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Abstract

Consider the algebraic function Φg,n that assigns to a general g-dimensional abelian
variety an n-torsion point. A question first posed by Klein asks: What is the minimal
d such that, after a rational change of variables, the function Φg,n can be written as
an algebraic function of d variables? Using techniques from the deformation theory of
p-divisible groups and finite flat group schemes, we answer this question by computing
the essential dimension and p-dimension of congruence covers of the moduli space of
principally polarized abelian varieties. We apply this result to compute the essential
p-dimension of congruence covers of the moduli space of genus g curves, as well as
its hyperelliptic locus, and of certain locally symmetric varieties. These results include
cases where the locally symmetric variety M is proper. As far as we know, these are the
first examples of nontrivial lower bounds on the essential dimension of an unramified,
nonabelian covering of a proper algebraic variety.
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1. Introduction

Let K be an algebraically closed field of characteristic 0. Consider the (multi-valued)
function Φg,n that assigns to a general g-dimensional principally polarized abelian K-variety
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an n-torsion point. Thinking of Φg,n as an algebraic function on the moduli space of principally
polarized abelian varieties over K, one can ask the following question.

Question 1. Let g, n ≥ 2. What is the minimum d such that, after a rational change of variables,
the function Φg,n can be written as an algebraic function of d variables?

Our interest in Question 1 was partly motivated by the work of Kronecker [Kr1861, p. 309]
and Klein (see [Kl1888, p. 171] for the case (g, n) = (2, 3) and [Kl1890, § II.16] for (g, n) = (3, 2))
who asked about the analogous minimum integer d for certain problems arising in classical
algebraic geometry, and used ‘modular’ functions like Φg,n, to investigate these problems.

We can rephrase Question 1 in more modern language, using the moduli space of principally
polarized abelian varieties and the notion of essential dimension introduced by Tschebotaröw
[Tsc34, § 4.8] (under the name ‘true transcendence degree’) and again by Buhler and Reichstein
[BR97]. Let Ag denote the coarse moduli space of g-dimensional, principally polarized abelian
varieties over K, and let A1

g,n be the coarse moduli space of pairs (A, z) where A is a principally
polarized abelian variety of dimension g, and z is an n-torsion point on A.

For any finite, generically étale map of K-schemes, p : X ′ → X, define the essential dimension
edK(X ′ → X), or edK(X ′/X) if the map is implicit, to be the minimal d for which there is a
dense Zariski open U ⊂ X, such that X ′|U is the pullback1

X ′|U ��

��

Y ′

��

U
f

�� Y

of a finite map Y ′ → Y of d-dimensional K-varieties via a regular map f : U → Y . In this case
we call f a (rational) compression of p. Question 1 can be rephrased as asking for the value of
edK(A1

g,n → Ag).
Following Klein [Kl1884], we can ask a related question, where we allow certain accessory

irrationalities; that is, we can ask for

min
E→Ag

edK(A1
g,n|E → E)

for some class of finite, generically étale maps E → Ag. For example, Reichstein and Youssin
[RY00] define the essential p-dimension edK(X ′/X; p) as the minimum of edK(X ′ ×X E → E)
where E → X runs over finite, generically étale maps of K-varieties of degree prime to p. For
any map E → X one always has

edK(X ′ ×X E → E) = edK(X̃ ′ ×X E → E)

where X̃ ′ denotes the composite of Galois closures of the connected components of X ′ (see
Lemmas 2.2.2, 2.2.3; cf. [BR97, Lemma 2.3]). In particular, for any class of maps E → Ag, the
answer to the question above does not change if we replace A1

g,n by Ag,n, the coarse moduli
space of pairs (A,B) where A is a principally polarized abelian variety of dimension g, and B is a
symplectic basis for the n-torsion A[n]. (Here and below we fix once and for all an isomorphism
μn(K) ∼−→ Z/nZ, so that we may speak of a symplectic basis for A[n].)

In this paper we apply techniques from the deformation theory of p-divisible groups and
finite flat group schemes to compute the essential p-dimension of congruence covers of certain
locally symmetric varieties, such as Ag.

1 Given maps X ′ → X and U → X, we use the notation X ′|U and X ′ ×X U interchangeably to denote the fiber
product.
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Theorem 2. Let g, n ≥ 2, and let p be any prime with p|n. Then

edK(Ag,n/Ag; p) = edK(Ag,n/Ag) = dimAg =
(

g + 1
2

)
.

Theorem 2 thus answers Question 1: the minimal d equals
(
g+1
2

)
. We in fact prove a

more general result, that for subvarieties of Z ⊂ Ag satisfying some mild technical hypotheses,
edK(Ag,n|Z/Z) = dimZ. More precisely, we prove the following theorem (see Theorem 3.2.6
below for a slightly more general formulation, which is important in some applications).

Theorem 3. Let p be prime and let N ≥ 3 be an integer prime to p. Suppose that L = Q̄p,
an algebraic closure of Qp, let OL be its ring of integers and let k be its residue field. Let
Z ⊂ Ag,N/OL

be a locally closed subscheme that is equidimensional and smooth over OL, and

whose special fiber Zk meets the ordinary locus Aord
g,N ⊂ Ag,N/k. Then

edL(Ag,p|ZL
/ZL; p) = edL(Ag,p|ZL

/ZL) = dimZL.

We give three applications of Theorem 3. The first is an analogue of Theorem 2 for Mg, the
coarse moduli space of smooth, proper, genus g ≥ 2 curves over K. For any integer n, consider
the level n congruence cover Mg[n] → Mg, where Mg[n] denotes the moduli space of pairs
(C,B) consisting of a smooth, proper curve C of genus g, together with a symplectic basis B for
J(C)[n], where J(C) is the Jacobian of C. Applying Theorem 3 and the Torelli theorem, we will
deduce the following result.

Corollary 4. Let g, n ≥ 2. Let p be any prime with p|n. Then
edK(Mg[n]/Mg) = edK(Mg[n]/Mg; p) = dimMg = 3g − 3.

As a second application of Theorem 3, let Hg denote the coarse moduli of smooth, hyper-
elliptic curves of genus g ≥ 2 over K. For any integer n, consider the level n congruence cover
Hg[n] → Hg, where Hg[n] denotes the moduli space of pairs (C,B) consisting of a hyperelliptic
curve C together with a symplectic basis B for J(C)[n]. Analogously to the case of Mg, we prove
the following result.

Corollary 5. Let g, n ≥ 2. Let p|n be any odd prime. Then

edK(Hg[n]/Hg) = edK(Hg[n]/Hg; p) = dimHg = 2g − 1.

For g > 2, the hypothesis that p is odd in Corollary 5 is necessary; see 3.3.5 below.
Our third application of Theorem 3 generalizes Theorem 2 to many locally symmetric vari-

eties. Recall that a locally symmetric variety is a variety whose complex points have the form
Γ\X+, where X+ is a Hermitian symmetric domain and Γ is an arithmetic lattice in the corre-
sponding real semisimple Lie group (see Lemma 4.2.3 below). Attached to Γ there is a semisimple
algebraic group G over Q, with X+ the connected component of the identity in X = G(R)/K∞,
for K∞ ⊂ G(R) a maximal compact subgroup. By a principal p-level covering Γ1\X+ → Γ\X+

we mean that the definition of Γ does not involve any congruences at p, and Γ1 ⊂ Γ is the sub-
group of elements that are trivial mod p. A sample of what we prove is the following theorem
(see Theorem 4.3.6 below for the most general statement).

Theorem 6. Suppose that each irreducible factor of Gad
R

is the adjoint group of one of U(n, n),
SO(n, 2) with n + 2 �= 8, or Sp(2n) for some positive integer n. If G is unramified at p (a condition
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which holds for almost all p), then for any principal p-level covering Γ1\X+ → Γ\X+, we
have

edC(Γ1\X+ → Γ\X+; p) = dim X+.

In fact our results apply to any Hermitian symmetric domain of classical type, but in general
they require a more involved condition on the Q-group G giving rise to Γ; this condition always
applies if G splits over Qp. Note that these results include cases where the locally symmetric
variety Γ\X+ is proper. As far as we know, these are the first examples of nontrivial lower
bounds on the essential dimension of an unramified, nonabelian covering of a proper algebraic
variety (although a certain abelian subgroup of the covering group plays an important role in
the argument). The only prior result for unramified covers of proper varieties of which we are
aware is due to Gabber [CT02, Appendix], who proved that if {E′

i → Ei} is a collection of
connected, unramified Z/pZ covers of elliptic curves Ei, then under certain conditions, the cover
E′

1 × · · · × E′
r → E1 × · · · × Er has essential dimension at p equal to r.

When Γ\X is proper, the use of more standard techniques involving fixed points to bound ed
from below (see, for example, [Rei11]) is precluded by the fact that one cannot use ‘ramification
at infinity’. This is in analogy with Margulis superrigidity for irreducible lattices Γ in higher rank
semisimple Lie groups where, for nonuniform Γ (equivalently, noncompact Γ\X), unipotents in
Γ play a crucial role. When Γ is uniform it contains no unipotents, and new ideas were needed
(and were provided only later, also by Margulis).

There are many examples of finite simple groups of Lie type for which our methods give a
lower bound on the essential p-dimension of a covering of locally symmetric varieties with that
group. To state these, for H an absolutely simple (adjoint) algebraic group over Fq, denote by
H(q) the image of Hsc(Fq) → H(Fq), where Hsc denotes the simply connected cover of H.

Corollary 7. Let H be a classical, absolutely simple group over Fq, with q = pr. If p = 2 we
further assume that 8 � r, and 4 � r if H is not split over Fq.

Then there is a congruence H(q)-cover of locally symmetric varieties Y ′ → Y, whose associ-
ated real Lie group is of the same type (A, B, C or D) as H, and such that e := edK(Y ′/Y ; p)
satisfies the following conditions.

– If H is a form of PGLn which is split if n is odd, then e = r�n2/4�.
– If H is PSp2n then e = r((n2 + n)/2).
– If H is a split form of PO2n then e = r((n2 − n)/2).
– If H is a form of POn and H is not of type D4, then e = r(n − 2).

