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Abstract

The southwestern and central US serve as an ideal region to test alternative hypotheses
regarding biotic diversification. Genomic data can now be combined with sophisticated
computational models to quantify the impacts of paleoclimate change, geographic features, and
habitat heterogeneity on spatial patterns of genetic diversity. In this study we combine
thousands of genotyping-by-sequencing (GBS) loci with mtDNA sequences (ND1) from the
Texas Horned Lizard (Phrynosoma cornutum) to quantify relative support for different catalysts
of diversification. Phylogenetic and clustering analyses of the GBS data indicate support for at
least three primary populations. The spatial distribution of populations appears concordant with
habitat type, with desert populations in Arizona and New Mexico showing the largest genetic
divergence from the remaining populations. The mtDNA data also support a divergent desert
population, but other relationships differ and suggest mtDNA introgression. Genotype-
environment association with bioclimatic variables support divergence along precipitation
gradients more than along temperature gradients. Demographic analyses support a complex
history, with introgression and gene flow playing an important role during diversification.
Bayesian multispecies coalescent analyses with introgression (MSci) analyses also suggest that
gene flow occurred between populations. Paleo-species distribution models support two
southern refugia that geographically correspond to contemporary lineages. We find that
divergence times are underestimated and population sizes are over-estimated when
introgression occurred and is ignored in coalescent analyses, and furthermore, inference of
ancient introgression events and demographic history is sensitive to inclusion of a single
recently admixed sample. Our analyses cannot refute the riverine barrier or glacial refugia
hypotheses. Results also suggest that populations are continuing to diverge along habitat
gradients. Finally, the strong evidence of admixture, gene flow, and mtDNA introgression among

populations suggests that P. cornutum should be considered a single widespread species under
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the General Lineage Species Concept.

Key words: demography, introgression, lizards, phylogeography, speciation

Statement of Significance

Many studies have documented cryptic diversity in diverse taxa inhabiting the arid regions of
western North America, with divergence correlated with both Neogene vicariance and
Pleistocene climate change. However, relatively few studies adopt a genomics approach and
most implicitly assume that gene flow ceases once divergence begins. Using the Texas horned
lizard (Phrynosoma cornutum) as a model, our results suggest a complex demographic history
that includes episodes of gene flow. Results also suggest that divergence is continuing along
environmental axes and that adequate model choice is imperative for demographic hypothesis
testing. This study can serve as a model for how genomic data and new analytical tools can be
used to test traditional evolutionary hypotheses throughout geologically and climatically diverse

regions.
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Introduction

Allopatric divergence has long been considered the most likely cause of speciation, and
geographic barriers the primary hindrance to gene flow (Coyne & Orr, 2004). However, the
origins of a particular diversification event can be both controversial and unclear, resulting in the
various forces behind diversification becoming a current topic for discussion (Pyron & Burbrink,
2010; Butlin et al., 2008; Fitzpatrick et al., 2009; Nosil & Feder, 2012). Not only may the forces
acting on species be disparate, but the diversification process can be episodic with periods of
isolation interspersed with periods of gene flow leading to a history of reticulation (Blair & Ané
2020). As the climate changes, a population may fracture by seeking shrinking patches of ideal
habitat, expand into newly habitable regions, or adapt, the latter of which can lead to niche
divergence and ecological segregation (Castro-Insua et al., 2018; Jezkova et al., 2016; Wiens &
Graham, 2005). As a species expands or contracts its range, it may encounter hard barriers to
gene flow such as rivers, which have been shown to result in genetic divergence in multiple taxa
(Pastorini et al. 2003; Nazereno et al. 2019). Populations and species likely to encounter
disruptive barriers throughout their history tend to occupy a wide geographic range of varied
habitat, yet possess low dispersal capabilities (Schield et al., 2018). Ectothermic species such
as reptiles that exhibit these traits are also further influenced by climate differences (Huey &
Kingsolver, 1993; Wogan & Richmond, 2015). Ultimately, understanding the evolutionary history
of a species involves evaluating the geographic, genetic and climatic factors affecting
divergence throughout its history (Fitzpatrick et al., 2009).

The Texas Horned Lizard (Phrynosoma cornutum) is spread across a diverse collection
of ecological habitats making it an interesting candidate to examine adaptation and
phylogeographic history. While its range does consist of many smaller environmental niches
(Price, 1990), there exists a primary habitat divide that bisects the species’ distribution providing

an apparently stark environmental contrast through which to view its effects on the species. The
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southwestern range inhabits the Chihuahuan desert of Arizona and New Mexico, whereas the
northeastern range covers the Great Plains east of the Rocky Mountains throughout Texas,
Oklahoma, and Kansas extending the furthest east of any horned lizard (Sherbrooke, 2003). As
expansive as the range is, P. cornutum lives a sedentary life, maintaining fidelity to a home
range with daily movement < 250 meters and limited long distance dispersal capabilities (Fair &
Henke, 1999). The combined factors of the species’ large geographic distribution, low dispersal
ability and varied ecological niche (with respect to various environmental variables such as
temperature and precipitation) across the range may increase the likelihood of regional
adaptation (Lenormand, 2002; Newman & Austin, 2015). Of particular note is the broad range of
annual precipitation values, from ~10 inches per year in the western deserts to ~50 inches per
year in the Great Plains (Pittman et al., 2007). Phrynosoma cornutum has also developed
mechanisms for water harvesting involving both behavioural and morphological adaptations
(Sherbrooke, 1990). The lizard will adopt a rain-harvesting stance, spreading the dorsal surface
so as to maximize retention of raindrops which are then carried through interscalar channels to
the mouth (Sherbrooke, 1990). These behavioural and morphological adaptations are shared
with other Phrynosoma (P. modestum and P. platyrhinos) inhabiting similar arid ecological
niches (Sherbrooke, 1990; Sherbrook, 2003), and suggest that there may be clines in allele
frequencies that are partially tied to temperature and/or precipitation.

With the uniqueness of these adaptations, along with their status in historical accounts
and importance in use as symbols and mascots, Phrynosoma spp. have been the subject of
interest in many evolutionary studies (Leaché & Linkem, 2015; Leaché & McGuire, 2006;
Williams et al., 2019). The crown group of Phrynosoma diverged roughly 25 Ma and the genus
now contains 17 species after the addition of three new species over the past decade. Recent
studies focusing on the genetic structure and lineage divergence within the various species
(Blair & Bryson, 2017; Bryson et al., 2012; Jezkova et al., 2016; Montanucci, 2015; Mulcahy et

al., 2006) yielded the discovery of these three new additions, P. cerroense, P. blainvilli and P.
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sherbrookei, to the taxonomy (de Oca et al., 2014; Leache et al., 2009). Previously,
relationships both between and within species have been difficult to untangle due to
hybridization, introgression, and incomplete lineage sorting (ILS) resulting in disagreement
between concatenation vs coalescent-based methods, as well as discordance between trees
inferred using mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) (de Oca et al., 2014;
Leaché & McGuire, 2006). With the advent of reduced representation sequencing providing a
random and more diverse view of the genome (Andrews et al., 2016), we are able to overcome
these previous challenges in discerning phylogenetic and phylogeographic relationships caused
by mtDNA introgression and gene tree/species tree discordance (Leaché & Linkem, 2015;
Leaché et al., 2015). Given the comparatively large geographic range of P. cornutum, and the
lack of genomic assessment across diverse habitats, the possibility of cryptic diversity is high.

A previous study of this species found strong divergence between the western desert
and eastern plains populations using mtDNA data (Williams et al. 2019). It was hypothesized
that the presence of an extensive late Pliocene pluvial lake, Lake Cabeza de Vaca, was the
barrier that originally separated these two clades. Both clades gave a signal of population
expansion in the Pleistocene. Nuclear microsatellite loci also revealed strong divergence
between the western and eastern mitochondrial clades and found that the eastern plains were
further subdivided into the South-Central Semi-Arid Prairies to the north of the Balcones
Escarpment and the Southern Texas Plains south of the Escarpment (Williams et al. 2019).
Although these results further advance our understanding of evolutionary pattern and process
throughout the central-southern US, a genomic approach that takes advantage of sophisticated
new analytical tools would provide additional power to disentangle competing hypotheses
regarding historical and contemporary divergence.

In this study, we expand on previous results by including samples from more northern
areas of the species range (Kansas and Oklahoma) and by examining the phylogeographic and

demographic history of P. cornutum using both mtDNA sequences and thousands of nuclear
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SNPs from a modified genotyping-by-sequencing (GBS) approach. We first use concatenated
and coalescent-based phylogenetic analyses, species delimitation analyses, and clustering to
test the hypothesis that the genomic and mtDNA data support the presence of cryptic diversity,
which has been demonstrated in other species of Phrynosoma with large geographic
distributions. Second, we use genotype-environment association analyses (GEA) to test the
hypothesis that a proportion of SNPs are statistically correlated with bioclimatic variables and
that the environmental gradient between the plains and desert habitat may be driving adaptation
and furthering genetic divergence (McDonald, 1983; Wiens et al., 2013). We then adopt an
explicit hypothesis testing framework to elucidate demographic history, testing three hypotheses
of divergence likely important to the species. Specifically, we use our models to assess the
relative importance of the Rio Grande as a hard allopatric barrier to gene flow between
divergent lineages (Lanna et al., 2020), as compared to soft allopatric divergence due to cyclical
paleoclimate change or ecological gradients. Both present day and historical species distribution
models (SDMs) are used to further test the hypothesis that divergence was driven by
Pleistocene climate fluctuations (Hewitt, 1996, 2000) as has been observed for other inhabitants
in the region (Jezkova et al., 2016; Schield et al., 2015). Finally, we test the hypothesis that
explicitly accommodating gene flow in Bayesian multispecies coalescent analyses (MSci; Flouri
et al., 2020), leads to alternative estimates of demographic history (i.e. divergence times and

effective population sizes).

Results

Data set characteristics
We obtained approximately 225 megabases of nGBS data from 75 P. cornutum samples

and a single P. solare outgroup. After processing the data in ipyrad (Eaton & Overcast, 2020),
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most individuals had ca. 30,000 loci (4,757-42,652; Supplementary Table S1). The full
concatenated matrix consisted of 7,906,017 bp and 57,459 loci. The final mtDNA alignment
consisted of 1,330 bp, 119 variable (but parsimony uninformative) sites, and 101 parsimony
informative sites across 74 sequences including a single P. solare sequence used as the
outgroup. Excluding the outgroup resulted in 27 variable (parsimony uninformative) sites and

100 parsimony informative characters.

