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ABSTRACT 
 
Rainfall-induced landslides pose significant risks to urban communities and infrastructure. The 
combination of transient rainfall, unsaturated soil properties, and spatially varying topography 
makes them difficult to forecast over large areas. This contribution describes a computational 
framework to evaluate landslide susceptibility over regional landscapes. To this aim, a description 
of a case study is presented, in which more than forty shallow flowslides were triggered after 48-
hr of continuous precipitation over a region of 9 km2. Several hypotheses have been proposed to 
explain the widespread distribution of slope instabilities, such as soil liquefaction, pore pressure 
pulses due to layering, bedrock exfiltration, and antecedent hydrologic conditions, among others. 
Here, by using available field and laboratory data to constrain the input parameters, different model 
scenarios are tested to back-analyze the spatial and temporal occurrence of the events, namely, i) 
slope failure caused by infiltration in homogenous deposits, ii) failures mediated by permeability 
contrasts in heterogeneous slopes, and iii) slope instabilities caused by bedrock springs within 
homogeneous soil profiles. Each scenario is evaluated by comparing the computed susceptibility 
maps and the temporal evolution of unstable areas against the landslide inventory. It is shown that 
stratigraphy effects can capture successfully the observed distribution of landslide source areas. 
Lastly, the advantages and limitations of each scenario are discussed, and recommendations for 
future analyses are proposed.  
 
INTRODUCTION 
 
Rainfall-induced landslides are a major hazard in tropical and mountainous areas due to their high 
spatial and temporal frequencies (Petley, 2012). In this context, landslide susceptibility zonation 
becomes an important tool for risk management, especially for densely populated urban settings 
affected by such phenomena.  
During the last decades, significant advances have been made in the development of spatially-
distributed models for landslide susceptibility (Godt et al., 2008; Montgomery and Dietrich, 1994). 
These models map across a regional landscape the areas that can become unstable under the effect 
of heavy rainfalls. Due to the large spatial extension of these problems, the simulation of the 
infiltration process often relies on the assumption of homogeneous soil profiles to compute the 
evolution of pore pressures, which are then coupled with suction-dependent soil strength criteria 
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to define slope stability thresholds. Thus, a missing element in most of such modelling frameworks 
is the presence of layered profiles, which can alter the timing and location of landslide triggering.   
This contribution describes the application of a spatially-distributed model to evaluate landslide 
susceptibility over landscapes characterized by layered slopes. To this aim, a brief description of 
a case study is first presented. By using available field and laboratory data to constrain the input 
parameters, three model scenarios are tested to back-analyze the spatial and temporal occurrence 
of the events. Each scenario is evaluated by comparing computed susceptibility maps and temporal 
evolution of unstable area against documented data. Lastly, advantages and limitations of each 
scenario are discussed. 
 
CASE STUDY 
 
The study area covers a region of 9 km2 within the Pizzo d’Alvano massif (Campania, southern 
Italy) (Figure 1). Detailed analyses of the meteorological characteristics of the event, geological 
and geotechnical properties of the deposits and groundwater regime have been documented 
elsewhere (Cascini et al., 2011; Crosta and Dal Negro, 2003; Guadagno et al., 2005). Here only a 
brief description of the site-specific input datasets used for the simulations is presented. 
Due to the proximity to the Somma-Vesuvius volcanic system, the geologic setting is characterized 
by unsaturated pyroclastic sediments loosely-deposited over a fractured carbonate bedrock 
(Cascini et al., 2008). As a result of previous volcanic eruptions, alternations of ashes (with 
thickness between 40 to 60 cm) and pumices (10 to 30 cm) are often found, resulting in stratified 
profiles across the landscape (Crosta and Dal Negro, 2003). The thickness of the deposits varies 
according to elevation, particularly, the depth to bedrock increases from the crest (about 0.5–2m) 
to the toe of the massif (several meters) (De Vita et al., 2006).  

