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Abstract— We provide a new positive system approach
to event-triggered feedback control of linear systems with
state delays. We use an interval observer method and linear
Lyapunov functions to prove global exponential stability of
the closed loop systems. Our two examples illustrate the
usefulness of our method for counteracting the effects of
potentially destabilizing state delays.

I. INTRODUCTION

Event-triggered control provides the foundation for
a considerable amount of current control theoretic re-
search; see, e.g., the recent papers [6], [8], [9], [15], [18],
[19], and [20]. By only changing control values when
a significant event occurs, event-triggered controls can
reduce the computational burden associated with control
implementations, and therefore broaden the range of
applications that are amenable to feedback controls. The
significant events can be modeled as times when the
system’s state enters a given region. This is unlike the
usual zero-order hold methods, where the control recom-
putation times do not depend on the state. One notable
reformulation of much of the event-triggered literature
can be done by viewing the event-triggered closed loop
system as an interconnection that is amenable to small-
gain methods; see, e.g., [7]. Small gain methods are
useful for ensuring robustness with respect to uncer-
tainty, but they can lead to unnecessarily frequent control
recalculations and therefore also conservative results.

While recently developed computing methods can aid
in the recalculation of control values, the widespread
use of shared wired (or shared wireless) networked
systems is strong motivation for taking communication,
computation, and energy constraints into consideration
[6]. This motivated event-triggered control designs, e.g.,
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in [1], [2], [19], and [21]. During the same period, sig-
nificant research has been devoted to positive systems,
which are systems for which the nonnegative orthant is
positively invariant. This led to new control analysis and
designs that address some of the challenges of applying
classical Lyapunov methods. Some papers on positive
systems use interval observers (as defined in [4], [12],
and [17]), which compute intervals that contain values
of unknown states when the inequalities are viewed
componentwise; see [12] and [13]. Interval observers
and positive systems have enabled advances in aerospace
engineering, mathematical biology, and other fields.

This motivates this paper, which provides a new
positive systems event-triggered control method for a
class of linear systems with unknown constant state
delays. Building on the undelayed case in [14], we
consider event-triggered systems with state delays that
were not covered by our previous works. By proving
global exponential stability using interval observers, our
work is reminiscent of works like [13] that used linear
Lyapunov functions. However, [13] does not use event-
triggering, and we believe that this paper is the first
use of interval observers and positive systems to design
event-triggered controls for systems with state delays.

We provide our notation, preliminaries, and class of
systems in Section II. Then, in Section III, we state and
prove our stabilization theorem, which can be viewed as
a robustness result with respect to state delayed terms.
It exhibits how smaller coefficient matrices of the state
delayed term can allow longer state delays. In Section
IV, we illustrate our method in two examples, where
our method counteracts the effects of potentially desta-
bilizing state delays and ensures less frequent control
recalculations compared with standard zero-order hold
methods. We close in Section V with summaries of our
findings and suggestions for follow up research.

II. PRELIMINARIES

We review our notation, where the dimensions of
our Euclidean spaces are arbitrary unless we indicate
otherwise. The arguments of functions are omitted when
no confusion would arise. Set Z0 = {0, 1, 2, ...} and
N = Z0\{0}. For a matrix G = [gij ] ∈ Rr×s, we
set |G| = [|gij |], so the entries of |G| are the absolute
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values of G’s corresponding entries gij . In the same way,
G+ = [max{gij , 0}], G− = G+−G, and |G|J = [mij ]
where mij = sup`∈J |gij(`)| when G is bounded and
time-varying with J being an interval in G’s domain. We
call a square matrix Metzler provided its off-diagonal
entries are all nonnegative. Given matrices D = [dij ]
and E = [eij ] of the same size, the notation D < E
(resp., D ≤ E) means dij < eij (resp., dij ≤ eij) for
all i and j. Also, D 
 E means dij > eij for some pair
(i, j). We use analogous notation for vectors.

We call a matrix S positive provided 0 < S, where 0
is the zero matrix. For a matrix M in Rn×n, we let DM

denote the diagonal matrix such that all the diagonal
entries of M − DM are equal to zero. We let RM =
DM + (M −DM )+ and NM = (M −DM )−. Hence,
in the special case where M is Metzler, we have M =
RM . We use In to denote the identity matrix. We use
Cin to denote the continuous initial functions for our
delay systems, which will be defined on [−τ̄ − ν, 0] for
a known bound τ̄ on our unknown state delays τ and a
constant ν > 0 that we specify below in Assumption 1.
We set ft(s) = f(t+ s) for all functions f and all real
s ≥ 0 and t ≥ 0 such that t+ s is in the domain of f .

