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Abstract: Face recognition with wearable items has been a challenging task in computer vision, which 7 
involves human wearing a facial mask. Masked face analysis via multi-task learning could effectively 8 
improve the performance in many fields of face analysis. In this paper, we propose a unified framework 9 
to predict age, gender, and emotions of people wearing masks. We first construct FGNET-MASK, a 10 
masked face dataset for the problem. Then, we propose the multi-task deep learning model to tackle the 11 
problem. In particular, the multi-task deep learning model takes the inputs as the data and shares their 12 
weight to yield the prediction of age, expression, and gender from the human masked face. Through 13 
the extensive experiments, the proposed framework provides a better performance than the existing 14 
methods. 15 
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1. Introduction 18 

Face recognition has been one of the active research problems studied in computer vision for 19 
decades due to their practical applications in automotive, security, retail, beautification, and social 20 
networks [1-5]. The field of facial analysis has always been a high demand; the so-called facial expression 21 
recognition systems are computer programs which aim to automatically translate and understand facial 22 
actions from visual information. The processing of facial expression is often confused with emotional 23 
interpretation in the field of the machine vision. Due to the high demand, there are lot of developments 24 
in this field. Especially, due to covid-19 that make people wear face mask to prevent infection, many 25 
previous works meet challenges to analyze the face wearing mask. There are few methods which have 26 
been introduced in creating the face mask dataset [6], detecting the face [7], recognizing facial identities 27 
[8][9], multitask learning [10, 11, 12], recognizing facial features [13]. The practice/inventions of face 28 
detection have been happening through years but due to COVID-19 everything has come to a hold [14], 29 
because of the face mask which made the previous methods struggle to analyze the human face. The 30 
proposed idea will overcome this problem. This study will assist not only in predicting a person's age [1, 31 
15, 16], but also in predicting his/her gender [2, 17, 18] and mood (expression) [19, 20] with the face mask 32 
on. Moreover, we will also release our masked face dataset upon the publication. Multitask learning with 33 
different backbones gave a better result in our created dataset than other methods, the output of method 34 
is shown in Figure 1.  35 

The main contributions of this paper are three-fold. First, we introduce the simple yet effective mask 36 
synthesis method. Second, we build the dataset of masked face with three separate modalities (i.e. age, 37 
gender, and expression). Third, we propose the multi-task deep learning framework to tackle the 38 
problem. Last but not least, we conduct experiments on the multitask learning model and compare it 39 
with the single models [12, 21]. To make this possible, we need to have a good dataset with appropriate 40 
labels as an input, which is not available in the market, so we have introduced the dataset with the face 41 
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mask to make it possible to work. The dataset of the face with labelled age is derived from FG-NET [16], 42 
then we manually added labels of gender and expression after that we rendered the faux mask on face 43 
[6]. To this end, landmark points on the face was generated, by using the generated landmark points 44 
extracted from a landmark point detector [22]. Following the dataset collection, we evaluate different 45 
separate models for each label (age, gender, and expression), such as LBP [23] (Local Binary Pattern), 46 
Eigenfaces with SVM (Support Vector Machine) classifier [17, 18, 20], deep learning models with two 47 
backbones: traditional CNN (Convolutional Neural Networks) [21] and ResNet (Residual Neural 48 
Network) and comparing the performance. Finally, multitask deep learning [10, 11, 12] was evaluated, 49 
which outperformed single task learning by reducing the effort of constructing different models for each 50 
task and the model's result.  51 

 52 

Figure 1. The exemplary input and output of the proposed method. 53 

The rest of the paper is organized as follows. The related works are summarized in Section 2. The 54 
dataset and the computational framework are introduced in Section 3. Section 4 presents the 55 
experimental results. Finally, Section 5 concludes the paper and paves way to the future work.    56 

2. Related Work 57 

This section explores the current facial datasets. Then, we go through the early studies on facial 58 
recognition [24, 25], which is used for feature classification, as well as the various techniques for 59 
identifying the face. Finally, we discuss mask face analysis briefly in order to analyze existing work on 60 
facial identification with various backbones. 61 

2.1. Face Datasets 62 

Many previous research studies, such as FG-NET [26], LFW (Labelled Faces in the Wild) [27], and 63 
Yamaha [28] and many more, have developed databases for facial recognition [8, 9] that are being used 64 
in a variety of research projects. The Yamaha dataset [28] only includes Asian faces with no annotation, 65 
the large-scale LFW dataset [27] lacks annotation, and the FG-NET dataset [26] contains 926 images 66 
including human age annotation. As a result, we are using the FG-NET dataset for our system.  67 

