’s risk perception. We also do not consider previous experience of 
disasters, social-media influence, or the structural integrity of buildings, 
which can influence people’s risk assessments and behaviors [11,52,59]. 
Again, the idea is to capture the main processes underlying public 
evacuation decisions so we can examine the 
hurricane-forecast-evacuation system dynamics holistically. Such fea
tures could be added in future model versions, depending on the intended 
research goals. 

Fig. 3. The evacuation order decision-making algorithm prescribed to 
emergency management agents (EMs) along the coastline. Information used by 
EMs include the surge light system forecasts (Section 2.2), estimated arrival 
time of the storm, and clearance times for each grid cell. 
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Fig. 4. The household evacuation decision- 
making algorithm in FLEE. Based on the PADM of 
Lindell and Perry [11], the process begins when 
agents combine information obtained from multiple 
sources (e.g., forecast information, evacuation orders, 
and household characteristics) into a household risk 
assessment, which is then compared with evacuation 
barriers (i.e., socioeconomic barriers, car ownership) 
that vary across the agent population. A household 
will evacuate if the household’s risk assessment is 
greater than the household’s evacuation barriers.   

Fig. 5. The idealized road network and population distribution on the model grid. Agents inside the idealized grid (a) are subjectively populated and characterized 
based on 2019 census data (color filled cells). Note there are 16,390,000 agents total, which equates to 4,097,500 households/vehicles, and that grid cell dimensions 
are 69 × 69 km each. Major cities depicted include Miami-Ft. Lauderdale (yellow star), Tampa Bay-St. Petersburg (blue star), Jacksonville (green star), and Orlando 
(orange star). The grid cell corresponding to Tampa Bay (blue star) contains the most evacuees of any grid cell at 2.5 million. Cities are also depicted in Florida’s 
actual population map (b), with the semi-transparent, 10 x 4 model grid overlaid, for reference. The available road network (e.g., road type, direction, number of 
lanes) is shown (left) with supporting table (c). Agents are generally instructed to flee onto the primary interstates (blue) and then northward (arrows) to areas of 
lower risk. 
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2.4. The built environment (infrastructure, evacuation routing, and 
traffic) 

If a household decides to evacuate, they enter another ABM – this 
time representing evacuation traffic – which moves the household across 
an idealized road network toward a (presumably) safer location 
(Fig. 1c). An overview of this traffic model, its vehicle agents, and the 
idealized road infrastructure is described in this section. 

FLEE’s idealized road network, and its relationship with the 10 x 4 
model grid, is depicted in Fig. 5. The built environment consists of two 
five-lane interstates (blue arrows) situated on the edges of the model 
grid. These interstates, representing Florida’s I-75 and I-95, transport 
evacuees northward along FLEE’s “coasts.” Additionally, two east-west 
running, three-lane interstates (purple arrows), representing Florida’s 
I-75 and I-4, allow residents to move horizontally across the grid. For 
example, these interstates let households move from Miami (yellow star) 
towards Tampa Bay (blue star) or inland towards Orlando (orange star). 
Lastly, eight, two-lane highways (red arrows) allow inland residents 
access to the interstates where they can flee northward/inland to safety. 
Though idealized, FLEE’s built infrastructure is designed to capture the 
main elements of Florida’s real world road network that influence large- 
scale evacuation dynamics. However, future models could add complex 
road structures, such as including local and intra-city road networks, if 
desired. 

Evacuating households are instructed to depart within 12 h of the 
evacuation decision [48,70,71]. Departure times are generated sto
chastically within this 12 h timeframe. When it’s time to depart, 
households are assigned a vehicle and look for spots on the nearest 
highway (Fig. 5; red and purple lines). Specifically, households search 
for any unoccupied spot along the 69 km stretch of highway corre
sponding to their home grid cell. If an open spot exists, they are 
immediately placed in this spot. If spots are unavailable due to traffic for 
a period of time, evacuees can lose patience, abandon the evacuation 
and shelter in-place instead (this process is detailed in Supplementary 
Table 7). In this way, the amount of evacuation traffic influence evac
uation decision-making for households. 

In regard to destinations, nearly half of the evacuees are randomly 
selected to evacuate out-of-state (e.g., based on [3,48]). For the 

remaining in-state evacuees, evacuation destinations are chosen based 
on where the forecast hazard risk is lower (e.g., from red to green) and 
where accommodations are available, which is typically in more popu
lated areas [48]. In the case of Hurricane Irma, in-state evacuees typi
cally moved upstate (e.g., towards Tampa Bay, Jacksonville) and inland 
(e.g., towards Orlando). Carless households move to local shelters, 
meaning they do enter the road networks and influence traffic [3]. 
Regarding route selection, we simplify the complex process by assigning 
agents the shortest route [72]. Once assigned, evacuee routes do not 
change. The amount of time required to reach destinations is not 
considered, though this could be added in future models. 

For those who enter the road, rules governing vehicle movement are 
simple: drivers accelerate when they can, slow down if they must, and do 
not accelerate at the speed limit (70 mph on interstates, 50 mph on 
roads) or behind another car. Lane switching is not permitted but could 
be added in future models. Some drivers exhibit erratic behaviors by 
randomly braking, potentially leading to traffic jams. Accidents are 
stochastically generated, with a frequency based on Robinson et al. [73]. 
Default settings for these parameters are described in Supplementary 
Table 7. 

An example of FLEE’s evacuation traffic is shown in Fig. 6. The traffic 
model, which has a 1.2 s timestep, captures interactions between vehi
cles at micro-scales, e.g., over-reactive and/or erratic drivers cause other 
drivers to slow down, triggering realistic-looking traffic jams (Fig. 6; 
blue streaks). These interactions are important for investigating complex 
system dynamics such as traffic [7,9]. Congestion and slowdowns – 
similar to what is shown in Fig. 6 – occur at intersections, in densely 
populated regions, surrounding accidents, or when vehicles run out of 
gas. In Section 4.1, we show that, before Hurricane Irma, severe traffic 
occurs along I-75 and I-95 northbound due to Miami and Tampa Bay 
being in the storm’s path. During Irma’s actual evacuation, severe traffic 
was also observed in these areas [3,74,75]. Because the traffic model 
captures important vehicle interactions at microscales, and generates 
reasonable traffic phenomena at regional scales, we believe FLEE’s built 
environment represents evacuation traffic sufficiently well to examine 
the hurricane-forecast-evacuation system dynamics holistically. 

Fig. 6. Sample of evacuation traffic generated by FLEE’s built environment during Hurricane Irma (2017). Specifically, we show one lane of a zoomed-in, 4-km 
segment of I-95 (y-axis). Vehicles (dots) move along the interstate segment over a 5-min period (x-axis) (i.e., vehicles move from bottom-left to top-right). Colors 
depict vehicle speed – full speed traffic moves unobstructed (red dots), while erratic drivers cause vehicles to slow down (blue dots) or stop altogether (dark blue). 
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3. Experimental methods and data analysis 

3.1. Model validation 

There are no governing equations to model human behavior. 
Therefore a thorough understanding of the FLEE’s behavior – and a 
validation the behavior is realistic as possible – must be achieved. This 
was accomplished in several ways. First, the modeling framework was 
tested throughout implementation to ensure the model code is error- 
free. This includes conducting sensitivity analyses on FLEE i.e., com
ponents were perturbed, one-by-one, to check if it behaves reasonably 
(e.g., sensitivity tests on light system weights described in Section 2.2). 
Second, the model framework was calibrated against existing observa
tional data, namely for Hurricane Irma [1,3,40,76]. These empirical 
studies provide an overview of Irma’s evacuation behaviors, including 
the total number of evacuees, how Irma’s evacuation rates change with 
time and vary spatially, and when/where significant traffic occurred. 
Throughout Section 4, we compare FLEE’s default evacuation behaviors 
to these observations in an effort to validate the model framework, and 
in turn, demonstrate that FLEE portrays key aspects of real-world 
evacuation dynamics sufficiently well to be suitable for 
experimentation. 