We consider systems of the form

ẋ(t) = A1x(t) +A2x(t− τ) +Bu(t) (1)

with an unknown constant state delay τ ≥ 0 and known
constant matrices Ai ∈ Rn×n for i = 1 and 2 and B ∈
Rn×m, under the following assumption:

Assumption 1: There is a known constant upper
bound τ̄ on the delay τ . Also, there are known constants
p > 0 and ν > 0 and matrices Γ > 0, V > 0, and K
such that with the choices As = A1 +A2, and with

Ω(r) = eAsr +
∫ r

0
eAs`d`BK (2)

and

ζ(r) =
∣∣A2 − Ω(r)−1

∫ r
0
eAs`d`BKA2

∣∣
+
∫ r

0

∣∣Ω(r)−1eAs`AsA2

∣∣d`
+
∣∣Ω(r)−1A2

∣∣ (3)

and H = As + BK, the following two conditions are
satisfied: (i) The inequality∣∣I − Ω(r)−1

∣∣ ≤ Γ (4)

holds for all r ∈ [0, ν] and (ii) the inequalities

V >(RH +NH + |BK|Γ) ≤ −pV > (5)

and

0 < (2τ̄ + ν)V >
(
|A2H|+ |A2

2|+ |A2||BK|Γ
+[In + τ̄ |A2|]|BK||ζ|[0,ν]

)
< pV >

(6)

are satisfied. �
Note that since Ω(0) = In, Ω(`) will be invertible for

all ` ∈ [0, ν] and condition (4) will hold if ν > 0 is small

enough. Then Assumption 1 is satisfied if As + BK
is Hurwitz and Metzler (in which case RH + NH =
RH = As + BK) and Γ > 0, τ̄ > 0, ν > 0 are small
enough; see [5, Lemma 2.3, p.41] for the existence of
the required vector V and constant p > 0 in this case.

Also, if (As, B) is any controllable pair, then we can
select K such that such that As +BK has distinct neg-
ative real values as its eigenvalues. Then, after a change
of coordinates (by applying a similarity transformation
to As + BK), we can assume that H is again Hurwitz
and Metzler, so Assumption 1 then again applies when
Γ > 0, τ̄ > 0 and ν > 0 are small enough. In a similar
way, if (A1, B) is controllable, then if we choose K
such that A1 + BK is Hurwitz and Metzler (possibly
after a change of coordinates as in the preceding case),
then for any constant τ̄ > 0, we can use [5, Lemma 2.3,
p.41] as before to find p, V , and small enough A2 and
ν such that Assumption 1 is satisfied.

III. MAIN RESULT

A. Statement of Theorem

In terms of the function (3) and the function ρ : Cin →
Rn that is defined by

ρ(φ) = Γ|φ(0)|+ |ζ|[0,ν]

∫ 0

−τ̄−ν |φ(s)|ds, (7)

our main result is:
Theorem 1: Consider the system (1) under Assump-

tion 1, where Γ > 0, ν, τ , and K satisfy the require-
ments from Assumption 1. Consider the sequence of
nonnegative numbers ti defined by t0 = 0,

ẋ(t) = A1x(t) +A2x(t− τ) +BKx(ti)
if t ∈ [ti, ti+1),

(8)

|x(t)− x(ti)| ≤ ρ(xt) if t ∈ [ti, ti+1), and (9)

For each constant ε > 0 and each i ∈ Z0 such
that ti+1 < +∞, there is a t? ∈ (ti+1, ti+1 + ε)
such that |x(t?)− x(ti)| 
 ρ(xt∗)

(10)

for all i ∈ Z0. Then (8)-(10) has the origin as an
exponentially stable equilibrium point on Rn. �

Remark 1: Analogously to the cases in [14] (which
did not allow state delays), solutions of the closed loop
event-triggered control system (8)-(10) are defined by
the following recursive method. Starting from any initial
state x(0), we solve the differential equations in (8) on
the maximum interval [0, v̄) on which the inequality in
(9) continues to hold. If v̄ = +∞, then the control value
is kept at Kx(0) and t1 = +∞. If the inequality in (9)
ceases to hold at some finite time, then choose t1 to
be the infimum of such times when (9) fails to hold
(and the first part of our proof of Theorem 1 will give
t1 − t0 ≥ ν, where ν is from Assumption 1), in which
case the condition from (10) holds for i = 0. Then solve
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the system of differential equations in (8) with i = 1
on [t1, t2), using the initial state x(t1) obtained in the
preceding argument, and replace t0 = 0 and t1 in the
preceding argument by t1 and t2, respectively. Arguing
inductively then defines the solutions of (8)-(10) for all
t ≥ 0, which all satisfy the exponential stability estimate
from the conclusion of the theorem. �

Remark 2: A key feature is our way to compute our
lower bound ν on the inter-sample times ti+1−ti that is
independent of the initial state, combined with our use of
vectors of absolute values instead of Euclidean 2-norms
in our event triggers. This is made possible by our novel
positive systems and interval observer approaches, and
it contrasts with [3], in which the lower bound on the
inter-sample times depended on the initial state. �

B. Proof of Theorem 1
The proof has three parts. In the first part, we show

that the Zeno phenomenon does not occur, meaning,
each interval of finite length contains only finitely many
trigger times ti. Second, we show how the conclusion
of the theorem would follow if the dynamics for

x∗ = x̄− x (11)

are globally exponentially stable to 0 on Rn, where
(x̄, x) is the vector of states of an interval observer
for the state x. In the last part, we show the required
exponential stability property for the x∗ dynamics.

First Part. We prove that ti+1 ≥ ti+ν for all i ∈ Z≥0

and for all solutions of (8)-(10), which will prove that
the Zeno phenomenon does not occur. Let

z(t) = x(t) +A2

∫ t
t−τ x(m)dm. (12)

Then for all solutions x(t) of the dynamics in (8) for all
initial states x(ti), and for all t ∈ [ti, ti + ν], we have

ż(t) = Asx(t) +BKx(ti)

= As

[
z(t)−A2

∫ t
t−τ x(m)dm

]
+BK

[
z(ti)−A2

∫ ti
ti−τ x(m)dm

]
.

(13)

Here and in the sequel, all equalities and inequalities
should be understood to hold along all solutions of
the system in (8) and all i ∈ Z≥0, unless otherwise
indicated. Grouping the terms gives

ż(t) = Asz(t) +BKz(ti)

−AsA2

∫ t
t−τ x(m)dm−BKA2

∫ ti
ti−τ x(m)dm

(14)

for all t ∈ [ti, ti + ν]. By applying the method of
variation of parameters to (14), we get

z(t) = eAs(t−ti)z(ti) +
∫ t
ti
eAs(t−`)d`BKz(ti)

+
∫ t
ti
eAs(t−`) [−AsA2∆(`)

−BKA2∆(ti)] d`

= Ω(t− ti)z(ti) +
∫ t
ti
eAs(t−`) [−AsA2∆(`)

−BKA2∆(ti)] d`,

(15)

where Ω was defined in (2) and

∆(`) =
∫ `
`−τ x(m)dm. (16)

Using the definition of z, we deduce that

x(t) +A2∆(t) = Ω(t− ti) [x(ti) +A2∆(ti)]

+
∫ t
ti
eAs(t−`) [−AsA2∆(`)−BKA2∆(ti)] d`.

(17)

Therefore, for all t ∈ [ti, ti + ν], we have

Ω(t− ti)−1x(t) = −Ω(t− ti)−1A2∆(t)

+x(ti) +A2∆(ti)

+ Ω(t− ti)−1
∫ t
ti
eAs(t−`) [−AsA2∆(`)

−BKA2∆(ti)] d`.

(18)

Rearranging the terms in (18), we obtain

x(ti)− x(t) =
[
Ω(t− ti)−1 − I

]
x(t)−A2∆(ti)

+Ω(t− ti)−1
∫ t
ti
eAs(t−`) [AsA2∆(`)

+BKA2∆(ti)] d`+ Ω(t− ti)−1A2∆(t)

(19)

and so also

x(ti)− x(t) =
[
Ω(t− ti)−1 − I

]
x(t) + [−A2

+Ω(t− ti)−1
∫ t
ti
eAs(t−`)BKA2d`

]
∆(ti)

+ Ω(t− ti)−1
∫ t
ti
eAs(t−`)AsA2∆(`)d`

+ Ω(t− ti)−1A2∆(t).