There have been several previous studies that have generated their dataset and conducted various 68 
tasks on it. Wang et al. [6] proposed three separate forms of datasets to recognize the individual with the 69 
mask, including Masked Face Detection Dataset (MFDD), Real-world Masked Face Recognition Dataset 70 
(RMFR), and Simulated Masked Face Recognition Dataset (SMFR). Similarly, many approaches have 71 
used datasets and incorporated them into their frameworks, but none of them met our requirements; as 72 
a consequence, in our scheme, we use FG-NET [26] as the base and further annotate gender and 73 
expression and applying mask on any face photo to construct our dataset. 74 

2.2. Face Recognition 75 

For face recognition, the crucial step is to extract facial features known as a "signature." There are 76 
several methods to extract the shape of the lips, eyes, or nose to classify the face based on its scale and 77 
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distance. Some techniques, which are widely used to extract the face features such as Histograms 78 
Oriented Gradient (HOG) [29, 30], Eigenfaces have shown their good performance in terms of system 79 
speed and accuracy. Since Eigenfaces method is primarily a dimension reduction method, a system can 80 
represent a large number of subjects with a small amount of data. It is also somewhat insensitive to major 81 
decreases in image sizing as a face-recognition system; however, it tends to struggle significantly as the 82 
difference between the seen images and probe image is large. There are more techniques such as, 83 
Independent Component Analysis (ICA), Scale-Invariant Feature Transform (SIFT) [31], Gabor filter, 84 
Local Phase Quantization (LPQ), Haar, Local Binary Pattern (LBP) [32, 33]. Here, LBP is a basic but 85 
effective textural feature that marks pixels in an image by thresholding each pixel's neighborhood and 86 
treating the result as a binary number. Principal component analysis (PCA) [34, 35], which is used in 87 
multiple applications and has variety of outcomes, was implemented into our dataset to get the predicted 88 
labels. We can derive a wide variety of features from images using CNNs. This feature extraction concept 89 
can also be applied to face recognition. For example, a binary classification, when two images of the same 90 
person are passed in, the network should return identical outputs (i.e. closer numbers) for both images; 91 
while images of two different people are passed in, the network should return somewhat different 92 
outputs for both images. The CNN is used to extract the most important data characteristics of the faces, 93 
and then the k-nearest neighbors (K-NN) is utilized as a classifier. As the predictive utility of a strong 94 
instance value, the K-NN algorithm employs neighborhood classification. An instance-based learning 95 
with K-NN [36] is widely used in many applications. In [5], Adjabi et al. reviewed facial recognition in 96 
both 2D and 3D images. Ulrich et al. [37] analyzed the use of RGB-D images for supporting different facial 97 
usage scenarios. Bock et al. [38] explored low-cost 3D camera in security. Likewise, Ruiqin et al. [39] 98 
introduced a face recognition access entrance guard system. Dagnes et al. [40] investigated the face 99 
recognition with eye and mouth occlusions in 3D geometry.  100 

There are few methods which were introduced for emotion recognition [19, 20], and gender 101 
recognition [2, 17, 18], age prediction [1, 15, 16], performing separate tasks for each. There are many 102 
works implementing multiple tasks with separate model, which is not feasible every time. In multi-task 103 
learning for dense prediction, Vandenhende et al. [12] review papers on multitasking and variants like 104 
hard parameter sharing, soft parameter sharing Encoder-focused model and Decoder-focused model. In 105 
our framework we are focusing on hard parameter sharing and sharing the data of age, gender, and 106 
expression in such a way.  107 

2.3. Masked Face Analysis 108 

Many prior works have focused on facial recognition of occlusion [41, 42]. The analysis work is 109 
conducted in a number of ways, including identification of the face in the wild, twin recognition [43], 110 
occluded face detection [41, 42], detecting the face between mask and actual face, and the use of GANs 111 
for face modulation and detection, and there are also few detecting the face with mask. 112 

To detect masked faces in the wild with LLE-CNN, Ge et al. [9] created a dataset dubbed MAFA. 113 
Then, they proposed LLE-CNN method with three modules. The proposal module first combines two 114 
pre-trained CNNs to extract candidate facial regions from the input image. Then, the embedding module 115 
turns feature descriptors into vectors of weights with respect to the components in pre-trained 116 
dictionaries of representative normal faces and non-faces by using locally linear embedding. the 117 
verification module takes the weight vectors as input and identifies real facial regions as well as their 118 
accurate positions by jointly performing the classification and regression tasks within unified CNNs 119 
There also exists research effort [44] to detect a person is with the face mask or without the face mask 120 
using OpenCV and Haar Cascade. 121 