3.2. Experimental design 

Table 3 provides an overview of the different experiments reported 
in this article. The first experiment (Table 3a) uses the default model 
parameters described in Section 2.1–2.4 for Hurricane Irma. It provides 
a baseline of evacuation behaviors which are compared to existing 
observational data for validation. Based on this default simulation, we 
then systematically modify model parameters one-by-one, while holding 
other variables constant, to explore FLEE’s behaviors and sensitivities. 
These experiments include varying the evacuation order timing 
(Table 3b), implementing contraflow (Table 3c), and changing the storm 
to Hurricane Dorian (Table 3d). Additional experiments changing the 
evacuation decision-making inputs (Table 3e) and the population den
sity (Table 3f) are included as Supplementary Information. Together, 
these proof-of-concept experiments are intended to demonstrate how 
FLEE can serve as a virtual laboratory uniquely positioned to advance 
our understanding of the hurricane-forecast-evacuation system. 

3.3. Data analysis 

To compare evacuation patterns and behaviors quantitatively across 
simulations, FLEE tracks evacuation statistics for all grid cells. The 

primary model output analyzed here are the percent of households that 
successfully evacuated (i.e., evacuation rates), and the percent who 
intended to evacuate but “gave up” due to traffic. The latter statistic 
provides insight to where the excessive traffic may be preventing suc
cessful evacuations. In addition to displaying data by grid cells, values 
are broken down into multiple impact zones, designed as first-order 
approximations of areas likely to experience different levels of impacts 
based on the actual meteorological conditions produced by the storm. 
Here, we use four impact zones, defined by whether the grid cells: a) are 
coastal or inland, and b) primarily experiences winds that are greater 
than 64 knots (hurricane-force) or less than 64 knots. Using the impact 
zones, we can determine who evacuated from locations that did not end 
up experiencing hazardous conditions. In addition, we examine 
compliance rates (i.e., the percentage of residents under evacuation 
orders who evacuated) and shadow evacuation rates (i.e., the percent
age of residents who evacuated from areas not under evacuation orders; 
[48,77]). Note: evacuation orders are issued for entire grid cells i.e., 
everyone in that grid cell either gets an evacuation order or not. 

In looking at the results, we compare multiple metrics that might 
indicate successful outcomes in different ways. For example, high 
compliance rates may not be “good” if the storm ends up not having 
much impact in those areas, and shadow evacuation rates may not 
matter if those at highest risk can get out safely. 

Because FLEE includes stochastic elements, it can exhibit some run- 
to-run variability. For example, in a series of tests where simulations 
were repeated five times, evacuation rates ranged from 0 to 2% within 
grid cells. This run-to-run variability is smaller than other agent-based 
evacuation simulations [13,36], likely because there are many more 
agents in this model (nearly 4.1 million households/vehicles). Never
theless, when interpreting results, changes less than this 0 to 2% vari
ability within grid cells are considered insignificant. 

4. Results 

4.1. Spatial and temporal patterns of evacuation 

First, we examine results from a simulation with the default FLEE 
configuration for Hurricane Irma (Table 3a). By comparing these results 
with observations of Irma’s actual evacuation [1,3,40,76], they provide 
a first-order assessment that agents in the model are behaving reason
ably based on the processes implemented. They also illustrate key as
pects of FLEE’s behavior, including the spatial and temporal patterns of 
evacuation, which provide a baseline for interpreting results from sub
sequent experiments (sections 4.2–4.4; supplementary results 1–2). 

Based on the default model settings for Irma, EM agents issue 

Table 3 
Description of experiments reported in this article. The main goals are to establish the broader spatial and temporal patterns of evacuation behaviors for Hurricane 
Irma (2017), then intentionally perturb FLEE’s key parameters to assess the relative importance and general response of the factors (b-f). In doing so, we demonstrate 
how FLEE can investigate the dynamics of the hurricane-forecast-evacuation system. Note: experiments e and f were included as supplementary information.  

Experiment Storm Goal Run details 

a) Default Irma Establish a baseline of evacuation behaviors (section 4.1) for comparison with 
experiments b-f and observational data for validation.  

1 Inputs described in Sections 2.1–2.4. 

b) Varying evacuation order 
timing 

Irma Examine the influence of changing evacuation order timing by adjusting clearance 
times at each grid cell (section 4.2)  

2 Evacuation orders 10 h earlier  
3 Evacuation orders 10 h later  
4 Clearance times equal  
5 Clearance times equal and reduced by 10 h 

c) Implementing contraflow Irma Examine the influence of contraflow on evacuations (section 4.3) by adjusting the 
number lanes on various highways  

6 +1 lane on I-95  
7 +1 lane on I-75  
8 +1 lane on both I-95/I-75 

d) Default Dorian To examine how the default parameter values carry over to a new storm scenario 
(section 4.4)  

9 Default inputs (Sections 2.1–2.4) but with 
Dorian’s light system forecasts 

e) Evacuation decision- 
making inputs 

Irma Determine the relative influence of each decision-making input by turning them off, 
one-by-one (Supplementary Results 1)  

10 Forecast weight = 0  
11 Evacuation order weight = 0  
12 Age weight = 0  
13 Mobile home weight = 0 

f) Varying population 
density 

Irma Adjust population distribution to examine the influence of population density on 
evacuations (Supplementary Results 2)  

14 Uniform population distribution  
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Fig. 7. Evacuation rates in Irma’s default model run. Rates are presented every 24 h throughout the 144 h simulation (a–f) for each grid cell. The percentage 
which intended to evacuate but could not due to excessive traffic is also expressed (g), as are the spatial and temporal patterns of evacuation orders (red cells) and the 
swath of hurricane force winds experienced (dotted cells). Also shown are the number of evacuees still enroute (bottom of panels a–f) and the population by grid cell 
(h). Major cities depicted include Miami-Ft. Lauderdale (yellow star), Tampa Bay-St. Petersburg (blue star), Jacksonville (green star), and Orlando (orange star). 
These provide a frame of reference for the evacuation rates in a-f. 
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evacuation orders in a similar pattern to what was observed (Fig. 7; red 
cells). Evacuation orders were first issued around Miami-Ft. Lauderdale 
36–48 h into the simulation (Fig. 7b), and spread northward along both 
coastlines over the next several days (Fig. 7c–e). The last evacuation 
orders were issued in Jacksonville 120 h into the simulation, which 
coincides with the time Irma makes landfall along the southwest Florida 
coast (Fig. 7e). By the end of the simulation, Irma’s hurricane-force 
winds (Fig. 7f and g; dotted cells) impacted the western two-thirds of 
the model – particularly the southwest and western coastlines – while 
leaving the east-coast generally unscathed. This general progression of 
evacuation orders being issued from south-to-north along both coasts 
matches what occurred with Irma (e.g., see Page 14–15 and Fig. 2 of [3] 
for evacuation orders by county). This increases our confidence that the 
EM decision-making algorithm – and the storm surge forecasts on which 
its based – behaves reasonably and realistically. 

