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Abstract

The link between modular functions and algebraic functions was a driving force behind
the 19th century study of both. Examples include the solutions by Hermite and Klein of
the quintic via elliptic modular functions and the general sextic via level 2 hyperelliptic
functions. This paper aims to apply modern arithmetic techniques to the circle of
“resolvent problems” formulated and pursued by Klein, Hilbert and others. As one
example, we prove that the essential dimension at p = 2 for the symmetric groups S,
is equal to the essential dimension at 2 of certain S,-coverings defined using moduli
spaces of principally polarized abelian varieties. Our proofs use the deformation theory
of abelian varieties in characteristic p, specifically Serre-Tate theory, as well as a family
of remarkable mod 2 symplectic S,-representations constructed by Jordan. As shown
in an appendix by Nate Harman, the properties we need for such representations
exist only in the p = 2 case. In the second half of this paper we introduce the
notion of &-versality as a kind of generalization of Kummer theory, and we prove that
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many congruence covers are E-versal. We use these E-versality result to deduce the
equivalence of Hilbert’s 13th Problem (and related conjectures) with problems about
congruence covers.
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1 Introduction

The link between modular functions and algebraic functions was a driving force behind
the 19th century development of both. Examples include the solutions by Hermite and
Klein of the quintic via elliptic modular functions, degree 7 and 8 equations with Galois
group PSL, (F7) via the level the level 7 modular curve, the general sextic via level 2
hyperelliptic functions, the 27 lines on smooth cubic surfaces via level 3, dimension 2
abelian functions, and the 28 bitangents on a smooth quartic via level 2, dimension 3
abelian functions.! With the Nazi destruction of the Gottingen research community this
connection was largely abandoned, and the study of algebraic functions and resolvent
problems, as pioneered by Klein, Hilbert and others, fell into relative obscurity. The
purpose of this paper to reconsider the link between modular functions and classical
resolvent problems. We do this from a modern viewpoint, using arithmetic techniques.

Essential dimension at p of modular functions. To fix ideas we work over C. Recall
that an algebraic function is a finite rational correspondence X - oy Pl that is, a
rational function f : X --» P! on some (finite, possibly branched) cover X —X.2
A fundamental example is the general degree n polynomial, equivalently the cover

I See e.g. [11-13, 25, 26, 42, 43, 45, 51], as well as [48, 49].
2 When the functions are understood, we denote an algebraic function simply by the cover X > X.
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Modular functions and resolvent problems

MO,n — MO,n/Sn,

where M, denotes the moduli space of n distinct marked points in P'. When X is
a locally symmetric variety f is called a modular function. A basic example is the
cover Ag y — A, where A, is the (coarse) moduli space of principally polarized
g-dimensional abelian varieties and A, y is the moduli of pairs (A, B) with A € A,
and B a symplectic basis for H|(A; Z/NZ).

The relationship between modular functions and the solutions of the general degree
n polynomial motivated Klein [43, 45], Kronecker [55] and others to ask about the
intrinsic complexity of these algebraic functions, as measured by the number of
variables to which they can be reduced after a rational change of variables. In mod-
ern terms (as defined by Buhler—Reichstein, see e.g. [62]), the essential dimension
ed(f(/X) < dim(X) of an algebraic function is the smallest d > 1 so that X - Xis
the birational pullback of a cover ¥ — Y of d-dimensional varieties.

One can also allow, in addition to rational changes of coordinates, the adjunction
of radicals or other algebraic functions. This is done by specifying a class £ of covers
under which X — X can be pulled back before taking ed of the resulting cover.
This gives the essential dimension ed(f( /X; &) relative to the class € of “accesory
irrationalities”. For example, if one fixes a prime p and pulls back by covers of degree
prime to p, one obtains the notion of essential dimension at p, denoted ed(X /X; p)
(see e.g. [64]). The idea of accessory irrationality was central to the approaches of
Klein and Hilbert to solving equations. We axiomatize this notion in Definition 4.1
below and explore its consequences in Sect. 4.

The general degree n polynomial is universal for covers with Galois group S, even
allowing prime-to-p accessory irrationalities; that is, for all p > 2 and for ed(S,; p)
defined as the maximum of ed()N( /X; p) for all S,-covers X > X , we have:

ed(MO,n/MO,n; p) = ed(Sy; D).

With the many examples relating the general degree n polynomial to modular
functions, it is natural to ask if the same “maximal complexity property” holds for
modular functions. Our first result states that for p = 2 this is indeed the case. To
explain this, for a subgroup G C Sp,,(Z/NZ) set Ag g := Ag n/G.

Theorem 1 Letn > 2, ¢ = [5]—1, andlet N > 3 be odd. There exists an embedding
Sn C Sprg(F2) C Spyy(Z/2NZ) such that

ed(Agan/Ag.s,:2) = [n/2) = ed(Sy; 2).

We remark that what we actually prove is the first equality. The second equality
then follows from a result of Meyer—Reichstein [59,Corollary 4.2]. In particular, one
sees from their result that ed(S,; p) takes its maximal value for p = 2, so this case
is, in some sense, the most interesting.

One ingredient in the proof of Theorem 1 comes from the link between binary
forms and hyperelliptic functions; specifically, Jordan proved that the monodromy of
the 2-torsion points on the universal hyperelliptic Jacobian gives a mod 2 symplectic
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Sy -representation. These remarkable representations were rediscovered and studied
by Dickson [18] in 1908. We deduce Theorem 1 by applying the following general
result to these representations.

Theorem 2 Let G be a finite group, and G — Sp,,(F ) a representation. If U C Sp,,
is the unipotent of a Siegel parabolic then

ed(Ag,pn/Ag.G5 p) = dimp, G N U (F)p)

Theorem 2 is of most interest for those G which admit a symplectic representation
with dimp, G N U(F)) = ed(G; p), where ed(G; p) is the essential dimension at p
of a versal branched cover with group G (see Definition 4.4 below). For G = §,,, a
result of Harman (Theorems A.1 and A.2) says that this is possible only for p = 2,
and only using the particular mod 2 symplectic representation of Jordan/Dickson! We
also show that for G the FF,-points of a split semisimple group of classical type, there
is a symplectic representation of G for which the lower bound in Theorem 2 is either
equal or nearly equal to the maximal rank of an elementary abelian p-group in G. The
only near-misses occur for odd orthogonal groups. Note however, that this rank is in
general less than ed(G; p).

&-versal modular functions. Kummer theory gives that for each d > 2 the cover
P! — P!/(Z/dZ) has the following universal property: any Z/dZ cover X — Xis
rationally pulled back from it. It follows that ed(X/X; p) = 1 for any such X > X.
Klein’s Normalformsatz states that, while the icosahedral cover Pl - p! /As is not
universal in the above sense (indeed ed(M 5 — Mo 5/As) = 2), there exists a Z/2Z
accessory irrationality

N =
Voo
< P

such that Y — Y is birational to a pullback of P' — P!/A5. This nonabelian version
of Kummer’s theorem is a kind of classification of actions of As on all varieties. We
say in this case that P! — P!/ Ajs is E-versal with respect to any collection & of covers
containing Z /27 covers. Note that this cover is modular; indeed it is equivariantly
birational to the cover H?/ I'»(5) — H?/SL,(Z), where H is the hyperbolic plane
and I';(5) is the level 5 congruence subgroup of SL,(Z); here we are using the natural
isomorphism PSL;(F5) = As.

In Sect. 4 we axiomatize the idea of £-versality and we give a number of examples
(most classically known) of congruence covers that are E-versal for various groups G.
The connection between these &-versality results with the first part of this paper is that
&-versal G-covers always maximize ed(X /X; &) over all G-covers X — X.InSect. 4
we apply such &-versality results to exhibit further the close relationship between
modular functions and roots of polynomials. Specifically, Hilbert’s 13th Problem, and
his Sextic and Octic Conjectures (see Sect. 4 for their exact statements) are phrased
in terms of the resolvent degree of the degree 6, 7 and 8 polynomials. The resolvent
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degree RD(X /X) is the smallest d such that X — X is covered by a composite of
covers, each of essential dimension < d (see e.g. [3, 7, 23]). Applying various &-
versality results, we deduce in Sect. 4 the equivalence of each of Hilbert’s conjectures
with a conjecture about the resolvent degree of a specific modular cover. For example,
we show the following(see Sect. 4.2 for terminology). For I' < SL>(R) x SL>(R) a
lattice, let Mr : (]HI2 X Hz) / I'; these are complex-algebraic varieties called Hilbert
modular surfaces.

Proposition 3 For £ any class of accessory irrationalities containing all quadratic
and cubic covers and composites thereof, the Hilbert modular surface

M
SLQ(Z[—”zﬁ]j)_) SLa (2 455))

is E-versal for Ag, where SLy (Z[HT‘B], 3) denotes the kernel of the map

SLy (Z |:1 +2\/§:|> — PGLy(F9) = Ag.

In particular, Hilbert’s Sextic Conjecture is equivalent to the statement that the resol-
vent degree of this cover equals 2.

Similarly, we show that such a modular reformulation is possible not only for general
polynomials of low degree, but also for each of the algebraic functions considered by
Klein and his school [25, 41, 45, 50].

Methods. The proof of Theorem 2 uses a refinement of the results of [24], which
is explained in Sect. 1. In loc. cit, we used Serre-Tate theory to give lower bounds
on the essential at p for the coverings A, ,y — Ag ny, when restricted to (some)
subvarieties Z C A y. Here we drop the assumption that Z is a subvariety and allow
certain maps Z — Ajg n (cf. Proposition 2.6). In particular, we can apply the resulting
estimate to Z = A, ¢ for G a subgroup of Sp,,(Fp), which yields the lower bound
for ed(Ag, ,n/Ag,G; p) in Theorem 2.

One may compare the bounds given by Theorem 2 to those obtained in [24,Sect. 4]
for certain finite simple groups of Lie type. The bound in the case of odd orthogonal
groups in loc. cit is weaker than the one given here because of the restriction on
the signature of Hermitian symmetric domains associated to odd orthogonal groups.
On the other hand the coverings we consider here correspond to rather more exotic
congruence subgroups than those of loc. cit.