 

 

Figure 1. Study area and spatial distribution of documented landslides 
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On May 4-5 of 1998, after 48 hr of continuous precipitation, more than a hundred shallow 
landslides occurred over an area of 60 km2, with 47 of them located in the study area (Figure 1, 
red contours). Most slope instabilities originated at inclinations between 33° and 50°, with failure 
depths between 0.5 and 2.0 m. Cumulated rainfall of 180 mm was reported at the closest 
meteorological station (located 4.5 km from the study site) by the end of the storm. Landslide 
triggering started in the late afternoon of May 5th, during the last 12 hours of the event.   
Several hypotheses have been proposed to explain the widespread distribution of shallow slope 
failures. For instance, Cascini et al., (2003), identified the location of ephemeral bedrock springs 
and measured the flow rate after major rainfall events. Figure 2 shows their results for three distinct 
locations, five months (starting in October 1998) after the occurrence of the May 4-5 landslides. 
Such considerations were used to suggest that bedrock exfiltration played an important role on the 
observed distribution of landslide triggering. Alternatively, Mancarella et al. (2012), based on 
results of column infiltration tests in layered profiles, showed that sharp decreases in matric suction  
could develop as a result of high contrasts on values of hydraulic conductivity K. Such results 
along with the widespread presence of layered deposits were used to suggest that stratigraphy alone 
was mostly responsible for the development of shallow failures. In the following, after a brief 
description of the model formulation, these scenarios (i.e., triggering controlled by layering or 
bedrock exfiltration, respectively) will be used to back-analyze the available evidence. 
 

 
Figure 2. Measured exfiltration rate at three locations following the May 4-5 events in 1998.  

 
 
MODEL DESCRIPTION AND INPUT DATA 
 
The spatially-distributed model relies on a vectorized Finite Element (FE) algorithm that solves 
simultaneously the governing equations for unsaturated flow at multiple slope units sharing the 
same discretization parameters (i.e., mesh size and time steps). Hereafter only a brief description 
of the implementation procedures is presented, while more details of the formulation can be found 
in Lizárraga and Buscarnera (2018). 
The model is implemented in three stages: pre-processing, computation, and postprocessing 
(Figure 3). The input stage requires the discretization of the zone of study into slope units. For the 
present case, a Digital Elevation Model (DEM) with a resolution of 2x2m is used. Spatially-
distributed input datasets are treated as georeferenced grids and are superposed on the background 
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DEM using a Geographical Information System (GIS). Spatially varying initial/boundary 
conditions and discretization parameters are also required. 
During the computation stage, the calculated pore pressures are used to update the FS (Factor of 
Safety, derived based on infinite slope assumption) at each cell throughout the landscape. If at any 
time step, a value of FS<1 is detected, then the corresponding time and depth of failure for that 
cell are stored, otherwise, a non-data index is assigned. The output stage consists on the generation 
of landslide susceptibility maps at selected times and their visualization in a GIS platform. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. Schematic representation of model workflow 

 
 
For the present case study, hydrological and soil strength data were available for each of the layers 
(Bilotta et al., 2005). Due to the widespread prevalence of shallow failures, the assumption of 
infinite slope is used. The spatial distribution of soil thickness was based on Cascini et al., (2011). 
Initial suction conditions were derived from field monitoring data for an instrumented hillslope 
(Pirone et al., 2015), which suggested linear suction (s) profiles with values of s = 20 kPa at the 
soil-bedrock interface (Cascini and Sorbino, 2003). Rainfall data measured at the closest station is 
used (Frattini et al., 2004). Further details can be found in Lizárraga et al. (2017). 
To illustrate the hydrologic response of a typical unsaturated layered slope, a numerical simulation 
of transient infiltration in layered and homogeneous columns are presented. Figure 4 shows a 
schematic representation of the model discretization, initial and boundary conditions. The 
simplified profile is based on average values of layer thickness reported by Crosta and Dal Negro 
(2003). Water Retention Curves (WRC) and Hydraulic Conductivity Functions (HCF) for each 
layer based on the Van Genuchten model were calibrated using laboratory data (Bilotta et al., 
2005). It should be noted that the pumice layers (poorly-graded, gravel-sand mixtures) are much 
more permeable than the ashes (silty sands), with values of K up to three orders of magnitude 
higher than ash B (Crosta and Dal Negro, 2003).  
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Figure 4. Numerical model for transient infiltration in a layered soil profile. 