Phylogenetic analysis

We used multiple phylogenetic analyses to test for the presence of cryptic lineages and
elucidate the relationships among them. Concatenated ML analysis in RAXML-ng (Kozlov et al.,
2019) yielded a topology consisting of three primary lineages (Figs. 1, 2). These lineages
included a Desert clade (DST) consisting of samples from the Arizona and New Mexico portions
of the Chihuahuan Desert (N. American Eco Region 10: North American desert), a Southern
clade (STH) containing samples from the southern Texas plains (N. American Eco Region 9:
Great Plains) and a Plains clade (PLN) of samples from Western Nevada, Northern Texas,
Colorado, Kansas, and Oklahoma (N. American Eco Region 9: Great Plains; Fig. 1). The Desert
lineage was supported by a bootstrap value of 100%, the Southern Lineage had a bootstrap
value of 81% and the Plains lineage was also supported by 100% bootstrap value. The average
relative Robinson-Foulds (RF) distance in this tree set was 0.079466 and the number of unique
topologies in the tree set was 10. In all cases the three primary clades were recovered.
Bayesian analysis in ExaBayes (Aberer et al., 2014) resulted in a nearly identical topology to the
ML tree with 100% posterior probability for the three distinct lineages (Fig. 2). ESS values for all
parameters indicated that the chain was run for an adequate duration (ESS > 200 for all
parameters). Both the ML and Bayesian analyses provided some additional support for two
lineages within the Plains clade. The bootstrap consensus tree from SVDQUARTETS (Chifman &

Kubatko, 2014) yielded a topology consistent with the ML and Bayesian trees (Fig. 2).
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Bootstrap support for each clade was 100%. However, this topology did not support two distinct
Plains lineages (Supplementary Fig. S1).

Bayesian analysis of the mtDNA data in BEAST (Bouckaert et al., 2019) yielded high
ESS values for all parameters (>200). The coefficient of variation parameter under a relaxed
clock model (which measures the extent of clock violation) had substantial posterior density
near zero, indicating that a strict clock model was appropriate. The maximum clade credibility
(MCC) tree showed a different tree topology compared to the three GBS based trees discussed
above. The Desert clade was still present and strongly supported (minus sample KK104), but
the remaining topology did not support a distinctive Southern or Plains population. Instead,
individuals from the Southern and Plains populations were interspersed throughout two lineages
that diverged approximate 1 Ma (assuming a substitution rate of 0.00805 substitutions per site
per million years [Macey et al., 1999]. The mtDNA genealogy supported an initial divergence

time of approximately 5 Ma for P. cornutum (Supplementary Fig. S2).

Population structure and GEA analysis

To complement the phylogenetic analyses, we performed genetic clustering using sNMF
in the R package LEA (Frichot et al., 2014; Frichot & Francgois, 2015). After filtering missing data
and SNPs showing evidence of linkage disequilibrium from the initial matrix of 54,634 SNPs,
population genomic analyses in sSNMF provided support for K = 5 genetic groups (Fig. 2b,c;
Supplementary Figs. S3, S4) based on the cross-entropy criterion. Results were similar to the
phylogenetic analyses, showing strong evidence for the western Desert (DST) cluster with
strong geographic structure, a small Southern (STH) population and a third larger Plains (PLN)
population consisting of three subpopulations (Plains South, Plains Central, Plains North), with
substantial shared ancestry amongst them (Fig. 2). We chose to treat the data as three
populations for demographic modeling rather than five to focus on the deepest divergences from

the phylogenetic analysis. Further, the additional structure detected with K = 5 likely
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represented isolation by distance (IBD; see below). The major split between two groups
separating the western (DST) and eastern (STH+PLN) populations (K = 2) was recovered in
virtually all analyses, and runs with the lowest cross-entropy levels supported the partition
shown in Fig. 2. For all demographic modeling (i.e. BPP, MOMENTS) we defined two sets of
analyses on a reduced subset of individuals, one including sample KK104 (admixed) and one
without (non-admixed). We focused on this individual for several reasons: (1) it was the only
sample included in the analyses where <50% of its genome traced back to a single ancestral
population (Fig. 2b); (2) the genomic background for the individual spanned two divergent
lineages (Fig. 2); (3) this individual was placed in a mixed STH+PLN lineage based on the
mtDNA data (Supplementary Fig. S2). These results were likely because the individual was
captured near the boundary of two lineages (see Discussion for additional information). For all
analyses, we compared models and parameter estimates to quantify the impact of this individual
on the results.

Pairwise Fs: and Nei’s genetic distance estimates supported the split between the two
groups inferred from the phylogenetic and sNMF analyses, separating the western (DST) and
eastern populations (STH+PLN). Both Fs: and genetic distance were higher between western
and eastern populations than between the two eastern populations (Supplementary Table S2).
Genetic distance within populations was higher among eastern populations than the western
population (Supplementary Table S2). Analysis of spatial genetic structure revealed a significant
pattern of isolation by distance (p < 0.001; Supplementary Fig. S5).

Our next objective was to test for a statistical association between SNPs and
environmental gradients (genotype-environment association; GEA), which can provide evidence
that these lizards may be adapting to divergent climatic conditions. Correlations between SNPs
and environmental variables was first performed through redundancy analysis using the R
package vegan. Our global model and first of two redundancy axes were significant (P < 0.05).
The global model had an adjusted R? of 0.017. RDA identified 29 outlier SNPs based on locus

10
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scores that were + 2.5 SD, eight associated with mean temperature of the driest quarter and 21
associated with precipitation seasonality (Fig. 3a). Individuals from our Desert population
showed a positive relationship with BIO15: precipitation seasonality, and individuals in our
Central Plains subpopulation exhibited a negative relationship with BIO9: mean temperature of
the driest quarter (Fig. 3b).

We also used LFMM (Frichot et al., 2013; Frichot & Francois, 2015; Caye et al., 2019) to
statistically correlate SNPs among 5,560 loci with environmental gradients, after controlling for
population structure (Supplementary Figure S6). The importance of bioclimatic gradients was
evaluated by computing a multiple squared correlation between each variable and the SNPs
detected by LFMM for that variable. The most important bioclimatic variables for association
with allele frequencies were BIO9: mean temperature of driest quarter (correlated with 95 loci,
R-squared = 0.78, P-value = 1.40e-09), BIO17: precipitation of driest quarter (correlated with
117 loci, R-squared = 0.82, P-value = 1.26e-05), BIO15: precipitation seasonality (correlated
with 53 loci, R-squared = 0.86, P-value = 1.98e-17), BIO19: precipitation of coldest quarter
(correlated with 54 loci, R-squared = 0.66, P-value = 5.23e-08), and BIO2: mean diurnal range
(correlated with 10 loci, R-squared = 0.42, P-value = 3.7e-06, Fig. 3c). The high congruence
between RDA and LFMM indicated that drought-related variables were important in shaping

genomic variation in the species.

Historical demography under the MSC model

Bayesian Phylogenetics & Phylogeography (BPP; Yang, 2015; Flouri et al. 2018) was
run for three purposes: to provide additional evidence for divergence among the three primary
lineages (analysis A11), to estimate a species tree (analysis A01), and to estimate divergence
times and effective population sizes (analysis A00). A11 analysis (species tree estimation and
species delimitation) of both our admixed and non-admixed data resulted in posterior
probabilities of ~1.0 for each of the three populations (DST, STH, PLN). All species tree

11
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analyses placed the STH and PLN as sister with a posterior probability of 1.0. Effective
population size (Ns) estimates from the AOO analysis showed signs of both population growth
and decline following divergence (Supplementary Table S3). In comparing the N, estimates for
runs containing KK104 and runs without, six of the seven parameters overlapped within the 95%
HPDs. The results differed most in their estimates for our DST (pop 1) population (admixed =
348,125 vs. non-admixed = 233,593) as well as the most recent common ancestor (MRCA) of
our ingroup (admixed = 772,968 vs. non-admixed = 625,781). To minimize potential biases in
parameter estimation, the following Ne values were from runs with KK104 removed. Our ingroup
MRCA showed an N. of ca. 625k with the descendant populations having N values of ca. 233k
for DST and ca. 930k for the combined STH+PLN population. After the split of the STH+PLN
populations, there was a reduction in Ne to STH (ca. 575k) and PLN (ca. 157k). These results
are consistent with peripheral population expansion following divergence.

In addition to potential bias in N estimates due to admixture or mixed ancestry, we
found evidence for biases in divergence times (Fig. 4). Including sample KK104 resulted in an
older divergence time at the root while the divergence time of the ingroup was younger. Again,
to minimize any biases regarding interpretation, we focused on the results with this sample
removed. Assuming a divergence time of 20 Ma for P. cornutum and P. solare (Leaché &
Linkem, 2015) resulted in an estimated substitution rate of 0.000535 substitutions per site per
million years, similar to the previously estimated mean genome-wide rate for lizards of 0.0008
by Perry et al. (2018). Thus, independent data supported a relatively slow rate of substitution,
compared with faster rates found in other studies (Green et al. 2014; Tollis et al. 2018). Basing
our calibration on a rate of 0.0008 substitutions per site per million years, divergence times for
both nodes fell clearly in the Quaternary (Supplementary Fig. S7). Combining these results with
the divergence estimates from the mtDNA in BEAST (initial divergence of 5 Ma), a late

Pliocene-early Pleistocene divergence event appears to be a likely scenario for the initial split.

12
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Demographic models

Our MOMENTS (Jouganous et al., 2017) analyses were used to test three hypotheses
regarding historical divergence: allopatric divergence due to the Rio Grande, divergence due to
paleoclimate change, and divergence due to ecological gradients. Each hypothesis makes
assumptions regarding the importance of gene flow during evolutionary history (Leaché et al.,
2019). For consistency with the BPP analyses, we analyzed the same set of individuals. The top
ranked models were similar across the two data sets (with and without the admixed sample
KK104), consisting of an initial split between DST and the ancestral population of STH and PLN,
followed by a period of no gene flow before final diversification between STH and PLN
populations with gene flow (Fig. 5; Supplementary Table S4). The data set including KK104
suggested that gene flow only occurs between the STH and PLN populations. In contrast, the
data set that did not include the admixed individual suggests that there was gene flow between
DST and STH and between STH and PLN populations. We were unable to perform likelihood
ratio tests for the data set without the admixed individual due to our top two models being
unnested. Likelihood ratio tests for the data set including the admixed individual failed to reject
the nested model suggesting a barrier to gene flow when compared to the model favored by the
other data set, therefore it was considered the best model for the admixed data set (Dagi = -
2515.84; p-value = 1). AIC weights for the admixed data set strongly supported the
refugia_barrier model (0.9980), whereas the non-admixed data set favored the refugia_adj_2
model (WAIC = 0.7328; Table 1; Fig. 6). However, the refugia_barrier model was within the 95%

confidence interval for the no admixture data set.