The percentage of households who evacuate is shown at 24 h in
tervals for each grid cell (Fig. 7 a–f). The results depict spatial and 
temporal patterns that are similar to real hurricane evacuation behav
iors. First, evacuation rates increase after evacuation orders are issued, 
showing its importance to decision-making [10]. Secondly and relat
edly, evacuation rates are higher along the coasts than inland [12]. 
Thirdly, evacuation rates are still high for most areas. This arises 
because the forecasts in this simulation were dire everywhere, especially 

before the storm’s track shifted westward (Fig. 2). The dire forecasts 
prompted EMs to issue evacuation orders along both coasts, and as a 
result, many agents evacuated areas which did not experience hurricane 
force winds. 

FLEE’s simulated evacuation rates generally match existing obser
vational data for Irma, which suggest evacuation rates vary from 40 to 
60% along Florida’s east coast, to 60–80% across the south and west 
coasts, and around 5–40% inland (e.g., see breakdown of evacuation 
rates by region in Fig. 4 of [3]; breakdown by voting precinct in Fig. 1c 
of [40]). One area for improvement is that FLEE produces evacuation 
rates higher than realistic early in the simulation, especially in the 
northern part of Florida [40]. 

Table 4 depicts evacuation rates in different impact zones. In total, 
45.1% of households on the model grid evacuate, which equals 7.38 
million people. Note, estimates from the Florida Department of Emer
gency Management [1] suggest actual evacuation numbers totaled 6.9 
million. For a given level of wind impact, evacuation rates are higher 
along the coasts than inland (52.3% coastal vs. 22.2% inland for >64 
knots, 58.1% coastal vs. 36.7% inland for <64 knots). Interestingly, 
areas experiencing hurricane force winds had lower evacuation rates 
than areas less affected by the storm. This could be due to the potentially 
higher than realistic evacuation rates early in the simulation. They may 
also partially result from the east coast receiving evacuation orders, 

Table 4 
Evacuation rates by impact zones for Irma’s default run. Successful evacuation rates are broken down into impact zones (coastal vs. inland, and areas experiencing 
vs. not experiencing hurricane force winds of 64+ kts), compliance rates (i.e., those instructed to evacuate via evacuation order who did evacuate), shadow evacuation 
rates (i.e., percentage of people not instructed to evacuate who did), and the percentage of evacuees who attempted to evacuate but “gave up” due to excessive amounts 
of traffic.   

% Successfully evacuated    

Experiment Total (all cells) Coastal >64 knot zone Inland >64 knot zone Coastal <64 kts zone Inland <64 kts zone Compliance rates Shadow 
evacuation 

Gave up to traffic 

Irma Default 45.1 52.3 22.2 58.1 36.7 55.0 25.6 10.5  

Fig. 8. The temporal patterns in evacuation for Irma’s default simulation. Successful evacuation rates are shown (black dotted line), averaged across all grid 
cells, as are the percentage of households giving up due to traffic (dashed line), the percent staying and/or undecided (solid black line), and the percentage of 
households moving to a local shelter (grey dot dashed line). The latter do not officially enter the road network. Key times in the evacuation simulation, such as 
evacuation order issuance and storm’s landfall, are indicated by the vertical dotted lines. The results illustrate key aspects of the model’s behavior and provide a 
starting point for interpreting results from subsequent experiments (sections 4.2–4.4). 
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albeit unnecessarily, which increased evacuation rates in these areas, 
combined with excessive traffic along the west coast. For example, 
17–32% of the populated Tampa Bay-St. Petersburg gave up evacuating 
due to excessive traffic (Fig. 7g). The severe congestion, which did occur 
with Irma’s actual evacuation, also reduced evacuation rates along the 
southwest and southeast coasts (e.g., see traffic information in Page 15 
of [1,3,76]). 

A second pattern illustrated by the evacuation rates is the variability 
in evacuation decisions among households i.e., some households decide 
to leave, but many do not, despite seeing similar information and having 
similar characteristics. This is consistent with real-world hurricane 
evacuations, and more generally with the heterogeneity exhibited by US 
households in the real-world [24,27]. In the model, the variability arises 

from household’s different weighting of information as well as their 
different characteristics and barriers, which create differences in 
household risk perception. 

Fig. 8 illustrates the temporal evacuation patterns. Despite not 
receiving evacuation orders, many households (black dotted line) 
evacuate in the first 0–36 h. Evacuation rates increase linearly between 
36 and 108 h as evacuation orders expand along the coasts. Just before 
the storm moves ashore around 126 h, evacuation rates decrease, while 
the number of households giving up due to excessive traffic (black 
dashed line) increase. The latter occurs as household agents’ patience is 
influenced by the forecast arrival time of the storm. In other words, 
agents see the impending landfall, then decide to abandon the evacua
tion and stay home. These temporal patterns of evacuations, as with the 

Table 5 
Evacuation behaviors by impact zones for experiments varying evacuation order (EO) timing. Successful evacuation rates are broken down into impact zones 
(coastal vs. inland, and areas experiencing vs. not experiencing hurricane force winds of 64+ kts), compliance rates (i.e., those instructed to evacuate via evacuation 
order who did evacuate), shadow evacuation rates (i.e., percentage of people not instructed to evacuate who did), and the percentage of evacuees who attempted to 
evacuate but “gave up” due to excessive amounts of traffic. Note: EO is short for evacuation orders; CT is short for clearance times. Irma’s default model run is included 
for reference.   

% Successfully evacuated    

Experiment Total (all 
cells) 

Coastal >64 knot 
zone 

Inland >64 knot 
zone 

Coastal <64 kts 
zone 

Inland <64 kts 
zone 

Compliance 
rates 

Shadow 
evacuation 

Gave up to 
traffic 

Irma Default 45.1 52.3 22.2 58.1 36.7 55.0 25.6 10.5 
EO +10h 44.6 51.5 20.9 56.2 36.9 53.6 24.7 11.8 
EO -10h 43.9 51.7 23.7 51.5 36.8 49.9 30.5 10.9 
CTs equal 43.6 51.7 22.4 51.6 37.0 51.6 25.9 12.8 
CTs equal, reduced 

10h 
43.3 50.4 22.8 51.7 36.8 51.0 26.1 13.0  

Fig. 9. The effects of evacuation order timing on evacuations across grid cells. Results are presented for the experiments modifying the timing of evacuation 
orders, specifically by a) shifting evacuation orders 10 h earlier than default, b) shifting evacuation orders 10 h later than default, c) equalizing the clearance times, 
making the storm’s arrival time the only influence on evacuation order timing, causing evacuation orders to be issued linearly from south to north as the storm 
approaches, and d) reducing clearance times by 10 h than in experiment c. Values are expressed as the departure from the default settings in section 4.1 and in Fig. 7f. 
Also expressed is the swath of hurricane force winds (dotted cells), evacuation orders (red cells), and the population by grid cell (e). These provide a frame of 
reference e.g., major cities depicted include Miami-Ft. Lauderdale (yellow star), Tampa Bay-St. Petersburg (blue star), Jacksonville (green star), and Orlando (orange 
star). Note, run-to-run variability due to stochastic elements in the model ranges from 0 to 2% in grid cells for both evacuation rates and percent giving up due to 
traffic. Therefore values of − 2 to 2 lie within that variability and should be ignored. 
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spatial patterns, generally match existing empirical data, which suggests 
that evacuation rates increased semi-linearly throughout this period (e. 
g., see Fig. 6 of [3]; Fig. 2c of [40]). As a result, we believe FLEE’s 
simulated evacuations provide a realistic baseline for interpreting re
sults from subsequent experiments (sections 4.2–4.4). 

4.2. Varying timing of evacuation orders 

Now we investigate the effects of changing the evacuation order 
timing in FLEE (Table 3b). Specifically, we conduct four experiments: 1) 
shifting evacuation orders 10 h earlier, 2) shifting evacuation orders 10 
h later, 3) equalizing the clearance times for all grid cells, making the 
storm’s forecasted arrival time the only factor influencing differences in 
evacuation order timing across grid cells, and 4) shifting evacuation 
orders 10 h earlier than in experiment 3. These experiments build on the 
results examined in section 4.1, and begin to explore interactions among 
the evolving forecasts, evacuation orders, and household evacuation 
behaviors. 