(20)

It follows that

|x(ti)− x(t)| ≤ Γ|x(t)|+ |−A2

+ Ω(t− ti)−1
∫ t
ti
eAs(t−`)BKA2d`

∣∣∣ |∆(ti)|

+
∫ t
ti

∣∣Ω(t− ti)−1eAs(t−`)AsA2

∣∣ |∆(`)|d`

+
∣∣Ω(t− ti)−1A2

∣∣ |∆(t)|

(21)

and therefore also

|x(ti)− x(t)|

≤ Γ|x(t)|+ ζ(t− ti)
∫ t
t−ν−τ̄ |x(m)|dm,

(22)

with ζ defined in (3). Hence, the inequality in (9) holds
on [ti, ti + ν]. We conclude that ti+1 − ti ≥ ν, so the
Zeno phenomenon does not occur.

Second Part. We show that with the choice x∗ = x̄−
x for a state (x̄, x) of an interval observer for x, the
solutions of the closed loop system (8)-(10) satisfy

|x(t)| ≤ x∗(t) (23)

for all t ≥ 0. This will replace the search for a global
exponential stability estimate in the state variable x(t)
with an easier task of finding the corresponding estimate
for the dominating variable x∗(t).
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To this end, first notice that by the first part of the
proof, the solutions of the closed loop system in the
statement of the theorem satisfy

ẋ(t) = Hx(t) +A2(x(t− τ)− x(t))

+BK(x(ti)− x(t))

= Hx(t) +A2(x(t− τ)− x(t)) + µ(t)

(24)

for all t ∈ [ti, ti+1) and i ≥ 0 such that ti < +∞,
where H = As +BK and

|µ(t)| ≤
|BK|

(
Γ|x(t)|+ |ζ|[0,ν]

∫ t
t−ν−τ̄ |x(m)|dm

)
.

(25)

Hence, the second equality in (24) holds for all t ≥ 0.
We have

ẋ(t) = Hx(t)−A2

∫ t
t−τ ẋ(m)dm+ µ(t). (26)

Thus

ẋ(t) = Hx(t)−A2

∫ t
t−τ [Hx(m)

+A2(x(m− τ)− x(m)) + µ(m)]dm+ µ(t)
(27)

and so also

ẋ(t) = Hx(t)−A2H
∫ t
t−τ x(m)dm

−A2
2

∫ t−τ
t−2τ

x(m)dm+A2
2

∫ t
t−τ x(m)dm+ µ](t)

(28)

for all t ≥ τ , where

µ](t) = µ(t)−A2

∫ t
t−τ µ(m)dm. (29)

This leads us to study the dynamic extension

ẋ(t) = RHx(t)−NHx(t) + (µ](t))+

− (A2H)+
∫ t
t−τ x(m)dm

+ (A2H)−
∫ t
t−τ x(m)dm

−(A2
2)+

∫ t−τ
t−2τ

x(m)dm

+ (A2
2)−

∫ t−τ
t−2τ

x(m)dm

+(A2
2)+

∫ t
t−τ x(m)dm

− (A2
2)−

∫ t
t−τ x(m)dm

ẋ(t) = RHx(t)−NHx(t)− (µ](t))−

− (A2H)+
∫ t
t−τ x(m)dm

+ (A2H)−
∫ t
t−τ x(m)dm

−(A2
2)+

∫ t−τ
t−2τ

x(m)dm

+ (A2
2)−

∫ t−τ
t−2τ

x(m)dm

+(A2
2)+

∫ t
t−τ x(m)dm

− (A2
2)−

∫ t
t−τ x(m)dm,

(30)

whose initial functions are chosen such that

x(s) < 0, x(s) < x(s) < x(s), and x̄(s) > 0 (31)

for all s ∈ [−2τ, 0]. Then the formulas H = RH −NH ,
A2H = (A2H)+−(A2H)−, and the analogous formula

for A2
2 and standard positive systems arguments (e.g.,

from [14]) imply that ē(t) ≥ 0 ≥ e(t) and therefore
also x̄(t) ≥ x(t) ≥ x(t) for all t ≥ 0, where e = x− x
and e = x− x.

Similar reasoning gives x(t) ≥ 0 ≥ x(t) for all t ≥ 0
(by using (30) to show that (x(t),−x(t)) is a solution of
a positive system and therefore is nonnegative valued)
and so also x(t) − x̄(t) ≤ x(t) ≤ x̄(t) − x(t), which
gives the desired bound (23).