Accommodating gene flow under the MSci model

Although the MSC model can accommodate coalescent stochasticity due to ILS, it
explicitly assumes no gene flow once populations diverge. This assumption is likely violated in
many systems, particularly in analyses of closely related species or populations. Thus, we

13
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performed a series of analyses under the MSC-with-introgression (MSci) model in BPP (Flouri
et al., 2020) to compare demographic parameter estimates from the MSC analyses. We again
analyzed both the admixed (with sample KK104) and non-admixed (without sample KK104)
data sets (500 loci in each case). In each data set, there were two local peaks in the posterior
distribution, which corresponded to two sets of parameter values and may be considered two
demographic hypotheses (Figs. 7 and S8; Table 2). The two peaks fit the data nearly equally
well because the species tree is close to a trichotomy with two divergence times close to each
other. For the admixed data, the Markov chain Monte Carlo (MCMC) run often visited only one
peak. For the non-admixed data, the MCMC run jumped between the peaks, with introgression
probabilities g4 and ¢gs showing bimodal distributions. Note that the introgression probability @a
is the proportion of population A composed of migrants from population TB while 1 — ¢a is the
contribution from population SA (Fig. 7). In other words, when we trace the genealogical history
of sequences sampled from modern species/populations backwards in time and reach node A,
each sequence will take the two parental paths BT and AS with probabilities ga and 1 — @a,
respectively. We separated the samples for the two peaks depending on whether ¢a > 7. Peak
1 (with ga > %) consisted of ~86% of the MCMC samples. The subsamples corresponding to the
same peak were noted to be similar between runs and those from different runs were combined
to produce the posterior summary for that peak (Table 2).

We discuss the genetic history implied by Peak 1 for the non-admixed data, and then
examine the similarities and differences of Peak 2 and of the results from the admixed data.
When we trace the history of the samples backwards in time, Peak 1 implies the following (Fig.
7a). The DST sequences mostly (with probability ¢4 = 86.8%) trace back to node B (or branch
TB), before taking the path TSR to the root of the tree. Sequences from STH will reach node C
and then mostly (with probability 1 — ¢gc = 93.5%) trace back to node B. Sequences from PLN

will reach node D and mostly (with probability ¢p = 93.5%) take the DCB route to reach B. Thus,

14
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most sequences from populations STH and PLN will be in the same ancestral population C by
the time ¢ =7 = 0.00017, while most sequences from DST will meet those from STH or PLN in
ancestral population B by time za =75 ~ 0.00141. Note that in BPP, both divergence (or
introgression) times (zs) and population sizes (6s) are measured in units of expected number of
mutations per site.

Peak 2 for the non-admixed data is a minor peak in the posterior (Fig. 7b). It implies that
most sequences from populations STH and PLN will be in the same ancestral population C at
time zc = ~ 0.00017, while most sequences from DST will meet those from STH or PLN in
ancestral population A by time za = ~ 0.0014. Beyond nodes AB, the divergence times and
population sizes on the paths to the root are similar between Peaks 1 and 2.

The two peaks for the admixed data are even more similar to each other because the
inferred species tree has nearly a trichotomy with zs ~ 77, with near perfect matching of the
parameters between the peaks: ¢a~ 1 — @a, @8~ 1 — @, 4~ 0, and @z~ 6a (Supplementary
Fig. S8, Table 2). Most sequences from populations STH and PLN meet in population C at time
c =1 ~ 0.00013, while most sequences from DST meet those from STH or PLN in population T
at time 7zr = 0.00178 according to Peak 1 or in population S at time zs = 0.00210 according to
Peak 2. Beyond nodes S or T, the divergence times and population sizes on the paths to the
root are almost identical between Peaks 1 and 2. Thus, if we consider the expected
coalescence times between sequences from the three populations, or if we consider similarly
sequence distances between populations, the two peaks for each data set made very similar
predictions.

Finally, we compared parameter estimates from the MSci model with those of the MSC
model (Fig. 4). The MSci model simultaneously accommodates deep coalescence and gene
flow when estimating common evolutionary parameters. In general, ignoring gene flow when it is

present leads to underestimation of divergence times and overestimation of population sizes.
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There was a relatively large effect of including/excluding sample KK104 on divergence times.
Assuming a mutation rate of 0.0008, calibrated divergence times under the MSci model were
4.83 Ma for node T and 7.68 Ma for node S. Introgression times were 1.78 Ma for za = zsand
213 Ka for 7c = = (see Fig. 7 for node labels). We provide calibrated estimates for the non-

admixed Peak 1 data set only, as that is our best estimate of the evolutionary history of these

populations.

Species distribution modeling

We estimated SDMs to further test the hypothesis that lineage divergence was caused
by paleoclimate change (Fig. 8a,b). The SDMs estimated from the Last Glacial Maximum (LGM)
revealed niche space in northern Mexico and along the border in southern Texas and New
Mexico. The eastern and central (near Big Bend) portion of this area held the highest
probabilities of occurrence. The northern edge of the LGM niche space coincided with our
current STH population in the east and the DST population in the central region. The models
also revealed a potential disjunct niche space, albeit with lower probabilities of occurrence,
between the western edge of the Chihuahuan desert to the east and the Sonoran Desert to the
west (outside of the current range of the species). The current SDM shifted the suitable niche
northward expanding across the plains of Texas, up into Colorado, Oklahoma and Kansas, and
connecting with the expanding range in southern Arizona and New Mexico. The eastern and
larger area of the current SDM occupies Level 1 Ecoregion 9 The Great Plains, whereas the
western and smaller portion occurs over Ecoregion 10 North American Deserts. The PCA
analysis of the climatic niche space occupied by our genetic clusters showed the greatest
dissimilarity between the areas occupied by our DST and STH populations with no overlap on

the PC1 axis (Fig. 8c). The climate niche space occupied by our three PLN subpopulations
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showed the greatest similarity and considerable overlap on the PC1 axis. All PCAs indicate that

the three main lineages/populations inhabit a substantially different niche space (Fig. 8d)

Discussion

Genetic structure and demography

Speciation occurs when barriers to gene flow arise and separate populations. Barriers
can come in the form of hard geographical divides such as mountains and rivers, or soft divides
where the barriers to gene flow are environmental factors. Recent studies have shown these
soft ecological divides may have a greater impact on diversification and speciation than the
traditional hard allopatric geographical divides (Castro-Insua et al., 2018; Moen & Wiens, 2017;
Myers et al., 2019). The evolutionary history of P. cornutum appears to further the evidence for
the importance of both hard and soft allopatry in shaping species and highlight the diverse
history of populations across a species range.

We found similar population structure to Williams et al. (2019) with high divergence
between a desert (DST), southern (STH) and plains (PLN) clade at nuclear SNPs that
correspond respectively to the western, southern, and northern, populations in the earlier study.
By incorporating analysis of SNP data in addition to mitochondrial data we were able to expand
upon this earlier study by estimating divergence times between these groupings and elucidating
the current and historic environmental factors that have influenced population structure.
Divergence time estimates from both the mitochondrial and nuclear data (under the MSC
model) suggest that P. cornutum populations initially diverged during the late Pliocene or early
Pleistocene in the range of 2.5 - 3 Ma, supporting our hypothesis of cryptic diversity within the
species. We arrive at this time interval based on multiple analyses of the nuclear data while
taking into account the divergence estimates from our mtDNA analysis (~5 Ma). Given the
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likelihood of over estimating divergence times from mtDNA due to substitution saturation owing
to a quicker mtDNA mutation rate (Zheng et al., 2011), we focus predominantly on the nuclear
estimates. However, we do recognize the present challenges of adopting nuclear genome-wide
substitution rates. Importantly, our divergence times correlate with the onset of full scale North
American glaciations (Zachos et al., 2001), which resulted in cooler and more arid conditions
throughout much of the American Tropics and may also have facilitated the Great American
Biotic Interchange in mammals (Bacon et al., 2016). However, our SDMs suggest that our study
area in particular experienced cooler and wetter conditions, at least during the LGM.

The two primary lineages (DST, STH+PLN) may have roughly coincided geographically
within refugial habitats that originated during the Pleistocene, in the Chihuahuan Desert to the
east, and the Sonoran Desert to the west (Figs. 1 & 7). This deep divide may be the result of
niche conservatism (Wiens & Graham, 2005), where these populations tracked habitats amidst
a changing climate resulting in subsequent isolation, consistent with a refugial speciation model
(Moritz et al., 2000). The finding of suitable habitat throughout the Sonoran Desert during the
Pleistocene is noteworthy, as the current range of P. cornutum does not extend this far west.
These historical patterns also appear congruent to those of other reptile taxa inhabiting the
region, which also support a model of divergence in allopatry during the Pleistocene followed by
secondary contact and gene flow (Schield et al., 2015,2018,2019). An alternative hypothesis for
the initial split is that the Plio-Pleistocene Lake Cabeza de Vaca in the northern Chihuahuan
Desert served as a biogeographic barrier leading to vicariance (Rosenthal & Forstner, 2014).
Unfortunately, the results of our demographic modeling make it difficult to disentangle vicariance
due to paleoclimate versus the lake, as both hypotheses predict initial divergence in allopatry
followed by secondary contact and gene flow. From our nuclear data we show evidence of a
second split occurring more recently in the eastern population as it expanded its range
northward in response to a shifting climate opening up greater niche space as glaciation
receded. It is these fluctuating Pleistocene climatic cycles driving habitat contraction and
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expansion that are likely to have initially shaped the current population structure and set the
groundwork for further divergence.