Evacuation rates, broken down by impact zones (Table 5), indicate 
that changing evacuation order timing in the four experiments reduces 
the overall evacuation rates from 45.1% in Irma’s default simulation 
(top row) to 43.3–44.6%, which is 295,200–82,000 less evacuees. 
Similarly, rates of evacuees giving up to traffic increases from 10.5% in 
the default simulation to 10.9–13.0%, which is 65,600 and 410,00 more 
people. This is surprising, as one might expect evacuation rates to in
crease if evacuation orders are issued earlier, as this creates more time to 
evacuate. 

When examining the results for every grid cell (Fig. 9), results indi
cate that, despite only affecting evacuation rates by 1–2% overall, 
changing the evacuation order timing has significant and sometimes 
opposite effects between neighboring areas. For example, shifting 
evacuation orders 10 h earlier (Fig. 9a) increases evacuation rates (and 
decreases traffic) in Tampa Bay–St. Petersburg by 4%, while decreasing 
evacuation rates (and increase traffic) from 2% to 16% in neighboring 

cells to the south. This points to the importance of coordination amongst 
EMs for issuing evacuation orders within a region and a need for follow- 
up experiments to unpack these complex processes. 

Shifting evacuation orders 10 h later (Fig. 9b) across all grid cells 
results in evacuation orders not being issued in the Jacksonville 
metropolitan area. This is because, during the additional 10 h where 
EMs are deciding whether to issue evacuation orders, the forecast shifted 
westward and away from Jacksonville (Fig. 2), thus prompting EMs to 
decide against issuing evacuation orders for the area. These results 
demonstrate how the model captures the real-world tradeoffs between 
issuing evacuation orders earlier (when the uncertainty is greater) 
versus waiting until closer to the storm’s arrival (when the forecast 
uncertainty is reduced). 

Fig. 9c and d show results from experiments where clearance times 
are equalized. Recall that clearance times is meant to account for dif
ferences in available road networks and the number expected to evac
uate e.g., clearance times are highest in populated metropolitan areas 
and in south Florida where people travel longer distances to evacuate. 
Thus, equalizing the clearance times, which makes the storm’s arrival 
time the only influence on evacuation order timing, is meant to 
demonstrate the importance of clearance times in EM decisions. The 
experiments produce a slight increase in evacuation rates for Tampa 
Bay–St. Petersburg (1–4%) but with a general decrease in evacuation 
rates everywhere else. This is especially true in Miami, where evacuation 
rates drop by 10–18%. In this experiment overall, removing the default 
clearance times worsened hurricane evacuations by 1–2% in total, 
which is a decrease of 164,000–328,000 evacuees (Table 5). This dem
onstrates how evacuations can be made more successful by accounting 
for clearance times in EM’s evacuation order decision-making. 

Fig. 10 shows the evolution of evacuation rates (and rates giving up 
due to traffic) with time for the different experiments. Shifting evacu
ation orders 10 h earlier (green lines) than default (black lines) simply 
causes evacuation rates to increase earlier in the simulation, and does 
not meaningfully change the evacuation “shape” otherwise. Similar 

Fig. 10. The temporal effects of changing evacuation order timing on evacuation rates (solid lines) and numbers giving up due to traffic (dashed lines), averaged 
across all grid cells, throughout the 144 h simulation. The default simulation (Table 3a; section 4.1) is expressed (black lines), as are experiments modifying the 
timing of evacuation orders, specifically by a) shifting evacuation orders 10 h earlier than default (green lines), b) shifting evacuation orders 10 h later than default 
(purple lines), c) equalizing the clearance times, making the storm’s arrival time the only influence on evacuation order timing, causing evacuation orders to be 
issued linearly from south to north, and (orange lines) d) shifting evacuation orders 10 h earlier than in experiment c (red lines). 
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effects are observed with the uniform clearance time experiments (or
ange/red lines). This information suggests the model behaves as ex
pected, and in general, the experiments demonstrate how the model can 
quantify and explore, in a simplified context, the effects of varying 
evacuation order decisions by EMs. This includes simulating the trade
offs between waiting on evacuation orders and its effect on evacuation 
success, which cannot be quantified using empirical methods. In addi
tion, the results suggest the modeling system is capable of exploring the 
effects of evacuation strategies such as phased evacuations, which may 
be helpful to emergency management [22,78,79]. 

4.3. Implementing interstate contraflow 

Next, we investigate the effects of adding contraflow to lessen 
evacuation traffic and improve evacuation rates in FLEE. For the ex
periments, we add one contraflow lane on I-95, one contraflow lane on I- 
75, and one contraflow lane on both interstates (Table 3c). 

The results in Table 6 suggest adding contraflow lanes does improve 
evacuation rates and reduces traffic overall. For example, evacuation 
rates improve from 45.1% in the default simulation (top row) to 48.0, 
47.6, and 49.8% when adding contraflow onto I-95, I-75, and both 

interstates, respectively. This equates to an increase of 475,600, 
410,000, and 770,800 evacuees. Meanwhile, rates giving up from traffic 
decrease from 10.5% to 6.6–8.3%, which is a decrease of 
639,700–360,800 people. The improvements in evacuation rates – and 
reduction in traffic – are not limited to particular times in the simulation; 
rather the improvements are uniform throughout (Fig. 11). 

When comparing the impact of the different experiments on various 
grid cells (Fig. 12a–d), the targeted effect of contraflow becomes clear. 
For example, adding contraflow onto I-95, which is located along the 
eastern coastline, improves evacuation rates (and reduces traffic) along 
the eastern half of the model grid. Adding contraflow onto I-75, which is 
found along the western coastline, improves evacuation rates (and re
duces traffic) along the western half of the model grid. These improve
ments in evacuation rates are large locally, ranging from 3 to 14% along 
the southwest coast and 5 to 12% along the southeast coast. 

The results suggests that, if given accurate forecasts, implementing 
contraflow in the modeling system reduces traffic and thus increases 
successful evacuation in targeted regions, which is what contraflow is 
designed to do. This provides evidence that the model can be used to 
investigate the potential impacts of modifying different parts of the 
system, such as implementing contraflow or other evacuation 

Table 6 
Evacuation behaviors by impact zone when implementing contraflow. Successful evacuation rates are broken down into impact zones (coastal vs. inland, and 
areas experiencing vs. not experiencing hurricane force winds of 64+ kts), compliance rates (i.e., those instructed to evacuate via evacuation order who did evacuate), 
shadow evacuation rates (i.e., percentage of people not instructed to evacuate who did), and the percentage of evacuees who attempted to evacuate but “gave up” due 
to excessive amounts of traffic.   

% Successfully evacuated    

Experiment Total (all 
cells) 

Coastal >64 knot 
zone 

Inland >64 knot 
zone 

Coastal <64 kts 
zone 

Inland <64 kts 
zone 

Compliance 
rates 

Shadow 
evacuation 

Gave up to 
traffic 

Irma Default 45.1 52.3 22.2 58.1 36.7 55.0 25.6 10.5 
+1 I-95 48.0 52.3 25.3 62.6 36.9 57.0 28.0 8.3 
+1 I-75 47.6 56.8 22.4 58.0 37.0 57.3 25.9 8.8 
+1 I-95, I-75 49.8 56.8 25.7 62.5 36.9 59.3 28.4 6.6  

Fig. 11. The temporal effects of implementing contraflow on evacuation rates (solid lines) and numbers giving up due to traffic (dashed lines), averaged across 
grid cells, throughout the 144 h simulation. The default simulation is expressed (black lines), as are experiments adding one lane of contraflow onto I-95 (green lines), 
I-75 (purple lines), both I-95 and I-75 (orange lines). The default run for Hurricane Dorian (Table 3d; Section 4.4) is also expressed (grey lines). Note, Dorian’s 
simulation extends to 184 h while Irma’s ends after 144 h. 
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management strategies, and determine its influence on the hurricane 
evacuation in its full context (e.g., supporting studies by Refs. [20,22,36, 
78–87]). 