We note that the single-model based research on human face recognition has recently achieved state-122 
of-the-art results. There are few of research for facial identification with the face mask achieving high 123 
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accuracy on recognizing the face [36]. In this work, rather than using a single model for each task, we aim 124 
to simultaneously train multi-task for predicting the age, gender, and expression. 125 

3. Data Collection and Proposed Framework 126 

In this section, we introduce the FGNET-MASK dataset and the multi-task deep learning model. 127 
The two different methods, namely single and multi-task learning, are shown in Figure 2. 128 

 129 

Figure 2. Visualization of deep neural network of (a) single model with single input and output of 130 
individual models and (b) multitask neural network with single input and single output with multiple 131 
labels. 132 

 133 

Figure 3. The flowchart of our masked face synthesis (a) is the original image from the FGNET dataset (b) 134 
image rendered with 69 facial landmark key points (c) selected landmark points to create mask (d) mask 135 
rendered and face cropped by taking min and max values (e) external logo embedded.   136 

3.1. FGNET-MASK dataset collection 137 

The most important step in the framework is the dataset creation. It is extremely difficult to assemble 138 
the dataset of individuals of various ages, genders, and expressions with the mask on them, so we render 139 
the mask and label them. The construction of FGNET-MASK dataset is detailed as follows.  140 

First, the human face images (without mask) from FGNET [26] were adopted with previously 141 
labelled age. Then, the dataset was further manually labelled with people's gender and expression; in 142 
total, we have 925 images with three types of labels on each image. Next, the images were run through 143 
the OpenPose [22] to detect and generate 2D landmark points on detected faces in the dataset. Eventually, 144 
we synthesized the face mask using Pillow package [45] after receiving the landmark points, with a 145 
variety of colors and logos. Since the initial dataset only contains 925 images, which is insufficient for a 146 
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machine to train, we constructed a replica of each masked image x4 with various permutations of mask 147 
color, as shown in the Figure 4, as well as changing the undetected landmark points, resulting in the final 148 
FGNET-MASK dataset of 3,404 images with rendered face mask, which is sufficient for a machine to be 149 
trained. Age, gender, and expression were all branded in the dataset. The dataset contains four age 150 
categories: under 10, 10 – 20, 20 – 40, and over 40 to balance the samples for each age group. There are 151 
only two genders labelled: Male and Female. Finally, expression labels were classified as Happy, Neutral, 152 
or Unhappy.  153 

 154 

Figure 4. Left: the original images from FGNET, right: the synthesized images of our FGNET-MASK 155 
dataset. 156 

The FGNET-MASK dataset was ultimately ready to be used after it was labelled and a variety of 157 
masks with logos and valves were applied to the data. The total number of pictures grouped and 158 
categorized into their age groups is 1,400 images under the age of 10, 1010 images between the ages of 10 159 
and 20, 720 images between the ages of 20 and 40, and 274 images over the age of 40. There are two 160 
gender categories, Male and Female, with 2000 and 1404 images, respectively. There are three types of 161 
expressions: happy, neutral, and unhappy. There are 1800 images with happy expressions, 950 images 162 
with neutral expressions, and 654 images with unhappy expressions. The outcome of the FGNET-MASK 163 
dataset is shown in Figure 4. 164 

3.2. Single models 165 

Following the creation of FGNET-MASK dataset, which includes rendering the mask and labeling 166 
the images, the images are fed into three distinct CNNs for Age, Expression, and Gender. The model 167 
‘Age' is a multi-class classification with four distinct classes based on criteria of less than 20, 20 – 30, 30 – 168 
40, and greater than 40. The ‘Expression' model is also a multi-class classification model with three 169 
classes: happy, neutral, and unhappy. The final model, ‘Gender,' is a binary classification with Male and 170 
Female options.  171 

According to the categories of the respective classes, the single model has three convolutional layers, 172 
in which each is followed by a max pooling layer, and dense layers. Convolutional layers use a filter to 173 
make a feature map that summarizes the presence of detected features in the input. Max pooling layers 174 
is expected to down sample feature detection in feature maps. We used Adam optimizer for training 175 
deep networks. Our newly constructed dataset was tested again with a different network with higher 176 
complexity of convolutional layers and maximum pooling, namely ResNet152 with 60,430,849 total 177 
parameters [45], to compare its accuracy with the traditional CNN model with only 7,654 parameters. 178 
The received testing accuracy for age, gender, and expression, structure of both the backbones are shown 179 
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is Figure 4. ResNet-152 [46] used pre-trained weight on ImageNet as their weights to train the model. 180 
The top fully connected layers were excluded, and the model was fine-tuned with 137 layers out of 152. 181 