As a population expands its range through a series of founder events, the signatures of
this expansion should be evident in a reduction of population size and genetic diversity in the
populations occupying the new territory (Excoffier et al., 2009). This decrease in heterozygosity
at the forefront of the expansion has been illustrated in many studies of wide-ranging species
(Garcia-Elfring et al., 2017; Jezkova et al., 2016; Peter & Slatkin, 2013). This same signature of
expansion is readily visible across our analyses. Consistent with this signature of expansion at
nuclear loci, there is higher mtDNA haplotype diversity in the STH (south) population than the
PLN (north) population which also suggests the expansion occurred from the south into more
northern areas (Williams et al. 2019). Although our PLN population occupies by far the largest
geographical area, stretching from Texas to Kansas, it appears to have the smallest population
size. Our BPP analyses indicate a reduction in N, after the STH and PLN populations diverged,
furthering the evidence for this northward expansion originating from the south. Interestingly,
evidence from our population structure analysis indicates that members of this expanding PLN
population do share ancestral genetic variation with our DST population. The existence of some
highly admixed individuals (KK104, 7R10L) support our demographic results and point towards
secondary contact and gene flow post divergence. Taken together, these results suggest that
climatic cycling during the Pleistocene was the most likely catalyst for range expansion and
secondary contact. An alternative hypothesis for admixture may be due to human mediated
movement of P. cornutum owing to its popularity as a pet and symbol of the American
Southwest. Other studies have shown evidence of translocations with admixed individuals
appearing far removed from boundary areas (Williams et al., 2019). This human mediated
movement may play a role in the mitochondrial introgression. It may also provide the reason the
Rio Grande does not appear to be an insurmountable barrier to gene flow between the
populations. However, we note that signals of introgression and admixture are restricted to the
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periphery of the range of each lineage. For example, sample KK104 was collected in Brewster
Co., Texas, which is substantially farther east than other individuals in the clade and in close
geographic proximity to samples encompassing our PLN population. This sample is also nested
in the PLN+STH mtDNA lineage and not the DST lineage, indicating introgression. Similar
geographic patterns are also found with sample 7R10L from Dimmit/La Salle County, Texas. A
previous study with denser sampling in western Texas, found that the DST (western) population
extended from El Paso Co. to Brewster Co. (Williams et al. 2019), on the opposite side of the
Rio Grande. Admixture between the western and eastern groups was concentrated in Jeff Davis
and Brewster Counties, although as previously mentioned, there were some admixed
individuals that were far removed from this potential boundary area (Williams et al. 2019). More
comprehensive sampling throughout Texas, particularly near contact zones, is required to
determine the precise locations of lineage boundaries.

The Riverine Barrier hypothesis would suggest that the Rio Grande could act as a
vicariant barrier to gene flow, isolating the groups on either side and shaping the population
structure (Lanna et al., 2020; Pellegrino et al., 2005). Geographically, the river does appear to
divide the populations (Fig. 1) with only three individuals from our DST population appearing on
the eastern side of the river. It is possible that the river continues to serve as a moderate barrier
to dispersal, and future studies should focus on obtaining samples from Mexico to test this
hypothesis further. The demographic models we tested in MOMENTS supported different
models depending on whether sample KK104 was included in the analysis. Models without
KK104 (non-admixed data set) favored secondary contact with gene flow between the
populations (i.e. the refugia_adj_2 model), though the model with an explicit barrier between
populations (with no gene flow to/from DST) was within the 95% CI of AIC weights. The best
demographic model that included KK104 (admixed data set) was the refugia_river_barrier
model (WAIC = 1.0), that predicted gene flow only between the STH and PLN populations.
These results highlight the importance of sampling scheme (even a single highly admixed

20



531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555

556

individual) for demographic inference, and further studies are needed to explore this
phenomenon more closely. The presence of a heavily admixed specimen from the DST
population (KK104) from the eastern side of the river, along with DST ancestral genetic variation
appearing in individuals throughout the range suggests that the river is not an absolute barrier.
The importance of rivers as vicariant barriers to gene flow has come under recent scrutiny with
studies showing they may not provide the impasse once thought, with one study finding them
non-effective in 99% of Amazonian species studied (Lanna et al., 2020; Nazareno et al., 2017;
Santorelli et al., 2018). Again, it seems best to not approach this question as an all or nothing
proposition as the river’s width was correlated with the strength as a barrier to gene flow
(Nazareno et al., 2017). Thus, it is possible that the reduced gene flow between these
populations is at least partly due to the Rio Grande. Additional sampling throughout Mexico will
likely result in more power to test the efficacy of the Rio Grande as a barrier to gene flow. We
also note that the Sacramento Mountains in southern New Mexico may serve as a
contemporary barrier to gene flow.

Niche divergence resulting from ecological gradients across the species’ range may play
a significant role in driving continued divergence in P. cornutum. Among ecological gradients,
precipitation is considered a major factor in furthering diversity and determining a species’ range
(Hawkins et al., 2003; Wiens et al., 2013). The family Phrynosomatidae has historically existed
in arid environments, with those currently occupying more mesic habitats being recently derived
(Wiens et al., 2013). This historic trend highlights a family-wide pattern of migration (=recent
colonization) towards areas of greater precipitation. Across the range of P. cornutum there
exists a significant precipitation gradient, ranging from under 10 inches (25.4 cm) of average
annual rainfall in the western desert to over 50 inches (127 cm) in the eastern reaches of the
Great Plains (Pittman et al., 2007). Variables concerning precipitation account for our top three
results from LFMM analysis. Further, 21 of 29 SNPs identified through redundancy analysis

were associated with seasonal precipitation. Thus, we cannot refute the hypothesis that the

21



557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581

582

varied levels of precipitation from across the range of P. cornutum are causing adaptive
divergence in this system. Because of the species’ low vagility and extensive range, adaptations
that prove advantageous may become fixed in the population with greater speed, compounding
the effects of niche divergence (Ujvari et al., 2008). Considering morphological adaptations to
arid environments are visible in the form of the interscalar channels P. cornutum uses to harvest
rainwater (Sherbrooke, 1990), it would be interesting to see if morphological variation along
precipitation gradients exists among the three populations.

There are additional populations of P. cornutum that reside in the southeastern United
States, having been introduced in the 1920s as a form of pest control. These populations
already show significant morphological differences from their west coast counterparts (Heuring
et al., 2019) despite the short term of geographical separation. While it is not clear if the
differences are the result of genetic drift or adaptation to unique environments, it does highlight
the rapidity with which significant morphological changes can arise between populations. With
the deep divergence between our DST and STH+PLN populations occurring > 3 Ma, not only
does it vastly increase the time frame for adaptation and further divergence to occur, it places it
amongst other speciation events seen in the genus. According to a recent time calibrated
phylogeny of Phrynosoma (Leaché & Linkem, 2015), several species pairs diverged more
recently than 5 Ma, with the P. platyrhinos- P. goodei split occurring concurrently with our DST
and STH+PLNS divergence at ~3 Ma. Currently, P. cornutum is the second oldest lineage of the
genus at 20 Ma, younger than only P. asio. In addition, recent genomic data (ddRADseq)
suggest that P. cornutum, along with P. asio and P. solare, exhibits substantial genetic
divergence among populations (Leaché et al., 2021). If there indeed does exist a cryptic species
or subspecies within P. cornutum, further examination of both morphological and behavioural

differences between the populations is necessary.

Accommodating gene flow in genomic studies
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The recently developed MSci model was designed to explicitly accommodate both ILS
and gene flow/introgression when estimating divergence times and effective population sizes
(Flouri et al., 2020). Given the presumed ubiquity of inter- and intraspecific gene flow in natural
populations, the model marks a significant advancement of the field. However, the current
implementation of BPP assumes that the introgression model is specified a priori, and
furthermore the program may not deal with recent hybrids when inferring ancient admixture
events. Here, we compare and contrast results from several BPP analyses under the MSC and
MSci models, both with and without sample KK104 (admixed and non-admixed data sets). For
many parameters the 95% HPDs overlapped, though some interesting patterns emerged. Of
particular note was the much older divergence times inferred from the non-admixed data set
under the MSci model versus the other three analyses (MSC-admixed, MSC-non-admixed,
MSci-peak1-admixed). The former analyses estimated divergence times of 7.68 Ma and 4.83
Ma, whereas in the remaining analyses divergence times occurred during the Pleistocene. The
admixed data also produced a much smaller introgression time za = zz than the non-admixed
data (posterior means 0.000178 vs. 0.00142; Table 2). Other divergence times (such as zc = 1,
which is assumed to be smaller than 74 = s, and 7r and zs) were also affected. Similar to
MOMENTS, these differences can be explained by the impact of including a recent hybrid
sample (KK104). Note that sequences sampled from two modern populations cannot coalesce
until they are in the same ancestral population. Let t123 be the smallest sequence divergence
between 1.DST and 2.STH (or 3.PLN), minimized across all loci and all sequence pairs at each
locus. Then t123 > 7a. As KK104 appears to be a recent hybrid, the divergence time at some loci
can be very small, and those small distances will force z4 to be very small. Note that under the
coalescent model, species divergence times and introgression times are determined mostly by
the minimum, rather than the average, sequence divergence between species. The result

suggests that hybrid samples should be avoided when one aims to infer ancient introgression
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history. Similarly, we suggest that the results from the non-admixed data may represent a more
realistic description of the history of divergences and introgressions for those lineages. We
leave it to future studies to more thoroughly assess the impact of admixed samples on the
estimation of divergence times under the MSC and MSci models.

As discussed above, the peaks in the posterior of Figs. 7 and S8 are difficult to
distinguish using genomic sequence data. According to the theory developed by Yang & Flouri
(2021), bidirectional introgression (BDI) events generate unidentifiability issues of two types:
within-model and between-model, depending on whether the species involved in the
introgression are sister or non-sister species. The within-model unidentifiability is essentially a
label switching issue as the MCMC samples parameters within a single model. We note that the
two peaks in Figs. 7 and S8 represent alternative within-model hypotheses that are nearly
equally supported by the data. The peaks are identifiable, but very hard to distinguish with
genetic data because the two speciation events occurred in quick succession (with zs ~ 77 in
Supplementary Fig. S8). The sequence data also provide equal support for multiple between-
model hypotheses: the four alternative between-model hypotheses corresponding to Peak 1 for
the non-admixed data set are shown in Supplementary Fig. S9. These models are
unidentifiable, as they make exactly the same probabilistic predictions for the gene trees and
thus the same predictions for the multilocus sequence data. It is then impossible to use genomic
data to distinguish such models. Researchers will need to consider additional information (e.g.
habitat requirements) to help elucidate the most likely history of the species/populations. To our
knowledge, this study serves as the first empirical investigation of unidentifiability issues with
BDI models in BPP, and we encourage researchers interested in these models to carefully
examine both classes of unidentifiability issues that may confound analysis and interpretation
(Yang & Flouri 2021).

Both the MSci and isolation-with-migration (IM) models can be used with genomic data

to account for gene flow when estimating divergence times and population sizes (Gronau et al.,
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2011; Flouri et al., 2020). The MSci model assumes periodic introgression events between
species, whereas the IM model accommodates continuous migration rates every generation.
Selecting the appropriate model for a given data set is not straightforward, and additional
studies are needed to quantify the effect of model misspecification. However, our results
indicate that ignoring gene flow when it is present can potentially bias parameter estimates.
More specifically, divergence times are underestimated and population sizes are overestimated
when gene flow is not explicitly accounted for. Interestingly, we find no effect on species
delimitation or species trees. This result is most likely due to the small number of populations
studied. Our results are remarkably similar to previous simulation studies that also
demonstrated similar biases in parameter estimates (Leaché et al., 2014). Thus, we further
advocate careful consideration of models, assumptions, and sampling regimens when

estimating demographic histories from genomic data.