2 Moduli of Abelian varieties
2.1 Extension classes

2.1.1. Fix a prime p, and let V be a complete discrete valuation ring of characteristic
0, with perfect residue field k of characteristic p, and a uniformizer 7 € V. Let
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A = V][xi,...,x,] be a power series ring over V. We denote by my C A the
maximal ideal, and 4 = m4 /7 A. and set X = Spec A, and X = Spec A[1/p]. We
will denote by k[e] = k[X]/X? the dual numbers over k.

Recall [24,3.1.2] that there is a commutative diagram

A J(A)P ———— Ext\.(Z/ L, ip)

J |

A[1/p1* /(A1) p)*)P —— Exty(Z/ pZ, 1))

where the terms on the right are extensions as 7/ pZ-sheaves. The vertical maps are
injective, and the extensions in the image of the map on the right are called syntomic.
There is also a map [24,3.1.5]

O Bxty(Z/pZ, pp) — A J(A)P = i /mi.

which sends a class represented by a function f € 1 + my to f — 1.

Lemma2.1 Let% C Ext;( (Z/pZ, jrp) be an'F ,-subspace of dimension < n.Suppose
that for every map h : A — k[e] the image of % under the induced map

Ext}((Z/pZ, 1p) = Extgypeie)(Z/ PL. ip) 2.1)
is nontrivial. Then the map
Oa: % ®F, k > Wa/m; (2.2)
is an isomorphism; in particular dimp, % = n.
Proof Since the image of %/ under 2.1 is nontrivial, the composite
QA:%(X)FI)k—)ﬁiA/ﬁii — € -k

is nontrivial for every . This implies that 2.2 is surjective, and since dimp, % < n it
is injective, and dimp,, U =n. (]

2.1.2. We call a subspace % C Ext;( (Z/pZ, 1)) satisfying the conditions of

Lemma 2.1 nondegenerate, and we fix such a subspace. Now assume that V contains
a primitive p™ root of unity, and fix a geometric point X of X. Then

Exty (Z/pZ. wp) — H'(X. pp) = Hi(X. ) = Hom(my (X, %), ).
If 7' C % is a subspace, denote by X (%') — X the finite étale cover corresponding
to%'. Thatis, X (%) is the cover corresponding to the intersection of all the elements

of Hom(r; (X, X), it pp) that are images of elements of %/’. We let X' = Spec A(%")
denote the normalization of X in X (%).
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Lemma 2.2 Forany %' C % the ring A(%') is a power series ring over V. Further,

dimy S(ﬁm/ﬁiﬁ — ﬁwA(a;//)/mi(%,)) = dimy, (w|2. 2.3)
Proof Let fi,..., fr € A* be elements with 1 — f; € m4, and such that the images
of fi,..., frin EXt;{(Z/pZ, wp) form an IF,-basis for %’. By definition, X (%) =

Spec A[1/pl(¥ fi1, ..., & fr). To prove the first claim, it suffices to show that

AT U = Alzn, o 21/ G = )

is a power series ring over V. Since % is nondegenerate, the images of fi, ..., f;
are k-linearly independent in m4 /mi. Hence, after a change of coordinates, we can

assume that A —> VIxi,...,xpwithx; = f; — 1 fori = 1,...r. Then we have

A[Zlv"'vzr]/(zf_ﬁ) ;) V[[Zl _1a"-7Zr_11xr+la"-v-xn]]'

This also shows 2.3, as both sides are equal ton — r. O

2.2 Monodromy on the ordinary locus

2.2.1. Fix an integer g > 1, a prime p > 2, and a positive integer N > 2 coprime
to p. Consider the ring Z[¢{n][1/N], where ¢y is a primitive Nth root of 1. Denote
by A, v the Z[{y][1/N]-scheme which is the coarse moduli space of principally
polarized abelian schemes A of dimension g equipped with a basis of A[N] that is
symplectic with respect to the Weil pairing defined by ¢{y. When N > 3, this is a
fine moduli space which is smooth over Z[¢{x]1[1/N]. For a Z[¢n][1/N]-algebra B,
denote by A, n/p the base change of Ag y to B. If no confusion is likely to result,
we sometimes denote this base change simply by A, .

From now on, unless stated otherwise, we assume that N > 3and welet 4 — Az n
be the universal abelian scheme. The p-torsion subgroup A[p] C A is a finite flat
group scheme over A, y which is étale over Z[¢n]1[1/Np]. Let x € A, n be a point
with residue field « (x) of characteristic p, and A, the corresponding abelian variety
over k(x).

The set of points x such that A, is ordinary is an open subscheme Aof‘ljv CAN®

[F,,. We denote by Ag v the formal completion of A, y along .Aord We denote by

Aord M the “generic fibre” of Ag v as a p-adic analytic space.’

Denote by k an algebraically closed perfect field of characteristic p, and let
K /W[1/p] be a finite extension with ring of integers Ok and uniformizer . Assume
that K is equipped with a choice of primitive N root of 1, ¢y € K, so that we may
consider all the objects introduced above over O . Let K /K be an algebraic closure.

3 The reader may think of any version of the theory of p-adic analytic spaces they prefer (Tate, Raynaud,
Berkovich, or Hiiber’s adic spaces), as this will have no bearing on our arguments.
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Proposition 2.3 Fix a geometric point x € A;r?van(K) and denote by x € AWN its

reduction.The covering Ag ,y — Ag n corresponds to a surjective representation
1 (Ag. N X) = Spyg (Fp). 2.4)

1. There exists a Siegel parabolic P C Sp,, /¥, with unipotent radical U, such that
2.4 induces a surjective representation

~ord,an

m(.Ag N »Xx) = P(F)). (2.5)

2. Let A = 6Ag.N,i be the completion of the local ring at x. Then (2.4) induces a
surjective representation

m1(Spec A[1/p], x) — U(F)). (2.6)

Proof The first claim is well known. Indeed, the existence of the Weil pairing on A[ p]
implies that Ag ,y corresponds to a symplectic representation. A comparison with
the topological fundamental group shows that the image of the geometric fundamental
group 1 (Ag y ®k K, x)is Spy, (Fp), so the representation is surjective.

Now recall, that a Siegel parabolic is the stabilizer of a maximal isotropic subspace
in the underlying vector space of a symplectic representation. Equivalently it is a

parabolic with abelian unipotent radical. All such parabolics are conjugate. Over :Zlgr(ljv
the finite flat group scheme A[ p] is an extension

0— A[p]" — Alpl - AlpI** - 0 2.7

of an étale by a multiplicative group scheme, where étale locally A[ PIE > (Z) pZ)8
and A[p]™ = M%- The Weil pairing induces a map of group schemes

Alp]l x Alp] = pp.

which identifies A[p] with its Cartier dual, and induces an isomorphism A[p]™ with
the Cartier dual of A[p]®. In particular, this shows that A[p]” C A[p], corresponds
to a maximal isotropic subspace under the Weil pairing. This defines a Siegel parabolic
such that (2.4) maps 71 (:Zlgf?\’,an, x) into P(F,). By [22,V, Prop. 7.2] the image of the
composite

~ord,an

i (Agn x) > P(EFp) — (P/U)EF))

is surjective. Hence it suffices to prove (2).

For this, we adopt the notation of 2.1 applied with A asin (2). Since we are assuming
k is algebraically closed, over A, the group schemes A[ pl1¥tand A[p]™ are isomorphic
to (Z/pZ)8 and uf, respectively. In particular, the map (2.6) factors through U (IF),).
Let# C Extk (Z/ pZ, 1) be the span of the g2 syntomic extension classes defining
the extension (2.7). Note that U (IF,) is an elementary abelian p-group of rank n =
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dimp, U = dim A, = (¥1'). Any F,-linear map s : U(F,) — F, induces a
representation

w1 (Spec A[1/pl, x) — pp(K) —> T,
(choosing pth root of unity), and hence a class in
c(s) € Exty(Z/pZ, up) — H'(X,F)).

The subspace 7 is the span of all the classes c¢(s). This shows dim % < n, with
equality only if (2.6) is surjective. However, by [24,3.2.2], one sees that 7/ satisfies
the conditions of Lemma 2.1, so that dim %/ = n, which completes the proof of the
lemma. (|

Corollary 2.4 With the notation above, Homg ,(U (Fp), IF ) is naturally identified with
a nondegenerate subspace % C Ext§( (Z] pZ, j1p).

Proof The proof of the Proposition 2.3 shows that there is a natural map
Homg, (U(Fp), Fp) — Exty(Z/pZ, ip)

whose image % is a nondegenerate subspace of dimension n = dimy, U. ]

2.3 Essential dimension

2.3.1. We refer the reader to [24,Sect. 2] for the definitions and facts we will need
about essential dimension and essential dimension at p. We remind the reader that for
K afieldand Y — X afinite étale map of finite type K -schemes, ed(Y /X; p) denotes
the essential dimension at p of Yz — X, where K is an algebraic closure of K.

2.3.2. We continue to use the notation introduced above. In particular A = O Ag o

denotes the complete local ring which is a power series ring over Ok inn = (g 42'1

variables.

Lemma2.5 Letg: A — Band f : C — B be maps of power series rings over Ok,
with f a flat map. Suppose there exists a finite étale covering Y' — Spec C[1/p] and
an isomorphism of étale coverings € : f*Y' —> g* A[p] over Spec B[1/p]. Then

S =2 S =2 = =2 S =2
dmy/my — mp/mp) C Imce/me — mp/mp).
In particular,
dimy mc/m% > dimg Yma/my — mp/m%).

Proof By [24,2.1.8], we may assume that Y’ is an extension of a constant étale group
scheme by a constant multiplicative group scheme, and that ¢ is an isomorphism of
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extensions. By [24,3.1.4, 3.1.5], the extension Y is syntomic, and we may assume that
the isomorphism f*Y’ —> g*A[p] extends to an isomorphism of finite flat group
schemes (which automatically respects the extension structure) over Spec B.