 
Three simulations are performed, all subjected to the same measured rainfall history and initial 
conditions. Model H1 consists of a homogeneous profile (with parameters corresponding to those 
of ash B due to its larger thickness). Model L is based on the layered system shown in Figure 4, 
while model H2 is similar to scenario H1 but with a bedrock exfiltration rate equal to qb = 2x10-4 
m3s-1 (i.e., the highest value reported in Figure 2) applied at the base during the last 10 hours of 
the storm (Cascini et al., 2003). 
 

 

Figure 5. Computed profiles of pore pressure and Factor of Safety for: homogeneous model H1 
(a and d), homogeneous model H2 with bedrock spring (b and e) and layered model L (c and f). 

a) b) 

d) 

c) 

e) f) 
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The computed profiles of pore pressure pw, and FS (for a typical slope angle of 40°) for model H1 
are shown in Figure 5a and 5d, respectively. The simulation shows that the most critical zone is 
located at the base, where a value of pw = -8kPa leads to a FS = 1.1 by the end of the storm. The 
results for model H2 are similar (Figure 5b and 5e) until the exfiltration rate is applied (see last 
two isochrones), resulting in an unstable scenario (FS <1) at t= 40 hr. For the layered model L 
(Figure 5c and 5f), the simulations indicate the development of spikes of pw at the interfaces 
between each layer. In this case, failure is reached at t = 48 hr and at a depth z = 0.8 m, with a 
correspondent value of pw = -2.5 kPa.  
The previous results can be better visualized in terms of time series as shown in Figure 6. The 
input rainfall is shown in Figure 6a, while the computed temporal evolution of pw at the ash/pumice 
interface (z = 0.8 m, for the layered model L), and at the bedrock (z = 2.0 m for homogeneous 
models H1 and H2) are shown in Figure 6b. The results indicate that only the model scenarios L 
and H2 provided values of FS<1 during the reported time interval of landslide triggering (Figure 
6c). This suggests that the sole analysis of the failure time provides limited support to justify the 
validity of such hypotheses. In fact, different combinations of slope thickness, inclination, and 
initial conditions could lead to different landslide triggering times. In order to analyze this, the 
following section describes each of the model scenarios in terms of landslide susceptibility maps. 

 

 

Figure 6. Input rainfall, and computed time series of pore pressure and Factor of Safety 
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ANALYSIS OF RESULTS 
 
The computed landslide susceptibility map (at t=48 hr) for model H1 is shown in Figure 7. Each 
colored pixel is associated with a computed unstable cell (FS<1). To allow better visual inspection, 
three insets are shown at higher spatial resolution. These are located at the western, central, and 
eastern part of the landscape. Visual comparison between documented landslide source areas (red 
polygons) and computed unstable zones indicates a poor spatial model performance in the western 
and central parts of the study zone. Indeed, nil values of success index, SI (a performance metric 
quantifying the ratio of predicted unstable areas matching the reported landslide contours; Sorbino 
et al., 2010) were obtained for 33 landslides (out of 47), thus corroborating that the assumption of 
homogeneous slopes cannot adequately explain the widespread distribution of failures over the 
entire zone of study. 

 

 
Figure 7. Computed susceptibility map for model H1. 