For the single model, we consider using LBP and Eigen faces with SVM classifier. Local Binary 182 
Pattern (LBP) [16, 32, 33] is a simple texture operator that marks the pixels of an image by thresholding 183 
the neighborhood of each pixel and treating the result as a binary number. After pre-processing, the 184 
dataset was transformed to decimal numbers and fed into the SVM model using linear kernel. All of these 185 
data are linearly separated using this kernel which were used to separate models for age, gender, and 186 
expression and the results were reported, but deep learning outperformed the LBP - SVM process. 187 
Following the LBP implementation, the dataset was further implemented with eigen faces using PCA on 188 
SVM models, but the results were worse than the LBP. 189 

3.3. Multi-task Deep Learning 190 

Multi-task deep learning (MTDL) is an inductive transfer learning approach that involves the 191 
cooperative training of two or more learning machines. MTDL refers to the mechanism by which a 192 
machine learns from one task to the next. The idea is that each task should benefit from the knowledge 193 
gained while preparing for other related assignments. Deep multi-task architectures were divided into 194 
two types: hard parameter sharing techniques and soft parameter sharing techniques. The parameter set 195 
is split into shared and task-specific parameters in hard parameter sharing. In this proposed method we 196 
are using hard sharing parameter, MTDL models using hard parameter sharing typically consist of a 197 
shared encoder that branches out into task-specific heads. 198 

The most common hard parameter sharing design includes a shared encoder that branches out into 199 
task-specific decoding heads. Backpropagation in MTDL is the most efficient method for solving learning 200 
distributed representations. For example, in every model, the equation will be the same, if M>2 (i.e. 201 
multiclass classification), we calculate a separate loss for each class label per observation and sum the 202 
result. For example, 𝐿𝑎𝑔𝑒, the loss function of the age model is computed as: 203 

𝐿𝑎𝑔𝑒 =  − ∑ 𝑦𝑜,𝑐

𝑀

𝑐=1

𝑙𝑜𝑔(𝑝𝑜,𝑐)                         (1) 204 

 205 
Where 𝑀 is the number of classes (below 10, 10 – 20, 20 – 40, and 40 and above, y is the groundtruth 206 
label, p is the predicted probability observation o is of class 𝑐. Meanwhile, the total loss function 𝐿 for 207 
the multitask model is computed as follows: 208 
 209 

          𝐿 =  𝐿𝑎𝑔𝑒 + 𝐿𝑔𝑒𝑛𝑑𝑒𝑟 + 𝐿 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛        (2) 210 
 211 
The total loss function here solves three optimization problems at the same time: minimization of loss 212 
function and making norm of our parameters. Our proposed multi-task learning follows this approach. 213 
Following the sharing of the layers with the data, the output was determined in accordance with the 214 
specified task (i.e., age with respect to gender and expression, gender with respect to age and expression 215 
or expression with respect to age and gender).  216 

4. Experimental Results 217 

In this section, we compare the proposed method for masked face analysis with two implementation 218 
variants: basic CNN and ResNet-152. We also compare the single model with the multitask learning 219 
model. We include many baselines such as EigenFace [30], LBP [23], TinyImage [47], and VGG Face [48] 220 
in the evaluation. All experiments are conducted on the testing set of the collected FGNET-MASK dataset. 221 
Regarding the results, we adopt accuracy as the main performance metrics:  222 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =   

∑
𝑡𝑝𝑖 +  𝑡𝑛𝑖

𝑡𝑝𝑖 +  𝑡𝑛𝑖 + 𝑓𝑝𝑖 + 𝑓𝑛𝑖

𝑘

𝑖=1

𝑘
             (3) 223 

, where 𝑡𝑝𝑖 , 𝑡𝑛𝑖, 𝑓𝑝𝑖 , 𝑓𝑛𝑖 are the true positive, the true negative, the false positive, and the false negative, 224 
respectively. Meanwhile, k is the number of classes for each classification task.  225 

4.1. Single Model 226 

Three distinct models were developed in the deep learning system by using two separate backbones 227 
(simple CNN and ResNet-152) and three distinct approaches were also used in the SVM method, and the 228 
results of the model predicting age, gender, and expression were phenomenal in the deep learning 229 
methods than both (LBP and SVM) the methods using SVM method. The testing precision of the single 230 
trained models is as follows:   231 