Now let & : B — k[e] be any map which vanishes on the image of m¢ /n'lzc, SO

that & induces the constant map C — k. Then h* f*Y' —> h*g*A[p] is a split
extension over Spec k[€]. It follows from [24,3.2.2] that 1 o g(m4) = 0, which proves
the inclusion in the lemma. O

2.3.3. We introduce the following notation. For a map f : X — Y of smooth k-
schemes, we let

_ e 7. /2
r(f) = xren)?();c) dimy :(mf(x)/mf(x) — m,/my)

For f a map of smooth Ok -schemes, set r(f) = r(f ® k). Note that r( f) does not
change if we restrict f to a dense open subset in X.

Proposition 2.6 Let Z be a smooth, connected Ok -scheme, and let Z — A4 n /0y be
a map of Ok -schemes such that the image of the special fiber, Zy, meets the ordinary

locus Agf‘fv C Ag nyk. Then

ed(Alpllzy /Zk; p) = r(f)

Proof The proof of this is almost the same as that of Theorem [24,3.2.6]. The only
difference is that we use Lemma 2.5 instead of Lemma 3.2.4 of loc. cit at the end of
the proof. |

Example 2.7 Let H, denote the moduli of hyperelliptic curves of genus g. Let H,[n]
be the moduli of pairs (C, B) where C is a hyperelliptic genus g curve and B is a
symplectic basis for H(C; Z/nZ). Let t: Hg/0, — Ag/0, denote the Torelli map.
By [56,Theorem 1.2], 7 is an embedding only when the characteristic of k is prime to
2; when k is of characteristic 2, 7 (t) = g+ 1. Because of this, [24,Theorem 3.2.6] does
not give a lower bound on ed(H,[2]/H,; 2). Using Proposition 2.6 above instead, as
well as the argument of [24,Corollary 3.2.7], we obtain

ed(Hy[2]/Hg:2) > g + 1.

Remark 2.8 More generally, Proposition 2.6 gives an arithmetic tool for obtaining
lower bounds on the essential dimension at p, analogous to the “fixed point method”
(cf. [62]). As forthcoming work of Brosnan—Fakhrudin [8] demonstrates, the fixed
point method applied to the toroidal boundary recovers the bounds of Theorem 1
and similar bounds for non-compact locally symmetric varieties (including those not
of Hodge type); it also allows one to use toroidal boundary components other than
those corresponding to Siegel parabolics. However, as remarked in [24], we are not
aware of methods besides Proposition 2.6 that apply to unramified nonabelian covers
of compact varieties.
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2.3.4. Proposition 2.3 implies that the monodromy group of Ag ,y — A, v can
be identified with Sp,,(F,). Fix such an identification. Let G be a subgroup of
Spyg(Fp) C Spyo(Z/pNZ). Denote by Ay 6 — Ag n the finite, normal, covering
corresponding to G.

Theorem 2.9 Let p be a prime, and let N > 3 be prime to p. G C Sp,,(Fp) C
Spa2g(Z/pNZ). Then

ed(Alpll 4,/ Ag.c3 p) = maxdimg, UN G,

where the maximum on the right hand side is over all unipotent radicals of Siegel
parabolics in Spy, (Fp).

Proof Let Uy C Sp,, (IF,) be an abelian unipotent subgroup such that dimg, Up N G
achieves the maximum. Let U C Sp,, /r, be the abelian unipotent subgroup defined in
Proposition 2.3. Because all Siegel parabolics are conjugate in Sp,, (), there exists
a conjugate of G, denoted G’ C Spy, (Fp), such that

dimg, U(F,) N G’ = dimg, Uy N G.

Because conjugate subgroups give isomorphic covers, and because ed(—; p) is a bira-
tional invariant,

ed(Alplla, y.6/Ag.N.G: P) = ed(ALplla, o /[ Ag.N.G' P)-

It therefore suffices to prove the theorem under the assumption that Uy = U (IF),). For
this, it suffices to consider the case G = U(F,) N G. In the following we slightly
abuse notation and write U for U (F ).

Let x € A, n(k) be a point in the ordinary locus. By (2) of Proposition 2.3, there
exists y € Ag pn(k) and x” € Ag y (k) with y mapping to x” and x, such that the
natural map

A= aAg,N,x — 6Ag.N,U»x/
is an isomorphism, and such that, if B = O Ag Ny then
Spec B[1/p] — Spec A[1/p]
is a U-covering.
Let # = Homg,(U,F)), and w; = Homp,(U/(U N G),Fp). By Corol-

lary 2.4, 7 is identified with a nondegenerate subspace of Ext% (Z/pZ, jrp) Where
X = Spec A[l/p]l. Now let A’ = Oy 7, where x” denotes the image of

g N, UNG X"
v in Ag v unc. Since Ag v unc is normal, using the notation of 2.1.2., we have

A" = A(%(}). Hence, by Lemma 2.2, we have
dimg Ya/my — Wa/m%) = dimp, UNG,
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and A’ is a power series ring over Ok .

Since x was any point in the ordinary locus, this shows that (f) > dimp, U N G,
where f 1 Ag nung — Ag.n, and that A, v yng is smooth over Ok, over the
ordinary locus of Ag n. Combining this with Proposition 2.6 proves the theorem. [

3 Modular symplectic representations of finite groups
3.1 General finite groups

Let p be prime, G a finite group and V a faithful, finite-dimensional G-representation
over IF,. The pairing

ev: VeV —>F,

extends to a G-invariant symplectic form on V @ VY. We refer to the associated
representation

G— Sp(Ve V)

as the diagonal (symplectic) representation associated to V.

Lemma3.1 Let H C G be an elementary abelian p-subgroup, such that H maps to
the unipotent radical of a maximal parabolic in GL(V). Then there exists a Siegel
parabolic of P C Sp(V @ V) with unipotent radical U such that, under the diagonal
representation associated to 'V,

HcUNG.

Proof Any maximal parabolic in GL(V) is the stabilizer P (W) of a subspace W C V.
Let U (W) denote the unipotent radical of P(W). Let WL c VY denote the dual
subspace. Then W @ W+ is a Lagrangian subspace of V @ V", and

GL(V)N StabSp(VeaVV)(W (4> Wl) = Stabgr(v)(W) = P(W).
Hence
GL(V)NU(W @& Wh) =UW),

where U(W @ W) is the unipotent radical of Stabgpvgyv)(W @ W), the Siegel
parabolic corresponding to W @ W+. In particular H C U(W) C U(W @ W), the
Siegel parabolic corresponding to W @ W+, ]

3.1.1. Let

where the maximum is taken over all faithful representations G of V, and unipotents
U of maximal parabolics in GL(V). Proposition 3.1 and Theorem 2.9 immediately
imply the following.
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Corollary 3.2 For some g, there exists a congruence cover Ag , — Ag G with
ed(Ag p/Ag.G: P) = 5p(G).

Remark 3.3 While Corollary 3.2 implies that ed(G; p) > s5,(G), this is not hard to
show directly, e.g. by [9,Lemma 4.1]. In fact, let

rp(G) = Irqnaé dimp, H
C

where the maximum is taken over all elementary abelian p-groups H C G. Then
ed(G; p) > rp(G) > s5,(G). The novelty of Corollary 3.2 is that (a) this lower bound
can be realized by an explicit congruence cover; and (b) the congruence cover, and
thus the lower bound, comes from modular representation theory at the relevant prime,
rather than from ordinary representation theory in characteristic O (as in e.g. [9] or the
theorem of Karpenko—Merkurjev [40]).

The corollary is most interesting in those cases where s, (G) is large. In the remain-
der of this section we give examples where s,(G) is equal to, or at least very close
to 7, (G). These consist of the case of alternating groups when p = 2, and the case
where G is the F,-points of a split semisimple group of classical type.

3.2 The groups S, and A,

We now specialize to the symmetric groups S, and the alternating groups A,,.

3.2.1. We would like to apply Corollary 3.2 to the case of symmetric and alternating
groups. Meyer—Reichstein [59,Corollary 4.2] proved that ed(S,; p) = r,(S,) and
similarly for A, for all n and p. However, in Appendix A, Harman shows that for p >
2, 5p(Sp) < rp(S,) and similarly for A,,. The purpose of this section is to show—see
Proposition 3.4 below—that one has s2(S,) = r2(S,) for all n, and 52(A,) = r2(Ay)
(resp. $2(A,) = r2(An) — 1) forn = 2, 3 (resp. 0, 1) modulo 4. This uses a remarkable
mod 2 symplectic representation of S,,, discovered by Dickson. Harmon’s results imply
that for n > 5, this is the only mod 2 representations for which the unipotent of a
maximal parabolic meets S, in a maximal elementary abelian 2-group.

Recall the “permutation irrep” V of §,, over F p.4 For p { n this is the analogue over
IF), of the standard permutation irrep in characteristic 0, i.e. the invariant hyperplane

V={@p....ap) €Fy| > a; =0}

For p | n the diagonal line A := {(a,...,a)} C F; is an invariant subspace of the
invariant hyperplane, and

V={an....an) €F}| > ai =0}/A.

4 The results of Dickson [18] and Wagner [71, 72] show that the permutation irrep is a minimal-dimensional
faithful irrep for n > 8 and p = 2, or forn > 6 and p odd.
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Dickson [18] showed that over IF,, the permutation irrep of S, is a symplectic repre-

sentation. Let
n
h=[3]-1

so that Dickson’s representation gives a “Dickson embedding” S, C Sp,,, (F2).
Proposition3.4 Let N > 3 be odd. For all n > 2, consider the Dickson embedding

Sp C Spag,(F2) C Spyy (Z/2NZ). There exists a Siegel parabolic with unipotent
radical U such that

dimg, U N S, = LgJ ,
dimg, U N A, = LgJ ~ 1.