4.4. Hurricane Dorian 

Finally, we explore the modeling system’s behavior when a different 
scenario, with a different storm and a different set of evolving forecasts, 
is simulated. This experiment (Table 3d), with Hurricane Dorian (2019), 
uses the same set of parameters as in the default Irma simulations. This 
experiment should be of interest to meteorologists and emergency 
managers, by exploring how differences in storm characteristics and 
forecast information can propagate through the agent-based system and 
translate into different patterns in evacuations. 

Fig. 13 shows the evolution of Dorian along with the NHC and light 
system forecasts. The early forecasts (0–72h into the simulation) predict 
the most likely scenario as a landfalling major hurricane along Florida’s 
east coast. However, the forecasts shift northward (96–120h), signifi
cantly reducing areas under threat. After remaining nearly-stationary 
over the Bahamas (120–144h), the storm re-accelerates northward 
(>168h) narrowly missing Florida’s east coast. As with Irma, the light 
system captures the spatial and temporal shifts in threats with Dorian. 
Because of the forecasts, EMs issue evacuation orders along the central 
east-coast by 72 h (Fig. 14; red cells). The evacuation orders spread 
along the coastline over the next several days, generally matching what 
was observed [88]. 

Compared to Irma, this is a fundamentally different storm with 
different areas at risk and less people under evacuation orders. As a 
result, evacuation rates were less with Dorian (33.5%) than with Irma 
(45.1%), which is 2 million less evacuees (Table 7). Similarly, fewer 
households give up on evacuating due to traffic with Dorian (6.1%) than 

Irma (10.5%). This reduction in evacuation rates in FLEE generally 
matches existing observational data for Dorian [39]. 

During the first 24–72 h, evacuation rates are increasing everywhere, 
as most areas are under threat (Fig. 14a–b). As with Irma, we suspect the 
model is producing evacuation rates higher than realistic during this 
period, especially in the northern part of Florida and inland. However, 
this observational data [39] is quite limited and cannot confirm this. 
Beyond 48 h, however, evacuation rates only increase along the 
eastern-most portions of the grid where evacuation orders are issued 
(Fig. 14c–f). By the end, the highest evacuation rates occur in areas 
where you would expect (i.e., along the east coast where risk is highest, 
and where evacuation orders are issued), which is consistent with 
real-world evacuation behaviors [12]. With the exception of the Tam
pa-Bay–St. Petersburg area where evacuations occurred early in the 
simulation, evacuation traffic was primarily confined along the south
east coast (Fig. 14h). 

The evolution of Dorian’s evacuation rates with time, averaged 
across the model grid, is shown in Fig. 11 (grey lines). Similar to Irma’s 
default run (black lines), evacuation rates during Dorian quickly in
crease due to the dire initial forecasts. Once the forecasts shift north
ward, Dorian’s evacuation rates slows significantly but with some 
increases due to the issuance of evacuation orders between 60 and 120h. 
The evacuation stops by 140 h because, at this point, the storm is ex
pected to remain offshore. The results again suggest that Dorian’s 
evacuation is, in many respects, different than Irma’s. 

Robust empirical data on Dorian’s evacuation rates is not publicly 
available. However, the available data [39] suggests the model is, to first 
order, generating reasonable evacuation behaviors e.g., it captures the 
inland versus coastal differences in evacuations, the correct issuance of 
evacuation orders, and the prolonged, linear increases in evacuation 
rates observed for several days [39]. When combined with the results 

Fig. 12. Influence of contraflow on evacuations for all grid cells. Evacuation rates (left) and the percent of households unable to evacuate due to traffic (right) 
are shown. Results are presented for the default experiment without contraflow (a), when adding one lane of contraflow to I-95 (b), when adding one lane of 
contraflow on I-75 (c), and when adding one lane of contraflow onto both interstates (d). These results (b–d) are compared to the default simulation (a) where values 
are expressed as the percent difference from the default settings (a). Also expressed is the swath of hurricane force winds (dotted cells), evacuation orders (red cells), 
and the population by grid cell (e). These provide a frame of reference e.g., major cities depicted include Miami-Ft. Lauderdale (yellow star), Tampa Bay-St. 
Petersburg (blue star), Jacksonville (green star), and Orlando (orange star). Note, run-to-run variability due to stochastic elements in the model ranges from 0 to 
2% in grid cells for both evacuation rates and percent giving up due to traffic. Therefore values of − 2 to 2 lie within that variability and should be ignored. 
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Fig. 13. Light system forecast for Hurricane Dorian (2019). Forecasts are shown for every 24 h but update every 6 h (not shown). Left column: Evolving NHC 
forecast track (black center line), category (numbers), cone of uncertainty (edges are outer black lines), and current wind radii at 34 (white), 50 (pink), and 64+ (red) 
knot intervals. Right three columns: The light-system threats for wind, surge, and rain are shown for equivalent times with the forecast track (center black line) and 
cone of uncertainty (outer black lines) included for reference. Note: threats are highest when near the center of the forecast cone and when hazards are most 
imminent, among other factors. 

A. Harris et al.                                                                                                                                                                                                                                  



International Journal of Disaster Risk Reduction 67 (2022) 102669

16

from Irma (section 4.1), the results provide further evidence that the 
model reasonably simulates the integrated hurricane evacuation system, 
and can be used to study various storm scenarios, real or imagined. 
Furthermore, the differences in the spatial and temporal patterns of 
evacuation between the two hurricanes confirm the importance of 
forecast information to the evacuation dynamics [10,12]. 

5. Summary and discussion 

This article conceptualizes and implements a modeling framework 
for studying the dynamics of the hurricane-forecast-warning system. The 
modeling framework, called FLEE, integrates models of the natural 
hazard, the human system, the built environment, and connections be
tween systems. It includes millions of agents – with behaviors and 
characteristics informed by empirical research – who interact with each 
other, with their physical environments, and with evolving, uncertain 
forecast information to produce evacuation decisions and generate 
evacuation traffic. After describing FLEE, we validate the model 
framework by comparing its evacuation behaviors to observations, 
mainly for Hurricane Irma (2017), and present a set of proof-of-concept 

experiments illustrating its behaviors when key parameters are modi
fied. In doing so, we show FLEE is capable of examining the dynamics of 
the hurricane-forecast-evacuation system from a new perspective. 

We propose several areas for future work. First, FLEE can explore 
how changes in forecast track, intensity, storm size, forward speed, 
uncertainty, and different forecast scenarios influence evacuations [89]. 
This provides meteorologists with a societally-relevant alternative to 
traditional measures of forecast accuracy (need described by [90–92]), 
by measuring the impact of forecasts elements and uncertainties on how 
people receive and process the information, make evacuation decisions, 
and physically evacuate. Second, the model can be used to address 
behavioral science questions, such as how future projections of popu
lation density, socioeconomic status, inequality, and car access may 
affect hurricane evacuations. Third, FLEE can further determine the 
relative effectiveness of evacuation management strategies such as 
contraflow, adding public transportation, evacuation order timing, and 
phased evacuations (building on, e.g., [17]), and how forecasts influ
ence evacuation order decisions [28]. This benefits researchers, practi
tioners, and policy-makers in hazard risk management. 