Idea of the proof. To prove Theorem 2 and its generalization to subvarieties we use arithmetic
techniques, specifically Serre–Tate theory, which describe the deformation theory of an ordinary
abelian variety in characteristic p in terms of its p-divisible group. Let N ≥ 3 be an integer
coprime to p, and let A denote the universal abelian scheme over Ag,N (now considered over
Z[ζN ][1/N ]). Let A[p] be its p-torsion group scheme, and let Ax denote the fiber of A at x. Given
a rational compression of Ag,pN → Ag,N (in characteristic 0) onto a smaller-dimensional variety,
we show that there exists an ordinary mod p point x of Ag,N , and a tangent direction tx at x
such that the deformation of Ax[p] corresponding to tx is trivial. From this we deduce that the
deformation of Ax corresponding to tx is trivial, a contradiction.

One might view our method as an arithmetic analogue of the ‘fixed point method’ in the
theory of essential dimension (see [Rei11]), where the role of fixed points for a group action is now
played by wild ramification at a prime. In the fixed point method one usually works over a field
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where the order of the group is invertible. In contrast, for us the presence of wild ramification
plays an essential role.
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2. Preliminary results

2.1 Finite étale maps
We begin with some general lemmas on finite étale maps.

2.1.1. Let G → G′ be a homomorphism, and S a finite set with an action of G. We say that the
action of G on S lifts to G′ if there is an action of G′ on S, which induces the given action of G
on S. We call such a G′-action a lifting of the G-action on S. We say that the action of G on S
virtually lifts to G′ if there is a finite index subgroup G′′ ⊂ G′, containing the image of G, such
that the action of G on S lifts to G′′.

For a positive integer n we denote by Sn the n-fold product equipped with the diagonal
action of G, and by πi : Sn → S, i = 1, . . . , n, the projections.

Lemma 2.1.2. Let G → G′ be a map of groups, and S a finite set with an action of G.

(i) Suppose the action of G on S admits a lifting to an action of G′ on S, and fix such a lifting.
Then there exists a finite index subgroup G′′ ⊂ G′ containing the image of G, such that G
and G′′ have the same image in Aut(S).

(ii) Let T ⊂ Sn be a G-stable subset such that
⋃n

i=1 πi(T ) = S. Then the action of G on S
virtually lifts to G′ if and only if the action of G on T virtually lifts to G′.

Proof. Let N ⊂ G′ be the kernel of G′ → Aut(S), and G′′ ⊂ G′ the subgroup generated by N
and the image of G. Since S is finite, N and hence G′′ has finite index in G′, and so G′′ satisfies
the conditions in (i).

For (ii), suppose that the action of G on S virtually lifts to G′. By (i), after replacing G′ by a
finite index subgroup containing the image of G, we may assume that the action of G on S lifts
to G′, and that G and G′ have the same image in Aut(S). Then T is G′-stable, so the action of
G on T lifts to G′. Conversely, if the action of G on T virtually lifts to G′, then, by (i), we may
assume that the action of G on T lifts to G′, and that G and G′ have the same image in Aut(T ).
In particular, any element of G′ acts on Aut(T ) via an element of Aut(S). Since

⋃n
i=1 πi(T ) = S

this element of Aut(S) is uniquely determined. The uniqueness implies that G′ → Aut(T ) factors
through a homomorphism G′ → Aut(S), which lifts the action of G on S. �
2.1.3. Let X be a separated, locally Noetherian scheme and f : Y → X a finite étale cover. We
will say that f is Galois if any connected component of Y is Galois over its image.

Suppose that X is connected, and let x̄ be a geometric point of X. Let Fx̄ denote the functor
which assigns to any finite étale cover Y → X the underlying topological space |Yx̄| of its fiber
over x̄. Then Aut(Fx̄) is called the étale fundamental group and is denoted by π1(X, x̄), [SGA1,
Exp. V, § 7]. It follows from [SGA1, Exp. V, § 7] that the association Y �→ S(Y ) := |Yx̄| induces
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a bijection between isomorphism classes of finite étale covers, and of finite sets with π1(X, x̄)-
action. If X is connected and S is a finite set with an action of π1(X, x̄), we denote by Y (S) the
corresponding finite étale cover of X.

In the next three lemmas we consider a map of separated, locally Noetherian schemes g :
X → X ′ and a finite étale cover f ′ : Y ′ → X ′ equipped with an isomorphism Y

∼−→ Y ′ ×X′ X.
If X and X ′ are connected, and x̄ again denotes the geometric point of X ′ induced by x̄, then
such a Y ′ exists if and only if the action of π1(X, x̄) on S(Y ) lifts to π1(X ′, x̄).

Lemma 2.1.4. If f is Galois, then there is a finite étale h : X ′′ → X ′ such that g factors through
X ′′ and Y ′′ = X ′′ ×X′ Y ′ → X ′′ is Galois.

Proof. We may assume that X and X ′ are connected. We apply Lemma 2.1.2(i), to π1(X, x̄) →
π1(X ′, x̄) and S = S(Y ) = S(Y ′). Let h : X ′′ → X ′ be the finite étale map corresponding to
the π1(X ′, x̄)-set π1(X ′, x̄)/G′′. Since this set has a π1(X, x̄) fixed point, g factors through
X ′′. By construction, the images of π1(X ′′, x̄) and π1(X, x̄) in Aut(S(Y ′)) = Aut(S(Y )) are
equal. Denote this image by H, and for s ∈ S(Y ) denote the stabilizer by Hs. Since Y → X is
Galois, Hs is a normal subgroup which does not depend on s, which implies that Y ′′ → X ′′ is
Galois. �
2.1.5. Let A be a finite ring. By an A-local system F on X we will mean an étale sheaf of
A-modules which is locally isomorphic to the constant A-module An for some n. Such an F
is representable by a finite étale map Y (F) → X. This is clear étale locally on X, and follows
from étale descent in general. If X is connected, and equipped with a geometric point x̄, then
the association F �→ |Y (F)|x̄ induces a bijection between isomorphism classes of A-local systems
and conjugacy classes of representations π1(X, x̄) → GLn(A). Indeed, this follows easily from the
bijection explained in 2.1.3.

For X → X1 a map of schemes, and G an A-local system on X1, we will denote by G|X the
pullback of G to X.

Lemma 2.1.6. Suppose that f : Y = Y (F) → X corresponds to an A-local system F . Then
there is a finite étale h : X ′′ → X ′ such that g factors through X ′′ and Y ′′ = X ′′ ×X Y ′ → X ′′

represents an A-local system F ′′, with F ′′|X ∼−→ F .

Proof. We may assume that X and X ′ are connected and choose X ′′ as in the proof of
Lemma 2.1.4, using the construction in Lemma 2.1.2(i). Then the finite set S(Y ) = S(Y ′) nat-
urally has the structure of a finite free A-module on which π1(X, x̄) acts A-linearly. Since the
images of π1(X ′′, x̄) and π1(X, x̄) in Aut(S(Y )) are equal, π1(X ′′, x̄) acts on S(Y ) A-linearly,
which implies the statement of the lemma. �
2.1.7. We continue to assume that X is separated and locally Noetherian.

For any integer N ≥ 1 we denote by μN the kernel of Gm
N→ Gm. This is a finite flat group

scheme over Z, and we denote by the same symbol its pullback to any scheme X. This pullback
is étale if any only if X is a Z[1/N ]-scheme.

Suppose X is a Z[1/N ]-scheme. For any Z/NZ algebra A, we again denote by μN or A(1) the
étale sheaf μN ⊗Z/NZ A. For any nonnegative integer i we write A(i) = A(1)⊗i. For i negative
we set A(i) equal to the A-linear dual of A(−i).

Lemma 2.1.8. Let N ≥ 1 be an integer, i, j integers, and A a finite Z/NZ-algebra. Suppose that
X is a Z[1/N ]-scheme and that f : Y = Y (F) → X corresponds to an A-local system F , which
is an extension of A(i)r by A(j)s, for some positive integers r, s.
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Then there is a finite étale map X ′′ → X ′ such that g factors through X ′′ and the cover
Y ′′ = X ′′ ×X Y ′ → X ′′ represents an A-local system F ′′, which is an extension of A(i)r by A(j)s,
with F ′′|X ∼−→ F as extensions.

Proof. Replacing F by F(−j) := F ⊗A A(−j), we may suppose that j = 0. By Lemma 2.1.6, we
may assume Y ′′ represents an A-local system and g∗(F ′) ∼−→ F as A-local systems. Let F1 ⊂ F
denote the sub A-local system corresponding to A(j)s, so that F1 corresponds to an A-submodule
S(Y ′)1 ⊂ S(Y ′).

Let X ′′ and H be as in the proof of Lemma 2.1.4. Since the group H acts trivially on S(Y ′)1,
after replacing X ′ by X ′′, we may assume that F ′ is an extension of F ′/A(i)r by A(j)s, and
g∗(F ′) ∼−→ F is an isomorphism of extensions. A similar argument, applied to F/A(j)s ⊗ A(−i),
shows that we may assume that F ′ is an extension of A(i)r by A(j)s, with g∗(F ′) ∼−→ F as
extensions. �

2.2 Essential dimension
2.2.1. Let K be a field, X a K-scheme of finite type, and f : Y → X a finite étale cover. The
essential dimension [BR97, § 2] edK(Y/X) of Y over X is the smallest integer e such that
there exists a finite type K-scheme W of dimension e, a dense open subscheme U ⊂ X, and
a map U → W, such that Y |U is the pullback of a finite étale covering over W . The essential
p-dimension edK(Y/X; p) is defined as the minimum of edK(Y ×X E/E) where E → X runs
over dominant, generically finite maps, which have degree prime to p at all generic points of X.

Note that when X is irreducible, the definition does not change if we consider only coverings
with E irreducible. Indeed, for any E → X, as above, one of the irreducible components of E
will have degree prime to p over the generic point of X.

Suppose X is connected. A Galois closure of Y → X is a union of Galois closures of the
connected components of Y . If Yi → X, i = 1, . . . r, are finite étale, Galois and connected, then
a composite of the Yi is a connected component of Y1 ×X · · · ×X Yr. Up to isomorphism, this
does not depend on the choice of connected component. If we drop the assumption that X is
connected, we define the Galois closure and composite by making these constructions over each
connected component of X.

Lemma 2.2.2. Let f : Y → X be a finite étale cover, and Ỹ a Galois closure for Y . For any map
of K-schemes E → X, we have

edK(YE/E) = edK(ỸE/E).

In particular, we have

edK(Y/X; p) = edK(Ỹ /X; p).

