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Abstract
The link betweenmodular functions and algebraic functionswas a driving force behind
the 19th century study of both. Examples include the solutions byHermite andKlein of
the quintic via ellipticmodular functions and the general sextic via level 2 hyperelliptic
functions. This paper aims to apply modern arithmetic techniques to the circle of
“resolvent problems” formulated and pursued by Klein, Hilbert and others. As one
example, we prove that the essential dimension at p = 2 for the symmetric groups Sn
is equal to the essential dimension at 2 of certain Sn-coverings defined using moduli
spaces of principally polarized abelian varieties. Our proofs use the deformation theory
of abelian varieties in characteristic p, specifically Serre-Tate theory, aswell as a family
of remarkable mod 2 symplectic Sn-representations constructed by Jordan. As shown
in an appendix by Nate Harman, the properties we need for such representations
exist only in the p = 2 case. In the second half of this paper we introduce the
notion of E-versality as a kind of generalization of Kummer theory, and we prove that
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many congruence covers are E-versal. We use these E-versality result to deduce the
equivalence of Hilbert’s 13th Problem (and related conjectures) with problems about
congruence covers.
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1 Introduction

The link betweenmodular functions and algebraic functionswas a driving force behind
the 19th century development of both. Examples include the solutions by Hermite and
Klein of the quintic via ellipticmodular functions, degree 7 and 8 equationswithGalois
group PSL2(F7) via the level the level 7 modular curve, the general sextic via level 2
hyperelliptic functions, the 27 lines on smooth cubic surfaces via level 3, dimension 2
abelian functions, and the 28 bitangents on a smooth quartic via level 2, dimension 3
abelian functions.1 With theNazi destruction of theGöttingen research community this
connection was largely abandoned, and the study of algebraic functions and resolvent
problems, as pioneered by Klein, Hilbert and others, fell into relative obscurity. The
purpose of this paper to reconsider the link between modular functions and classical
resolvent problems.We do this from amodern viewpoint, using arithmetic techniques.

Essential dimension at p of modular functions. To fix ideas we work over C. Recall
that an algebraic function is a finite rational correspondence X ���1:n

P
1; that is, a

rational function f : X̃ ��� P
1 on some (finite, possibly branched) cover X̃ → X . 2

A fundamental example is the general degree n polynomial, equivalently the cover

1 See e.g. [11–13, 25, 26, 42, 43, 45, 51], as well as [48, 49].
2 When the functions are understood, we denote an algebraic function simply by the cover X̃ → X .
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Modular functions and resolvent problems

M0,n → M0,n/Sn,

where M0,n denotes the moduli space of n distinct marked points in P
1. When X is

a locally symmetric variety f is called a modular function. A basic example is the
cover Ag,N → Ag where Ag is the (coarse) moduli space of principally polarized
g-dimensional abelian varieties and Ag,N is the moduli of pairs (A,B) with A ∈ Ag

and B a symplectic basis for H1(A; Z/NZ).
The relationship between modular functions and the solutions of the general degree

n polynomial motivated Klein [43, 45], Kronecker [55] and others to ask about the
intrinsic complexity of these algebraic functions, as measured by the number of
variables to which they can be reduced after a rational change of variables. In mod-
ern terms (as defined by Buhler–Reichstein, see e.g. [62]), the essential dimension
ed(X̃/X) ≤ dim(X) of an algebraic function is the smallest d ≥ 1 so that X̃ → X is
the birational pullback of a cover Ỹ → Y of d-dimensional varieties.

One can also allow, in addition to rational changes of coordinates, the adjunction
of radicals or other algebraic functions. This is done by specifying a class E of covers
under which X̃ → X can be pulled back before taking ed of the resulting cover.
This gives the essential dimension ed(X̃/X; E) relative to the class E of “accesory
irrationalities”. For example, if one fixes a prime p and pulls back by covers of degree
prime to p, one obtains the notion of essential dimension at p, denoted ed(X̃/X; p)
(see e.g. [64]). The idea of accessory irrationality was central to the approaches of
Klein and Hilbert to solving equations. We axiomatize this notion in Definition 4.1
below and explore its consequences in Sect. 4.