By Theorem 2.9, for alln > 1:

ed(A, o/ Aa, 5,32 = | 5 | = ed(8::2).
n

ed(Ag, 2n [ Ady, 4,3 2) = bJ -
o |ed(Ay;2) —1n=0,1mod 4
ed(-Adn,2N/'AdnyAn’2) - {ed(An’z) n :2,3m0d4

Proof Let V denote the permutation irrep of ,, over I, as in [18], i.e.

2751
V:H/A: {(xl,...,XZ[g]) EIFZ 2

in=0}/{(x,...,x)e]P‘2}

A convenient basis for V is given by the cosets in H of

e :=1[0,...,1,...,0,0, )]
~— ———

1 in the ith place

fori =1,...,2d,. With respect to this basis the action of Sy4, C S, is the standard
permutation action of S»4, on F%d". Dickson [18,p. 124] proved that the S, action on

ngn preserves the symplectic form ), £j<d, Xiyj- We now change basis for ease
of studying a Lagrangian. Let

w; = ei—1 1 e
2i—1

w; = Zj:O ¢j-
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A straightforward computation shows that the planes W = ({w;}!_,) and Wt =
{({w}!_,) are dual Lagrangians written with dual Lagrangian bases.

Now fix W and let P := Stab(W) be the corresponding Siegel parabolic with
unipotent U. From the Lagrangian basis for W, we see that

Fi2 = ((12), 34). ... (2 LgJ —12 LgJ)) cuUnSs, 3.1)

But this is a maximal elementary abelian 2-group in Sy, so (3.1) is an equality. Thus

Una,=(12)64), ..., (12) (2 SJ 12 SJ)) _ gl

as claimed. O

3.3 Finite groups of Lie type

Proposition 3.5 Let g = p", and G = H(FF,), where H is one of the semisimple Lie
groups SLy,, SO2m+1, Spa,, withm > 2 or SOz, withm > 4. Let p : H — GL(V)
be the standard representation of H over F. Then there exists a parabolic P(W) C
GL(V) with unipotent radical U, such that dim]Fq W = LdimTVJ, and r;,(G) =
dimp, G N U satisfies:

IfG = SLy(Fy). then r(G) = | .
If G = Spy,,(Fy) thenr),(G) = m(m+1)
° IfG SOZm(IFq) thenr (G) M
e IfG = 502m+1(Fq) l‘hen rp(G) — m(mTl)

We have r r’ (G) = rp(G) in all cases except if G = SOyyy1, in which case

rp(G)/r = m(mﬂ) if g is even and r,(G)/r = @ + 1 (resp. 5, resp. 3) if q is
odd and m > 4 (resp. m = 3, resp. m = 2).

Proof We use the standard representations of the root systems of each of the groups H.
In each case, we will recall the weights appearing in V, specify the subspace W C V,
and describe a subgroup Ug C H as a sum of root spaces. In each case if r is a root
appearing in Ug and w, w’ are weights appearing in W and V /W respectively, then
r + w does not appear in V, and r + w’ does not appear in V /W. This implies that
UsCHNU.

If G = SL,,(F,), then the weights of V are ey, ..., e;, and W = (ey, ..., eL%D.
The roots appearing in Ug are ¢; — e withi < [F] < j.

If G = Sp,,,, (F,), thenthe weights of V are Ley, ..., key, and W = (eq, ..., en).
The roots appearing in Ug are ¢; + ¢ and 2¢; for 1 <i < j < m.

If G = SOy,(IF;), then the weights of V are =*ey,...,*xey,, and W =

(e1, ..., en). Theroots appearing in Ug are ¢; +e¢j for1l <i < j <m.
If G = SOp41(Fy), then the weights of V are ey, ..., %e,,0 and W =
(e1, ..., en). Theroots appearing in Ug are ¢; +e¢j forl <i < j <m.
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The maximal elementary abelian p-subgroups of H(F,) for each group H
appearing above are computed in [4]. In particular, for G equal to one of
SLy (Fy), Spy, (Fg), SO2, (Fy), one sees that Ug is already a maximal elementary
abelian p-subgroup,sothatUg = HNU andr-r;,(G) =rp(G).ForG = SO, 41(Fy)
the claims about r,(G) also follows from loc. cit, and it remains only to prove that
Ug = H N U in this case.

To see this, consider v = ), a,r € Lie (HNU) where r is a positive root of H and
ay is a scalar. Now V is a cyclic highest weight module for Lie H. Using this and that
v annihilates e; € W, one gets a, = 0if r = ¢; — ¢;. Similarly, since v annihilates
—e;j e V/W,a =0forr =e;. Thusv € Ug. O

Remark 3.6 Note that when g is even, one has SO,41(F;) >~ Sp,,,(F,), so that
sp(G) = rp(G) in this case.

4 Classical problems and congruence covers

Beginning with the work of Hermite on the quintic [31], the use of modular functions
to solve algebraic equations is a major theme of 19th century work, including Klein’s
icosahedral solution of the quintic [43], the Klein—Burkhardt formula for the 27 lines
on a cubic surface [11-13, 45], the Klein—Gordan solution of equations with Galois
group the simple group PSL(2, 7) [28, 42], and the Klein—Fricke solution of the sextic
[25, 47]. Underlying this work is the fact that problems of algebraic functions are often
equivalent to problems of modular functions and congruence covers.

Our goal in this section is to record the classical equivalences, and add to them
using recent advances in uniformization. We begin by axiomatizing the notion of
accessory irrationality, and recalling the general context in which to take up Klein’s
call to “fathom the nature and significance of the necessary accessory irrationalities”
[43,p. 174]. We then recall the general setup of congruence covers of locally symmetric
varieties in order to state the precise equivalences.

While many of the results of this section are implicit in the classical literature, as
far as we can tell, with the exception of Klein’s Normalformsatz [43], that various
classical problems are in fact equivalent has gone unremarked in the literature until
quite recently [23].

4.1 Accessory irrationalities and E-versality

For the rest of the paper we fix an algebraically closed field K of characteristic 0.
4.1.1. By a branched cover Y — X, we mean a dominant, finite map of normal

K -schemes of finite type. Branched covers form a category: a map (Y — X') —

(Y — X) is a commutative diagram

Y ——Y

||

X ——X.
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If f: X’ — X is a map of normal K -schemes of finite type, denote by f*Y the
normalization of ¥ x x X’. If X is irreducible with geometric generic point & — X
(i.e. an algebaic closure of K (X)), then Y — X corresponds to a finite set Sy with an
action of 7 (U, 2) for some dense open U C X, where 7 (U, 2) denotes the étale
fundamental group of U at 2. We denote by Mon(Y /X) the image of 71 (U, 2) in
Aut(Sy).

4.1.2. We now introduce the notion of a class of accessory irrationalities (cf. Klein [43,
46], see also Chebotarev [14]). These are branched covers introduced to manipulate
some fixed branch cover of interest Y — X (hence the term “accessory’). To indicate
this visually, we will use the notation ¥ — X to denote a general branched cover of
interest, and we will use the notation £ — X to denote an accessory irrationality.

Definition 4.1 (Accessory irrationalities). A class of accessory irrationalities is a full
subcategory £ of the category of branched covers. If £(X) C £ denotes the subcategory
consisting of branched covers X — X, then we require that £(X) is stable under
isomorphisms, and satisfies the following conditions.

(1) For any X, the identity X — X is in £(X).

(2) For any map f : X’ — X of normal K-schemes of finite type, f* induces a
functor f* : £(X) — EX).

3) EXT]X) =EX) x EX).

(4) &£(X) is closed under products: If E, E’ € £(X), then E xx E' € £&(X).

(5) If U C X is dense open, then the map £(X) — E(U) induced by restriction is an
equivalence of categories.

(6) If E — X’ — X are branched covers and if E — X is in £&(X) then E — X' is
in £(X").

Axiom (2) implies that £ is a category fibered over the category of normal K-
schemes. Note that Axiom (3) implies that it is enough to specify £(X) for X connected.

Definition 4.2 Fix a class £ of accessory irrationalities. The essential dimension of a
cover X — X, with respect to £ is:

ed(X/X;E):= min ed(E xx X/E).
(E—>X)e€

Example 4.3 Some of the core classical examples of £ are as follows (for simplicity
we specify £(X) only for X connected):

(1) For&(X) = {id : X — X}, the quantity ed(X/X; &) is just the essential dimension
ed(X/X).

(2) Let p be a prime and let £(X) be the subcategory of branched covers of X whose
degree is coprime to p. Then ed(X /X; E) is the essential dimension at p. We
emphasize that, although it leads to the same notion of essential dimension at p,
we do not insist that E is connected, as this version of the definition does not
satisfy Axiom (3) of Definition 4.1.

(3) Let £(X) be the set of covers E — X with Mon(E /X) abelian. Then ed(f(/X; &)
is the abelian resolvent degree. Likewise, we can consider the class of accessory
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irrationalities with nilpotent (resp. solvable) monodromy, to obtain the nilpotent
(resp. solvable) resolvent degree (see [14, 15, 46]).

(4) Let G be a finite simple group, and let £(X) consist of all £ — X such that
for each connected component E’ of E, the branched cover E/ — X is Galois
and a composition series for Aut(E’/X) has no factor isomorphic to G. We write
ed(X/X; G) fored(X/X; &).

Definition 4.4 (E-versality). Let € be a class of accessory irrationalities. A Galois
branched cover X — X with group G is E-versal if for any other Galois G-cover
Y — Y, and any Zariski open U C X, there exists

(1) an accessory irrationality £ — Y in £(Y),
(2) anontrivial rational map f: E — U, and
(3) anisomorphism f*X|y = Y|g.

Remark 4.5 If £ is the trivial class of accessory irrationalities, i.e. £(X) only contains
the identity, then &-versal is just “versal” in the usual sense of the term (see e.g.
[27,Sect. 1.5]).

If £ C & are classes of accessory irrationalities, then & -versality for a G-cover
implies E-versality. In particular a cover which is versal is &-versal for any class &.