Proof. We may assume that X is connected. Let x̄ be a geometric point for X, and S a
π1(X, x̄)-set with Y = Y (S). Suppose first that Y is connected. Let N ⊂ π1(X, x̄) be the (nor-
mal) subgroup which fixes S pointwise. If s ∈ S, and π1(X, x̄)s is the stabilizer of s, then
N =

⋂n
i=1 giπ1(X, x̄)sg

−1
i for a finite collection of elements g1, . . . , gn ∈ π1(X, x̄). Let S̃ denote

the π1(X, x̄)-orbit of (g1 · s, . . . , gn · s) ∈ Sn. Then the stabilizer in π1(X, x̄) of any point of S̃ is
N, so Ỹ = Y (S̃) is a Galois closure of Y .

Now we drop the assumption that Y is connected, and let Y1, . . . , Yr denote the connected
components of Y, with Yi corresponding to a subset Si ⊂ S on which π1(X, x̄) acts transitively.
The above construction gives subsets S̃i ⊂ Sn

i , (we may assume without loss of generality that
n does not depend on i) with Ỹi = Y (S̃i) a Galois closure of Yi. If S̃ =

∐
i S̃i ⊂ Sn, then Ỹ =

Y (S̃) =
∐

i Ỹi is a Galois closure for Y .
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From the construction one sees that S, T = S̃ and G = π1(X, x̄) satisfy the conditions in
Lemma 2.1.2(ii) (note that these conditions do not depend on the choice of G′). For any
homomorphism H → G, these conditions continue to hold if we instead view S and T as
H-sets.

Now let E → X be a map of K-schemes, U ⊂ E a connected open subset, and U → E′ a map
of K-schemes. Suppose U admits a geometric point ȳ mapping to x̄. Applying the above remark
with H = π1(U, ȳ), Lemma 2.1.2(ii) implies that the action of H on S virtually lifts to π1(E′, ȳ)
if and only the action of H on T virtually lifts to π1(E′, ȳ). As in the proof of Lemma 2.1.4, this
implies that Y |U arises by pullback from a cover of E′′ for some finite étale E′′ → E′, if and only
if the same condition holds for Ỹ |U . Since x̄ was an arbitrary geometric point of X, this implies
edK(Y |E/E) = edK(Ỹ |E/E). �
Lemma 2.2.3. Let Yi → X, i = 1, . . . , r, be connected Galois coverings of K-schemes, and
Y → X a composite of the Yi. Then for any map of K-schemes E → X, we have

edK(YE/E) = edK

(( ∐
i

Yi

)
E

/
E

)
.

In particular, we have

edK(Y/X; p) = edK

(( ∐
i

Yi

)/
X; p

)
.

Proof. Let x̄ be a geometric point for X, and let Si be a π1(X, x̄)-set with Yi = Y (Si). Let
S =

∐
i Si. Then Y corresponds to a transitive π1(X, x̄) set T ⊂ S1 × · · · × Sr which surjects

onto each Si. Viewing T ⊂ Sr, we see that T satisfies the conditions of Lemma 2.1.2. The lemma
now follows as in the proof of Lemma 2.2.2. �
Lemma 2.2.4. Let A be a finite ring, K a field, F an A-local system on a connected
K-scheme X equipped with a geometric point x̄, and ρF : π1(X, x̄) → GLn(A) the representation
corresponding to F . Let Y be the covering of X corresponding to ker ρF .

Then Y is the composite of Galois closures of the connected components of Y (F). In
particular,

edK(Y ′/X) = edK(Y (F)/X).

For any prime p we also have

edK(Y/X; p) = edK(Y (F)/X; p).

Proof. Consider the action of π1(X, x̄) on An corresponding to F . The connected components
of Y (F) correspond to the stabilizers π1(X)s for s ∈ An. A Galois closure of such a component
corresponds to ⋂

g∈π1(X)

gπ1(X)sg
−1 =

⋂
g∈π1(X)

π1(X)gs.

Thus the composite of such Galois closures corresponds to
⋂

s π1(X)s = ker ρF .
The lemma now follows from Lemmas 2.2.2 and 2.2.3. �

Lemma 2.2.5. Let K ′ ⊂ K be algebraically closed fields. If Y → X is a finite étale covering of
finite type K ′-schemes then

edK′(Y/X) = edK(YK/XK).
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Proof. Let UK ⊂ XK be a dense open and UK → WK a morphism with dim WK = edK(YK/XK)
such that YK |UK

arises from a finite cover f ′ : Y ′
K → WK . Then UK , the finite cover f ′ and the

isomorphism f ′∗Y ′
K

∼−→ YK |UK
are all defined over some finitely generated K ′-algebra R ⊂ K.

Specializing by a map R → K ′ produces the required data for the covering Y → X. �
2.2.6. It will be convenient to make the following definition. Suppose that Y → X is a finite
étale covering of finite type R-schemes, where R is a domain of characteristic 0. Set ed(Y/X) =
edK̄(Y/X) where K̄ is any algebraically closed field containing R, and similarly for ed(Y/X; p).
By Lemma 2.2.5, this does not depend on the choice of K̄.

Lemma 2.2.7. Let K be an algebraically closed field, and Y → X a finite Galois covering of
connected, finite type K-schemes with Galois group G. Let H ⊂ G be a central, cyclic subgroup
of order n with char(K) � n. Then for any prime p we have

ed(Y → X; p) ≥ ed(Y/H → X; p)

with equality if p � n.

Proof. To show ed(Y/X; p) ≥ ed(Y/H → X; p), after shrinking X, we may assume there is a
map f : X → X ′ such that Y = f∗Y ′ for a finite étale covering Y ′ → X ′, which may be assumed
to be connected and Galois by Lemma 2.1.4. The Galois group of Y ′/X ′ is necessarily equal to
G, and we have f∗(Y ′/H) ∼−→ Y/H.

For the converse inequality when p � n, we may assume there is a map f : X → X ′ such that
Y/H = f∗Y ′ for a finite étale covering Y ′ → X ′, which we may again assume is connected and
Galois with group G/H. The image, c, of Y ′ → X ′ under

H1(X ′, G/H) → H2(X ′, H) ∼−→ H2(X ′, μn)

is the obstruction to lifting Y ′ → X ′ to a G-covering. Here, for the final isomorphism, we are
using that K is algebraically closed of characteristic prime to n. Viewing c as a Brauer class, we
see that it has order dividing n. This implies that (after perhaps shrinking X further) there is
an étale covering X ′

1 → X ′ of order dividing a power n such that c|X1 is trivial [FD93, Lemma
4.17]. In particular, X ′

1 → X ′ has order prime to p. Replacing Y → X → X ′ by their pullbacks
to X ′

1, we may assume that c = 0, and that Y ′ = Y ′′/H for some Galois covering Y ′′ → X ′ with
group G.

The difference between the G-coverings Y → X and f∗Y ′′ → X is measured by a class in
H1(X, H). After replacing X by the H-covering corresponding to this class, we may assume that
this class is trivial, and so Y

∼−→ f∗Y ′′. This shows that ed(Y/X; p) ≤ ed(Y/H → X; p). �

3. Essential dimension and moduli of abelian varieties

3.1 Ordinary finite flat group schemes
In this subsection we fix a prime p, and we consider a complete discrete valuation ring V of
characteristic 0, with perfect residue field k of characteristic p, and a uniformizer π ∈ V .

By a finite flat group scheme on a Zp-scheme X we will always mean a finite flat, commuta-
tive, group scheme on X of p-power order. A finite flat group scheme on X is called ordinary if
étale locally on X, it is an extension of a constant group scheme

⊕
i∈I Z/pniZ by a group scheme

of the form
⊕

j∈J μpmj for integers ni, mj ≥ 1. In this subsection we study the classification of
these extensions.

2415

https://doi.org/10.1112/S0010437X21007594
Downloaded from https://www.cambridge.org/core. ISPG/USA, on 27 Oct 2021 at 20:45:33, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1112/S0010437X21007594
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


B. Farb, M. Kisin and J. Wolfson

3.1.1. Now let X̃ = Spec A be an affine Zp-scheme, and set X = X̃ ⊗ Q. Let n ≥ 1, and consider
the exact sequence of sheaves

1 → μpn → Gm
pn

→ Gm → 1

in the flat topology of X̃. Taking flat cohomology of this sequence and its restriction to X, we
obtain the following commutative diagram with exact rows.

1 �� A×/(A×)pn
��

��

H1(X̃, μpn) ��

��

H1(X̃, Gm)

��

1 �� A[1/p]×/(A[1/p]×)pn
�� H1(X, μpn) �� H1(X, Gm)

The group H1(X̃, Gm) classifies line bundles on X̃. Hence, if A is local it vanishes, and this
can be used to classify extensions of Z/pnZ by μpn as finite flat group schemes. We have

Ext1
X̃

(Z/pnZ, μpn) ∼−→ H1(X̃, μpn) ∼−→ A×/(A×)pn
.

Here and below, the group on the left denotes extensions as sheaves of Z/pnZ-modules.
Similarly, we can classify extensions of Qp/Zp by μp∞ = limn μpn as p-divisible groups. If E

is such an extension, then E [pn] is an extension of Z/pnZ by μpn and we have

θ̂A : Ext1
X̃

(Qp/Zp, μp∞) ∼−→ lim←−nA×/(A×)pn
.

If A is complete and local with residue field k, then the right-hand side may be identified
with A×,1 ⊂ A×, the subgroup of units which map to 1 in k×. Thus we have

θ̂A : Ext1
X̃

(Qp/Zp, μp∞) ∼−→ A×,1.

3.1.2. For the rest of this subsection we assume that A = V [[x1, . . . , xn]]. Then H1(X, Gm) = 0
by [SGA2, XI, Thm 3.13], and we have the following commutative diagram.

A×/(A×)pn ∼
��

��

H1(X̃, μpn)

��

A[1/p]×/(A[1/p]×)pn ∼
�� H1(X, μpn)

3.1.3. We call an element of Ext1X(Z/pnZ, μpn) = H1(X, μpn) syntomic if it arises from an ele-
ment of A×, or equivalently from a class in Ext1

X̃
(Z/pnZ, μpn), and we denote the subgroup of

syntomic elements by Ext1,synX (Z/pnZ, μpn) ⊂ Ext1X(Z/pnZ, μpn)

Lemma 3.1.4. The map Ext1
X̃

(Z/pnZ, μpn) → Ext1X(Z/pnZ, μpn) is injective.