The general degree n polynomial is universal for covers with Galois group Sn , even
allowing prime-to-p accessory irrationalities; that is, for all p ≥ 2 and for ed(Sn; p)
defined as the maximum of ed(X̃/X; p) for all Sn-covers X̃ → X , we have:

ed(M0,n/M0,n; p) = ed(Sn; p).

With the many examples relating the general degree n polynomial to modular
functions, it is natural to ask if the same “maximal complexity property” holds for
modular functions. Our first result states that for p = 2 this is indeed the case. To
explain this, for a subgroup G ⊂ Sp2g(Z/NZ) set Ag,G := Ag,N/G.

Theorem 1 Let n ≥ 2, g = � n
2 �−1, and let N ≥ 3 be odd. There exists an embedding

Sn ⊂ Sp2g(F2) ⊂ Sp2g(Z/2NZ) such that

ed(Ag,2N/Ag,Sn ; 2) = 	n/2
 = ed(Sn; 2).

We remark that what we actually prove is the first equality. The second equality
then follows from a result of Meyer–Reichstein [59,Corollary 4.2]. In particular, one
sees from their result that ed(Sn; p) takes its maximal value for p = 2, so this case
is, in some sense, the most interesting.

One ingredient in the proof of Theorem 1 comes from the link between binary
forms and hyperelliptic functions; specifically, Jordan proved that the monodromy of
the 2-torsion points on the universal hyperelliptic Jacobian gives a mod 2 symplectic
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Sn-representation. These remarkable representations were rediscovered and studied
by Dickson [18] in 1908. We deduce Theorem 1 by applying the following general
result to these representations.

Theorem 2 Let G be a finite group, and G → Sp2g(Fp) a representation. If U ⊂ Sp2g
is the unipotent of a Siegel parabolic then

ed(Ag,pN/Ag,G; p) ≥ dimFp G ∩U (Fp)

Theorem 2 is of most interest for those G which admit a symplectic representation
with dimFp G ∩ U (Fp) = ed(G; p), where ed(G; p) is the essential dimension at p
of a versal branched cover with group G (see Definition 4.4 below). For G = Sn, a
result of Harman (Theorems A.1 and A.2) says that this is possible only for p = 2,
and only using the particular mod 2 symplectic representation of Jordan/Dickson! We
also show that for G the Fq -points of a split semisimple group of classical type, there
is a symplectic representation of G for which the lower bound in Theorem 2 is either
equal or nearly equal to the maximal rank of an elementary abelian p-group in G. The
only near-misses occur for odd orthogonal groups. Note however, that this rank is in
general less than ed(G; p).
E-versal modular functions. Kummer theory gives that for each d ≥ 2 the cover
P
1 → P

1/(Z/dZ) has the following universal property: any Z/dZ cover X̃ → X is
rationally pulled back from it. It follows that ed(X̃/X; p) = 1 for any such X̃ → X .
Klein’s Normalformsatz states that, while the icosahedral cover P

1 → P
1/A5 is not

universal in the above sense (indeed ed(M0,5 → M0,5/A5) = 2), there exists aZ/2Z

accessory irrationality

Ỹ → X̃
↓ ↓
Y → X

such that Ỹ → Y is birational to a pullback of P
1 → P

1/A5. This nonabelian version
of Kummer’s theorem is a kind of classification of actions of A5 on all varieties. We
say in this case that P1 → P

1/A5 is E-versalwith respect to any collection E of covers
containing Z/2Z covers. Note that this cover is modular; indeed it is equivariantly
birational to the cover H

2/�2(5) → H
2/SL2(Z), where H

2 is the hyperbolic plane
and �2(5) is the level 5 congruence subgroup of SL2(Z); here we are using the natural
isomorphism PSL2(F5) ∼= A5.