Example 4.6 (1) Hilbert’s Theorem 90 implies that for a finite group G, and a faithful
linear action G OO A", the map A" — A" /G is versal (see [21]).

(2) The Merkujev—Suslin Theorem [58,Theorem 16.1] implies that for every faithful,
projective-linear action G & P", the map P — P"/G is solvably versal, i.e.
E-versal for the class & of solvable branched covers.?

Lemma4.7 Let G be a finite group, let £ be a class of accessory irrationalities, and
let X — X be an E-versal G-cover.

(1) Let X — Z be a G-equivariant dominant rational map. Then Z— Z/G is an
E-versal G-cover. y ~
(2) Let H C G be any subgroup. Then X — X /H is an E-versal H-cover.

Proof The first statement follows immediately from the definition. For the second, let
Y — Y be a Galois H-cover. Then

IN’XHG—>Y

is a Galois G-cover which is H-equivariantly isomorphic to ¥ x G/H — Y. By
E-versality, for any Zariski open U C X, there exists an accessory irrationality

E—Y
in &, and a rational map

fiE—->U

5 Mutatis mutandis, this follows by the same reasoning as in [21].
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with an isomorphism of G-covers
Y= xu G)lp.

By the Galois correspondence for covers, the H-equviariant isomorphism above
implies that E — U factors through a map

[1E— X/Dly
We conclude that f*X = Y|z and that X — X /H is E-versal for H as claimed. [J

Remark 4.8 Example 4.6(1) and Lemma 4.7(1) immediately imply that foreachn > 5,
the cover Mg , — Moy /S, is versal for the group Sj,.

4.1.3. We can also consider the resolvent degree of a cover X — X, which is
somewhat different from, but related to the idea of the general notion of essential
dimension defined above. To explain this, write £, — X for a tower of branched
covers E = E, — --- — Eg = X. The resolvent degree of X — X is defined as

RD(X/X) = min max {ed(E xx X/E), {ed(E,-/El-,l)};zl}

>

where E, — X runs over all sequences of covers.

When Mon(f( /X) is simple, it follows from [23,Cor. 2.18] that the definition of
RD(X /X) does not change if we consider only £, — X such that the composition
m(E, Q) — m(X,Q2) — Mon(f(/X) is surjective and ed(E;/E;_1) < dim(X)
(n.b. here as above, 2 — X denotes a geometric generic point). In particular

Eminx ed(E xx X/E) < RD(X/X) 4.1)

where £, — X runs over sequences of covers satisfying these conditions. On the
other hand, in every known example, the current best upper bound for RD(—) can be
exhibited using such a sequence £, — X which in addition satisfies ed(E x x X /E) >
ed(Ei_;,_l/Ei), fori = I,...,r.

Hilbert [33, 34] made three conjectures on the resolvent degree of the general degree
n polynomial; equivalently on

RD(n) := RD(Mo,n/(Mo,n/Sn)) = RD(Mo,n/(Mo,n/An)).
Conjecture 1 (Hilbert) The following equalities hold:

SexticConjecture : RD(6) = 2.
13thProblem : RD(7) = 3.
OcticConjecture : RD(8) = RD(9) = 4.
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The upper bounds in Conjecture 1 are known; the first two are due to Hamilton, the
last to Hilbert.

Our interest in £-versality comes from the following lemma, which is proven mutatis
mutandis by the same argument as in the proof of [23,Proposition 3.7].

Lemma 4.9 Let & be a class of accessory irrationalities and let X — X be an E-versal
G-cover. For any Galois branched cover Y — Y with monodromy G,

ed(¥ /Y &) < ed(X/X: €).
In particular, for any other E-versal G-cover X — X,
ed(X'/X'; &) = ed(X/X: E).
Further, if € is any of the classes of Example 4.3 and if G is simple, then
RD(Y/Y) < RD(X/X) and RD(X'/X') = RD(X/X).

Lemma 4.9 makes precise the classical discovery that &-versal G-covers provide
“normal forms” to which every other G-cover or can be reduced. Notably, for many
groups G of classical interest, congruence covers are E-versal for a natural choice of
E.

Remark 4.10 While the notion of versality has been studied intensively for several
decades, many of the most interesting normal forms, beginning with Klein’s Normal-
formsatz, rely on the notion of solvable versality, which is substantially more flexible.
For example, a versal G-variety of minimal dimension must be unirational. On the
other hand, there are no rational Ag curves (by Klein’s classification of finite Mobius
groups), and the level 3 Hilbert modular surface of discriminant 5, which is solvably
versal for Ag and conjectured by Hilbert to be of minimal dimension among such
varieties, has arithmetic genus equal to 5 (see the discussion in the proof of Proposi-
ton 4.14 below). A better understanding of the geometric implications of solvable
versality (and related notions) could shed significant light on the underpinnings of
Hilbert’s conjectures.

4.2 &-versal congruence covers

We can now record the &-versal congruence covers that we know. Klein’s Normal-
formsatz provides the paradigmatic example for what follows.

4.2.1. Write Ay for the group of finite adeles over Q. Let G be a group-scheme
of finite type over Z whose generic fiber, which we also denote by G, is a connected
semisimple group. Since G is of finite type, G(Z) = 1(111,1 G (Z/nZ) is profinite. Recall
that G (A y) is naturally a locally compact topological group which depends only on
the generic fiber of G, and for which the subgroup G(Z) C G(A ), with its natural
profinite topology, is open; this construction goes back to Weil [73].
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A subgroup I' C G(Q) is called a congruence subgroup if it contains G(Q) N K
for some compact open K C G(Ay). This is equivalent to requiring that for some
positive integer n, I' contains

G(Z, n) := ker(G(Z) — G(Z/n)) = ker(G(Z) — G(Z/n)) N G(Q).

We assume that the quotient X of G(R) by a maximal compact subgroup is
a Hermitian symmetric domain. Then for any congruence subgroup I', a theorem
of Baily-Borel asserts that Mr := X/TI' is a complex, quasiprojective variety,
cf. [17,2.1.2]. For T" C T congruence subgroups, there is a natural covering map
Mprr — Mr.

For L a totally real number field, and G a group scheme of finite type over O,
whose generic fiber is a connected semisimple group, one can apply the above to
Resy G instead of G. More precisely, we write simply Resy ;oG for the Z-group

scheme Resp, /7zG. Then we have G(Op) = Resy;9G(Z) and when we write
G (Or) we mean that we are working the Hermitian symmetric domain and congruence
subgroups associated with the group Res; ,G. Similarly, we write G(Op, n) for
(Resy /G)(Z,n). If L = Q(+/d) is real quadratic, denote by G(Op, v/d) the kernel
of

Res0G(Z) = G(Or) — G(Or/Vd).

If L is quadratic imaginary and a, b are non-negative integers, one can consider the
unitary group U(a, b) of signature a, b defined by L. This is the subgroup scheme of
Resp, /zGL,;, where n = a + b, which fixes the standard Hermitian (with respect to
conjugation on K ) form of signature (a, b). One also has the corresponding projective
unitary group PU(a, b).

In fact for the rest of this section we take L = Q(w), where w is a primitive
cube root of 1, and we will only need groups of signature n — 1, 1. We denote by
PU(n — 1, 1)(Z, v/—3) the kernel of the composite

PU(n — 1, 1)(Z) — Resp, jz PGL,(Z) = PGL,(Or) — PGL,(F3).
Theorem 4.11 (Klein’s Normalformsatz, [43]). Let £ be any class of accessory irra-
tionalities containing all quadratic branched covers. Let SLy(Z, 5) := ker(SLy(Z) —

PSLy(Z/57)). Then the level 5 cover of the modular curve

MSI;?ZTS) e MSLZ(Z)'

is an E-versal PSLy(Fs) = As-cover: In particular, for any branched cover X — X
with monodromy As,

ed(X/X;E) = RD(X/X) = 1.
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This is in contrast to Klein’s theorem that ed(As) = 2. We can add another example
for As, which was studied in detail by Hirzebruch [35], and was likely known to
Kronecker, Klein and Hilbert.

Proposition 4.12 The level 2 cover of the Hilbert modular surface

My, @2 = My, @i465),

is versal for As.

Proof Let C C P* be Clebsch’s diagonal cubic surface, i.e. C is the vanishing of the
first and third elementary symmetric polynomials in xo, ..., x4. By [35,Theorem 1],
there is a birational equivalence

C=My, s 0

By the proof of [35,Theorem 2], this birational equivalence is in fact SL,(F4) = As-
equivariant. Next, an 1861 theorem of Hermite [32] shows that there is a dominant
As-equivariant dominant rational map

A5—>C,

where the source is the permutation representation of As (see [54] for a modern
treatment of this map, see [6, 16, 63] for other treatments of Hermite’s theorem). By
Hilbert’s Theorem 90, A” is versal. The proposition now follows from Lemma 4.7. [J

Similar to, but less well-known than, Klein’s normalformsatz is the following (see
[28, 42], [36,pp. 318-319] and [25,Vol. 11, Part 2, Chaps. 1-2]). Denote by PSL(2, 7)
the image of SL(F7) — PGL;(IF7); this is a simple group.

Proposition 4.13 (Normal forms for PSL(2, 7)).

(1) Let PGL;r (Z[ﬁ]) C PGL, (Z[ﬁ]) denote the subgroup of elements which lift
to an element of GL; (Z[ﬁ]) with totally positive determinant. The cover

M — M

PGLy (ZINT1.T) PGLY (ZINT)

of Hilbert modular surfaces is versal for the simple group PSL(2, 7).
(2) Let & be any class of accessory irrationalities containing all Si-covers. Let

SLy(Z,7T) denote the kernel of the surjection SLo(Z) — PSL(2,7). Then the
level 7 modular curve

Mz = Msn@

is an E-versal PSL(2, 7)-cover. In particular, for any branched cover X — X with
monodromy PSL(2,7),

ed(X/X;E) = RD(X/X) = 1.