Proof. If a ∈ A× is a pnth power in A[1/p] then it is a pnth power in A, as A is normal. Hence the
map A×/(A×)pn → A[1/p]×/(A[1/p]×)pn

is injective, and the lemma follows from the description
of Ext1s above. �
Lemma 3.1.5. Let B = V [[y1, . . . , ys]] for some integer s ≥ 0, and

f : X̃ → Ỹ = Spec B

a local flat map of complete local V -algebras. Let Y = Spec B[1/p], and suppose that c ∈
H1(Y, μpn), and that f∗(c) ∈ H1(X, μpn) is syntomic. Then c is syntomic.
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Proof. Let b ∈ B[1/p]× be an element giving rise to c. Since B is a unique factorization domain
we may write b = b0π

i with b0 ∈ B× and i ∈ Z. Since f∗(c) is syntomic, we may write πi = a0a
pn

with a0 ∈ A× and a ∈ A[1/p]×. Comparing the images of both sides in the group of divisors on
A, one sees that pn|i. So c arises from b0. �
3.1.6. Let mA be the maximal ideal of A, and m̄A its image in A/πA. The natural map

m̄A/m̄2
A

a 	→1+a→ k×\(A/(π,m2
A))×

is a bijection; both sides are k-vector spaces spanned by x1, . . . , xn. We denote by θA the
composite

θA : Ext1,synX (Z/pZ, μp)
∼−→ A×/(A×)p → k×\(A/(π,m2

A))× ∼−→ m̄A/m̄2
A.

Here we have used Lemma 3.1.4 to identify Ext1,synX (Z/pZ, μp) and Ext1
X̃

(Z/pZ, μp).

Lemma 3.1.7. With the notation of Lemma 3.1.5, suppose that

L ⊂ Ext1,synY (Z/pZ, μp)

is a subset such that the k-span of θA(f∗(L)) is m̄A/m̄2
A. Then f is an isomorphism.

Proof. By functoriality of the association A �→ θA, we have θA(f∗(L)) = f∗(θB(L)). Hence the
k-span of θA(f∗(L)) is contained in image of m̄B/m̄2

B. It follows that m̄B/m̄2
B surjects onto

m̄A/m̄2
A. Since A and B are complete local V -algebras, this implies that B, which is a subring

of A, surjects onto A. Hence f is an isomorphism. �

3.2 Monodromy of p-torsion in an abelian scheme
We now use the results of the previous section to obtain results about the essential dimension of
covers of the moduli space of abelian varieties.

3.2.1. Recall that an abelian scheme A over a Zp-scheme is called ordinary if the group scheme
A[pn] is ordinary for all n ≥ 1. This is equivalent to requiring the condition for n = 1.

Let k be an algebraically closed field of characteristic p > 0, and let V be a complete discrete
valuation ring with residue field k, so that W (k) ⊂ V . Let A0 be an abelian scheme over k of
dimension g. We assume that A0 is ordinary. Since k is algebraically closed, this implies that
A0[p∞] is isomorphic to (Qp/Zp)g ⊕ μg

p∞ .
Consider the functor DA0 on the category of Artinian V -algebras C with residue field k,

which attaches to C the set of isomorphism classes of deformations of A0 to an abelian scheme
over C. Recall [Kat81, § 2] that DA0 is equivalent to the functor which attaches to C the
set of isomorphism classes of deformations of A0[p∞], and that DA0 is pro-representable by
a formally smooth V -algebra R of dimension g2, called the universal deformation V -algebra
of A0.

Denote by AR the universal (formal) abelian scheme over R. Note that although AR is only a
formal scheme over R, the torsion group schemes AR[pn] are finite over R, and so can be regarded
as genuine R-schemes. Since A0 is ordinary the p-divisible group, AR[p∞] = limn AR[pn] is an
extension of (Qp/Zp)g by μg

p∞ . Hence AR[p] is an extension of (Z/pZ)g by μg
p. This extension

class is given by a g × g matrix of classes (ci,j) with ci,j ∈ Ext1R(Z/pZ, μp).

Lemma 3.2.2. With the notation of § 3.1, the elements θR({ci,j}i,j) span m̄R/m̄2
R.

Proof. Consider the isomorphism

θ̂R : Ext1R(Qp/Zp, μp∞) ∼−→ R×,1
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introduced in § 3.1. The universal extension of p-divisible groups over R gives rise to a g × g
matrix of elements (ĉi,j) ∈ Ext1R(Qp/Zp, μp∞) which reduce to (ci,j).

Let L ⊂ m̄R/m̄2
R be the k-span of the images of the elements θ̂R(ĉi,j) − 1, or equivalently,

the elements θR(ci,j) − 1, and set R′ = k ⊕ L ⊂ R/(π,m2
R). Using the isomorphism θ̂R′ , one

sees that AR[p∞]|R/(π,m2
R) is defined over R′. If L � m̄R/m̄2

R, then there exists a surjective
map R/(π,m2

R) → k[x]/x2 which sends L to zero. Specializing AR[p∞]|R/(π,m2
R) by this map

induces the trivial deformation of A0[p∞] (that is, the split extension of (Qp/Zp)g by μp∞) over
Spec k[x]/x2. This contradicts the fact that R pro-represents DA0 . Hence L = m̄R/m̄2

R, which
proves the lemma. �
3.2.3. Let A be a quotient of R which is formally smooth over V . That is, A is isomorphic as a
complete V -algebra to V [[x1, . . . xn]]. As in § 3.1, we set X = Spec A[1/p] and X̃ = Spec A.

Lemma 3.2.4. Let B = V [[y1, . . . ys]] for some integer s ≥ 0, and let

f : X̃ → Ỹ = Spec B

be a local flat map of complete local V -algebras. Set Y = Spec B[1/p]. Suppose that k is alge-
braically closed, and that there exists an Fp-local system L on Y which is an extension of (Z/pZ)g

by μg
p such that f∗L ∼−→ AR[p]|X as extensions of Fp-local systems. Then f is an isomorphism.

Proof. Using the notation of 3.2.1, we have that θR({ci,j}i,j) spans m̄R/m̄2
R by Lemma 3.2.2. In

particular, if we again denote by ci,j the restrictions of these classes to A, then θA({ci,j}i,j) spans
m̄A/m̄2

A.
Now by Lemma 3.1.5 the g2 extension classes defining L are syntomic. So L arises from an

extension of (Z/pZ)g by μg
p as finite flat group schemes over Ỹ . If we denote by (di,j) the corre-

sponding g × g matrix of elements of Ext1
Ỹ

(Z/pZ, μp), then Lemma 3.1.4, together with the fact
that f∗L ∼−→ AR[p]|X , implies that f∗(di,j) = ci,j . It follows that the elements θA(f∗({di,j}))i,j

span m̄A/m̄2
A, which implies that f is an isomorphism by Lemma 3.1.7. �

3.2.5. Fix an integer g ≥ 1, a prime p ≥ 2, and a positive integer N ≥ 2 coprime to p. Consider
the ring Z[ζN ][1/N ], where ζN is a primitive Nth root of 1. Using the isomorphism Z/NZ

∼−→
1	→ζN

μN , for any Z[ζN ][1/N ]-scheme T, and any principally polarized abelian scheme A over T, the
N -torsion scheme A[N ] is equipped with the (alternating) Weil pairing

A[N ] × A[N ] → Z/NZ.

We denote by Ag,N the Z[ζN ][1/N ]-scheme which is the coarse moduli space of principally polar-
ized abelian schemes A of dimension g equipped with a symplectic basis of A[N ]. When N ≥ 3,
this is a fine moduli space which is smooth over Z[ζN ][1/N ]. For a Z[ζN ][1/N ]-algebra B, we
denote by Ag,N/B the base change of Ag,N to B. If no confusion is likely to result we sometimes
denote this base change simply by Ag,N .

Suppose that N ≥ 3, and let A → Ag,N be the universal abelian scheme. The p-torsion
subgroup A[p] ⊂ A is a finite flat group scheme over Ag,N which is étale over Z[ζN ][1/Np].
Let x ∈ Ag,N be a point with residue field κ(x) of characteristic p, and Ax the corresponding
abelian variety over κ(x). The set of points x such that Ax is ordinary is an open subscheme
Aord

g,N ⊂ Ag,N ⊗ Fp. For any N, we denote by Aord
g,N ⊂ Ag,N ⊗ Fp the image of Ag,NN ′ for any

N ′ ≥ 3 coprime to N and p.
We now denote by k a perfect field of characteristic p, and K/W [1/p] a finite extension with

ring of integers OK and uniformizer π. We assume that K is equipped with a choice of primitive
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Nth root of 1, ζN ∈ K. We remind the reader regarding the convention for the definition of ed
and ed( · ; p) introduced in 2.2.6.

Theorem 3.2.6. Let g ≥ 1 and let p be any prime. Let N ≥ 3 and coprime to p, and let

ι : Z → Ag,N/OK

be a map of equidimensional, smooth OK-schemes, satisfying the following conditions.

(i) If x ∈ Z is a closed point with image y ∈ Ag,N/OK
, then ι induces a surjection of complete

local rings ÔAg,N/OK
,y � ÔZ,x.

(ii) The image, under ι, of the special fiber Zk meets the ordinary locus Aord
g,N ⊂ Ag,N/k.

Then

ed(A[p]|ZK
/ZK ; p) = dimZK .

Proof. It suffices to prove the theorem when k is algebraically closed, which we assume from
now on. Moreover, since K is an arbitrary finite extension of W [1/p], it is enough to show that
edK(A[p]|ZK

/ZK ; p) = dimZK . We may replace Z by a component whose special fiber meets
the ordinary locus, and assume that ZK and Zk are geometrically connected.

Suppose that ed(A[p]|ZK
/ZK ; p) < dimZK . Then there exists a dominant, generically finite

map UK → ZK of degree prime to p at the generic points of UK , and a map h : UK → YK to a
finite type K-scheme YK with dimYK < dimZK , such that A[p]|UK

arises as the pullback of a
finite étale covering of YK . We may assume that YK is the scheme-theoretic image of UK under
h. Next, after replacing both UK and YK by dense affine opens, we may assume that both these
schemes are affine corresponding to K-algebras BK and CK respectively, and that UK → YK is
flat.