In Sect. 4 we axiomatize the idea of E-versality and we give a number of examples
(most classically known) of congruence covers that are E-versal for various groups G.
The connection between these E-versality results with the first part of this paper is that
E-versalG-covers always maximize ed(X̃/X; E) over allG-covers X̃ → X . In Sect. 4
we apply such E-versality results to exhibit further the close relationship between
modular functions and roots of polynomials. Specifically, Hilbert’s 13th Problem, and
his Sextic and Octic Conjectures (see Sect. 4 for their exact statements) are phrased
in terms of the resolvent degree of the degree 6, 7 and 8 polynomials. The resolvent
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degree RD(X̃/X) is the smallest d such that X̃ → X is covered by a composite of
covers, each of essential dimension ≤ d (see e.g. [3, 7, 23]). Applying various E-
versality results, we deduce in Sect. 4 the equivalence of each of Hilbert’s conjectures
with a conjecture about the resolvent degree of a specific modular cover. For example,
we show the following(see Sect. 4.2 for terminology). For � < SL2(R) × SL2(R) a
lattice, let M� : (H2 × H

2)/�; these are complex-algebraic varieties called Hilbert
modular surfaces.

Proposition 3 For E any class of accessory irrationalities containing all quadratic
and cubic covers and composites thereof, the Hilbert modular surface

M
˜

SL2(Z[ 1+
√
5

2 ],3)
→ M

SL2(Z[ 1+
√
5

2 ])

is E-versal for A6, where
˜

SL2(Z[ 1+
√
5

2 ], 3) denotes the kernel of the map

SL2

(
Z

[
1 + √

5

2

])
→ PGL2(F9) ∼= A6.

In particular, Hilbert’s Sextic Conjecture is equivalent to the statement that the resol-
vent degree of this cover equals 2.

Similarly,we show that such amodular reformulation is possible not only for general
polynomials of low degree, but also for each of the algebraic functions considered by
Klein and his school [25, 41, 45, 50].

Methods. The proof of Theorem 2 uses a refinement of the results of [24], which
is explained in Sect. 1. In loc. cit, we used Serre-Tate theory to give lower bounds
on the essential at p for the coverings Ag,pN → Ag,N , when restricted to (some)
subvarietiesZ ⊂ Ag,N . Here we drop the assumption thatZ is a subvariety and allow
certain mapsZ → Ag,N (cf. Proposition 2.6). In particular, we can apply the resulting
estimate to Z = Ag,G for G a subgroup of Sp2g(Fp), which yields the lower bound
for ed(Ag,pN/Ag,G; p) in Theorem 2.

One may compare the bounds given by Theorem 2 to those obtained in [24,Sect. 4]
for certain finite simple groups of Lie type. The bound in the case of odd orthogonal
groups in loc. cit is weaker than the one given here because of the restriction on
the signature of Hermitian symmetric domains associated to odd orthogonal groups.
On the other hand the coverings we consider here correspond to rather more exotic
congruence subgroups than those of loc. cit.

2 Moduli of Abelian varieties

2.1 Extension classes

2.1.1. Fix a prime p, and let V be a complete discrete valuation ring of characteristic
0, with perfect residue field k of characteristic p, and a uniformizer π ∈ V . Let
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A = V [[x1, . . . , xn]] be a power series ring over V . We denote by mA ⊂ A the
maximal ideal, and m̄A = mA/π A. and set X̃ = Spec A, and X = Spec A[1/p]. We
will denote by k[ε] = k[X ]/X2 the dual numbers over k.

Recall [24,3.1.2] that there is a commutative diagram

A×/(A×)p
∼ Ext1

X̃
(Z/pZ, μp)

A[1/p]×/(A[1/p]×)p
∼

Ext1X (Z/pZ, μp)

where the terms on the right are extensions as Z/pZ-sheaves. The vertical maps are
injective, and the extensions in the image of the map on the right are called syntomic.
There is also a map [24,3.1.5]

θA : Ext1
X̃
(Z/pZ, μp)

∼−→ A×/(A×)p → m̄A/m̄2
A.

which sends a class represented by a function f ∈ 1 + mA to f − 1.