FLEE is intentionally abstracted to explore the broader evacuation 

Fig. 14. Evacuation rates for grid cells during Hurricane Dorian (2019). Rates are expressed every 24 h (a–g). The percentage of each grid cell which intended to 
evacuate but could not due to traffic is also expressed (h), as is the spatial and temporal patterns of evacuation orders (red cells). In addition, the number of evacuees 
still enroute at the various times is shown (bottom of panels a–f). Note, the hurricane force winds (>64 kts) did not impact the model grid. Also expressed is the 
population by grid cell (i) which provide a frame of reference e.g., major cities depicted include Miami-Ft. Lauderdale (yellow star), Tampa Bay-St. Petersburg (blue 
star), Jacksonville (green star), and Orlando (orange star). 

Table 7 
Evacuation behaviors by impact zone when switching from Irma to Dorian. Successful evacuation rates are broken down into impact zones (coastal vs. inland, 
and areas experiencing vs. not experiencing hurricane force winds of 64+ kts), compliance rates (i.e., those instructed to evacuate via evacuation order who did 
evacuate), shadow evacuation rates (i.e., percentage of people not instructed to evacuate who did), and the percentage of evacuees who attempted to evacuate but 
“gave up” due to excessive amounts of traffic.   

% Successfully evacuated    

Experiment Total (all 
cells) 

Coastal >64 knot 
zone 

Inland >64 knot 
zone 

Coastal <64 kts 
zone 

Inland <64 kts 
zone 

Compliance 
rates 

Shadow 
evacuation 

Gave up to 
traffic 

Irma Default 45.1 52.3 22.2 58.1 36.7 55.0 25.6 10.5 
Dorian Default 33.5 – – 67.6 24.8 64.4 23.3 6.1  
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dynamics. However, additional layers of complexity can be added, 
depending on research goals e.g., to account for family composition, 
social circle’s evacuation status, social-media influence, and house/ 
building strength in evacuation decisions. FLEE can be extended to study 
other regions or hazards, such as hurricanes followed by flooding, loss of 
power networks, damage to roads, and other cascading failures. Addi
tional in-depth comparisons with observational data can improve FLEE’s 
realism, and subsequently, its capability to answer questions of interest. 
But given the sparse availability of empirical data on hurricane evacu
ations, new data sets are likely needed. Nevertheless, in its current form, 
FLEE can significantly advance our understanding of the integrated 
hurricane-forecast-warning system. This new knowledge is informed by 
and feeds back into empirical research, and can ultimately support re
searchers, practitioners, and policy-makers in a variety of disciplines, 
thereby offering the promise of direct applications to save lives and 
mitigate hurricane losses. 

Data availability 

The model code was created using the Fortran programming lan
guage. The commented code, an ODD specification (a formal, detailed 
model description), and supporting input files are available for down
load at the CoMSES model library (https://www.comses.net/codebas 

e-release/4cd05855-f387-48bd-8899-9d62375518cb/). 
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Appendix A. Supplementary data  

Supplementary Table 1 
Wind risk is calculated at each grid cell by assigning a risk score (1-4) based on the storm’s forecast category at that location, its location in the forecast wind field (34, 
50, 64+ knot intervals) which depicts the size of the storm, location in the cone of uncertainty, and expected arrival time of tropical storm force winds. The scores are 
weighted, summed, and rounded to the nearest integer to provide an overall wind threat score (1-4) expressed as green-yellow-orange-red, respectively. Note: scores 
for the forecast category and expected arrival time are set to 1 if the grid cell is not situated within the cone of uncertainty and/or any forecast wind radii. When taken 
together, the products capture the wind’s critical forecast elements (e.g., storm’s track, intensity, size, forward speed, amount of uncertainty, evolution with time, 
imminency). 

Supplementary Table 2 
Surge risk is determined at each grid cell by assigning a risk score (1-4) based on the cell’s inundation potential (estimated using NHC’s potential storm surge 
inundation products), expected category at that location, location within the forecast wind field (34, 50, 64+ knot intervals) which depicts the size of the storm, the 
storm’s approach angle, the location in the cone of uncertainty, and the expected arrival time of tropical storm force winds. The scores are weighted, summed, and 
rounded to the nearest integer to provide an overall surge threat score (1-4) expressed as green-yellow-orange-red, respectively. Note: scores for the expected category 
and expected arrival time are set to 1 if the grid cell is not situated within the cone of uncertainty and/or the forecast wind radii. Likewise, the values are only calculated 
for areas along the shoreline, as storm surge does not occur inland. 
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Supplementary Table 3 
Rain risk is calculated for each grid cell by assigning a risk score (1-4) based on the storm speed (>15 knots, 10-15 knots, 5-10 knots, and <5 knots), location within the 
forecast wind field (34, 50, 64+ knot intervals) which estimates the size of the rain field, location in the cone of uncertainty, and the expected arrival time of tropical 
storm force winds. The scores are weighted, summed, and rounded to the nearest integer to provide an overall rain threat score (1-4) expressed as green-yellow-orange- 
red, respectively. Note: scores for the expected category and forecast period are set to 1 if the grid cell is not situated within the cone of uncertainty and/or the forecast 
wind radii. When taken together, the products capture the rain’s critical forecast elements (e.g., storm’s track, size, forward speed, amount of uncertainty, evolution 
with time, imminency). 
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Supplementary Table 4 
Key variables in the household evacuation decision-making algorithm. The algorithm’s inputs (i.e., forecast, evacuation orders, mobile home ownership, age) are 
normalized onto a 0-100 scale and summed to produce household risk assessment, which is then weighed against evacuation barriers to produce a decision.  

Variable Variability in 
time 

Definition Values 

Wind Dynamic Score from light system normalized to a 0-100 scale Green = 0, Yellow = 33, Orange = 66, Red =
100 

Surge Dynamic Score from light system normalized to a 0-100 scale Green = 0, Yellow = 33, Orange = 66, Red =
100 

Rain Dynamic Score from light system normalized to a 0-100 scale Green = 0, Yellow = 33, Orange = 66, Red =
100 

Forecast Dynamic The highest score from the wind, rain, and surge threats. This is used in a household’s 
risk assessment 

Values range from 0-100 

Evacuation Orders Dynamic Is an evacuation order issued for the household’s grid cell (yes/no)? This is used in a 
household’s risk assessment 

If yes = 100. If no = 0 

Mobile Home 
Ownership 

Static Is the household in a mobile home (yes/no)? This is used in a household’s risk 
assessment 

If yes = 100. If no = 0 

Age Static 1-5 score from the household’s grid cell (Supplementary Figure 1) normalized to 0-100 
scale. This is used in a household’s risk assessment 

If 1=20, If 2=40, If 3=60, If 4=80, If 5=100 

Household risk 
assessment 

Dynamic The sum of the forecast, evacuation orders, mobile home ownership, and age factors Values range from 0-400 

Evacuation barrier Static If household has a car and household’s risk assessment > socioeconomic barrier, 
household will evacuate 

Car ownership and socioeconomic barrier in 
Supplementary Table 5  

Supplementary Figure 1. Cell-by-cell distribution of agent characteristics identified by Huang et al. [10] as being important determinants of hurricane 
evacuations. These characteristics are spatially distributed by subjectively projecting the county-level social vulnerability data (see [62]) onto the abstracted, 
Florida-like agent-based model grid. Note, for reference, grid cells are 69 km by 69 km each. Higher values for socioeconomic status and car ownership increase the 
evacuation barriers and thus reduce the likelihood of evacuation. Higher values for age and mobile home ownership increase evacuation intentions.  