4.1.1. Support Vector Machine (SVM) 232 

Support Vector Machine (SVM) is a supervised machine learning algorithm that can be used to solve 233 
classification and regression problems. In the SVM algorithm, each data object is plotted as a point in n-234 
dimensional space (where n is the number of features), with the value of each element being the value of 235 
a certain coordinate. Then classification is performed by finding the hyper-plane that differentiates the 236 
two or more classes according to the requirement. We use linear SVM as the classifier for LBP, Eigenfaces, 237 
TinyImage, and Multi-Block Color-Binarized Statistical Image Features (MB-C-BSIF). As shown in Table 238 
1, LBP obtains the unsatisfactory performance. Using the same process, we have implemented and 239 
compared our results of Eigenfaces obtained from PCA (Principal Control Analysis) [2], which is the 240 
method of calculating the principal components and using them to modify the basis of the data. The 241 
result of Eigenfaces is slightly better than the one of LBP. Regarding the TinyImage, the face image is 242 
downsized into 32x32, and the features are extracted by concatenating all image pixels. The extracted 243 
TinyImage features are used to train an SVM model, yielding results that were better than eigen face, 244 
LBP, and single task CNN. For MB-C-BSIF [49], the extracted features do not perform well, i.e., on par 245 
with LBP. One possible reason is that MB-C-BSIF possesses a large dimensionality. That may cause 246 
overfitting on the model training. Meanwhile, the features extracted from the VGG Face [48] using a 247 
pretrained model, on the other hand, outperform all other feature types. 248 

 249 

Figure 5. Backbones used in our implementation: (left) simple CNN, (right) ResNet-152. 250 
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Table 1. Testing accuracy of the both the models with different backbones. The best performance of each 251 
category is marked in boldface. 252 

         Accuracy 

 

Method 

Age Gender Expression 

Eigenface 0.59 0.68 0.58 

LBP [18] 0.53 0.64 0.55 

TinyImage [47] 0.73 0.82 0.70 

VGG Face [48] 0.84 0.89 0.75 

MB-C-BSIF [49] 0.48 0.64 0.53 

Single task (simple CNN) 0.68 0.77 0.60 

Single task (ResNet) 0.91 0.95 0.82 

MTDL (simple CNN) 0.74 0.83 0.70 

MTDL (ResNet) 0.95 0.98 0.90 

4.1.2. Simple Convolutional Neural Network (CNN) 253 

In this work, we first try a simple CNN model (as shown in Figure 5 left) for each class, namely, age, 254 
gender, and expression. Each model was trained using the same CNN architecture but with different 255 
activations functions for binary and multiclass classification. The age model's accuracy on unknown 256 
testing data was 0.68, the gender model's testing accuracy was 0.77, and the expression model's accuracy 257 

was 0.60.  258 

Figure 6. The exemplary pictures of age, gender, and expression prediction of a MTDL model from both 259 
backbones (CNN and ResNet), with green indicating that the expected values match the ground-truth and 260 
red indicating that they do not. 261 

4.1.3.  ResNet-152 262 

Furthermore, we try a deeper network, namely, ResNet-152 (as shown in Figure 5 right). By using 263 
the deeper model, the result of the age classification task reaches 0.91 whereas gender and expression 264 
classification results obtain 0.95 and 0.82, respectively. Here, the accuracy rate obtained from the residual 265 
neural network-ResNet-152 is significantly higher than that obtained from the other approaches we used: 266 
SVM and Deep Learning (CNN).  267 
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4.2.  Multitask Deep Learning Model 268 

The method of designing multiple models for multiple labels was exhausting and unconvincing, so 269 
the concept of using multitask deep learning was a brilliant way to save time and effort by only creating 270 
one model for the requisite multiple labels. The MTDL technique is the best approach to getting better 271 
results when compared to single CNN models. Results obtained after comparing the model are far 272 
conversing, with respect to age, gender, and expression. Figure 6 showcases the example results. 273 
Regarding the simple CNN, the testing accuracy obtained using the CNN backbone for each class are 274 
better than the single models. The testing precision obtained after conducting the multitask with respect 275 
to age, gender, and expression is 0.74, 0.83, and 0.70, respectively. This evidently outperforms the single 276 
models in terms of output. Meanwhile, ResNet-152 model produces a better performance than the simple 277 
CNN model. In particular, the results for age, gender, and expression are 0.95, 0.98, and 0.9, respectively. 278 
This clearly demonstrates that the deeper backbone tends to obtain the better performance in multi-task 279 
deep learning. Note that our work can be adopted in many scenarios such as surveillance systems, person 280 
re-identification, targeted advertisement, to name a few. 281 