Conclusions

We investigated the history of diversification within P. cornutum throughout the
southwestern and central US by using genomic data to examine the hard and soft allopatric
forces that have shaped population genetic structure. We find evidence for an initial divergence
during the Plio-Pleistocene (possibly the Miocene) that was likely driven by habitat
fragmentation due to climate fluctuations, vicariance due to the Rio Grande, and potentially
Lake Cabeza de Vaca, followed by a subsequent northward range expansion as the receding
glaciation opened up novel habitats. This expansion facilitated divergence along sharp
environmental clines and possible adaptation to a divergent niche space. Whether the
population-level diversity uncovered through this study rises to the level of species will require
further investigation (for example, estimation of hybridization rates in contact zones for
comparison with the long-term introgression rate), additional data (i.e. morphology), and dense
population sampling, especially throughout Mexico. The evolutionary history presented here
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highlights the importance of both hard and soft allopatric forces in shaping a species through
gene flow, as the lineage divergences appear at least partially influenced by a changing habitat
and environmental niche. Finally, this study should serve as a foundation for the exploration of

powerful new models of demographic inference that make use of genomic data sets.

Materials and Methods

Sampling and data collection

Tissue samples (75) of P. cornutum were obtained from both museum specimens and
field samples collected from multiple sites throughout Kansas, Oklahoma, Colorado, New
Mexico, Texas and Arizona (Fig. 1; Supplementary Table S1). A single P. solare individual from
Pima County, Arizona was also included as an outgroup taxon. All new collections were
approved by the IACUC Committee at Miami University (protocol number 992_2021_Apr).

Genomic DNA was extracted from liver or muscle tissue using the Qiagen DNeasy Blood
& Tissue Kit (Hilden, Germany) following manufacturer protocols. DNA quantity and quality were
measured on a NanoDrop spectrophotometer. Aliquots of DNA extracts were shipped to LGC
Genomics (Berlin, Germany) for library prep and sequencing using a modified genotyping-by-
sequencing (Arvidsson et al., 2016; Elshire et al., 2011) approach. The technique, termed
normalized GBS (nGBS) digests genomic DNA using the Msl| restriction enzyme and utilizes a
subsequent normalization step after adapter ligation to remove fragments with a high number of
copies. The method is particularly suited for species lacking a reference genome. Size-selected
fragments were QC-ed and sequenced on an lllumina NextSeq flow cell (150 bp PE). Data were
demultiplexed using lllumina bcl2fastq v. 2.17.1.14. Two samples (FHSM16593, FHSM16898)
were excluded from further analysis due to a low number of reads. All NGBS data were

uploaded to the SRA (accessions provided upon acceptance).
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687 The raw, demultiplexed data were processed using IPYRAD v. 0.7.30 (Eaton & Overcast,
688  2020). The demultiplexed data were first quality filtered to remove residual adapter sequences
689  (using cutadapt) and low-quality bases. Reads were then clustered within and between

690 individuals based on 85% similarity, which is the default value recommended by the program
691  authors. A minimum of 30 individuals per locus (~39% of samples) was required to keep loci in
692  the final assembly, resulting in a concatenated matrix of ~8 million base pairs and 57,459

693  retained loci. Default values were also used for the remaining parameters. We also performed
694  additional assemblies using a clustering threshold of 90%, and the results were qualitatively
695  similar.

696 We obtained new mtDNA sequences from all samples to compare with the GBS data.
697  Approximately 1,400 bp of mtDNA were collected from each sample, encompassing the entire
698  ND1 gene, tRNA leucine, tRNA isoleucine, tRNA glutamine, and portions of 16S and tRNA

699  methionine. PCR amplification was performed using previously published primers (Leaché &
700  McGuire, 2006) and the Tag PCR kit (New England Biolabs, Ipswich, MA). Reactions (25 pl)
701  consisted of the following: 2.5 ul 10X reaction buffer, 0.5 pl 10 mM dNTPs, 0.5 uyl 10 uM forward
702 primer (16dR), 0.5 pl 10 uM reverse primer (tMet), 0.125 ul taqg DNA polymerase, 19.875 pl

703  ddH:0, 1 pl template DNA. All PCRs were performed on a BIO-RAD T100 Thermal Cycler using
704  the following cycling conditions: initial denaturation at 95 °C (30 sec), 30 cycles of denaturation
705  at 95 °C (30 sec), annealing at 55 °C (1 min), and extension at 72 °C (1 min), followed by a final
706  extension at 72 °C for 5 min and samples held indefinitely at 4 °C. Horizontal agarose gel

707  electrophoresis (1%) was used to assess the success of reactions. Amplicons were

708  enzymatically purified using ExoSAP-IT (ThermoFisher Scientific, Waltham, MA) following

709  manufacturer’'s recommendations. Purified products were sent to GENEWIZ (South Plainfield,
710  NJ) for Sanger sequencing. Due to the large fragment size, amplicons were sequenced in both
711  directions. Raw sequence data were edited in FinchTV v. 1.5.0 (Geospiza, Inc.). Aliview v. 1.26
712 (Larsson, 2014) was used to form contigs and perform multiple sequence alignment using
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Muscle (Edgar, 2004). All new mtDNA sequences were deposited to GenBank (accessions

provided upon acceptance).

Phylogenetic analysis

All phylogenetic analyses were implemented through the High-Performance Computing
Center (HPCC) at The College of Staten Island (CUNY). We performed both concatenated and
coalescent analyses on the genomic data, as both approaches have their strengths and
weaknesses (Kubatko & Degnan, 2007; Chou et al., 2015; Edwards et al., 2016) and recent
empirical studies show that performing both can potentially result in novel insights (Blair et al.,
2019). Concatenated maximum likelihood (ML) phylogenetic analysis (unpartitioned) was
implemented using the hybrid MPI/Pthreads version of RAXML-ng v. 0.8.1 (Kozlov et al., 2019).
A standard non-parametric bootstrap (250 reps) and ML search was implemented under a
GTRGAMMA model of nucleotide substitution. Trees were rooted using P. solare. We also
performed 20 independent ML searches from 10 distinct maximum parsimony and 10 random
starting trees to determine if multiple likelihood peaks were present in the data. Robinson-
Foulds (RF) distances were calculated between the 20 unrooted trees. These analyses were
performed using the full multi-locus data versus individual SNPs.

We also performed Bayesian phylogenetic analyses in ExaBayes v. 1.5 (Aberer et al.,
2014). ExaBayes is explicitly geared towards Bayesian analysis of large phylogenomic data sets
generated through next-generation sequencing, utilizing MPI parallelization to increase
computational efficiency. Default priors were used for all parameters. Analyses were run for 50
million generations, sampling every 5000 generations. Mixing and effective sample sizes (target
ESS >200) for all parameters was monitored in Tracer v.1.7.1 (Rambaut et al., 2018). A majority
rule consensus tree was generated following a burnin of 25%. The unrooted topology was
subsequently rooted using P. solare. Similar to the ML analyses, all ExaBayes runs used the full
loci including invariable sites.
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Coalescent-based phylogenetic analysis was performed using SVDQUARTETS (Chifman
& Kubatko, 2014) in PAUP* v. 4.0a159 (Swofford, 2001). SVDQUARTETS is statistically
consistent with the multispecies coalescent and first infers quartet relationships using site
pattern frequencies and singular-value decomposition scores. The algorithm then uses QFM
(Reaz et al., 2014) to assemble quartets into a full tree containing all taxa. Although
SVDQUARTETS can be used with multi-locus sequence data, the method is particularly suited to
large SNP data sets and has been recently used in other RADseq/GBS studies (Eaton et al.,
2016; Leaché et al. 2015). We used the .u.snps.phy file from IPYRAD for all SVDQUARTETS
analyses to minimize linkage of SNPs. All quartets were evaluated (1,150,626) and 100
nonparametric bootstrap replicates were used to assess nodal support. Trees were rooted using
P. solare.

We used BEAST v. 2.6.3 (Bouckaert et al., 2019) to infer genealogical relationships and
divergence times based on the mtDNA sequences. bModelTest v. 1.2.1 (Bouckaert &
Drummond, 2017) was specified as the substitution model for all analyses, which uses
reversible-jump MCMC to switch between models. A constant size coalescent tree prior was
used, a relaxed log normal clock (Drummond et al., 2006), and all remaining priors were left as
defaults. We also ran a strict clock analysis for comparison. Analyses were temporally calibrated
using a mitochondrial substitution rate previously calculated for a similarly sized lizard (Macey et
al., 1999) and used in other studies of both Phrynosoma and other lizards (Bryson et al., 2012;
Jezkova et al., 2016). However, to accommodate uncertainty in the rate, we specified a normal
prior with a mean of 0.00805 substitutions per site per million years and a sigma of 0.0005.
Chains were run for 40 million generations, sampling every 4,000 for a total of 10,000 states
over independent runs. Mixing, ESS values (target >200) and parameter estimates were
monitored in Tracer. TreeAnnotator was used to construct a maximum clade credibility (MCC)

tree annotating nodes using mean heights following a burnin of 10%.
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Population structure and GEA analysis

Population structure was analyzed using the non-negative matrix factorization algorithm
sNMF implemented in LEA v2.6.0, for which the number of genetic clusters, K, was evaluated
from the cross-entropy criterion (Frichot et al., 2014; Frichot & Frangois, 2015). This criterion
measures the amount of statistical information conveyed by a model with K clusters by
comparing predictions of masked alleles to their true value, and detects the most significant
subdivisions in the data. Like STRUCTURE (Pritchard et al., 2000), sNMF is a descriptive
method, and visual inspection of the clustering results was used to investigate finer population
structure for K = 2-10. Before performing GEA analysis, SNPs were filtered out for loci with less
than 50% missing data. The missing genotypes were then imputed using values predicted by
the sSNMF model (K = 5). SNPs with minor allele frequency lower than 5%, and SNPs in strong
linkage disequilibrium (r2 > 0.96) were removed from the data set.

We calculated pairwise Fs values (Weir & Cockerham, 1984) between the three main
populations inferred from both the sSNMF and phylogenetic analyses using the R package
hierfstat (Goudet, 2005). We made the decision to treat these as three populations rather than
five to focus on the both the deepest divergences from the phylogenetic analysis and the
geographic structure of the populations (see Results). The analysis was run for 1000 bootstraps
using 95% confidence intervals to assess significance. Nei's genetic distances (Nei, 1978) were
calculated using the R package StAMPP v 1.5.1 (Pembleton et al., 2013) to determine mean
pairwise distances between populations and diversity within each population.