Supplementary Table 5 
Prescribing agent characteristics to individual households. At the beginning of the simulation, FLEE checks the agent’s location and subsequent values in Sup
plementary Figure 1, then stochastically assigns household characteristics at the values established above. These variables are static, meaning they are assigned at the 
beginning of the simulation and do not change, but serve as inputs into the agent decision-making algorithm as detailed in Supplementary Table 4.  

Household 
characteristics 

Variability in 
time 

Definition Values 

Socioeconomic status Static Establishes the evacuation barrier threshold. Low (high) values indicate grid cell has less (more) 
financial obstacles to evacuate 

If = 1, barrier = random between 
5-105 
If = 2, barrier = random between 
10-110 
If = 3, barrier = random between 
15-115 
If = 4, barrier = random between 
20-120 
If = 5, barrier = random between 
25-125 

Car ownership Static Establishes whether a household owns a vehicle. Carless households do not evacuate If = 1, 96% of households own car 
If = 2, 94% of households own car 
If = 3, 93% of households own car 
If = 4, 91% of households own car 
If = 5, 89% of households own car 

Mobile home 
ownership 

Static Establishes whether a household lives in a mobile home. If home is mobile, will increase risk 
perception 

If = 1, 5% of houses are mobile 
If = 2, 10% of houses are mobile 
If = 3, 20% of houses are mobile 

(continued on next page) 
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Supplementary Table 5 (continued ) 

Household 
characteristics 

Variability in 
time 

Definition Values 

If = 4, 33% of houses are mobile 
If = 5, 46% of houses are mobile   

Supplementary Table 6 
Weighting of key variables in a household’s risk assessment. Weights are designed to reflect the relative importance of each factors (e.g., evacuation orders, 
forecast information, mobile home ownership, and age, in that order) as established in Huang et al. [10]. For the individual hazards, studies suggest most households 
perceive wind and surge as the primary threat over rain (e.g., [65]). But in general, the relative weighting is not well known.  

Variable weight Variability in time Definition Values 

Evacuation order Static Trust in evacuation orders from EMs Random between 0-1 
Forecast Static Trust in forecast information i.e., the light system Random between 0-0.8 
Mobile home Static Agent belief in whether their housing type influences perceived risk Random between 0-10 
Age Static Agent belief in whether household age influences perceived risk Random between 0-0.1 
Wind Static Household’s perceived vulnerability to wind Random between 0.1-1 
Surge Static Household’s perceived vulnerability to surge Random between 0-1 
Rain Static Household’s perceived vulnerability to rain Random between 0-0.9   

Supplementary Table 7 
Key variables for the traffic agent-based model. These parameters are the default settings for the experiments detailed in Section 4.1. Static variables are assigned 
once a vehicle decides to evacuate and does not change, whereas dynamic variables do change throughout the simulation.  

Variable Variability in 
time 

Definition Default values 

Departure times Static Time between when an agent decides to evacuate and when they actually 
leave 

Random between 0-12 hours 

Destinations (out-of- 
state) 

Static The number of evacuees who evacuate out-of-state 50% of the bottom 4 rows of grid cells; 100% of top 6 
rows 

Destinations (in- 
state) 

Static The number of accommodations available in each grid cell for in-state- 
evacuees 

½ of grid cell’s population (i.e., metros have more 
accommodations) 

Patience threshold Dynamic Household patience i.e., the amount of time a household is willing to spend 
waiting to get onto a heavily trafficked road 

Random between 0 and the estimated time of arrival of 
tropical storm force wind 

Left/right Static Agents in the bottom row of grid cells can choose between moving westward/ 
eastward on the lower interstate 

40% westward, 60% eastward 

Erratic drivers Static Percent of time steps (1.2 seconds) in which a driver may act “erratically” by 
randomly slowing down 

0.05% 

Random accident 
frequency 

Static The frequency of accidents along the two outer interstates i.e., I-95 and I-75. 
These stop traffic for 10 minutes. 

1-3 random accidents per hour  

Supplementary Results 1 - Varying household’s weighting of different types of information 

Next, we investigate the effects of changing household agent’s weightings of the four factors that influence their hurricane risk assessment: the 
forecast, evacuation orders, mobile home ownership, and age. For each experiment, we set the information weights to zero, effectively “turning off” 
each parameter, one-by-one, while holding the others constant (Table 3e). When comparing the results to the default settings in Section 4.1, the 
experiments demonstrate the specific influence of the different information on the evacuation behaviors, both spatially and temporally. 

In Irma’s default simulation (Section 4.1), 45.1% of households evacuate. However, turning off the information for evacuation orders, the forecast, 
mobile home, and age, one-by-one, results in evacuation rates of 28.3%, 33.2%, 40.6%, and 44.8%, respectively. Similarly, in the default simulation, 
where 10.5% of households give up due to traffic, turning off the inputs reduces the rate to 2.6%, 8.1%, 9.8%, and 9.3%, respectively (Supplementary 
Table 8). In other words, the results indicate that, in the model’s current formulation, evacuation rates are generally more sensitive to evacuation 
orders than they are to forecast information, mobile home ownership, and age. However, this is zone dependent e.g., evacuation orders has a greater 
influence in coastal zones, and mobile homes have a greater influence upstate/inland. The former is due to model formulation (evacuation orders are 
limited to coastal zones) and the latter due to the geographic distribution of mobile homes (e.g., as shown in Supplementary Figure 1). That said, we 
cannot draw conclusions (or interpret the model dynamics) based on these findings. Rather, we can say the relative importance of these factors is 
generally consistent with the metaanalysis of Huang et al. [10], which we used to prescribed the information weightings, thus adding confidence that 
the model behaves reasonably. 

Breaking down the experiments by impact zones shows that, as expected, evacuation orders primarily impact evacuations along the coast. For 
example, turning off the evacuation order parameter decreases evacuation rates in the coastal >64 knot zone from 52.3% to 31.9%, while inland 
evacuation rates remain the same (Supplementary Table 8).  
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Supplementary Table 8 
Evacuation behaviors by impact zone when varying household weighting of information. Successful evacuation rates are broken down into impact zones 
(coastal vs. inland, and areas experiencing vs. not experiencing hurricane force winds of 64+ kts), compliance rates (i.e., those instructed to evacuate via evacuation 
order who did evacuate), shadow evacuation rates (i.e., percentage of people not instructed to evacuate who did), and the percentage of evacuees who attempted to 
evacuate but “gave up” due to excessive amounts of traffic.  

Experiment % Successfully evacuated    

Total (all 
cells) 

Coastal >64 knot 
zone 

Inland >64 knot 
zone 

Coastal < 64 kts 
zone 

Inland < 64 kts 
zone 

Compliance 
rates 

Shadow 
evacuation 

Gave up to 
traffic 

Irma 
Default 

45.1 52.3 22.2 58.1 36.7 55.0 25.6 10.5 

EO = 0 28.3 31.9 24.0 25.5 36.9 29.0 26.9 2.6 
Forecast = 0 33.2 38.2 11.7 45.3 26.5 41.4 17.5 8.1 
MH = 0 40.6 48.5 17.3 54.9 14.2 51.4 16.6 9.8 
Age = 0 44.8 51.3 22.3 56.4 35.0 53.6 25.3 9.3  

Supplementary Figure 2 shows evacuation rates and traffic broken down by grid cell. Note, in this figure, rates are expressed as the departure from 
the default settings in Figure 7. The results further show how evacuation orders are a strong determinant of evacuation rates, as turning off the 
parameter reduces evacuation rates from 7% to 40% in places along the coast (Supplementary Figure 2b). Note: turning off evacuation orders increases 
evacuation rates in the inland Miami suburbs, as traffic is reduced in the surrounding coastal areas. This highlights how evacuation rates in a given grid 
cell are also influenced by those in other grid cells. Unlike evacuation orders, the other three parameters (Supplementary Figure 2 a, c-d) exhibit a 
more uniform influence on evacuation rates across FLEE’s grid. Areas most influenced by mobile home and age information occur in grid cells where 
rates of mobile home ownership are highest, and where age is expected to play a larger role (Supplementary Figure 1, see cells with higher ranking). 
Though such information does not provide any new behavioral insights, it does verify that FLEE behaves as expected given the model’s current 
configuration, and is capable of capturing complex processes (e.g., evacuation behaviors in one part of the model influencing those in other areas). 
These results increase our confidence that FLEE adequately represents real-world evacuations and is suitable for further experimentation.