5. Conclusions and Future Work 282 

In this paper, we investigated the problem of human masked face recognition. We constructed 283 
FGNET-MASK, a new masked face dataset with different modalities via face synthesis. We then 284 
proposed the multi-task deep learning (MTDL) to give the prediction of the person’s (with mask) age, 285 
expression, and gender. The experiments show the impressive performance of the proposed method on 286 
the testing data. In the future, we would like to collect more data for diversity, we will also explore our 287 
work on different datasets like RMFRD [6] in the future. In addition, we will investigate different tasks 288 
in masked face analysis such as facial landmark point detection or mask removal.  289 

Acknowledgement: This work was supported by the National Science Foundation (NSF) under Grant 2025234. We 290 
also gratefully acknowledge the support of NVIDIA Corporation with the donation of GPU used for this research. 291 

References 292 

1. Guo, G.; Guowang, Mu.; Fu, Y.; Huang, T. S. Human age estimation using bio-inspired features. IEEE 293 
Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 2009, pp. 112-119, doi: 294 
10.1109/CVPR.2009.5206681. 295 

2. Cao, D.; He, R.; Zhang, M.; Sun, Z.; Tan, T. Real-world gender recognition using multi-order LBP and localized 296 
multi-boost learning. IEEE International Conference on Identity, Security and Behavior Analysis (ISBA 2015), 297 
Hong Kong, China, 2015, pp. 1-6, doi: 10.1109/ISBA.2015.7126350. 298 

3. Wang, K.; Nguyen, T. V.; Feng, J.; Sepulveda, J. Sense Beyond Expressions: Cuteness. ACM Multimedia, 2015, 299 
1067-1070. 300 

4. Nguyen, T. V.; Liu, L. Smart Mirror: Intelligent Makeup Recommendation and Synthesis. ACM Multimedia, 301 
2017, 1253-1254. 302 

5. Adjabi, I.; Ouahabi, A.; Benzaoui, A.; Taleb-Ahmed, A. Past, Present, and Future of Face Recognition: A Review. 303 
MDPI Electronics, vol.9 (8), July 2020, pp.1188. 304 

6. Wang, Z.; Wang, G.; Huang, B.; Xiong, Z.; Hong,Q.; Wu, H.; Yi, P.; Jiang, K.; Wang, N.; Pei, Y.; Chen, H.; Miao, 305 
Y.; Huang, Z.; Liang, J. Masked face recognition dataset and application. 2020. 306 

7. Chaudhuri, B.; Vesdapunt, N.; & Wang, B. Joint face detection and facial motion retargeting for multiple faces. 307 
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 2019, pp. 9719-9728. 308 

8. Kortli, Y.; Jridi, M.; Falou, A.; Atri A & M. Face Recognition Systems: A Survey. Sensors (Basel, Switzerland), 309 
2020, 20(2), 342. 310 

9. Ge, S.; Li, J.; Ye, Q., & Luo, Z. Detecting masked faces in the wild with lle-cnns. In Proceedings of the IEEE 311 
conference on computer vision and pattern recognition, 2017, pp. 2682-2690. 312 



J. Imaging 2021, 6, x FOR PEER REVIEW 10 of 11 

 

10. Cao, J.; Y, Li; Z, Zhang. Partially shared multi-task convolutional neural network with local constraint for face 313 
attribute learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, 314 
pp. 4290-4299. 315 

11. Dmitry, Y.; Tamir, B.; Roman, V. MaskFace: multi-task face and landmark detector. 2020. 316 
12. Vandenhende, S.; Georgoulis, S.; Gansbeke, V.; Proesmans, W.; Dai, M. D., & Van, G.L. Multi-task learning for 317 

dense prediction tasks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021. 318 
13. Najibi, M.; Samangouei, P.; Chellappa, R.; & Davis, L. S. Ssh: Single stage headless face detector. In Proceedings 319 

of the IEEE international conference on computer vision, 2017, pp. 4875-4884. 320 
14. Mundial, I. Q.; Ul Hassan, M. S.; Tiwana, M. I.; Qureshi, W. S.; Alanazi, E. Towards Facial Recognition Problem 321 

in COVID-19 Pandemic. 4rd International Conference on Electrical, Telecommunication and Computer 322 
Engineering (ELTICOM), Medan, Indonesia, 2020, pp. 210-214, doi: 10.1109/ELTICOM50775.2020.9230504. 323 

15. Yang, H.; Huang, D.; Wang, Y.; Jain, A. K. Learning face age progression: A pyramid architecture of gans. In 324 
Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 31-39. 325 