Let Z̃ be the normalization of Z in UK . Let p be the generic point of Zk, and q1, . . . , qm

the primes of Z̃ over p. Since the degree of Z̃ → Z over p is prime to p, for some i the rami-
fication degree e(qi/p) and the degree of the residue field extension κ(qi)/κ(p) are prime to p.
In particular, the residue field extension is separable. By Abhyankar’s Lemma, it follows that,
after replacing K by a finite extension, we may assume that e(qi/p) = 1 for some i, and that
Z̃ → Z is étale at qi. Shrinking UK further if necessary, we may assume that there is an affine
open Spec B = U ⊂ Z̃ such that Uk → Zk has dense image, U ⊗ K = UK , and U → Z is étale.
In particular, U is smooth over OK .

Now choose a finitely generated OK-subalgebra C ⊂ CK ∩ B such that C ⊗ K = CK . This is
possible as CK is finitely generated over K. Then h extends to a map h : U → Y = Spec C. Let
J ⊃ (p) be an ideal of C, and YJ → Y the blow-up of J . Denote by UJ the proper transform of U
by this blow-up. That is, UJ is the closure of UK in U × YJ . By the Raynaud–Gruson Flattening
Theorem [RG71, Theorem 5.2.2], we can choose J so that UJ → YJ is flat. Since U is normal,
the map UJ → U is an isomorphism over the generic points of U ⊗ k. Hence, after replacing Y
by an affine open in YJ , and shrinking U, we may assume that U → Y is flat.

Shrinking U further, we may assume that the special fiber Uk maps to the ordinary locus
of Ag,N . Now let B̂ and Ĉ denote the p-adic completions of B and C respectively, and set
Û = Spec B̂ and Ŷ = Spec Ĉ.2 Since A[p]|

Û
is ordinary, there is a finite étale covering Û ′ =

Spec B̂′ → Û such that A[p]|
Û ′ is an extension of (Z/pZ)g by μg

p. Hence by Lemmas 2.1.6 and

2 Although it would in some sense be more natural to work with formal schemes here, we stay in the world of
affine schemes so as to be able to apply the results proved in § 1, and to deal with generic fibers without resorting
to p-adic analytic spaces.
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2.1.8, Û ′
K → ŶK factors through a finite étale map Ŷ ′

K → ŶK such that A[p]|
Û ′

K
is the pullback

of an extension F ′ of (Z/pZ)g by μg
p on Ŷ ′

K . As Û ′ is normal, we may assume Ŷ ′
K is normal.

Let Ŷ ′ = Spec Ĉ ′ be the normalization of Ŷ in Ŷ ′
K . As Û ′ is normal, we have

Û ′ → Ŷ ′ → Ŷ .

As Ŷ ′ is normal, Û ′ → Ŷ ′ is flat over the generic points of Ŷ ′
k. Hence, there exists f0 ∈ Ĉ ′/πĈ ′

which is nowhere nilpotent on Ŷ ′
k, and such that Û ′

k → Ŷ ′
k is flat over the complement of the

support of the ideal (f0). Now let f ∈ Ĉ ′ be a lift of f0, and let Ĉ ′′ = Ĉ ′[1/f ] and B̂′′ = B̂′[1/f ],
the p-adic completions3 of C ′[1/f ] and B′[1/f ]. Let Û ′′ = Spec B′′ and Ŷ ′′ = Spec Ĉ ′′. Then Û ′′

is flat over Ŷ ′′ by [EGA, IV, 11.3.10.1]. Moreover, since Û → Ŷ is flat, the generic points of
Û ′

k map to generic points of Ŷ ′
k. So the image of Û ′′

k is dense in Û ′
k, and in particular Û ′′(k) is

nonempty.
Now choose a point x ∈ Û ′′(k), and denote by y ∈ Ŷ ′′(k) its image. We write O

Û ′′,x and
O

Ŷ ′′,y for the complete local rings at x and y. Since the maps

Û ′′ → Û ′ → Û → Z
are formally étale, O

Û ′′,x is naturally isomorphic to the complete local ring at the image of x in
Z. Let R be the universal deformation OK-algebra of the abelian scheme Ax. By condition (i) of
the theorem, O

Û ′′,x is naturally a quotient of R. The map O
Ŷ ′′,y → O

Û ′′,x satisfies the conditions
of Lemma 3.2.4 (cf. [EGA, IV, 17.5.3]), and it follows that this map is an isomorphism. In
particular, this implies that

dimYK = dimO
Ŷ ′′,y − 1 = dimO

Û ′′,x − 1 = dimZK

which contradicts our initial assumption. �
Corollary 3.2.7. Let g ≥ 1, be an integer, p any prime, and N ≥ 1 an integer coprime to p.
Let

ι : Z → Ag,N/OK

be a map of equidimensional, smooth OK-schemes satisfying conditions (i) and (ii) of
Theorem 3.2.6.

If N = 1, 2 we also assume the following condition: For any generic point η ∈ Zk, and η̄ the
spectrum of an algebraic closure of κ(η), the abelian variety Aη̄ over η̄, has automorphism group
equal to {±1}. Then

ed(Ag,pN |ZK
/ZK ; p) = dimZK .

Proof. If N ≥ 3, the corollary follows from Theorem 3.2.6 and Lemma 2.2.4.
Suppose N = 1 or 2. Let N ′ ≥ 3 be an integer coprime to pN . We may assume that K is

equipped with a primitive pN ′th root of 1, ζpN ′ . The map of K-schemes Ag,pN → Ag,N , is a
covering with group Sp2g(Fp)/{±1}. Consider the maps

Ag,pNN ′ → Ag,pN ×Ag,N
Ag,NN ′ =: A′

g,pNN ′ → Ag,NN ′ .

Then A′
g,pNN ′ → Ag,NN ′ again corresponds to a Sp2g(Fp)/{±1} covering, and Ag,pNN ′ → Ag,NN ′

corresponds to a Sp2g(Fp) covering. When p = 2 these two coverings coincide.
Let ZN ′ = Z ×Ag,N

Ag,NN ′ . Our assumption on the automorphisms of Aη̄ implies that at the
generic points of Zk, the map ZN ′ → Z is étale. Thus, after replacing Z by a fiberwise dense

3 Ĉ′′ corresponds to a formal affine open in the formal scheme Spf Ĉ′.
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open, we may assume that ZN ′ is smooth over OK . The observations of the previous paragraph,
Lemma 2.2.7 when p > 2, Lemma 2.2.4 and Theorem 3.2.6 imply that we have

ed(Ag,pN |ZK
/ZK ; p) ≥ ed(A′

g,pNN ′ |ZN′,K /ZN ′,K ; p)

= ed(Ag,pNN ′ |ZN′,K /ZN ′,K ; p)

= ed(A[p]|ZN′,K /ZN ′,K ; p)

= dimZK . (3.2.8)

�
Corollary 3.2.9. Let g, n ≥ 2 and N a positive integer coprime to n. Consider the finite étale
map of Q(ζnN )-schemes Ag,nN → Ag,N . Then for any p|n, we have

ed(Ag,nN/Ag,N ; p) = dimAg =
(

g + 1
2

)
.

Proof. A fortiori it suffices to consider the case when n = p is prime, which is a special case of
Corollary 3.2.7. �

3.3 Moduli spaces of curves
Using the Torelli theorem one can use Theorem 3.2.6 to deduce the essential p-dimension of
certain coverings of families of curves.

3.3.1. Let g ≥ 2, and let Mg denote the coarse moduli space of smooth, proper, genus g curves.
For any integer n, let Mg[n] denote the Z[ζn][1/n]-scheme which is the coarse moduli space
of pairs (C,B) consisting of a proper smooth curve C of genus g together with a choice B of
symplectic basis for J(C)[n], where J(C) denotes the Jacobian of C. For n ≥ 3 this is a fine
moduli space which is smooth over Z[ζn][1/n] [DM69].

Theorem 3.3.2. Let g, n ≥ 2, and let p be any prime dividing n. Then

ed(Mg[n]/Mg; p) = dimMg = 3g − 3.

Proof. Let N ≥ 3 be an integer. There is a natural map of Z[ζN ][1/N ]-schemes 	 : Mg[N ] →
Ag,N taking a curve to its Jacobian. For (C,B) in Mg[N ] the pairs (J(C),B) and (J(C),−B)
are isomorphic via −1 on J(C). Thus (C,B) �→ (C,−B) is an involution Σ of Mg[N ], which is
nontrivial, unless g = 2. We denote by Mg[N ]′ the quotient of Mg[N ] by this involution. When
g ≥ 3, the fixed points of Σ in any fiber of Mg[N ] over Spec Z[ζN ][1/N ] are contained in a proper
closed subset. Thus Mg[N ]′ is generically smooth over every point of Spec Z[ζN ][1/N ].

By [OS80, 1.11, 2.7, 2.8], the map of Z[ζN ][1/N ]-schemes Mg[N ] → Ag,N induces a map
Mg[N ]′ → Ag,N which is injective, an immersion if g = 2 and an immersion outside the
hyperelliptic locus if g ≥ 3.

It suffices to prove the theorem with n replaced by the prime factor p. Let N ≥ 3 be coprime to
p, and let Mg[pN ]′′ = Mg[p] ×Mg Mg[N ]′. It is enough to show that ed(Mg[pN ]′′/Mg[N ]′; p) =
3g − 3. If p = 2 then Mg[pN ]′′ = Mg[pN ]′ as coverings of Mg[N ]′, and if p ≥ 3 we have natural
degree 2 maps of coverings of Mg[N ]′,

Mg[pN ]′′ ← Mg[pN ] → Mg[pN ]′.

Thus, using Lemma 2.2.7 when p ≥ 3, it suffices to show that

ed(Mg[pN ]′/Mg[N ]′; p) = 3g − 3.