Supplementary Figure 2. The spatial effects of “turning off” information inputs on evacuations rates and percent “giving up” from traffic for grid cells. Results 
are presented for experiments “turning off” the forecast information (a), evacuation orders (b), mobile home ownership (c), and age (d), one-by-one while holding the 
other parameters constant. Values are shown as the departure from the default settings in section 4.1 and in Figure 7f-g. Also presented is the swath of hurricane force 
winds (dotted cells), evacuation orders (red cells), and the population by grid cell (e) which provide a frame of reference e.g., major cities depicted include Miami-Ft. 
Lauderdale (yellow star), Tampa Bay-St. Petersburg (blue star), Jacksonville (green star), and Orlando (orange star). Note, run-to-run variability due to stochastic 
elements in the model ranges from 0–2% in grid cells for both evacuation rates and percent giving up due to traffic. Therefore values of -2 to 2 lie within that 
variability and are insignificant. 

Supplementary Figure 3 shows the importance of the different information on certain periods during the evacuation. For example, turning off 
evacuation orders (red lines) causes a reduction in evacuation rates compared to the default simulation (black lines), especially during the 36–102 
hour period when evacuation orders were issued. Forecast information (purple lines) most influences evacuation rates between 30–60 hours, as 
forecasts indicated significant risk throughout Florida during this period. Unlike evacuation orders and forecast information, modifying the age 
(orange lines) and mobile home (green lines) factors do not impact any specific periods of time, but simply reduces the evacuation rates overall. This is 
to be expected, as these parameters are defined at the start of the simulation and are not updated. 
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In summary, the simulations in this section illustrate how modifying the factors that influence households’ evacuation decisions in the human 
system agent-based model propagate through FLEE’s full modeling system to influence the spatial and temporal patterns of evacuation. In general, the 
results suggest FLEE behaves as expected given the model’s current configuration, and matches patterns seen in empirical studies which suggest 
forecast/warning information is a key driver for evacuations (e.g., [3,10]). Additionally, the results illustrate how modeling laboratories such as this 
can build our understanding of the evacuation decision-making processes and how they intersect with other factors (e.g., the evolving forecast in
formation, traffic) to produce evacuations.

Supplementary Figure 3. The temporal effects of “turning off” information inputs on the timing of evacuation rates (solid lines) and numbers giving up due to 
traffic (dashed lines), averaged across all grid cells. The default simulation (Table 3a; section 4.1) is expressed (black lines), as are experiments turning off the four 
main types of information used to assess risk: no forecast information (purple lines), no evacuation orders (red lines), no mobile home ownership (green lines), and no 
age (orange lines). Comparing the experiments to the default experiment (black lines) provides a general sense of the relative importance of the parameter on the 
overall evacuation behaviors. Also shown is the simulation where the population density is uniform (grey lines), which is further described in Supplementary Re
sults 2. 

Supplementary Results 2 - Varying geographical distribution of households 

In this section, we investigate FLEE’s behavior when the non-uniform geographical distribution of households in the default settings is changed to a 
uniform population distribution (Table 3f) i.e., where the 16.4 million residents (4.1 million households) are spread evenly across grid cells. As a 
result, the experiment is a first attempt to explore the effects of population density on evacuations, as this cannot be done empirically, and it dem
onstrates how FLEE can be used to run different scenarios with population shifts, e.g., times of year when there are a lot of tourists in certain areas, 
looking 10+ years out for how evacuations may change as the population grows. 

In total, evacuation rates increase from 45.1% in the default simulation to 49.9% when the population distribution is uniform, which is an increase 
of 786,720 people (Supplementary Table 9). Meanwhile rates of households unable to evacuate due to excessive traffic decrease from 10.5% in the 
default simulation to 3.5%, a decrease of 1,147,300 people. Thus, the experiments suggest the real-world, non-uniform population density sub
stantially increases evacuation traffic and reduce evacuation rates. 

A more in-depth look reveals an interesting pattern in the spatial distribution of evacuation behaviors. In most places, evacuation rates are higher 
than in default while traffic is minimal (Supplementary Figure 4, bottom panel); the exception is the southern “coastal” cells where rates unable to 
evacuate due to traffic increase 12–17%, particularly around Miami, which reduces evacuation rates by 9–17%. One possible explanation is that the 
southern cells have 1) more evacuees than in the default run and 2) more evacuees downstream i.e., the area is “last in line” to evacuate based on the 
available road network. It is also possible that we are seeing the impacts of clearance times being out of balance with what the clearance times would 
be in a world with this revised population density. 

The results quantify contributions of the built environment to the evacuations. Furthermore, they illustrate the significant and potentially complex 
effects of population density on the evacuation success, which should be explored further. The experiment also shows how, in a modeling laboratory 
such as this, different components can be modified systematically to isolate influences which are impossible to do empirically, and highlights the 
potential value of this type of modeling laboratory to increasing our fundamental understanding of the system dynamics, and our understanding how 
evacuations may change as the population grows.  
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Supplementary Table 9 
Evacuation behaviors by impact zones when making the population uniform across the grid. Successful evacuation rates are broken down into impact zones 
(coastal vs. inland, and areas experiencing vs. not experiencing hurricane force winds of 64+ kts), compliance rates (i.e., those instructed to evacuate via evacuation 
order who did evacuate), shadow evacuation rates (i.e., percentage of people not instructed to evacuate who did), and the percentage of evacuees who attempted to 
evacuate but “gave up” due to excessive amounts of traffic.  

Experiment % Successfully evacuated    

Total (all 
cells) 

Coastal >64 knot 
zone 

Inland >64 knot 
zone 

Coastal < 64 kts 
zone 

Inland < 64 kts 
zone 

Compliance 
rates 

Shadow 
evacuation 

Gave up to 
traffic 

Irma Default 45.1 52.3 22.2 58.1 36.7 55.0 25.6 10.5 
Uniform 

pop. 
49.9 65.3 29.7 62.3 36.9 64.1 32.5 3.5  

Supplementary Figure 4. Influence of population density on evacuation for grid cells. Evacuation rates (left) and the percent of households unable to evacuate 
due to traffic (right) are shown. Results are presented for the experiment where population density is even across all grid cells (top panel). These results are compared 
to the default simulation with non-uniform population (bottom panel) where values are expressed as the difference from the default settings in section 4.1 and in 
Figure 7. Also expressed is the swath of hurricane force winds (dotted cells), evacuation orders (red cells), and the population by grid cell (c) which provide a frame of 
reference e.g., major cities depicted include Miami-Ft. Lauderdale (yellow star), Tampa Bay-St. Petersburg (blue star), Jacksonville (green star), and Orlando (orange 
star). Note, run-to-run variability due to stochastic elements in the model ranges from 0–2% in grid cells for both evacuation rates and percent giving up due to traffic. 
Therefore values of -2 to 2 lie within that variability and should be ignored. 
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