16. Nithyashri, J.; Kulanthaivel, G. Classification of human age based on Neural Network using FG-NET Aging 326 
database and Wavelets. Fourth International Conference on Advanced Computing (ICoAC), Chennai, India, 327 
2012, pp. 1-5, doi: 10.1109/ICoAC.2012.6416855. 328 

17. Santarcangelo, V.; Farinella, G. M.; Battiato, S. Gender recognition: Methods, datasets and results. IEEE 329 
International Conference on Multimedia & Expo Workshops (ICMEW), Turin, Italy, 2015, pp. 1-6. 330 

18. Levi, G.; Hassncer, T. Age and gender classification using convolutional neural networks. IEEE Conference on 331 
Computer Vision and Pattern Recognition Workshops (CVPRW), Boston, MA, USA, 2015, pp. 34-42, doi: 332 
10.1109/CVPRW.2015.7301352. 333 

19. Tivatansakul, S.; Ohkura, M.; Puangpontip, S.; Achalakul, T. Emotional healthcare system: Emotion detection 334 
by facial expressions using Japanese database. 6th Computer Science and Electronic Engineering Conference 335 
(CEEC), Colchester, UK, 2014, pp. 41-46, doi: 10.1109/CEEC.2014.6958552. 336 

20. Arriaga, O.; Valdenegro-Toro, M.; Ploger, P. Real- ¨time convolutional neural networks for emotion and gender 337 
classification. 2017, CoRR abs/1710.07557. 338 

21. Yang, L.; Ma, J.; Lian, J.; Zhang, Y.; Liu, H. Deep representation for partially occluded face verification. 339 
EURASIP Journal on Image and Video Processing, 2018, (1), 1-10. 340 

22. Cao, Z.; Hidalgo, G.; Simon, T.; Wei -E, S.; Sheikh, Y. OpenPose: Realtime Multi-Person 2D Pose Estimation 341 
Using Part Affinity Fields. in IEEE Transactions on Pattern Analysis and Machine Intelligence, 1 Jan, 2021, vol. 342 
43, no. 1, pp. 172-186, doi: 10.1109/TPAMI.2019.2929257. 343 

23. Napoléon, T.; Alfalou, A. Local binary patterns preprocessing for face identification/verification using the 344 
VanderLugt correlator. In Optical Pattern Recognition XXV; International Society for Optics and Photonics; 345 
SPIE, 2014, Volume 9094, p. 909408. 346 

24. Alfalou, A.; Brosseau, C. Understanding Correlation Techniques for Face Recognition: From Basics to 347 
Applications. In Face Recognition; Oravec, M., Ed.; IntechOpen: Rijeka. 348 

25. Schroff, F.; Kalenichenko, D.; Philbin, J. Facenet: A unified embedding for face recognition and clustering. In 349 
Proceedings of the IEEE conference on computer vision and pattern recognition, Boston, MA, USA, June 2015, 350 
pp. 815–823, 7–12. 351 

26. Chen, K.; Gong, S.; Xiang, T.; Chang Loy, C. Cumulative attribute space for age and crowd density estimation. 352 
in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2013. 353 

27. Huang, B.; Gary, M.; Ramesh, T.; Berg; Learned-Miller, B. Labeled Faces in the Wild: A Database for Studying 354 
Face Recognition in Unconstrained Environments. University of Massachusetts, Amherst, Technical Report 07-355 
49, October, 2007. 356 

28. Fu, Y.; Huang, T. Human Age Estimation With Regression on Discriminative Aging Manifold. IEEE 357 
Transactions on Multimedia, 2008, 10(4): pp. 578-584.  358 

29. Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In IEEE computer society 359 
conference on computer vision and pattern recognition, CVPR'05, 2005, Vol. 1, pp. 886-893. 360 

30. Annalakshmi, M. S.; Roomi, M. M. Naveedh, A. S. A hybrid technique for gender classification with SLBP and 361 
HOG features. Cluster Computing, 2019, 22(1), 11-20. 362 



J. Imaging 2021, 6, x FOR PEER REVIEW 11 of 11 

 

31. Yang, H.; Wang, X.A. Cascade classifier for face detection. J. Algorithms Computational. Technol, 2016, 10, 187–363 
197. 364 

32. Napoléon, T.; Alfalou, A. Pose invariant face recognition: 3D model from single photo. 2017, Opt. Lasers Eng. 365 
89, 150–161. 366 

33. HajiRassouliha, A.; Gamage, T.P.B.; Parker, M.D.; Nash, M.P.; Taberner, A.J.; Nielsen, P.M. FPGA 367 
implementation of 2D cross-correlation for real-time 3D tracking of deformable surfaces. In Proceedings of 368 
IVCNZ 2013, pp. 352–357. 369 