2421

https://doi.org/10.1112/S0010437X21007594
Downloaded from https://www.cambridge.org/core. ISPG/USA, on 27 Oct 2021 at 20:45:33, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1112/S0010437X21007594
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


B. Farb, M. Kisin and J. Wolfson

Since Mg[pN ]′ = Ag,pN |Mg[N ]′ , for example by comparing the degrees of these coverings,
and Mg[N ]′ meets the ordinary locus in Ag,N ⊗ Fp [FvdG04, 2.3], the theorem now follows from
Theorem 3.2.6. �
3.3.3. We now prove the analogue of Theorem 3.3.2 for the moduli space of hyperelliptic curves.
Let S be a Z[1/2]-scheme. Recall that a hyperelliptic curve over S is a smooth proper curve C/S
of genus g ≥ 1, equipped with an involution σ such that P = C/〈σ〉 has genus 0. Let Hg denote
the coarse moduli space of genus g hyperelliptic curves over Z. It is classical (and not hard to
see) that over Z[1/2] one has

Hg
∼= M0,2g+2/S2g+2

where M0,2g+2 is the moduli space of genus 0 curves with 2g + 2 ordered marked points, and
S2g+2 is the symmetric group on 2g + 2 letters.

For any integer n, let Hg[n] denote the Z[ζn][1/n]-scheme which is the coarse moduli space of
pairs (C,B) consisting of a hyperelliptic curve C together with a symplectic basis B for J(C)[n].
As above, for n ≥ 3 this is a fine moduli space which is smooth over Z[ζn][1/n].

Theorem 3.3.4. Let g, n ≥ 2, and let p be any odd prime dividing n. Then

ed(Hg[n]/Hg; p) = dimHg = 2g − 1.

Proof. There is a natural map of Z[1/2]-schemes Hg → Mg which is generically an injective
immersion on every fiber over Z[1/2], as a general hyperelliptic curve has only one nontrivial
automorphism [Poo00, Theorem 1]. By the Torelli theorem and [OS80, Corollary 3.2], the map
Mg → Ag is also generically an injective immersion on every fiber over Z[1/2], and thus so is
Hg → Ag.

Now the Jacobian of a hyperelliptic curve over the generic point of Hg has automor-
phism group {±1} [Mat58, p. 790], and Hg meets the ordinary locus of Ag ⊗ Fp by [GP05,
Theorem 1]. Hence the theorem follows from Corollary 3.2.7. �
3.3.5. We remark that when g = 2, Theorem 3.3.4 extends to p = 2, as this is a special case
of Theorem 3.3.2. However, an extension to p = 2 is not possible when g > 2. To explain this,
recall that for a finite group G and a prime p, ed(G; p) denotes the supremum of edK(Y/X; p)
taken over all G-covers Y/X of finite type K-schemes, for any algebraically closed field K of
characteristic 0 (the definition being independent of K). The covering

M0,2g+2 → M0,2g+2/S2g+2
∼−→ Hg

is a component of Hg[2]; for g > 2, the cover is disconnected, and all components are isomorphic.4

We conclude that

ed(Hg[2]/Hg; 2) = ed(M0,2g+2/Hg; 2)

= ed(S2g+2; 2)

= g + 1 < 2g − 1

where the second equality follows from the versality of M0,2g+2 for S2g+2, and the third follows
from [MR09, Cor. 4.2].

4 The monodromy of Hg[2] → Hg was computed by Jordan [Jo1870, p. 364, § 498] to factor as SB2g+2 � S2g+2 ↪→
Sp2g(F2), where SB2g+2 = π1(Hg) denotes the spherical braid group. See also [Dic08, p. 125], or for a more recent
treatment, see the q = 2 case of [McM13, Theorem 5.2]. The connected components of the cover are in bijection
with the cosets Sp2g(F2)/S2g+2. The equivalence of the components follows from the monodromy computation.
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The lower bound ed(Hg[2]/Hg; 2) ≥ g + 1 can actually be recovered using the techniques of
this paper. The point is that although Hg → Ag is not generically an immersion in characteristic
2, one can show that the image of the map on tangent spaces at a generic point has dimension
g + 1. We are grateful to Aaron Landesman for showing us this calculation [Lan19].

4. Essential dimension of congruence covers

4.1 Forms of reductive groups
In this subsection we prove a variant of a result of Harder and Borel showing that, under some
mild conditions, for a reductive group over a number field one can always find a form with given
specializations at finitely many places.

4.1.1. Let F be a number field and G = Gad an adjoint, connected reductive group over F . We
fix algebraic closures F̄ and F̄v of F and Fv respectively, for every finite place v of F, as well as
embeddings F̄ ↪→ F̄v.

Recall [SGA3, XXIV, Theorem 1.3] that the automorphism group scheme of G is an
extension

1 → G → Aut(G) → Out(G) → 1 (4.1.2)

where Out(G) is a finite group scheme. If G is split, then this extension is split and Out(G) is a
constant group scheme which can be identified with the group of automorphisms of the Dynkin
diagram of G.

We will also make use of the notion of the fundamental group π1(G) [Bor96]. This is a
finite abelian group equipped with a Gal(F̄ /F )-action. As an étale sheaf on Spec F, one has
π1(G) ⊗ μn

∼−→ ker(Gsc → G) where Gsc is the simply connected cover of G, and n is the order
ker(Gsc → G). The following proposition is a variant of [HB78, Theorem B].

Proposition 4.1.3. Let G be a split, adjoint connected reductive group over F, and S a finite
set of places of F . Let Out(G)′ ⊂ Out(G) be a subgroup and Aut′(G) ⊂ Aut(G) the preimage of
Out(G)′. If the map of pointed sets

H1(F, Out(G)′) →
∏
v∈S

H1(Fv, Out(G)′)

is surjective, then the natural map of pointed sets

H1(F, Aut(G)′) →
∏
v∈S

H1(Fv, Aut(G)′)

is surjective.

Proof. Recall the following facts about the cohomology of reductive groups over global and local
fields [Kot86]: Let H be an adjoint connected reductive group over F . For any place v of F ,
there is a map

H1(Fv, H) → π1(H)Gal(F̄v/Fv),

which is an isomorphism if v is finite. For any finite set of places T of F, consider the composite
map

ξ :
∏
v∈T

H1(Fv, H) →
∏
v∈T

π1(H)Gal(F̄v/Fv) → π1(H)Gal(F̄ /F ).
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Then by [Kot86, § 2.2], (xv)v∈T ∈ ∏
v∈T H1(Fv, H) is in the image of H1(F, H) if ξ((xv)) = 0.

Applying this to T = S ∪ {v0} for some finite place v0 /∈ S, we see that

H1(F, H) →
∏
v∈S

H1(Fv, H) (4.1.4)

is surjective.
Now let (xv) ∈

∏
v∈S H1(Fv, Aut(G)′) and let (x̄v) ∈

∏
v∈S H1(Fv, Out(G)′) be the image of

(xv). By our assumptions on Out(G)′, there exists x̄ ∈ H1(F, Out(G)′) mapping to (x̄v). Since we
are assuming G is split, (4.1.2) is a split extension, so there is a x ∈ H1(F, Aut(G)′) mapping to x̄.
Let H be the twist of G by x. Recall that this means that if we choose a cocycle x = (xσ)σ∈Gal(F̄ /F )

representing x, then there is an isomorphism τ : G
∼−→ H over F̄ , such that, for g ∈ G(F̄ ) and

σ ∈ Gal(F̄ /F ), we have τ(σ(g)) = (σ(τ(g)))xσ . We have a commutative diagram

H1(F, Aut(G)) ��

∼τ

��

∏
v∈S H1(Fv, Aut(G))

∼τ |Fv

��

H1(F, Aut(H)) ��
∏

v∈S H1(Fv, Aut(H))

such that the vertical maps send x and (x|Fv)v to the trivial classes in the bottom line. Thus it
suffices to show that

H1(F, H) →
∏
v∈S

H1(Fv, H)

is surjective, which we saw above. �
Corollary 4.1.5. Let G, S, Out(G)′ and Aut(G)′ be as in Proposition 4.1.3. Suppose that
Out(G)′ is an abelian group, and let 2s be the largest power of 2 such that Out(G)′ has an
element of order 2s. If v ∈ S with v|2 we assume that Fv(ζ2s)/Fv is cyclic, where ζ2s is a primitive
2s root of 1.

Then

H1(F, Aut(G)′) →
∏
v∈S

H1(Fv, Aut(G)′)

is surjective.

Proof. By Proposition 4.1.3, it suffices to show that

H1(F, Out(G)′) →
∏
v∈S

H1(Fv, Out(G)′)

is surjective. The elements of H1(F, Out(G)) are in bijection with conjugacy classes of maps
Gal(F̄ /F ) → Out(G), and similarly for the local classes, so this follows from [Sal82, Theorem
5.10]. Note the condition there, that Fv(ζ2s)/Fv is cyclic is automatic unless v|2, as otherwise
this is an unramified extension. �

4.2 Shimura varieties
In this subsection we apply the results of § 3 to compute the essential dimension for congruence
covers of Shimura varieties. This will be applied in the next subsection to give examples of
congruence covers of locally symmetric varieties where our techniques give a lower bound on the
essential dimension. Since our aim is to give lower bounds on essential dimension, it may seem
odd that we work with the formalism of Shimura varieties rather than the locally symmetric
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varieties which are their geometrically connected components. However, many of the results we
need are in the literature only in the former language, and it would take more effort to make the
(routine) translation.

4.2.1. Recall [Del79, § 1.2] that a Shimura datum is a pair (G, X) consisting of a connected
reductive group G over Q, and a G(R) conjugacy class of maps of algebraic groups over R:

h : S := ResC/RGm → G.

This datum is required to satisfy certain properties which imply that the commutant of h(S(R))
is a subgroup K∞ ⊂ G(R) whose image in Gad(R) is maximal compact and X = G(R)/K∞ is a
union of finitely many Hermitian symmetric domains.

Let A denote the adeles over Q and Af the finite adeles. Let K ⊂ G(Af ) be a compact
open subgroup. Recall that K is called neat if G(Q) ∩ gKg−1 contains no torsion elements for
all g ∈ G(Af ), and that sufficiently small compact open subgroups are neat. The conditions on
(G, X) imply that if K is neat, the quotient

ShK(G, X) = G(Q)\X × G(Af )/K

has a natural structure of (the complex points of) an algebraic variety over a number field
E = E(G, X) ⊂ C, called the reflex field of (G, X), which does not depend on K. We denote this
algebraic variety by the same symbol, ShK(G, X), and we assume from now on that K is neat.

Now let VZ = Z2g equipped with a perfect symplectic form ψ. Set V = VZ ⊗Z Q and GSp =
GSp(V, ψ). As in [Del79, 1.3.1], we denote by S± the conjugacy class of maps h : S → GSp
satisfying the following two properties

(i) The action of the real Lie group S(R) = C× on VC gives rise to a Hodge structure of type
(−1, 0) (0,−1) :

VC

∼−→ V −1,0 ⊕ V 0,−1.