Lemma 2.1 LetU ⊂ Ext1
X̃
(Z/pZ, μp) be anFp-subspace of dimension≤ n. Suppose

that for every map h : A → k[ε] the image of U under the induced map

Ext1
X̃
(Z/pZ, μp) → Ext1Spec k[ε](Z/pZ, μp) (2.1)

is nontrivial. Then the map

θA : U ⊗Fp k → m̄A/m̄2
A (2.2)

is an isomorphism; in particular dimFp U = n.

Proof Since the image of U under 2.1 is nontrivial, the composite

θA : U ⊗Fp k → m̄A/m̄2
A → ε · k

is nontrivial for every h. This implies that 2.2 is surjective, and since dimFp U ≤ n it
is injective, and dimFp U = n. �

2.1.2. We call a subspace U ⊂ Ext1
X̃
(Z/pZ, μp) satisfying the conditions of

Lemma 2.1 nondegenerate, and we fix such a subspace. Now assume that V contains
a primitive pth root of unity, and fix a geometric point x̄ of X . Then

Ext1X (Z/pZ, μp)
∼−→ H1(X , μp) = H1

ét(X , μp) = Hom(π1(X , x̄), μp).

IfU ′ ⊂ U is a subspace, denote by X(U ′) → X the finite étale cover corresponding
toU ′. That is, X(U ′) is the cover corresponding to the intersection of all the elements
of Hom(π1(X , x̄), μp) that are images of elements of U ′. We let X̃ ′ = Spec A(U ′)
denote the normalization of X̃ in X(U ′).
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Lemma 2.2 For anyU ′ ⊂ U the ring A(U ′) is a power series ring over V . Further,

dimk �(m̄A/m̄2
A → m̄A(U ′)/m

2
A(U ′)) = dimFp (U /U ′). (2.3)

Proof Let f1, . . . , fr ∈ A× be elements with 1 − fi ∈ mA, and such that the images
of f1, . . . , fr in Ext1

X̃
(Z/pZ, μp) form an Fp-basis for U ′. By definition, X(U ′) =

Spec A[1/p]( p
√

f1, . . . , p
√

fr ). To prove the first claim, it suffices to show that

A( p
√

f1, . . . ,
p
√

fr ) = A[z1, . . . , zr ]/(z pi − fi )

is a power series ring over V . Since U is nondegenerate, the images of f1, . . . , fr
are k-linearly independent in mA/m2

A. Hence, after a change of coordinates, we can

assume that A
∼−→ V [[x1, . . . , xn]] with xi = fi − 1 for i = 1, . . . r . Then we have

A[z1, . . . , zr ]/(z pi − fi )
∼−→ V [[z1 − 1, . . . , zr − 1, xr+1, . . . , xn]].

This also shows 2.3, as both sides are equal to n − r . �

2.2 Monodromy on the ordinary locus

2.2.1. Fix an integer g ≥ 1, a prime p ≥ 2, and a positive integer N ≥ 2 coprime
to p. Consider the ring Z[ζN ][1/N ], where ζN is a primitive N th root of 1. Denote
by Ag,N the Z[ζN ][1/N ]-scheme which is the coarse moduli space of principally
polarized abelian schemes A of dimension g equipped with a basis of A[N ] that is
symplectic with respect to the Weil pairing defined by ζN . When N ≥ 3, this is a
fine moduli space which is smooth over Z[ζN ][1/N ]. For a Z[ζN ][1/N ]-algebra B,

denote by Ag,N/B the base change of Ag,N to B. If no confusion is likely to result,
we sometimes denote this base change simply by Ag,N .

Fromnowon, unless stated otherwise, we assume that N ≥ 3 andwe letA → Ag,N

be the universal abelian scheme. The p-torsion subgroup A[p] ⊂ A is a finite flat
group scheme over Ag,N which is étale over Z[ζN ][1/Np]. Let x ∈ Ag,N be a point
with residue field κ(x) of characteristic p, and Ax the corresponding abelian variety
over κ(x).