Third Part. We use the bound (23) to prove the global
exponential stability conclusion of the theorem. To this
end, first notice that x∗ = x− x satisfies

ẋ∗(t) = |µ](t)|
+(RH +NH)x∗(t) + |A2H|

∫ t
t−τ x∗(m)dm

+|A2
2|
∫ t−τ
t−2τ

x∗(m)dm+ |A2
2|
∫ t
t−τ x∗(m)dm,

(32)

because |M | = M+ + M− for each matrix M . More-
over, we can combine (25) and (23) to obtain

|µ](t)|

≤ |BK|
(

Γx∗(t) + |ζ|[0,ν]

∫ t
t−ν−τ̄ x∗(m)dm

)
+ᾱ

∫ t
t−τ

(
Γx∗(`) + |ζ|[0,ν]

∫ `
`−ν−τ̄ x∗(r)dr

)
d`

(33)

for all t ≥ ν + τ , where

ᾱ = |A2||BK|. (34)

Hence, by the comparison principle, the x∗ dynamics
will be globally exponentially stable to 0 on Rn if the
positive system

ġ(t) = (RH +NH + |BK|Γ)g(t)

+ |A2H|
∫ t
t−τ g(m)dm

+ |A2
2|
∫ t−τ
t−2τ

g(m)dm

+|A2
2|
∫ t
t−τ g(m)dm

+ |A2|
∫ t
t−τ |BK|

(
Γg(`)

+ |ζ|[0,ν]

∫ `
`−ν−τ g(m)dm

)
d`

+|BK||ζ|[0,ν]

∫ t
t−ν−τ g(m)dm

(35)

is globally exponentially stable to 0 on Rn. Hence,
it remains to prove that (35) is globally exponentially
stable to 0 on Rn, which will imply the conclusion of the
theorem because of our bound (23) and our assumptions
on the initial states for x and x (which we can assume
are such that their suprema over [−2τ, 0] are such that
||x∗||[−2τ,0] = ||x̄− x||[−2τ,0] ≤ 4||x||[−2τ,0]).

To this end, note that our condition (5) on the vector
V > 0 and p > 0 imply that along all nonnegative
valued solutions of (35), the function

U(g) = V >g (36)
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satisfies

U̇(t) ≤ −pV >g(t) + V >|A2H|
∫ t
t−τ g(m)dm

+V >|A2
2|
∫ t−τ
t−2τ

g(m)dm

+V >|A2
2|
∫ t
t−τ g(m)dm

+V >|A2|
∫ t
t−τ |BK|

(
Γ|g(`)|

+|ζ|[0,ν]

∫ `
`−ν−τ g(m)dm

)
d`

+V >|BK||ζ|[0,ν]

∫ t
t−ν−τ g(m)dm

≤ −pV >g(t) +
(
V >|A2H|

+V >|A2
2|+ V >|BK||ζ|[0,ν]

+V >ᾱΓ
) ∫ t

t−2τ−ν g(m)dm

+V >ᾱ|ζ|[0,ν]

∫ t
t−τ

∫ `
`−ν−τ g(m)dmd`

≤ −pV >g(t) + V >H
∫ t
t−2τ−ν g(m)dm,

(37)

where

H = |A2H|+ |A2
2|+ |A2||BK|Γ

+ (In + τ |A2|)|BK||ζ|[0,ν].
(38)

Here and in the sequel, equalities and inequalities
should be understood to hold along all solutions of (35)
for all t ≥ ν + τ , unless otherwise noted. Let ε ∈ (0, 1)
be a constant such that (1 + ε)(2τ + ν)V >H < pV >;
such an ε exists because of our assumption (6). Let

U(gt) = U(g(t))

+(1 + ε)V >H
∫ t
t−2τ−ν

∫ t
`
g(m)dmd`.

(39)

Then

U̇(t) ≤ −
[
pV > − (1+ε)(2τ + ν)V >H

]
g(t)

−εV >H
∫ t
t−2τ−ν g(m)dm.

(40)

Since the quantity in squared brackets in (40) is positive
and∫ t
t−2τ−ν g(m)dm ≥ 1

2τ+ν

∫ t
t−2τ−ν

∫ t
`
g(m)dmd` (41)

holds for all t ≥ 2τ +ν, this gives the desired exponen-
tial decay of U along all solutions of (35), which gives
the stability condition for (35) to complete the proof.