@ Springer



Modular functions and resolvent problems

Proof We remark that Z[+/7]* = {£€"} where € = 8 + 3+/7 is the fundamental unit.
Hence PGLZ(Z[ﬁ], «/7) C PGL;r (Z[ﬁ]), and in particular, the latter group is a
congruence subgroup.

Consider the modular curve MSIS(\Z/7)' This has genus 3, and so the action of

PSL(2,7) on I-forms gives a linear action of PSL(2, 7) on A3, and an equivariant
dominant rational map A®> — P2. Lemma 4.7 then implies that P? is versal for
PSL(2, 7). As noted on [36,pp. 318-319], there is a PSL(2, 7)-equivariant birational
isomorphism
2~
P2 = M, arvm, v

This proves the first statement of the proposition.

The second statement follows from [28, 42]. In modern language, it suffices to
construct an accessory irrationality £ — P? /PSL(2, 7) and a PSL(2, 7)-equivariant
dominant rational map

2
P |E — MSLZ(Z,7)'

For this, the canonical embedding of the modular curve M SLH(Z.7) gives a PSL(2, 7)-

equivariant map

2
MSL2(Z,7) — P~

As Klein discovered, the image of this map is a quartic curve, the so-called “Klein
quartic”. Fixing any PSL(2, 7)-invariant pairing on IP?, there is a rational map

P? - Mo.a/S4.

which sends a point x € P? to the intersection of the dual line L, with the Klein
quartic. Let

E = Mo 4lp.
Then there is a PSL(2, 7)-equivariant dominant map

2
Ple — MSL2(2,7)

as claimed. |
We can add the following result to the above.

Proposition 4.14 (Normal forms for the sextic).

(1) The congruence cover

.,42,2 — A
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and the Picard modular 3-fold

Mpya,nyz.y=3 = Mpuc.n@
are versal for Ag.°

(2) For £ any class of accessory irrationalities containing all quadratic covers and
composites thereof, the congruence cover

A2 3/F5 — Ad aq
and the Picard modular 3-fold
Mpyi,1yz.2) = MpU@3,1)(Z. Ag)
are E-versal for Ag.

(3) For & any class of accessory irrationalities containing all quadratic and cubic
covers and composites thereof, the Hilbert modular surface

M
SLZ(Z[—”f]j)_) SLa (2 455))

is E-versal for Ag, where SLQ(Z[HT‘@],S) denotes the kernel of the map
SL2(Z1%55]) — PGLy(Fo) = As.

In particular (cf. Remark 4.8 and Lemma 4.9) Hilbert’s Sextic Conjecture is equiv-
alent to the statement that the resolvent degree of any (and thus each) of the above
covers is dlm(MSLg(Z[”T‘E])) =2

Let PSp(4, 3) denote the image of Sp,(IF3) — PSp,4(IF3); this is a simple group.
To prove the proposition, we make use of the following lemma.

Lemma 4.15 Let PSp(4, 3) act linearly on P3 and let G C PSp(4, 3) be any subgroup.
Let € be any class of accessory irrationalities containing all composites of quadratic
covers. Then P* is an E-versal G-variety.

Proof There is (see e.g. [1]) an Sp,(F3)-equivariant dominant rational map
A* > P3.
Lemma 4.7 then implies that P? is versal for Sp4(IF3) As observed in the proof of

[23,Theorem 4.3], this implies that P3 is E-versal for PSp(4, 3) and thus, by Lemma 4.7
for any G C PSp(4, 3) as well. |

6 Recall that there are exceptional isomorphisms Spy () = OI (F3) = Se.
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Proof of Proposition 4.14 For versality, as in the proof of Proposition 4.12, it suffices
to prove that there are Ag-equivariant birational isomorphisms

Moe = A2 = Mpy3.1yz.v=3) 42

where M ¢ is the moduli of 6 distinct points in PP!. The first isomorphism of (4.2) is
the classical period map which sends 6 points in P! to the Jacobian of the hyperelliptic
curve branched at those points. For the second, consider the Segre cubic threefold X3
in P given by

5 5
X3 = [x0:~-~:x5]e]P’5:Zx,-:0:2)6?}.
i=0 i=0

The permutation action of Sg on IP° leaves invariant X3, permuting its 10 nodes. Kondo
[53] proved that X3 is isomorphic to the Satake—Bailey—Borel compactification of
the Picard modular 3-fold MPU(3 D@ VD) One can check that the birational map
Mpya. . Ve g X3 is Sg-equivariant (cf. e.g. [65,p. 6, Lemma 2.1]).

Hunt proves in [37,Theorem 3.3.11] that the dual variety to X3 is the so-called Igusa
quartic T4, which is the moduli space of 6 points on a conic in P?. The two varieties
X3 and Zy are Sg-equivariantly birational. The Igusa quartic Z4 is the Satake compact-
ification of A3 ». The second birational isomorphism in (4.2) is the composition of
these.

Now let £be any class of accessory irrationalities containing all quadratic covers and
composites thereof. As explained in Hunt [37,Chap. 5.3], there is a 6: 1 (in particular,
dominant) PSp(4, 3)-equivariant rational map

PP > B

where the action of PSp(4, 3) on PP3 is linear and where B denotes the “Burkhardt
quartic”. There is also a PSp(4, 3)-equivariant birational isomorphism

B= Ay3/F5.

Lemma 4.15 implies that A2,3/]F§< is &-versal for G = Ag C PSp(4, 3).

Thus A 3/F5 is E-versal for any subgroup of PSp(4, 3), in particular A. Finally,
Hunt [37,Theorem 5.6.1] proved that B is PSp(4, 3)-equivariantly biregularly isomor-
phic to the Baily—Borel compactification of Mpy3,1)z,2)-

For the last statement, let £ be any class of accessory irrationalities containing all
composites of quadratic and cubic covers. By [70,Chap. VIII, Theorem 2.6], there
exists a PSL, (F9) = Ag-equivariant birational isomorphism

= Vig4 C P

SLyz{14551,3)

where V] 3 4 is the common vanishing locus of the 1st, 2nd and 4th elementary sym-
metric polynomials and Ag acts on P> via the permutation representation. As above,
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it suffices to construct an accessory irrationality E — A®/Ag in € and an equivariant
dominant rational map

Alg — Viga.
This follows from the classical theory of Tschirnhaus transformations (see e.g. [74]
for a contemporary treatment). Recall that a Tschirnhaus transformation Ty, for some

= (by,...,bs5) € A6, is the assignment which sends a root z of the generic sextic
to

5
> b
i=0
This defines an Sg-equivariant rational map
Ty: A% — A

Letting b vary, we have an A parameter space of Tschirnhaus tranformations for each
sextic, which we view as a tr1v1al bundle

m:A6xAg—>A6.
We also have an evaluation map

ev: A x Ag — AS
By direct computation (see e.g. [74,Definition 3.5 and Lemma 3.6]), ev! (\m) i.e.
the preimage under the map ev of the affine cone over V2 4, is the intersection of a
(trivial) family of hyperplanes T, a cone over a generically smooth quadric 7> (for
smoothness, see e.g. [74,Lemma 2.6]), and a quartic cone 1. By the classical theory
of quadrics (e.g. [74,Lemma 5.10]), there exists a finite, generically étale map

Ey — Aﬁ/A6

with monodromy a 2-group such that the quadric cone D) E, contains a (trivial) family
L — Ej of 2-planes over Eg. The intersection

ExEoﬁ

is thus the affine cone over a family of 4 distinct points in P'. There thus exists an
S4-cover

E — Ey
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and a sectiono: E — ev™! (V1.2,4)|g- The map

evoo: A6|E — V124
gives the dominant map we seek. By construction £ — AS /Ag is in the class &, and
thus Vi 2 4 is indeed &-versal. O

Proposition 4.16 (Normal forms for the 27 lines).

(1) The congruence cover

Mpya.yz.v=3 = Mpruan@

is versal for O;‘(IFg) = W(Eg). 7
(2) For &€ any class of accessory irrationalities containing all quadratic covers and
composites thereof, the congruence cover

Ar3/F5 — Ay
and the Picard modular 3-fold

Mpyia1y@,2) =~ Mpua, 1)@

are E-versal for the simple group PSp(4,3) = W (Ee)™ (the normal index 2-
subgroup of W(Eg)).

In particular, [23,Conjecture 1.8] implies and is implied by the resolvent degree of
any (and thus each) of the above covers equaling dim(Ay) = 3.

Proof By Allcock—Carlson—Toledo [2], there exists an 05+ (F3) = W(E¢)-equivariant
birational isomorphism

H33(27) = Mpyu 1yz.y=3)

from the moduli H3,3(27) of smooth cubic surfaces with a full marking of the inter-
section of their 27 lines to the Picard modular 4-fold.

By [20,Lemma 6.1] H3 3(27) is versal for W(E¢). By Lemma 4.7, both varieties
are therefore versal for any subgroup of W (E¢).

The remaining statements follow from the proof of Proposition 4.14 above. Con-
cretely, there we showed that A 3/F3 was E-versal for any subgroup of PSp(4, 3),
in particular for PSp(4, 3) itself. Together with the PSp(4, 3)-equivariant birational
isomorphism

Az3/F5 ~ Mpua,1yz.2)

recalled in the proof of Proposition 4.14, this implies the result. (]

7 Recall that there is an exceptional isomorphism of 05Jr (F3) with the Weyl group of Eg.
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Proposition 4.17 (Normal forms for the septic, the octic, and 28 bitangents). Let G C
Spe(F2) be any subgroup. Then the cover

Azr — Az g

is versal for G. In particular (cf. Remark 4.8 and Lemma 4.9) :
(1) Hilbert’s 13th Problem is equivalent to

RD(A32/ A3 4,) = 3.
(2) Hilbert’s Octic Conjecture [33,p. 248] is equivalent to
RD(A32/A3,45) = 4.

(3) [23,Problem 5.5(2)], which asks for the resolvent degree of finding a bitangent on
a planar quartic, is equivalent to asking for RD(Az 2 — A3z).