The set of points x such thatAx is ordinary is an open subschemeAord
g,N ⊂ Ag,N ⊗

Fp. We denote by Âord
g,N the formal completion of Ag,N along Aord

g,N . We denote by

Aord,an
g,N the “generic fibre” of Âord

g,N as a p-adic analytic space.3

Denote by k an algebraically closed perfect field of characteristic p, and let
K/W [1/p] be a finite extension with ring of integersOK and uniformizer π. Assume
that K is equipped with a choice of primitive N th root of 1, ζN ∈ K , so that we may
consider all the objects introduced above overOK . Let K̄/K be an algebraic closure.

3 The reader may think of any version of the theory of p-adic analytic spaces they prefer (Tate, Raynaud,
Berkovich, or Hüber’s adic spaces), as this will have no bearing on our arguments.
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Proposition 2.3 Fix a geometric point x ∈ Âord,an
g,N (K̄ ) and denote by x̄ ∈ Aord

g,N its
reduction.The covering Ag,pN → Ag,N corresponds to a surjective representation

π1(Ag,N , x) → Sp2g(Fp). (2.4)

1. There exists a Siegel parabolic P ⊂ Sp2g/Fp with unipotent radical U , such that
2.4 induces a surjective representation

π1(Âord,an
g,N , x) → P(Fp). (2.5)

2. Let A = ÔAg,N ,x̄ be the completion of the local ring at x̄ . Then (2.4) induces a
surjective representation

π1(Spec A[1/p], x) → U (Fp). (2.6)

Proof The first claim is well known. Indeed, the existence of theWeil pairing onA[p]
implies that Ag,pN corresponds to a symplectic representation. A comparison with
the topological fundamental group shows that the image of the geometric fundamental
group π1(Ag,N ⊗K K̄ , x) is Sp2g(Fp), so the representation is surjective.

Now recall, that a Siegel parabolic is the stabilizer of a maximal isotropic subspace
in the underlying vector space of a symplectic representation. Equivalently it is a

parabolic with abelian unipotent radical. All such parabolics are conjugate. Over Âord
g,N

the finite flat group scheme A[p] is an extension

0 → A[p]m → A[p] → A[p]ét → 0 (2.7)

of an étale by amultiplicative group scheme, where étale locallyA[p]ét ∼−→ (Z/pZ)g

and A[p]m ∼−→ μ
g
p. The Weil pairing induces a map of group schemes

A[p] × A[p] → μp.

which identifies A[p] with its Cartier dual, and induces an isomorphism A[p]m with
the Cartier dual ofA[p]ét. In particular, this shows thatA[p]mx ⊂ A[p]x corresponds
to amaximal isotropic subspace under theWeil pairing. This defines a Siegel parabolic

such that (2.4) maps π1(Âord,an
g,N , x) into P(Fp). By [22,V, Prop. 7.2] the image of the

composite

π1(Âord,an
g,N , x) → P(Fp) → (P/U )(Fp)

is surjective. Hence it suffices to prove (2).
For this, we adopt the notation of 2.1 appliedwith A as in (2). Sincewe are assuming

k is algebraically closed, over A, the group schemesA[p]ét andA[p]m are isomorphic
to (Z/pZ)g and μ

g
p respectively. In particular, the map (2.6) factors through U (Fp).

LetU ⊂ Ext1X (Z/pZ, μp) be the span of the g2 syntomic extension classes defining
the extension (2.7). Note that U (Fp) is an elementary abelian p-group of rank n =
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dimFp U = dimAg = (g+1
2

)
. Any Fp-linear map s : U (Fp) → Fp induces a

representation

π1(Spec A[1/p], x) → μp(K̄ )
∼−→ Fp

(choosing pth root of unity), and hence a class in

c(s) ∈ Ext1X (Z/pZ, μp)
∼−→ H1(X , Fp).