 
 
The results for model H2 are shown in Figure 8. This simulation results in a larger amount of 
unstable area across the landscape due to the activation of bedrock springs. Specifically, there is 
significant amount of overpredictions in the central portion of the massif. Indeed, the ratio of SI 
versus overpredictions (i.e., false positives), often used to measure the spatial performance of such 
models (Lizarraga et al., 2017) is about 5, while in the previous case is close to 7. In other words, 
while the introduction of bedrock exfiltration helped to improve the amount of successful 
computations in sectors that were not captured by the model H1 (compare insets of Figure 7 and 
8), such result came at the expense of a larger overpredicted area. 
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Figure 8. Computed susceptibility map for model H2 (including bedrock exfiltration). 

The computed susceptibility map for model scenario L is shown in Figure 9. Direct visual 
inspection between the documented landslide areas and the computed unstable zones suggests a 
good spatial performance of the model across the landscape. Specifically, 30 out of 47 landslides 
were characterized by values of SI>50%, resulting in an overall ratio SI/EI close to 10. This 
indicates that the sole presence of layering greatly improves the performance of the computations 
even when the adopted stratified sections are based on simplified averaged profiles that are 
homogeneously distributed across the domain.  

 

 
Figure 9. Computed susceptibility map for model L. 
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The previous susceptibility maps were obtained for t = 48hr. To obtain an assessment of the 
temporal performance of the model across the region, the time evolution of computed unstable 
area for each model is shown in Figure 10. By the end of the storm, model H2 results in more than 
twice the unstable area than model L. Additionally, the effects of bedrock exfiltration are clearly 
seen after t=38 hr, when the spring is activated, leading to a higher rate of computed instabilities. 
Indeed, model scenario H2 reaches the same amount of unstable area that model L by t=40hr. 

   
Figure 10. Comparison between temporal evolution of computed unstable area for each model. 

 
These results highlight the crucial effect of layering on landslide triggering. Further evidence that 
may support such hypothesis are the distribution of failure depths observed by some authors in the 
field (Crosta and Dal Negro, 2003) which were mostly reported at shallow interfaces between ash 
and pumices. In the context of model simulations, while the hypothesis of bedrock exfiltration 
promotes primarily the development of basal failures, in layered profiles instabilities can develop 
both at soil interfaces and at the base (Lizárraga and Buscarnera, 2018). Such considerations 
suggest that, although some evidence indicates that failure at soil-bedrock interfaces can play an 
important role (Cascini et al., 2011) and may be necessary to explain the mechanics of initiation 
at specific source areas, the spatially erratic and discontinuous nature of exfiltration sources 
implies that they should be carefully mapped and inserted only at specific locations to use them 
accurately in spatially-distributed models. 
 
CONCLUSIONS 
 
This work described the application of a spatially-distributed model for landslide susceptibility 
zonation. The model focuses on regions prone to shallow landsliding in unsaturated deposits. To 
this aim, a description of a case study involving a series of documented landslides in unsaturated 
volcanic soils was first introduced. Different scenarios were tested to back-analyze the spatial and 
temporal occurrence of the events, namely, i) slope failure caused by infiltration in homogenous 
deposits, ii) failures promoted by contrasts in permeability within heterogeneous profiles, and iii) 
instabilities taking place in correspondence of bedrock springs in homogeneous slopes. The results 
were evaluated by comparing the computed susceptibility maps and temporal evolution of unstable 
area against the documented landslide inventory. It was shown that the sole use of homogeneous 



   10 

profiles could not explain the observed spatial and temporal evidence of landslide triggering over 
the whole study area. The introduction of bedrock exfiltration can help to capture events that were 
not predicted by the homogeneous model; however, the extreme assumption of pervasively 
distributed springs leads to lower values of performance indicators (SI/EI ratio). Alternatively, the 
use of stratified profiles leads to an improved spatiotemporal performance over the entire zone of 
study, thus suggesting that layering played a predominant role on the observed widespread 
distribution of landslide triggering. 
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