34. Seo, H.J.; Milanfar, P. Face verification using the lark representation. IEEE Trans. Inf. Forensics Secur. 6, 2011, 370 
1275–1286. 371 

35. Shah, J.H.; Sharif, M.; Raza, M.; Azeem.; A. A Survey: Linear and Nonlinear PCA Based Face Recognition 372 
Techniques. Int. Arab J. Inf. Technol, 2013, 10, 536–545. 373 

36. Liu, S. Q.; Lan, X.; Yuen, P. C. Remote photoplethysmography correspondence feature for 3D mask face 374 
presentation attack detection. In Proceedings of the European Conference on Computer Vision (ECCV), 2018, 375 
pp. 558-573. 376 

37. Ulrich, L.; Vezzetti, E.; Moos, S.; Marcolin, F. Analysis of RGB-D camera technologies for supporting different 377 
facial usage scenarios. Multimedia Tools and Applications, 2020. 378 

38. Bock, R. D. Low-cost 3D security camera. In Autonomous Systems: Sensors, Vehicles, Security, and the Internet 379 
of Everything. International Society for Optics and Photonics, May 2018, Vol. 10643, p. 106430E. 380 

39. Ruiqin, L.; Wenan, T.; Zhenyu, C. Design of Face Recognition Access Entrance Guard System with Mask Based 381 
on Embedded Development. In Journal of Physics: Conference Series, April 2021, Vol. 1883, No. 1, p. 012156. 382 

40. Dagnes, N.; Marcolin, F.; Nonis, F.; Tornincasa, S.; Vezzetti, E. 3D geometry-based face recognition in presence 383 
of eye and mouth occlusions. International Journal on Interactive Design and Manufacturing (IJIDeM), 2019, 384 
13(4), 1617-1635. 385 

41. Shi, Y.; Yu, X.; Sohn, K. M.; Jain, A. K. Towards universal representation learning for deep face recognition. In 386 
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 6817-6826. 387 

42. Chen, Z.; Xu, T.; Han, Z. Occluded face recognition based on the improved SVM and block weighted LBP. 2011 388 
International Conference on Image Analysis and Signal Processing, Wuhan, China, pp. 118-122, doi: 389 
10.1109/IASP.2011.6109010. 390 

43. Nie, Z.; Mattey, A.; Huang, Z.; Nguyen, T. V. Revisit of Region-Feature Combinations in Facial Analysis. IEEE 391 
International Conference on Systems, Man, and Cybernetics (SMC), Miyazaki, Japan, 2018, pp. 2347-2352, doi: 392 
10.1109/SMC.2018.00403. 393 

44. COVID-19 Face Mask Detector with Open CV, Keras, Tensorflow, and Deep Learning, 394 
https://www.pyimagesearch.com/2020/05/04/covid-19-face-mask-detector-with-opencv-keras-tensorflow-395 
and-deep-learning/. last retrieved on May 18, 2021. 396 

45. Pillow package, https://pillow.readthedocs.io/en/stable/. last retrieved on May 18, 2021. 397 
46. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE 398 

conference on computer vision and pattern recognition, 2016, pp. 770-778. 399 
47. Torralba, A.; Fergus, R.; Freeman. W. 80 Million Tiny Images: A Large Data Set for Nonparametric Object and 400 

Scene Recognition. IEEE Trans. Pattern Anal. Mach. Intell, 2008, 30(11), pp. 1958-1970. 401 
48. Parkhi, O. M.; Vedaldi, A.; Zisserman, A. Deep face recognition. In Proceedings of the British Machine Vision 402 

Conference (BMVC) 2015, pp. 41.1-41.12. 403 
49. Adjabi, I.; Ouahabi, A.; Benzaoui, A.; Jaques, S. Multi‐Block Color‐Binarized Statistical Images for Single‐404 

Sample Face Recognition, January 2021, Sensors, vol.21 (3), pp.728, Doi: 10.3390/s21030728. 405 

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional 406 
affiliations. 407 

 

© 2021 by the authors. Submitted for possible open access publication under the terms 

and conditions of the Creative Commons Attribution (CC BY) license 

(http://creativecommons.org/licenses/by/4.0/). 

 408 

https://www.pyimagesearch.com/2020/05/04/covid-19-face-mask-detector-with-opencv-keras-tensorflow-and-deep-learning/
https://www.pyimagesearch.com/2020/05/04/covid-19-face-mask-detector-with-opencv-keras-tensorflow-and-deep-learning/
https://pillow.readthedocs.io/en/stable/