The subspace U is the span of all the classes c(s). This shows dimU ≤ n, with
equality only if (2.6) is surjective. However, by [24,3.2.2], one sees that U satisfies
the conditions of Lemma 2.1, so that dimU = n, which completes the proof of the
lemma. �

Corollary 2.4 With the notation above, HomFp (U (Fp), Fp) is naturally identified with
a nondegenerate subspace U ⊂ Ext1X (Z/pZ, μp).

Proof The proof of the Proposition 2.3 shows that there is a natural map

HomFp (U (Fp), Fp) → Ext1X (Z/pZ, μp)

whose image U is a nondegenerate subspace of dimension n = dimFp U . �

2.3 Essential dimension

2.3.1. We refer the reader to [24,Sect. 2] for the definitions and facts we will need
about essential dimension and essential dimension at p. We remind the reader that for
K a field and Y → X a finite étale map of finite type K -schemes, ed(Y/X; p) denotes
the essential dimension at p of YK̄ → XK̄ , where K̄ is an algebraic closure of K .

2.3.2. We continue to use the notation introduced above. In particular A = ÔAg,N ,x̄

denotes the complete local ring which is a power series ring over OK in n = (g+1
2

)
variables.

Lemma 2.5 Let g : A → B and f : C → B be maps of power series rings over OK ,

with f a flat map. Suppose there exists a finite étale covering Y ′ → SpecC[1/p] and
an isomorphism of étale coverings ε : f ∗Y ′ ∼−→ g∗A[p] over Spec B[1/p]. Then

�(m̄A/m̄2
A → m̄B/m̄2

B) ⊂ �(m̄C/m̄2
C → m̄B/m̄2

B).

In particular,

dimk m̄C/m̄2
C ≥ dimk �(m̄A/m̄2

A → m̄B/m̄2
B).

Proof By [24,2.1.8], we may assume that Y ′ is an extension of a constant étale group
scheme by a constant multiplicative group scheme, and that ε is an isomorphism of
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extensions. By [24,3.1.4, 3.1.5], the extension Y ′ is syntomic, and wemay assume that
the isomorphism f ∗Y ′ ∼−→ g∗A[p] extends to an isomorphism of finite flat group
schemes (which automatically respects the extension structure) over Spec B.

Now let h : B → k[ε] be any map which vanishes on the image of m̄C/m̄2
C , so

that h induces the constant map C → k. Then h∗ f ∗Y ′ ∼−→ h∗g∗A[p] is a split
extension over Spec k[ε]. It follows from [24,3.2.2] that h ◦ g(mA) = 0,which proves
the inclusion in the lemma. �

2.3.3. We introduce the following notation. For a map f : X → Y of smooth k-
schemes, we let

r( f ) = max
x∈X(k)

dimk �(m̄ f (x)/m̄
2
f (x) → m̄x/m̄

2
x )

For f a map of smooth OK -schemes, set r( f ) = r( f ⊗ k). Note that r( f ) does not
change if we restrict f to a dense open subset in X .

Proposition 2.6 Let Z be a smooth, connectedOK -scheme, and letZ → Ag,N/OK be
a map ofOK -schemes such that the image of the special fiber, Zk , meets the ordinary
locus Aord

g,N ⊂ Ag,N/k . Then

ed(A[p]|ZK /ZK ; p) ≥ r( f )

Proof The proof of this is almost the same as that of Theorem [24,3.2.6]. The only
difference is that we use Lemma 2.5 instead of Lemma 3.2.4 of loc. cit at the end of
the proof. �

Example 2.7 LetHg denote the moduli of hyperelliptic curves of genus g. LetHg[n]
be the moduli of pairs (C,B) where C is a hyperelliptic genus g curve and B is a
symplectic basis for H1(C; Z/nZ). Let τ : Hg/OK → Ag/OK denote the Torelli map.
By [56,Theorem 1.2], τ is an embedding only when the characteristic of k is prime to
2; when k is of characteristic 2, r(τ ) = g+1. Because of this, [24,Theorem 3.2.6] does
not give a lower bound on ed(Hg[2]/Hg; 2). Using Proposition 2.6 above instead, as
well as the argument of [24,Corollary 3.2.7], we obtain

ed(Hg[2]/Hg; 2) ≥ g + 1.