Proof This follows as in the proof of [23,Proposition 5.7], which in turn draws on [19]
and ideas of Coble. As explained there, there exists an Spg(IF2)-equivariant dominant
rational map

A7 — Hy42(28) ~ M;3[2)

where H42(28) denotes the moduli of smooth planar quartics with a marking of
their 28 bitangents, and M3[2] denotes the moduli of genus 3 curves with full level 2
structure. The period mapping gives an Spe(IF2)-equivariantly birational isomorphism

M3[2] = Az,

and thus A3 is a versal G-variety for any G C Spg(IF2) as claimed. ]

4.2.2. By Klein [44], the action A7 O P3is solvably versal. As a result, Hilbert’s 13th
problem is equivalent to the assertion that the cover P} — P? /A7 is anormal form of
minimal dimension.

Question 4.18 Is there a congruence cover Xv — Xr with Galois group A7 and
dim X = 3 which is also £-versal for one of the classes of accessory irrationalities
considered in Example 4.3?

Finding such a congruence cover would give the transcendental part of Klein’s
3-variable solution of the degree 7, as in [43,Chap. 5.9]. Note that Prokhorov’s clas-
sification [61,Theorem 1.5] of finite simple groups acting birationally on rationally
connected 3-folds gives strong constraints on any possible congruence cover.

Question 4.19 Is there a congruence cover Xv — Xr with Galois group Ag and
dim Xr = 4 which is also £-versal for one of the classes of accessory irrationalities
considered in Example 4.3?
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4.2.2.1. As Propositions 4.14 and 4.17 show, for g = 2, 3 the Sp,, (IF2)-variety A, »
is G-versal for any subgroup G C szg (IF»). Hence for n = 6,7, 8 the resolvent
degree of the cover Ay, 2 — Ag, .4, is equal to RD(n), as defined in the introduction.
Interestingly, Hilbert’s conjectured value for resolvent degree, and the value of the
essential dimension at 2 for these covers, almost agree :

n 6789
Hilbert: RD(n) 234 4
ed(Ay; 2) 2244

Note that in these cases the value of ed(Ag, > — Ag,.4,;2) = ed(Ay; 2) is already
given by Proposition 3.4, except when n = 8 and g = 3, in which case Proposition 3.4
gives the lower bound 3. The actual value ed(A32 — A3 aq;2) = 4 follows from
versality (e.g. from Lemma 4.9 applied to the modular cover A4 2 — A4 4, arising
from the diagonal representation of Ag = SL4(IF»); the ed at 2 of this cover follows
from Corollary 3.2).
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Appendix by Nate Harman
A On quadratic representations of S,
A.1 Statement of results

Recall that any linear representation of a p-group G over a field k of characteristic p
contains a non-zero invariant vector, in particular this implies that the only irreducible
representation of G over k is the trivial representation. This does not mean that all rep-
resentations are trivial though, there are non-split extensions of trivial representations
and understanding their structure is a central part of modular representation theory.

In a non-semisimple setting, one basic invariant of a representation is its Lowey
length. For representations of p-groups in characteristic p it can be defined as follows:
Start with a representation V and then quotient it by its space of invariants to obtain
a new representation V' = V/VC, then repeat this process until the quotient is zero.
The Lowey length is the number of steps this takes.

In the above work Farb, Kisin, and Wolfson analyze certain special representations
of symmetric groups in characteristic 2, the so-called Dickson embeddings. Typically
denoted D"~1:1 in the representation theory literature, these representations have the
following key property: Let n = 2m or 2m + 1, these representations have Lowey
length 2 when restricted to the rank m (which is the maximum possible) elementary
abelian 2-subgroup H, generated by (1, 2), (3,4), ..., and 2m — 1, 2m).

This motivates the following definition: We say that an irreducible representation
of a S, in characteristic p is quadratic with respect to a maximal rank elementary
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abelian p-subgroup H if it has Lowey length 2 upon restriction to H. The purpose of
this note is to prove first that this is only a characteristic 2 phenomenon, and second
that these representations D®~1-1) are the only representations which are quadratic
with respect to some maximal rank elementary abelian p-subgroup for n sufficiently
large (n > 9).

In characteristic p > 2, the maximal rank elementary abelian p-subgroups in S,
are just those generated by a maximal collection of disjoint p-cycles. Our first main
theorem tells us that there are no quadratic representations in characteristic p > 2, and
in fact we can detect the failure to be quadratic here by restricting to a single p-cycle.

Theorem A.1 Any irreducible representation of S, withn > p in characteristic p > 2
which is not a character has Lowey length at least 3 upon restriction to the copy of C,
generated by (1,2, ..., p), and therefore is not quadratic with respect to any maximal
rank elementary abelian p-subgroup.

Note that in any characteristic p > 2 the characters of S, are just the trivial and
sign representations.

In characteristic 2 things are a bit more complicated. While the subgroup H,
of S, is a maximal rank elementary 2-subgroup, it is no longer the unique such
subgroup up to conjugation. Recall that in Sy there is the Klein four subgroup
K = {e, (12)(34), (13)(24), (14)(23)}, which is a copy of C% not conjugate to Hjy.

We can construct other maximal rank elementary 2-subgroups of S, by taking
products

KxKx---xKxXHy 4 C S4gxX84X--+X8S4xSy_am C Sy

m times m times

and up to conjugacy though these are all the maximal rank elementary abelian 2-
subgroups inside S,,.

Sg has a special irreducible representation D3 of dimension 8 which upon
restriction Ag decomposes as a direct sum DOI+ @ DG3I~ of two representa-
tions of dimension 4. These representations realize the “exceptional” isomorphism
Ag = G L4(IFp), or rather they realize two different isomorphisms differing by either
by conjugating Ag by a transposition in Sg or by the inverse-transpose automorphism
of G L4(IF2). Under this isomorphism the subgroup K x K C Ag gets identified with
the subgroup of matrices of the form

SO O =
S o =0
S = 0 Q
—_ o s

which is manifestly quadratic. Our second main theorem will be to show that there
are no other quadratic representations other than the Dickson embedding once 7 is at
least 9.
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Theorem A.2 Suppose V is a non-trivial irreducible representation of S, withn > 9
over a field of characteristic 2 which is quadratic with respect to a maximal rank
elementary abelian 2-subgroup H. Then V. = D"~V and H is conjugate to H,,.

A.2 Proofs of main theorems

We will be assuming a familiarity with the modular representation theory of symmetric
groups. A standard reference for this material the book [38] of James, which we
will be adopting the notation from and referring to for all the basic results we need.
The irreducible representations of S, in characteristic p are denoted by D*, for p-
regular partitions A of n. These arise as quotients of the corresponding Specht modules
S*, which are well behaved reductions of the ordinary irreducible representations in
characteristic zero.

A.2.1 Proof of Theorem A.1

First we will reduce the problem to just looking at representations of S,,. For that we
have the following lemma:

Lemma A.1 (1) Every irreducible representation V of S,, withn > p in characteristic
p > 3 which is not a character has a composition factor when restricted to S,
which is not a character.

(2) Every irreducible representation V of S, with n > 4 in characteristic 3 which
is not a character has a composition factor when restricted to S4 which is not a
character.

Proof For part (a) suppose V only has composition factors which are characters when
restricted to S),. If we restrict this to the alternating group A, all the composition
factors must be trivial, as A, only has the trivial character. If we further restrict to
A, the whole action must be trivial because representations of A, are semisimple
in characteristic p. However if the action of A,,_1 is trivial on V then so is the action
of the entire normal subgroup generated by A, inside S, which we know is all of
A, if n > 3. So V must be the trivial as a representation of A,,, and is therefore a
character of S,,.

For part (b), let’s again suppose V only has composition factors that are characters
when restricted to S4, which implies it only has trivial composition factors when
restricted to Ay4. If we further restrict to the Klein four subgroup K the whole action
must be trivial because representations of K are semisimple in characteristic p 7# 2.
As before we see V must be trivial for the normal subgroup of S, generated by K,
which we know is all of A,, for n > 4. Therefore V is a character. J

Remark: The modification for characteristic 3 is necessary because in characteristic
3 the only irreducible representations of S3 are the trivial and sign representations.
Theorem A.1 holds vacuously in this case.

It is now enough to prove Theorem A.1 for S, in characteristic p > 3, and for S4
in characteristic 3. Let’s first focus on the case where p > 3. If A is a p-core, then
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Nakayama’s conjecture (which is actually a theorem, see [38] Theorem 21.11) tells us
D’ = S is projective, and hence remains projective when restricted to C » and there-
fore has Lowey length p. This leaves those irreducible representations corresponding
to hook partitions A = (p — k, 15).

In the simplest case where A = (p — 1, 1) then D* is the (p — 2)-dimensional quo-
tient of the standard (p— 1)-dimensional representation 7 ~1-D by its one dimensional
space of invariants, and one can easily verify this forms a single (p — 2)-dimensional
indecomposable representation of C),. Peel explicitly computed the decomposition
matrices for S, in characteristic p (see [38] Theorem 24.1), and it follows from his
calculation that the remaining irreducible representations D* with A = (p — k, 1¥)
for 1 < k < p — 2 are just exterior powers AXDP~1:D) of this (p — 2)-dimensional
representation.

Since k < p we know that A¥XD®~1D 5 a direct summand of (D®P~1-1)®k,
which as a representation of C) is just the unique (p — 2)-dimensional indecom-
posable representation tensored with itself k£ times. Tensor product decompositions
for representations of cyclic groups are known explicitly ([29] Theorem 3), and in
particular it is known that a tensor product of two odd dimensional indecomposable
representations of C), always decomposes as a direct sum of odd dimensional inde-
composable representations. So we see (DP~1:D)® and AKDP=1.D) = p(r—k19
only have odd length indecomposable factors when restricted to C),. If it had Lowey
length 1 when restricted to C, that means the action is trivial, which implies the
action of A, must also be trivial as A, is simple, but that would imply the original
representation of S, was a character.