(ii) The pairing (x, y) �→ ψ(x, h(i)y) on VR is positive or negative definite.

Then (GSp, S±) is a Shimura datum called the Siegel datum, and ShK(GSp, S±) has an inter-
pretation as the moduli space of principally polarized abelian varieties with suitable level
structure.

We say that (G, X) is of Hodge type if there is a map of reductive groups over Q, ι : G ↪→ GSp,
which induces X → S±. By [Del71, Prop. 1.15], there exists a neat compact open K ′ ⊂ GSp(Af )
such that K = K ′ ∩ G(Af ), and ι induces a closed embedding of Shimura varieties

ShK(G, X) ↪→ ShK′(GSp, S±).

Our conditions on K and K ′ imply that the right hand side carries a universal abelian
scheme.

4.2.2. Now fix a prime p, and suppose that G is the generic fiber of a reductive group GZ(p)

over Z(p). If no confusion is likely to result we will sometimes write simply G for GZ(p)
. We take

K (still assumed neat) to be of the form KpK
p where Kp = G(Zp) and Kp ⊂ G(Ap

f ), where Ap
f

denotes the finite adeles with trivial p-component.
Under these conditions, p is unramified in E, and for any prime λ|p of E, ShK(G, X) has a

canonical smooth model over OEλ
[Kis10, Theorem 2.3.8], [KMP16, Theorem 1], which we will

denote by SK(G, X). In particular, we may apply this to ShK′(GSp, S±) if we take K ′ = K ′
pK

′p

with K ′
p = GSp(VZ, ψ)(Zp).
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Given GZ(p)
and (G, X) of Hodge type, we may always choose (V, ψ), ι and K ′ with K ′

p =
GSp(VZ, ψ)(Zp), such that K = K ′ ∩ G(Af ), ι induces a map of smooth OEλ

-schemes

ι : SK(G, X) → SK′(GSp, S±)

and for any closed point x ∈ SK(G, X), the complete local ring at x is a quotient of the complete
local ring at ι(x) - see [Kis10, Lem. 2.1.2, Prop. 2.3.5] when p > 2, and [KMP16, Prop. 3.6] and
its proof for the case p = 2.

As in § 3, we denote by A the universal abelian scheme over SK′(GSp, S±). Then we have

Lemma 4.2.3. Let K1 = KpK1,p where K1,p = ker(G(Zp) → G(Fp)) ⊂ Kp. Over any finite
extension E′/E, the congruence cover

ShK1(G, X) → ShK(G, X)

is a union of copies of Galois closures of the étale local system A[p]|ShK(G,X) on ShK(G, X).
If E, admits a prime λ|p with residue field Fp then

ed(ShK1(G, X) → ShK(G, X); p) = dimC X.

Proof. Write ShK = ShK(G, X) and ShK1 = ShK1(G, X). Our assumptions imply that K/K1

acts freely on ShK1 , so that ShK1 → ShK is a K/K1 = G(Fp)-torsor. As G(Fp) acts faithfully on
the fibers of A[p]|ShK

, this implies the first claim. By Lemma 2.2.4 applied to the geometrically
connected components of ShK , we then have

ed(ShK1(G, X) → ShK(G, X); p) = ed(A[p]|ShK
/ShK ; p).

Now suppose that E admits a prime λ|p with residue field Fp, and consider the map of
integral models ι, corresponding to λ. Since λ has residue field Fp, every component of the image
of ι meets the ordinary locus of SK′(GSp, S±) by [Wor, Theorem 1.1]. Now using that for some
N with (N, p) = 1, there is a surjective map Ag,N → ShK′(GSp, S±), and Theorem 3.2.6, we
conclude

ed(A[p]|ShK
/ShK ; p) = dim ShK = dim X. �

4.3 Congruence covers
It will be more convenient to state the results of this subsection in terms of locally symmetric
varieties. These are geometrically connected components of the Shimura varieties discussed in
the previous subsection.

4.3.1. For any reductive group G over Q, a congruence subgroup Γ ⊂ G(Q) is a group of the
form G(Q) ∩ K for some compact open subgroup K ⊂ G(Af ). An arithmetic lattice Γ ⊂ G(Q) is
a finite index subgroup of a congruence subgroup. If i : G′ → G is a surjective map of reductive
groups whose kernel is in the center of G′, and Γ′ ⊂ G′(Q) is an arithmetic lattice, then i(Γ′) ⊂
G(Q) is an arithmetic lattice.

Now suppose that X = G(R)/K∞ is a union of Hermitian symmetric domains and let X+ ⊂
X be the connected component of the identity. If Γ ⊂ Gad(Q) is an arithmetic lattice that acts
freely on X+ (so in particular leaves X+ stable), then Γ\X+ has a natural structure of algebraic
variety over Q̄ [Del79, § 2]. For any arithmetic lattice Γ ⊂ Gad(Q) there is a finite index subgroup
which acts freely on X+.

If (G, X) is a Shimura datum, then the geometrically connected components of ShK(G, X)
have the form Γ\X+, where X+ ⊂ X is a connected component and Γ ⊂ Gad(Q) is the image of
a congruence subgroup of Gder(Q) [Del79, 2.1.2].
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4.3.2. Now let G be a semisimple, almost simple group over Q. We will assume that G is of
classical type, so that (the connected components of) its Dynkin diagram are of type A, B, C
or D.

Let K∞ ⊂ G(R) be a maximal compact subgroup, and denote by G(R)+ ⊂ G(R) the con-
nected component of the identity. We will assume that X+ = G(R)+/K∞ is a Hermitian
symmetric domain. The group Gad(R) is a product of simple groups Gi(R), for i in some index
set I. We denote by Inc (respectively, Ic) the set of i with Gi noncompact (respectively, com-
pact). Then X+ is a product of the irreducible Hermitian symmetric domains X+

i = Gi(R)+/Ki,
for i ∈ Inc, where Ki ⊂ Gi(R) is maximal compact. We use Deligne’s notation [Del79] for the
classification of these irreducible Hermitian symmetric domains. Since we are assuming G is of
classical type, for i ∈ Inc, X+

i is of type A, B, C, DR or DH. The group Gi(R) is either the adjoint
group of U(p, q) in the case of type A, of Sp(2n) in the case of type C, of SO(n, 2) in the case of
type B or DR, and of SO∗(2n), an inner form of SO(2n), if Gi is of type DH.

Since G is almost simple, for i ∈ Inc the X+
i are all of the same type, except possibly if G is

of type D, in which case it is possible that both factors of type DR and DH occur among the X+
i .

We will say that G is of Hodge type if all the factors X+
i are of the same type A, B, C, DR, DH

and the following condition holds: G is simply connected unless the X+
i are of type DH, in which

case G(C) is a product of special orthogonal groups.

4.3.3. The Dynkin diagram Δ(G) is equipped with a set of vertices Σ(G) which is described
as follows (cf. [Del79], § 1.2, 1.3). For i ∈ Inc, Ki ⊂ Gi is the centralizer of a rank 1 compact
torus U(1) ⊂ Gi, which is the center of Ki. Thus there are two cocharacters h, h−1 : U(1) →
Gi which identify U(1) with this compact torus. These cocharacters are minuscule, and each
corresponds to a vertex of Δ(Gi). The two vertices are distinct exactly when h, h−1 are not
conjugate cocharacters. In this case, they are exchanged by the opposition involution of Δ(Gi),
which also gives the action of complex conjugation on Δ(Gi). We set Σ(G) to be the union of
all the vertices above. Thus Σ(G) ∩ Δ(Gi) is empty if i ∈ Ic, and consists of one or two vertices
if i ∈ Inc. In the latter case it consists of two vertices if and only if Gi(R) is either the adjoint
group of U(p, q) with p �= q, or of SO∗(2n) with n odd.

4.3.4. Fix an embedding Q̄ ↪→ C. The Galois group Gal(Q̄/Q) acts on Δ(G). We consider a
subset Σ ⊂ Σ(G) such that Δ(Gi) ∩ Σ consists of one element for i ∈ Inc.

We say that G is unramified at p if G is quasi-split over Qp and splits over an unramified
extension of Qp. We call G p-admissible if G is unramified, and for some embedding Q̄ ↪→ Q̄p,
and some choice of Σ, the action of Gal(Q̄p/Qp) leaves Σ invariant. This definition may look
slightly odd; it will be used to guarantee that the reflex field of a Shimura variety built out of G
has at least one prime where the Shimura variety has a nonempty ordinary locus.

4.3.5. Now suppose that G is unramified at p. Then G extends to a reductive group GZp over
Zp. The isomorphism class of the algebraic group GZp ⊗Zp Fp over Fp depends only on G and
not on GZp , and we call this group the reduction of G.

Let K = KpKp ⊂ G(Af ) and K1 = KpK1,p ⊂ G(Af ) be compact open, with Kp ⊂ G(Ap
f ),

Kp = GZp(Zp) and K1,p = ker(GZp(Zp) → GZp(Fp)). Let Γ = G(Q) ∩ K and Γ1 = G(Q) ∩ K1.
We will assume that Γ ⊂ G(R)+, and that Γ acts freely on X+. By [Del79, 2.0.7], these conditions
are satisfied if Kp is sufficiently small. In particular, this allows us to view Γ as an arithmetic
subgroup of Gad(Q). We call a covering of the form Γ1\X+ → Γ\X+, with Γ satisfying the above
conditions, a principal p-level covering.
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Theorem 4.3.6. Let G be an almost simple, p-admissible group of Hodge type, and let X+ =
G(R)+/K∞. Then for any principal p-level covering Γ1\X+ → Γ\X+, we have

ed(Γ1\X+ → Γ\X+; p) = dimX+.

Proof. Let Σ ⊂ Σ(G) be a subset of the form described above. This corresponds to a Gad(R)-
conjugacy class of cocharacters h : U(1) → Gad, which we denote by Xad. Then (Gad, Xad) is a
Shimura datum and its reflex field corresponds to the subgroup of Gal(Q̄/Q) which takes Σ to
itself [Del79, Prop. 2.3.6]. Since G is p-admissible, there is a choice of Σ, and a prime λ′|p of
E(Gad, Xad) with κ(λ′) = Fp.