Spatial genetic structure was examined at an individual level using maximum likelihood
population effects parametrization (MLPE, Clarke et al., 2002). We compared geographic
distance and genetic distance to test for evidence of isolation by distance (IBD) throughout the
sampled distribution. This was implemented using the R packages nime (Pinheiro et al., 2012)

and corMLPE (https://github.com/nspope/corML PE), with the correlation between population
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pairs as covariates, and Akaike weights calculated using the MuMIn package (Barton, 2019).
The outgroup taxon was excluded prior to performing these analyses.

Genome-wide associations with climatic gradients were investigated using latent factor
mixed models (LFMM), as implemented in the R package Ifmm (Frichot et al., 2013; Frichot &
Francois, 2015; Caye et al., 2019). The number of factors in LFMMs were determined from the
population structure analysis (K = 5). Climate data were obtained from the WorldClim v2
database at the 2.5 minute resolution (Fick & Hijmans, 2017). All 19 WorldClim bioclimatic
variables were tested for association with SNPs and a joint correlation analysis for all bioclimatic
variables was performed. Significance values were obtained after Bonferroni correction for
multiple testing. The importance of bioclimatic variables was evaluated by computing the
coefficient of determination for each variable and the SNPs detected by LFMM for that variable.
Statistical significance of determination coefficients was evaluated using Fisher tests. R code
and associated data files to reproduce sNMF and LFMM analyses are available on Dryad (doi
provided upon acceptance).

We also implemented redundancy analyses (RDA) to assess correlation between SNPs
and environmental variables using the R package vegan (Oksanen et al., 2016). RDA is a
constrained ordination method that is a multivariate analog of linear regression and examines
the amount of variation in one set of variables that explains variation in another set. In our case,
how much genomic variation is explained by environmental predictors. RDA is a powerful
method that can be used to infer selection, with low false positive and high true
positive rates (Forester et al., 2018). The approach performs a PCA on the response variables
(SNP matrix) while constraining the PCA axes as linear combinations
of the predictor (environmental) variables. In our analyses, environmental variables were
represented by two bioclimatic variables from WorldClim v2 (Fick & Hijmans, 2017): mean
temperature of the driest quarter and precipitation seasonality. These variables were selected to
account for major aspects of climate while avoiding autocorrelation among variables (Dormann
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et al., 2013). The significance of the entire model and each axis was evaluated using an
analysis of variance (ANOVA) with 999 permutations. Effects of collinearity between
environmental predictors were assessed using the function vif.cca to evaluate variance inflation
factors. We then identified candidate SNPs based on locus score that were £ 2.5 SD from the
mean loading on all four constrained axes. We identified the environmental variables with the

strongest associations with each candidate SNP using a Pearson’s correlation coefficient (r).

Species tree and historical demographic analysis

We used Bayesian Phylogenetics & Phylogeography (BPP) v4.1.3 (Yang, 2015; Flouri et
al. 2018) to perform a series of coalescent-based analyses on reduced subsets of data
(individuals and loci). This is a Bayesian MCMC implementation of the multispecies coalescent
model with and without introgression. The full likelihood approach applied to multilocus
sequence alignments makes full use of information contained in both gene tree topologies and
branch lengths. Unlike concatenation, the approach accommodates the coalescent fluctuation in
genealogical history across the genome. Unlike two-step approaches, the likelihood calculation
in the MCMC algorithm averages over gene trees and branch lengths at individual loci,
accommodating their uncertainties (Rannala & Yang 2003; Yang & Rannala, 2014; Rannala &
Yang 2017; Flouri et al., 2020). Because our genetic clustering analyses indicated the possibility
of admixture between some populations (see Results), one data set excluded a highly admixed
individual with <50% of the genome originating from a single ancestral population (sample
KK104) that was in an otherwise genetically distinct population while another included the
individual. All other individuals used in analyses could trace >50% of their genome to a single
cluster. Our goal was to test how inclusion of this sample might influence the estimation of
common evolutionary parameters (e.g. species trees, divergence times, population sizes).

Samples were assigned to one of three populations in P. cornutum (rooted with P. solare)
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following the results of the concatenated analyses (i.e. RAXML-ng, ExaBayes, SVDquartets)
and clustering in sNMF. We chose to analyze three populations/lineages to represent the
deepest divergences in the genealogy. We did not divide the Plains lineage into two populations
due to the results of SVDquartets (see Results). However, all BPP analyses used individuals
from only one of the two Plains lineages inferred by RAXML-ng and ExaBayes. For
computational reasons, all analyses were run using 500 loci.

We first performed a series of A11 analyses to provide additional support that the
populations defined by previous analyses might represent distinct populations or species (Yang
& Rannala, 2010; Yang & Rannala, 2014). This analysis compares MSC models that differ in
the number of species and in the species phylogeny. Each MSC model involves two sets of
parameters: the species divergence times (zs) and the population sizes (6s). Both parameters
are measured in the expected number of mutations per site. Four independent A11 analyses
were run (two using algorithm 0 and two algorithm 1). The species model prior assumed uniform
rooted trees, and the starting tree topology was based off the concatenated analyses. We
specified an inverse gamma (IG) prior of 1G(3,0.004) for population sizes (6) and 1G(3,0.05) for
the divergence time at the root of the species tree (7). Runs were implemented using an initial
burnin of 50,000 generations followed by sampling every 5 generations for 100,000 total
samples. Convergence was assessed by examining consistency between runs. We then
performed a series of species tree analyses in BPP (A01) using the same populations. Similar
to previous analyses, runs were performed both with and without the admixed individual KK104
to quantify the potential impact of gene flow on species tree estimation. All AO1 analyses used
the same priors and sampling frequency as the A11 analyses. We compared the best tree and
associated support values among runs. Finally, we performed multiple AOO analyses to estimate
divergence times and effective population sizes (Ne) on the species tree inferred from the A01

analyses. Again, analyses included or excluded sample KK104 to determine how gene flow
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might influence divergence times and population sizes. The parameter settings and priors were
identical to the other BPP analyses, except that we used an initial burnin of 200,000 followed by

sampling every 20 generations for 100,000 total samples. Mixing, convergence, and ESS values

(target >200) were assessed using Tracer v1.6.0 (Rambaut et al., 2018).

There is still no general consensus of accurate nuclear genome-wide substitution rates
for lizards. Estimates from the literature suggest that lizard rates, on average, are slightly faster
than snakes (0.00077 vs. 0.00074 substitutions per site per million years, respectively (Perry et
al., 2018)). The assumptions and uncertainty about substitution rate directly translates to
uncertainties about absolute divergence times, which can influence hypothesis testing. Thus, we
used several sources of information to convert raw parameter estimates of 8 and t to units of
effective number of individuals and millions of years, respectively. First, we used previous
results for the divergence time (T) of P. cornutum and P. solare (~20 Ma; Leaché & Linkem,
2015) to obtain an empirical mutation rate (u) estimate directly from the data (v = #/T) . This
calculation provided additional evidence either supporting or refuting previous rate hypotheses.
We then compared our rate estimate to independently estimated genome-wide neutral
substitution rate for lizards and squamates (Green et al., 2014; Perry et al., 2018; Tollis et al.,
2018). Our analysis provided support for slower substitution rates, supporting the recent
estimates of Perry et al. (2018). Thus, our final calibrations were based on a rate of 0.0008
substitutions per site per million years (8 x 107'° substitutions per site per year). To obtain

estimates of N. we assumed a generation time of 2 years (Jezkova et al., 2016).

Demographic model testing
To examine and compare the different models of the divergence of P. cornutum (riverine
barrier, paleoclimate change, environmental gradients) we used MOMENTS (Jouganous et al.,

2017) to simulate the three-dimensional joint site frequency spectrum (JSFS) of genetic
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variation between the three populations based on results from our phylogenetic and population
structure analysis. However, MOMENTS is based on the approximation of the discrete Wright-
Fisher Model, meaning that it is not appropriate to pool populations that may be genetically
distinct (e.g. Plains cluster). Therefore, we used the same individuals in MOMENTS as in BPP
analysis. For each data set (with and without KK104), we tested 10 3D models that were based
on various aspects of divergence previously hypothesized for species in the region ranging from
simple models with no gene flow to more complex models involving multiple time periods and
varying degrees of gene flow between populations (Fig. 6). We examined the possibility of river
barriers preventing gene flow between adjacent populations, divergence in isolation with
subsequent secondary contact, and various combinations involving models with allopatric and
subsequent parapatric divergence along ecological clines (Jezkova et al., 2016; Myers et al.,
2019; Schield et al., 2015).

The program easySFS (https://github.com/isaacovercast/easySFS) was used to

determine the dimensions that would maximize segregating sites shared between samples
when creating the folded JSFS; we also retained one SNP per locus to minimize linkage
disequilibrium. MOMENTS is an efficient method of simulating the evolution of an allele
frequency spectrum over time using differential equations. The basis of MOMENTS is similar to
the diffusion approximation approach utilized in the program dadi and many of the models we
tested were adapted from previously developed dadi and MOMENTS models (Gutenkunst et al.,
2009; Leaché et al., 2019; Portik et al., 2017). For all models, we performed consecutive rounds
of optimization with multiple replicates using the best scoring parameter (highest log-likelihood)
estimates to base searches in the subsequent round (Portik et al., 2017; Leaché et al., 2019).
Default settings in moments_pipeline (https://github.com/dportik/moments_pipeline) were used
(replicates = 10, 20, 30, 40; maxiter = 3, 5, 10, 15; fold = 3, 2, 2, 1), and we optimized
parameters using optimize_log_fmin, a simplex (a.k.a. amoeba) method in terms of log
parameters. Optimized parameter sets of each replicate were used to simulate the 3D-JSFS,
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and the multinomial approach was used to estimate the log-likelihood of the 3D-JSFS given the
model. We ranked models according to AIC (lowest to highest) and estimated the standard
deviation for each parameter using the Godambe Information Matrix with bootstrapped spectra.
Finally, we determined the best model by comparing the two top ranked models for each data
set using a likelihood-ratio test if they were nested. It should be noted that while that practices
that we employed are common (e.g., selecting one SNP per locus, projecting down the JSFS),
they can influence demographic inference. Projecting down the JSFS can result in composite
likelihoods which can cause statistics such as AIC and BIC to favor more complex models

(Coffman et al., 2016; Gao & Song, 2010).

Gene flow and the multispecies coalescent with introgression model

Because several of our analyses suggested that gene flow was important throughout the
evolutionary history of P. cornutum, we utilized the multispecies coalescent model with
introgression (MSci) in BPP (Flouri et al., 2020) to estimate introgression probabilities and
reassess how divergence times and population sizes are affected when gene flow is explicitly
modeled. Parameters and prior settings were virtually identical to the previous BPP analyses
with a few exceptions. First, we used the best model from MOMENTS to specify a phylogenetic
network (i.e. species tree with introgression events) for BPP to estimate parameters (i.e. 6, z,
and ¢@). This model included multiple reticulations in the species tree. For the introgression
probability parameter (¢), we specified a beta prior of (1,1). We ran four independent analyses
using a burnin of 200,000, followed by 500,000 samples that were taken every two generations.
All BPP MSci analyses were run under a strict clock model (default) using BPP v. 4.3.0.
Convergence was assessed by examining the trace plots in Tracer and checking for
consistency between runs. All MSci analyses used the same 500 loci as the BPP MSC

analyses. We performed analyses both with and without the admixed/outlier sample KK104.
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When included, KK104 was assigned to the Desert (DST) population following the results from

the phylogenetic analyses.