IV. ILLUSTRATIONS

a) Theoretical example: In the special case where
A2 is the zero matrix, the preceding result agrees with
the main result in [14] which did not allow state de-
lays. Therefore, it is of interest to generalize the two-
dimensional example from [14, Section IV] to cases
where there is also a state delayed term. Hence, we
consider the system

ẋ1(t) = x1(t) + 1
2x2(t) + ax1(t− τ)

+ bx2(t− τ) + u

ẋ2(t) = 3
2x1(t) + cx1(t− τ)

+ dx2(t− τ) + u

(42)

where x1 and x2 are valued in R, the coefficients a, b,
c, and d are known constants, τ > 0 is an unknown
constant delay, and u is the input, which agrees with
the example from [14, Section IV] in the special case
where a = b = c = d = 0. To apply Theorem 1,
we will choose the same K and Γ that were used in
the a = b = c = d = 0 case in [14], and then we
determine how large a state delay τ can be allowed
while still satisfying the requirements from Theorem 1
to achieve global exponential stability. For simplicity,
we will choose a = b = c = d = 0.01, but analogous
reasoning applies with other choices of these constants.

Following [14], we therefore choose K =
[−4/3,−1/3] and all entries of Γ being Γij = 0.045.
Then, with the choices V = [1, 0.9] and p = 0.05, the
largest values of ν and τ for which Assumption 1 is
satisfied are ν = 0.035 and τ = 0.1. Since state delays
were beyond the scope of [14] and other earlier works,
this illustrates the value of our new Theorem 1 for
quantifying the ability of our event-triggered control to
compensate for state delays.

b) Marine robotics example: We provide a second
example for the control of the depth and pitch degrees-
of-freedom (or DOF) of an autonomous underwater ve-
hicle (or AUV). The vehicle is equipped with a Doppler
Velocity Logger (or DVL) that estimates the velocity of
the vehicle. When working in close proximity to the sea
floor, the DVL experiences bottom lock that leads to
delays in the state of the vehicle. In this example, we
discuss the design of the control system for the depth
plane considering these delays in the heave and pitch
velocity measurements.

As presented in [16, Equation (9.28)], after lineariza-
tion and assuming that the vehicle is neutrally buoyant,
the linearized equations of motion in the depth plane are
given by

(m−Xẇ(t))ẇ(t)− (mxg + Zq̇)q̇(t)

−Zww(t− τ)− (mU(t) + zq)q(t− τ) = ZγsuZ

and (mxg +Mẇ(t))ẇ(t) + (Iyy −Mq̇)q̇(t)

−Mww(t− τ) + (mxgU −Mq)q(t− τ)−Mθθ

= MγsuM

(43)

whose parameters were experimentally computed and
presented in [16]. Its states are the depth and pitch
velocity x = [w, q]> and the control inputs are u =
[uZ , uM ]> representing the force and moment that are
required to produce the motion of the vehicle. For this
simulation the surge nominal velocity was considered as
U = 0.1m/s.

For this system, we chose K = [0.59, 0.23], the
matrix Γ = [Γij ] having entries Γ11 = 0.48, Γ12 = 0.06,
Γ21 = 0.06, and Γ22 = 0.3, V = [0.11, 0.15]>,
and p = 0.1, which satisfy our requirements from
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Assumption 1 with ν = 0.07 and τ = 0.1. With
the preceding design parameters, we used MATLAB to
simulate the depth plane of the model and its corre-
sponding controller from Theorem 1. In Fig. 1, we show
our MATLAB simulation results. Fig. 1 shows that the

Fig. 1: Depth and pitch DOFs using Theorem 1 control

depth and pitch reach steady-state in less than 4 seconds
with no overshoot for pitch, and minimum overshoot for
depth caused by the coupling to the pitch DOF. This
illustrates our event-triggered state delay compensating
feedback control in a practical example using experi-
mentally validated values of the model parameters.

V. CONCLUSIONS

We provided a new event-triggered feedback control
design for a class of linear systems having state delays,
using positive system and interval observer approaches,
which enable us to prove exponential convergence prop-
erties using linear Lyapunov functions. As illustrated in
[14] in the special case where there are no state delays,
our positive systems approach can provide advantages
over prior methods, by obtaining larger guaranteed lower
bounds on the inter-sample interval lengths ti+1 − ti
and therefore less frequent control recalculations as
compared with small gain or other earlier methods, and
these advantages are also present in our treatment of
more complicated state delayed systems in this work.
Our guaranteed lower bound on the inter-sample interval
lengths is independent of the initial state. We aim to
extend our analysis to nonlinear systems with outputs
and uncertain coefficients, using event-triggered analogs
of our finite time or continuous-discrete observer designs
[10], [11], as well as to event-triggered adaptive dynamic
programming based optimization [22] under state delays.
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