In the characteristic 3 case there are only two irreducible representations of Sy,
they are the standard 3-dimensional representation S = D31 and its sign twisted
version §@ 1D = D@ LD These are 3-core partitions so again by Nakayama’s con-
jecture they are both projective and therefore remain projective when restricted to C3
and have Lowey length 3. ]

A.2.2 Proof of Theorem A.2

The overall structure of the proof will be to successively rule different classes of
representations and maximal rank elementary abelian 2-subgroups through a sequence
of lemmas. The first such lemma will let us rule out those irreducible representations
D’ where A is a 2-regular partition with at least 3 parts.

LemmaA.2 If A is a 2-regular partition with at least 3 parts, then the irreducible
representation D* of S, contains a projective summand when restricted to Se.

Proof: Note that any 2-regular partition A with at least 3 parts can be written as
G2, ) +pu = (ur +3, 42+ 2,43 + 1, a, ..., pne) for some partition u =
(m1, M2, ..., me). James and Peel [39] constructed explicit Specht filtrations for

1 ndggx Su e (832D ® §#), which have S* as the top filtered quotient. In particular

this implies / ndggx Su e (832D @ $H) has D* as a quotient. However by Frobenius
reciprocity we know that
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Homg, (Indg" ¢ ($32D @ §1), D*) = Homgg s, (532D @ $#, Resy' o (DY),

X Sn—6
So since the left hand side is nonzero, the right hand side is as well.

Now if we look at §©2 1 @ S as a representation of S it is just a direct sum of
dim(S*) copies of §@2-1), which we know is irreducible and projective by Nakayama’s
conjecture. In particular the image under any nonzero homomorphism is also just a
direct sum of copies of S&21, so D* must contain at least one copy of S&21 as a
direct summand. U

Corollary A.1 If A is a 2-regular partition with at least 3 parts, then D* is not quadratic
with respect to any maximal rank elementary abelian 2-subgroup of Sy,.

Proof. After conjugating we may assume that our maximal rank elementary abelian
subgroup intersects S in an elementary abelian 2-group of rank at least 2. The previous
lemma says any such irreducible representation must contain projective summand
when restricted to Sg, and then this summand remains projective upon restriction
to the intersection of Sg with our maximal rank elementary 2-subgroup. Projective
representations of C% have Lowey length 3, so the Lowey length for the entire maximal
rank elementary abelian 2-subgroup of S, must be at least that big. ]

This reduces the problem to understanding what happens for two-part partitions
A = (a, b). These representations are much better understood then the general case.
For one thing, the branching rules for restriction are completely known in this case,
although we’ll just need the following simplified version:

Lemma A.3 (See [52] Theorem 3.6, following [66)). If (a, b) is a two-part partition of
nwitha —b > 1 then D19 appears as a subquotient with multiplicity one inside

the restriction of D'“?) to S, _1, and the other composition factors are all of the form
D@ b= yith > 0.

Recall that we defined Ha; C S»i to be the elementary abelian 2-subgroup of Sy
generated by the odd position adjacent transpositions (2i — 1,2i) for 1 <i <k, we
will also consider Hpi as a subgroup of S, for n > 2k via the standard inclusions of
S into S,,. The next lemma will be to settle for us exactly which representations are
have Lowey length 2 when restricted to the standard maximal rank elementary abelian
subgroup H,.

LemmaA.4 D50 contains a projective summand when restricted to Hay.

Proof: We know from the branching rules (Lemma A.3) that D% contains a
copy of D*+16) a5 a subquotient when restricted to Sy 1, so it is enough to verify
it for D®+1.0) Moreover Hy; C Soi so really this calculation is taking place inside
M (2k) := Res* D*+10),

These representations D&+Lb) and M(2k) are well studied. Benson proved
D%+L0) is a reduction modulo 2 of the so-called basic spin representation of Spy |
in characteristic zero ([5] Theorem 5.1). Nagai and Uno ([69] Theorem 2, or see
[60] Proposition 3.1 for an account in English), gave explicit matrix presentations for
M (2k) and showed that they have the following recursive structure:

Res>2m MQm) = MQ2i) @ MQ2m — 2i)

$2i X Som—2i
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In particular since M (2) can easily be seen to be the regular representation of
S> = Hj, it follows by induction that M (2k) is projective (and just a single copy of
the regular representation) for Hy. (|

Corollary A.2 The only nontrivial irreducible representation of S, which is quadratic
with respect to H, is D@11,

Proof: Corollary A.1 tells us that if A has at least 3 parts, D* has Lowey length at least
3 when restricted to H,,. Then Lemma A.4 tells us that D®~%%) has Lowey length at
least k 4 1 as a H, representation and is therefore not quadratic for k > 1. ]

To finish the proof of Theorem A.2 we need to show that for n at least 9 that there are
no representations which are quadratic with respect to to any of these other maximal
rank elementary abelian 2-subgroups K" x H,_4; withm > 1. Lemma A.1 rules out
D* for A of length at least 3, so again we will just need to address the case when A is
a length 2 partition.

We do this through a series of lemmas ruling out different cases, but first will state
the following well-known fact from the modular representation theory of symmetric
groups:

Lemma A.5 ([38] Theorem 9.3). If A is a partition of n, then S* restricted to S,_,
admits a filtration

0=MyCM C---CMy=5*

such that the successive quotients M;/M;_y are isomorphic to Specht modules S,
and S" appears if and only if u is obtained from A by removing a single box, in which
case it appears with multiplicity one.

LemmaA.6 D"~LD forn > 5, contains a projective summand when restricted to
K, and is therefore not quadratic with respect to any group containing K.

Proof: It suffices to prove it for DD as every D”~1.D for n > 5 contains it as a
composition factor upon restriction to S5 by Lemma A.3. This representation D™D is
just the 4 dimensional subspace of IF% where the sum of the coordinates is zero. If we
restrict this representation to Sy this can be identified with the standard 4-dimensional
permutation representation via the map (a, b, ¢, d) — (a,b,c,d, —a —b — c — d).
The restriction of the standard action of S4 on a 4-element set to K is simply transitive,
so this representation is just a copy of the regular representation. (|

LemmaA.7 D22 forn > 7 and D33 for n > 9 each contain a projective
summand when restricted to K, and are therefore not quadratic with respect to any
group containing K.

Proof: It suffices to prove it for D&2 and D3 as every D"~22) for n > 7 contains
D2 as a composition factor upon restriction to S7, and similarly every D=2 for
n > 7 contains D®3 as a composition factor upon restriction to Sg by Lemma A.3.
For §7 and Sy the decomposition matrices are known explicitly and we have that
DG = §6.2) apd D63 = §63) (see the appendix of [38]). For Specht modules the
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branching rules are given by Lemma A.5 and &2 and 3 both contain S* as a
subquotient upon restriction to S5. The result then follows from the previous lemma.
|

LemmaA.8 DKk fork > 4 and n > 2k + 1 is not quadratic when restricted to
K™ x Hy_ap foranym > 1.

Proof: We know by Lemma A.4 these are projective upon restriction to Hp, and are
therefore projective when restricted to the intersection of Hp; with K™ X H,_4.
This intersection has rank at least 2 since k > 4, and therefore projective objects have
Lowey length at least 3. This completes the proof of Theorem A.2. |

A.3 Modifications for A,

We will now briefly describe what changes if we work with alternating groups instead
of symmetric groups, but we will omit some of the details of the calculations. First a
quick summary of the modular representation theory of alternating groups in terms of
the theory for symmetric groups:

Upon restriction from S, to A,, the irreducible representations D* either remain
irreducible, or split as a direct sums D* = D** @ D*~ of two irreducible non-
isomorphic representations of the same dimension; all irreducible representations of
A, are uniquely obtained this way. We’ll note that in characteristic p > 2 thisis a
standard application of Clifford theory, but in characteristic 2 it is a difficult theorem
of Benson ([5] Theorem 1.1). Moreover it is known exactly which D* split this way,
but we won’t go into the combinatorics here.

When p > 2 the maximum rank abelian p-groups in S, all lie in A,, and the proof
of Theorem A.1 goes through without modification to give the following theorem.

Theorem A.1°. Any non-trivial irreducible representation of A, with n > p in
characteristic p > 2 has Lowey length at least 3 upon restriction to the copy of C,
generated by (1,2, ..., p), and is therefore not quadratic with respect to any maximal
rank elementary abelian p-subgroup.

When p = 2, the difference is more dramatic. It is no longer true that every
maximum rank abelian 2-subgroup of S, lies in A,,, in particular H, is not a subgroup
of A,. Let ﬁn denote the intersection of H, and A,, this has rank one less than H,,.
The maximal rank elementary abelian 2-subgroups of A,, are as follows:

If n = 4b or 4b + 1 then up to conjugacy the only maximal rank elementary
abelian 2-subgroup inside A, is K”, and it is of rank 2b. If n = 4b + 2 or 4b + 3
then all maximal rank elementary abelian 2-subgroups in S, still have maximal rank
when intersected with A,,, and up to conjugacy the maximal rank elementary abelian
2-subgroups inside A, are of the form:

KxKx~-~><K><I—~I,,_4m C Ag X Ag X -+ X A4 XAy_am C Ay

m times m times

and these have rank 26 — 1.
The appropriate modification to Theorem A.2 for alternating groups is the follow-
ing:
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Theorem A.2’. Suppose V is a non-trivial irreducible representation of A, with

n > 9 over a field of characteristic 2 which is quadratic with respect to a maximal
rank elementary abelian 2-subgroup H. Then n = 2 or 3 modulo 4, V = D=L,
and H is conjugate to H,.

The proof of Theorem A.2 mostly goes through in this case. Some additional care is

needed to handle the representations D** and D*~ which are not restrictions of irre-
ducible representations of S,,, however one simplifying observation is that since D**
and D*~ just differ by conjugation by a transposition, they are actually isomorphic to
one another upon restriction to a maximal rank elementary abelian 2-subgroup. We
will omit the remaining details though.
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