Species distribution modeling

We reconstructed the suitable climatic niche of P. cornutum for current climatic
conditions and those of the Last Glacial Maximum (LGM) across the range of the species using
ecological niche modeling. This methodology uses environmental data associated with
occurrence records to estimate habitat suitability across the landscape by means of various
program-specific algorithms (Elith et al., 2006). For occurrence data, we used our sampling
localities, supplemented by occurrence records from the Vertnet (vertnet.org; queried 1% May
2018) and iNaturalist (iNaturalist.org; queried 5" September 2021) databases. All records with
the coordinate uncertainty of 5 km and temperature outliers were removed, as well as all
localities outside the known native range of the species and non-research grade records. This
yielded 1096 occurrence records. We then filtered the occurrence records using the R package
spThin (Aiello-Lammens, Boria, Radosavljevic, Vilela, & Anderson, 2015) to only include one
occurrence record per 120 km. This filtering alleviated potential bias caused by unequal
sampling effort (Merow, Smith, & Silander, 2013) and differential coordinate access restrictions
between states. This yielded 169 occurrence records used to inform the models.

We derived the current climatic niche of the species using 19 bioclimatic variables with
resolution of 30 seconds (~1km) from the WorldClim dataset (Hijmans, Cameron, Parra, Jones,
& Jarvis, 2005). We derived the LGM climatic niche for P. cornutum using two simulation
models of the LGM climate: community climate system model (CCSM ver. 3; Otto-Bliesner et
al., 2006) with a resolution of 1°, and the model for interdisciplinary research on climate (MIROC
ver. 3.2; (Sugiyama, Shiogama, & Emori, 2010)) with an original spatial resolution of 1.4° X 0.5°
(Braconnot et al., 2007). These original climatic variables have been downscaled to the spatial
resolution of 2.5 minutes (under the assumption of high spatial autocorrelation) and converted to
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bioclimatic variables (Hijmans et al., 2005; Peterson & Nyari, 2008). These two models both
indicate colder and wetter climate during the LGM. However, the CCSM model predicts lower
values across temperature variables whereas the MIROC model predicts higher values across
precipitation variables (see Jezkova et al., 2016). We constructed climatic niche models for
each climatic data set in the program MAXENT v. 3.3.3k (Phillips, Anderson, & Schapire, 2006)
using the R packages ENMeval (Muscarella et al., 2014) and dismo (Hijmans, Phillips,
Leathwick, & Elith, 2015). MAXENT estimates relative probabilities of the presence of species
within defined geographic spaces, with high probabilities indicating suitable environmental
conditions (Phillips et al., 2006; Phillips & Dudik, 2008). We used 1000 background points
randomly extracted from a polygon drawn around the occurrence records and expanded by 2
degrees in all directions. This selection of background points was chosen to exclude distant
areas with very different environmental conditions, following recommendations by Merow et al.
(2013). We explored values for the regularization multiplier (rm) between 0.5 and 4 (by
increments of 0.5) and all combinations of available features (i.e., linear, quadratic, product,
threshold, and hinge). We ran 3-fold cross-validation replicates to choose a model with the best
fit, as assessed by the lowest AlCc value. The best-fitting model for each climatic data set was
visualized using logistic probability values (Merow et al., 2013). PCA analyses were also
performed for current climate niche space occupied by the 3 and 5 genetic clusters derived from

sNMF population structure and phylogenetic analyses and utilizing the 19 bioclimatic variables.
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Tables

Table 1. AIC, AAIC, relative likelihood, and weighted AIC (wAIC) calculations for each

demographic model considered (see Fig. 6) for each data set (upper panel: non-admixed; lower

panel: admixed) in the program MOMENTS. non-admixed = without KK104; admixed = with

KK104.

non-admixed

data set

Model AlC AAIC  relative L WAIC
refugia_adj 2 514.28 0.00 1.00 0.73
refugia_asymmig_adjacent 517.90 3.62 0.16 0.12
refugia_barrier 518.48 4.20 0.12 0.09
split_nomig 519.38 5.10 0.08 0.06
refugia_adj_1 529.54 1526  0.00 0.00
refugia_adj_3 553.04 38.76  0.00 0.00
split_asymmig_adjacent 559.26 44.98  0.00 0.00
split_sym_mig_all 600.70 86.42  0.00 0.00
split_symmig_adjacent 624.66 110.38 0.00 0.00
refugia_symmig_all 629.98 115.70 0.00 0.00
admixed

data set

Model AIC AAIC  relative L WAIC
refugia_barrier 738.38  0.00 1.00 1.00
refugia_adj_2 750.78 12.40  0.00 0.00
refugia_adj_1 778.82 40.44  0.00 0.00
refugia_adj_3 779.32 40.94  0.00 0.00
split_asymmig_adjacent 799.04 60.66  0.00 0.00
split_nomig 840.36 101.98 0.00 0.00
split_sym_mig_all 870.88 132.50 0.00 0.00
refugia_asymmig_adjacent 884.50 146.12 0.00 0.00
split_symmig_adjacent 992.34 253.96 0.00 0.00
refugia_symmig_all 1226.80 488.42 0.00 0.00

50



1535
1536
1537
1538
1539

1540
1541
1542
1543
1544
1545
1546
1547
1548

Table 2. Posterior means and 95% HPD Cls (in parentheses) of parameters in the
introgression (MSci) model of Fig. 7 obtained from BPP analyses of data that either include or
exclude the admixed sample KK104. Estimates of 8 and rare x1000.

non-admixed data without KK104

admixed data with KK104

Parameter Peak 1 (¢a > V%) Peak 2 (¢a < %) Peak 1 Peak 2

o 1.22 (0.49, 2.08) 1.22 (0.51, 2.08) 1.22 (0.50, 2.08) 1.23 (0.49, 2.09)
bbst 1.34 (1.10, 1.58) 1.34 (1.09, 1.59) 1.56 (0.89, 2.28) 1.52 (0.88, 2.25)
Gt 3.52 (2.02, 5.10) 3.54 (1.87, 5.25) 2.53 (1.22, 3.96) 2.50 (1.29, 3.93)
GhLn 0.93 (0.56, 1.33) 0.92 (0.51, 1.43) 0.79 (0.44, 1.19) 0.73 (0.41, 1.14)
Or 23.1(12.3,34.2) 24.1 (15.6, 33.5) 22.5(14.2,31.7) 22.6 (14.2, 31.9)
s 2.69 (0.50, 5.37) 2.72 (0.75, 4.45) 3.82 (3.07, 4.55) 3.72 (3.01, 4.46)
or 1.89 (0.40, 3.88) 3.51(0.37, 10.2) 3.72 (0.46, 9.08) 3.74 (0.37, 11.3)
Oa 2.55 (0.34, 7.10) 2.90 (0.95, 4.33) 2.15 (1.46, 2.88) 3.80 (2.51, 5.15)
s 2.95 (1.06, 4.63) 2.34 (0.38, 6.15) 3.49 (1.31, 5.12) 2.17 (1.51, 2.93)
c 4.27 (2.92, 5.65) 4.55 (3.11, 5.96) 2.10 (0.42, 4.98) 2.48 (0.45, 5.88)
& 6.96 (0.34, 20.2) 6.37 (0.33, 19.5) 11.56 (1.00, 26.0) 11.27 (1.01, 25.4)
R 9.75 (5.90, 15.1) 8.53 (5.65, 12.2) 10.11(7.23, 13.5) 10.00 (7.21, 14.1)
Ts 6.14 (2.72, 10.8) 4.17 (2.52, 5.86) 2.05(1.70, 2.39) 2.10 (1.78, 2.43)
7 3.86 (2.31, 5.60) 3.42 (1.48, 5.09) 1.78 (0.76, 2.34) 2.01 (1.62, 2.42)
TA= 1B 1.42 (1.12, 1.70) 1.41 (1.10, 1.72) 0.18 (0.09, 0.26) 0.17 (0.10, 0.29)
c=m 0.17 (0.10, 0.24) 0.17 (0.08, 0.26) 0.13 (0.07, 0.20) 0.13 (0.07, 0.20)
Pa 0.868 (0.668, 0.998) 0.222 (0.034, 0.469) 0.129 (0.078, 0.180) 0.873 (0.817, 0.923)
P8 0.090 (0.004, 0.204) 0.871 (0.421, 1.000) 0.019 (0.000, 0.043) 0.985 (0.968, 1.000)
Pc 0.065 (0.016, 0.126) 0.055 (0.013, 0.110) 0.250 (0.079, 0.605) 0.165 (0.069, 0.263)
2] 0.935 (0.869, 0.991) 0.938 (0.877, 0.990) 0.817 (0.606, 0.981) 0.855 (0.752, 0.953)

Note.— There are two local peaks in the posterior under the model for both the non-admixed
and admixed data, which differ mainly in four parameters, with ¢'a ~1— @a, '8 #1— @8, &'a ~ 05,
and @'s ~ s (highlighted in bold). MCMC samples around each peak are summarized
separately. The introgression probability for any bidirectional introgression event is defined for
the horizontal branch: for example, ¢a is for branch BA while the vertical branch SA has 1 — a
(Fig. 7). Divergence and introgression times (z) are the ages of nodes on the tree. Population
sizes (6) correspond to branches on the tree, identified by the daughter node of the branch (e.g.
6sis for branch RS and 6, is for branch SA). Both rand @ are measured in the expected number
of mutations per site. OG = outgroup; DST = Desert; STH = Southern; PLN = Plains.

51



1549
1550

1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572

1573

Figure Legends

Fig. 1. Sample locations for all Phrynosoma cornutum used in this study within the EPA level |
ecoregions. Population assignments are based on genotypes from the nGBS dataset using the

program sNMF.

Fig. 2. (a) Maximum likelihood (ML) genealogy inferred using RAXxML-ng on a concatenated
nGBS matrix of 7,906,017 bp. Values at nodes (on top) represent ML bootstrap
proportions/Bayesian posterior probabilities from ExaBayes (* = 1.0). Values at nodes (below)
represent bootstrap support (100 replicates) from SVDquartets analyses on a matrix of 54,634
SNPs. The branch leading to the outgroup was pruned for clarity. (b) Population structure

inferred using sNMF. (c) The cross entropy criterion supported 5 ancestral populations (K = 5).