Then one sees using [Del79, Prop. 2.3.10] that one can choose a Shimura datum of
Hodge type (G′, X) with G′der = G and adjoint Shimura datum (Gad, Xad), and so that all
primes of E(Gad, Xad) above p split completely in E(G′, X). In particular, any prime λ|λ′

of E(G′, X) has residue field Fp. We have verified that (G′, X) satisfies the hypotheses of
Lemma 4.2.3.

Now let G′
Zp

be a reductive group over Zp, extending G′, and containing GZp . The existence
of G′

Zp
may be seen, for example, using the classification of split reductive groups in terms of

root data [SGA3, Exp XXV, Theorem 1], and the fact that the inner forms of a reductive group
and its derived group are in bijection. Set K ′

p = G′
Zp

(Zp) and K ′
1,p = ker(G′

Zp
(Zp) → G′

Zp
(Fp)).

Choose K ′p ⊂ G′(Ap
f ) compact open such that K ′ = K ′

pK
′p is neat and K ′p ∩ G(Ap

f ) ⊂ Kp, and
set K ′

1 = K ′
1,pK

′p.
Let Γ′ = K ′ ∩ G(Q) ⊂ Γ and Γ′

1 = K ′
1 ∩ G(Q). A fortiori, it suffices to prove that

ed(Γ′
1\X+ → Γ′\X+; p) = dimX+.

This follows from Lemma 4.2.3 applied to the groups K ′
1 ⊂ K ′, by restricting the map of that

lemma to geometrically connected components, and using the description of these components
in [Del79, 2.1.2]. �
4.3.7. We can make the condition of p-admissibility of G in Theorem 4.3.6 somewhat more
explicit if we assume that Gad(R) has no compact factors.

Corollary 4.3.8. Let G be an almost simple group which is unramified at p. Suppose that
either

(i) G splits over Qp, or
(ii) the irreducible factors of Gad(R) are all isomorphic to the adjoint group of one of U(n, n),

SO(n, 2) with n �= 6, or Sp(2n) for some positive integer n.

Then G is p-admissible, and for any principal p-level covering Γ1\X+ → Γ\X+ we have

ed(Γ1\X+ → Γ\X+; p) = dimX+.

Proof. If G splits over Qp then Gal(Q̄p/Qp) acts trivially on Δ(G), and so leaves any choice
of Σ stable. For (ii), one checks using the classification of [Del79] that in each of these cases,
Σ = Σ(G), and a vertex v ∈ Σ(G) is stable by any automorphism of the connected component
of Δ(G) containing v. It follows that Gal(Q̄/Q) leaves Σ(G) stable. �
4.3.9. The above results give examples of coverings for which one can compute the essential
p-dimension. These values are in general far from the essential p-dimension of the corresponding
group. For example, Hannah Knight [Kni21] has shown that for p �= 2,

ed(Sp2g(Fpr); p) = rpr(g−1).
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The case r = 1 was computed independently by D. Benson [BF20, Appendix B].
We call a reductive group H almost absolutely simple if H is semisimple and Had is absolutely

simple. (That is, it remains simple over an algebraic closure). We have the following result.

Proposition 4.3.10. Let H be a classical, almost absolutely simple group over Fq, with q = pr.
If p = 2 we further assume that 8 � r, and 4 � r if H is not split over Fq.

Then there exists a semisimple Q-group G, such that X+ = G(R)+/K∞ is a Hermitian
symmetric domain, and G is unramified at p with reduction isomorphic to ResFq/Fp

H, and a
principal p-covering Γ1\X+ → Γ\X+ such that

e = ed(Γ1\X+ → Γ\X+; p)

satisfies the following properties.

– If H is a form of SLn which is split if n is odd, then e = r�n2/4�.
– If H is Sp2n then e = r((n2 + n)/2).
– If H is a split form of SO2n then e = r((n2 − n)/2).
– If H is a form of Spinn and H is not of type D4, then e(H(Fq)) = r(n − 2).

Proof. Let Ḡ = ResFq/Fp
H. There is a unique (up to canonical isomorphism) connected reductive

group GZp over Zp with GZp ⊗ Fp = Ḡ. If H is not one of the four types listed, then the condition
on e is vacuous, and the proposition follows easily from Corollary 4.1.5.

We may now assume that H is one of the four types listed, and in each of these cases we
define a semisimple Lie group GR over R as follows. If H is a form of SLn, we take GR to
be SU(n/2, n/2)r if n is even and SU((n − 1)/2, (n + 1)/2)r if n is odd. If H is Sp2n we take
GR = Spr

2n. If H is a form of SO2n we take GR to be SO∗(2n)r, the inner form of (the compact
group) SO(2n) which gives rise to the Hermitian symmetric domain of type DH

n (cf. [Del79, 1.3.9,
1.3.10]). If H is a form of Spinn we take GR to be Spin(n − 2, 2)r.

In all cases GR and GZp are forms of the same split group Gsplit. The actions of Gal(C/R)
and Gal(Qur

p /Qp) on Δ(Gsplit) generate a group which is isomorphic to either C or C × Z/2Z,
with C a cyclic group. Indeed, in each case Gal(C/R) acts on Δ(Gsplit) by an automorphism of
order 1 or 2 which lies in the center of Aut(Δ(Gsplit)). If p = 2, our assumptions on r imply that
8 � |C|. Thus by Corollary 4.1.5 there exists a semisimple reductive group G over Q, which gives
rise to GR and GZp over R and Zp respectively.

By construction G is of Hodge type, and we now check that it can be chosen to be
p-admissible. This is necessarily the case by Corollary 4.3.8, except when n is odd and H is
a form of SLn or H is a form of SO(2n). In these cases, we are assuming that H is a split form,
so Gal(Q̄p/Qp) permutes the components of Δ(G) simply transitively. If H is a form of SLn

or SO(2n) with n odd, then Δ(Gi) contains two points in Σ(G) (the opposition involution is
nontrivial on Δ(Gi) in these cases), and we can take Σ ⊂ Σ(G) to be a Gal(Q̄p/Qp)-orbit of any
point v ∈ Σ(G).

When H is a form of SO(2n) with n even, then the opposition involution is trivial on Δ(Gi),
and hence so is the action of complex conjugation. The set Σ(G) meets each component of Δ(G)
in one vertex. Let Σ1 be the Gal(Q̄p/Qp)-orbit of any vertex in Σ(G). There is an inner form
G1,R of G over R such that Σ(G1,R) = Σ1. (Note that the Dynkin diagrams of inner forms are
identified, so this makes sense.) Explicitly, let a ∈ Out(G) be an automorphism which preserves
the connected components of Δ(G) and such that a(Σ(G)) = Σ1. (Such an a is unique unless H
is of type D4.) Then G1,R is given by twisting G by the cocycle ãσ(ã)−1 where ã ∈ Aut(G)(C)
lifts a. Using the surjection (4.1.4), we see that there is an inner twisting G1 of G over Q which
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is isomorphic to G1,R over R and to G over Qp, as an inner twist. As Σ(G1) = Σ1 is stable by
Gal(Q̄p/Qp), G1 is p-admissible.

Thus, the proposition follows from Theorem 4.3.6 and the formulae for the dimensions of
Hermitian symmetric domains. �
4.3.11. As in the introduction, if H is a simple reductive group over Fq, we denote by H(q) the
image of Hsc(Fq) in H(Fq).

Corollary 4.3.12. Let H be a classical, absolutely simple group over Fq, with q = pr. If p = 2
we further assume that 8 � r, and 4 � r if H is not split over Fq.

Then there is a congruence H(q)-cover of locally symmetric varieties Y ′ → Y whose asso-
ciated real Lie group is of the same type (A, B, C or D) as H, and such that e := ed(Y ′/Y ; p)
satisfies the following properties.

– If H is a form of PGLn which is split if n is odd, then e = r�n2/4�.
– If H is PSp2n then e = r((n2 + n)/2).
– If H is a split form of PO2n then e = r((n2 − n)/2).
– If H is a form of POn and H is not of type D4, then e = r(n − 2).

Proof. The group H has the form H̃ad, where H̃ is a group as in one of the four cases of
Proposition 4.3.10. We apply Proposition 4.3.10 to H̃ to obtain a semi-simple Q-group G and
principal p-covering Γ1\X+ → Γ\X+. By assumption, Γ acts freely on X+, so this covering has
group Γ/Γ1. We will show that H(q) is a subquotient of Γ/Γ1, and take Y ′ → Y to be the
corresponding H(q) cover.

Since G has reduction isomorphic to ResFq/Fp
H̃, we have

Γ/Γ1 ⊂ ResFq/Fp
H̃(Fp) = H̃(Fq).

Moreover, since H̃ is almost simple, and G is associated to a Hermitian symmetric domain,
G does not have any compact factors over Q. Thus, we may apply the strong approximation
theorem to Gsc to conclude that Γ/Γ1 contains Im(Hsc(Fq) → H̃(Fq)).

If ZHsc denotes the center of Hsc, then H(q) is a normal subgroup of (Γ/Γ1)/ZHsc(Fq), and

H(q)\(Γ/Γ1)/ZHsc(Fq) ⊂ H(Fq)/H(q) � H1(Spec Fq, ZHsc).

Since H is absolutely simple, there is a finite extension Fq′/Fq, such that the group scheme
ZHsc is isomorphic to μr over Fq′ , for some integer r. Thus ZHsc(Fq) ⊂ ZHsc(Fq′) ⊂ F×

q′ , and
H1(Spec Fq, ZHsc) is an extension of a subgroup of F×

q′/(F×
q′)

r by H1(Gal(Fq′/Fq), ZHsc(Fq′)). In
particular, ZHsc(Fq) is cyclic of order prime to p, and H1(Spec Fq, ZHsc) has order prime to p.

That the cover corresponding to H(q) satisfies the conclusion of the corollary now follows
from Proposition 4.3.10 and Lemma 2.2.7. �
Remark 4.3.13. For H = PSL4 and q = 2 there is an exceptional isomorphism H(2) = SL4(F2) ∼=
A8. Corollary 4.3.12 thus gives examples of incompressible covers Γ′\X+ → Γ\X+ with Galois
group A8 where Γ\X+ is a 4-fold. It would be of interest to investigate these in connection with
solutions of the general octic polynomial, for example as in Hilbert’s Octic Conjecture [Hil27].
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