Fig. 3. Results from the GEA analyses. Plots from the redundancy analyses for the first two
constrained ordination axes. (a) Relationship between individuals from the sNMF population
assignments (color-coded circles) and the tested environmental variables (arrows). (b) Outlier
loci (color-coded to environmental variable) and directionality of the relationship between the
climate variables (arrows). (c) Importance of environmental variables in LFMM analysis as
indicated by p-values for multiple R-squared (F-tests, *** = p < 1e-04). bio1 = Annual Mean
Temperature; bio2 = Mean Diurnal Range; bio3 = Isothermality; bio4 = Temperature
Seasonality; bio5 = Max Temperature of Warmest Month; bio6 = Min Temperature of Coldest
Month; bio7 = Temperature Annual Range; bio8 = Mean Temperature of Wettest Quarter; bio9
= Mean Temperature of Driest Quarter; bio10 = Mean Temperature of Warmest Quarter; bio11
= Mean Temperature of Coldest Quarter; bio12 = Annual Precipitation; bio13 = Precipitation of

Wettest Month; bio14 = Precipitation of Driest Month; bio15 = Precipitation Seasonality; bio16 =
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Precipitation of Wettest Quarter; bio17 = Precipitation of Driest Quarter; bio18 = Precipitation of

Warmest Quarter; bio19 = Precipitation of Coldest Quarter.

Fig. 4. Comparison of parameter estimates from multispecies coalescent (MSC) analysis in
BPP (analysis A0O) with (brown) and without (blue) the highly admixed/outlier individual from
Pop1 (KK104). Purple bars depict parameter estimates based on the multispecies coalescent
with introgression (MSci) model from the data including KK104, whereas orange bars represent
MSci estimates without KK104. Error bars represent 95% HPDs. Pop1 = Desert (DST), Pop2 =

Southern (STH), Pop3 = Plains (PLN). OG = outgroup (Phrynosoma solare).

Fig. 5. (a,b) The demographic model selected from the program MOMENTS for the
Phrynosoma cornutum populations using the three-dimensional site frequency spectrum (3D-
SFS) for the Admix (a) and NoAdmix (b) datasets. The reference population (Nrf) was
calculated from estimates of theta produced during demographic modeling (theta = 4NerJ; see
Supplementary Table S4) where p is the substitution rate which was set to 0.0008 substitutions
per site per million year. (c,d) The fits between the 3D-SFS model and the data with the
resulting residuals (positive residuals indicate that the model predicted too many SNPs in that

entry).

Fig. 6. Demographic models explored using the program MOMENTS. Analyses were performed
with and without sample KK104 that had substantial mixed ancestry. The data set with KK104
favored the “refugia_barrier” model (blue), whereas the data set without KK104 supported the

“refugia_adj_2” model (red).

Fig. 7. Two local peaks in the posterior for parameters in the MSci model in the BPP analysis of
the data without the admixed sample KK104. The two peaks represent two hypotheses that
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have nearly equal support from the data, due to the species tree being nearly a trichotomy.
Posterior means of node ages (zs) are used to draw branches, and the node bars represent the
95% highest probability density (HPD) credibility intervals (Cls). Numbers next to branches are
posterior means of population sizes (6s) (see Table 2); not all population sizes are shown. The
model assumes two bidirectional introgression events (A<>B and C<~D), and the thickness of
the horizontal branches indicates the estimated introgression probability (¢). According to the
first peak (a), the lineage A-DST is comprised of ¢pa = 86.8% of migrants from lineage TB and 1
— ¢a = 13.2% from lineage SA. In contrast, the second peak (b) suggests that the lineage A-DST
is 22.2% from lineage STB and 77.8% from lineage SA. Estimates of ¢s at the other three
nodes (B, C, and D; see Table 2) are interpreted in the same way. The phylogenetic network in

the center represents the model specified in BPP.

Fig. 8. Climatic niche model for Phrynosoma cornutum built using the Wordclim bioclimatic
variables with resolution of 2.5 minutes for the current climatic conditions (a) and projected on
the MIROC and CCSM (b) of the Last Glacial Maximum climate (mean of models shown). The
models were visualized using logistic probability values. Warmer colors indicate a higher
probability for species presence. The outer blue line shows the known range of P. cornutum.
Dots represent the spatially filtered occurrence records used to create models. Climatic niche
space occupied by each of the 5 genetic clusters (color coded circles) identified in the sSNMF
analysis (c) and similar results for the primary three clusters/lineages used for demographic
modeling (d). The first two principal components derived from 19 bioclimatic variables (arrows)

of the WorldClim data set are shown.
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Fig. 1. Sample locations for all Phrynosoma cornutum used in this study within the EPA
level | ecoregions. Population assignments are based on genotypes from the nGBS
dataset using the program sNMF.
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Fig. 2. (a) Maximum likelihood (ML) genealogy inferred using RAXxML-ng on a concatenated
nGBS matrix of 7,906,017 bp. Values at nodes (on top) represent ML bootstrap

proportions/Bayesian posterior probabilities from ExaBayes (*

1.0). Values at nodes (below)

represent bootstrap support (100 replicates) from SVDquartets analyses on a matrix of 54,634
SNPs. The branch leading to the outgroup was pruned for clarity. (b) Population structure
inferred using sSNMF. (c) The cross entropy criterion supported 5 ancestral populations (K = 5).

56



1654

1655

1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669

FIG. 3

a) < e Desert

© Southem

© Plains-South

© Plains-Central *
_|® Plains-North Q)%

RDA2

Bio9
Bio15* Mean Temp Driest Quarter
Preciptation Seasonality

-4

-5 0 5
RDA1
b) 27 e Bioo
O Bio15
©
2 |
w |
N \\\
/ Bio9
Bio15 / Mean Temp Driest Quarter
3 B Preciptation Seasonality
1 3 T

RDA1

-
c) el

08
J

0.6

0.0
|

Multiple R-squared
02 04
| | |
*
bio2 H
bio8
2 O .
013 L
6 [
o /]

Fig. 3. Results from the GEA analyses. Plots from the redundancy analyses for the first two
constrained ordination axes. (a) Relationship between individuals from the sNMF population
assignments (color-coded circles) and the tested environmental variables (arrows). (b) Outlier
loci (color-coded to environmental variable) and directionality of the relationship between the
climate variables (arrows). (c) Importance of environmental variables in LFMM analysis as
indicated by p-values for multiple R-squared (F-tests, *** = p < 1e-04). bio1 = Annual Mean
Temperature; bio2 = Mean Diurnal Range; bio3 = Isothermality; bio4 = Temperature
Seasonality; bio5 = Max Temperature of Warmest Month; bio6 = Min Temperature of Coldest
Month; bio7 = Temperature Annual Range; bio8 = Mean Temperature of Wettest Quarter; bio9
= Mean Temperature of Driest Quarter; bio10 = Mean Temperature of Warmest Quarter; bio11
= Mean Temperature of Coldest Quarter; bio12 = Annual Precipitation; bio13 = Precipitation of
Wettest Month; bio14 = Precipitation of Driest Month; bio15 = Precipitation Seasonality; bio16 =
Precipitation of Wettest Quarter; bio17 = Precipitation of Driest Quarter; bio18 = Precipitation of
Warmest Quarter; bio19 = Precipitation of Coldest Quarter.
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1672  Fig. 4. Comparison of parameter estimates from multispecies coalescent (MSC) analysis in
1673  BPP (analysis A0O) with (brown) and without (blue) the highly admixed/outlier individual from
1674  Pop1 (KK104). Purple bars depict parameter estimates based on the multispecies coalescent
1675  with introgression (MSci) model from the data including KK104, whereas orange bars represent
1676 ~ MSci estimates without KK104. Error bars represent 95% HPDs. Pop1 = Desert (DST), Pop2 =
1677  Southern (STH), Pop3 = Plains (PLN). OG = outgroup (Phrynosoma solare).
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Fig. 5. (a,b) The demographic model selected from the program MOMENTS for the
Phrynosoma cornutum populations using the three-dimensional site frequency spectrum (3D-
SFS) for the admixed (a) and non-admixed (b) datasets. The reference population (Nf) was
calculated from estimates of theta produced during demographic modeling (theta = 4NerJ; see
Supplementary Table S4) where p is the substitution rate which was set to 0.0008 substitutions
per site per million year. (c,d) The fits between the 3D-SFS model and the data with the
resulting residuals (positive residuals indicate that the model predicted too many SNPs in that

entry).
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Fig. 6. Demographic models explored using the program MOMENTS. Analyses were performed
with and without sample KK104 that had substantial mixed ancestry. The data set with KK104
favored the “refugia_barrier” model (blue), whereas the data set without KK104 supported the

“refugia_adj_2” model (red).
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Fig. 7. Two local peaks in the posterior for parameters in the MSci model in the BPP analysis of
the data without the admixed sample KK104. The two peaks represent two hypotheses that
have nearly equal support from the data, due to the species tree being nearly a trichotomy.
Posterior means of node ages (zs) are used to draw branches, and the node bars represent the
95% highest probability density (HPD) credibility intervals (Cls). Numbers next to branches are
posterior means of population sizes (6s) (see Table 2); not all population sizes are shown. The
model assumes two bidirectional introgression events (A<>B and C<~D), and the thickness of
the horizontal branches indicates the estimated introgression probability (¢). According to the
first peak (a), the lineage A-DST is comprised of ¢4 = 86.8% of migrants from lineage TB and 1
— ¢a = 13.2% from lineage SA. In contrast, the second peak (b) suggests that the lineage A-DST
is 22.2% from lineage STB and 77.8% from lineage SA. Estimates of ¢s at the other three
nodes (B, C, and D; see Table 2) are interpreted in the same way. The phylogenetic network in
the center represents the model specified in BPP.
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1731  Fig. 8. Climatic niche model for Phrynosoma cornutum built using the Wordclim bioclimatic
1732  variables with resolution of 2.5 minutes for the current climatic conditions (a) and projected on
1733  the MIROC and CCSM (b) of the Last Glacial Maximum climate (mean of models shown). The
1734  models were visualized using logistic probability values. Warmer colors indicate a higher

1735  probability for species presence. The outer blue line shows the known range of P. cornutum.
1736  Dots represent the spatially filtered occurrence records used to create models. Climatic niche
1737  space occupied by each of the 5 genetic clusters (color coded circles) identified in the sSNMF
1738  analysis (c) and similar results for the primary three clusters/lineages used for demographic
1739  modeling (d). The first two principal components derived from 19 bioclimatic variables (arrows)
1740  of the WorldClim data set are shown.
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