Remark 2.8 More generally, Proposition 2.6 gives an arithmetic tool for obtaining
lower bounds on the essential dimension at p, analogous to the “fixed point method”
(cf. [62]). As forthcoming work of Brosnan–Fakhrudin [8] demonstrates, the fixed
point method applied to the toroidal boundary recovers the bounds of Theorem 1
and similar bounds for non-compact locally symmetric varieties (including those not
of Hodge type); it also allows one to use toroidal boundary components other than
those corresponding to Siegel parabolics. However, as remarked in [24], we are not
aware of methods besides Proposition 2.6 that apply to unramified nonabelian covers
of compact varieties.
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2.3.4. Proposition 2.3 implies that the monodromy group of Ag,pN → Ag,N can
be identified with Sp2g(Fp). Fix such an identification. Let G be a subgroup of
Sp2g(Fp) ⊂ Sp2g(Z/pNZ). Denote by Ag,G → Ag,N the finite, normal, covering
corresponding to G.

Theorem 2.9 Let p be a prime, and let N ≥ 3 be prime to p. G ⊂ Sp2g(Fp) ⊂
Sp2g(Z/pNZ). Then

ed(A[p]|Ag,G/Ag,G; p) ≥ max
U

dimFp U ∩ G,

where the maximum on the right hand side is over all unipotent radicals of Siegel
parabolics in Sp2g(Fp).

Proof Let U0 ⊂ Sp2g(Fp) be an abelian unipotent subgroup such that dimFp U0 ∩ G
achieves themaximum. LetU ⊂ Sp2g/Fp be the abelian unipotent subgroup defined in
Proposition 2.3. Because all Siegel parabolics are conjugate in Sp2g(Fp), there exists
a conjugate of G, denoted G ′ ⊂ Sp2g(Fp), such that

dimFp U (Fp) ∩ G ′ = dimFp U0 ∩ G.

Because conjugate subgroups give isomorphic covers, and because ed(−; p) is a bira-
tional invariant,

ed(A[p]|Ag,N ,G/Ag,N ,G; p) = ed(A[p]|Ag,N ,G′ /Ag,N ,G ′ ; p).

It therefore suffices to prove the theorem under the assumption thatU0 = U (Fp). For
this, it suffices to consider the case G = U (Fp) ∩ G. In the following we slightly
abuse notation and write U for U (Fp).

Let x ∈ Ag,N (k) be a point in the ordinary locus. By (2) of Proposition 2.3, there
exists y ∈ Ag,pN (k) and x ′ ∈ Ag,N ,U (k) with y mapping to x ′ and x, such that the
natural map

A := ÔAg,N ,x → ÔAg,N ,U ,x ′

is an isomorphism, and such that, if B = ÔAg,pN ,y, then

Spec B[1/p] → Spec A[1/p]

is a U -covering.
Let U = HomFp (U , Fp), and U ′

G = HomFp (U/(U ∩ G), Fp). By Corol-
lary 2.4, U is identified with a nondegenerate subspace of Ext1X (Z/pZ, μp) where
X = Spec A[1/p]. Now let A′ = ÔAg,N ,U∩G ,x̄ ′′ , where x ′′ denotes the image of
y in Ag,N ,U∩G . Since Ag,N ,U∩G is normal, using the notation of 2.1.2., we have
A′ = A(U ′

G). Hence, by Lemma 2.2, we have

dimk �(m̄A/m̄2
A → m̄A′/m2

A′) = dimFp U ∩ G,
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and A′ is a power series ring over OK .

Since x was any point in the ordinary locus, this shows that r( f ) ≥ dimFp U ∩G,

where f : Ag,N ,U∩G → Ag,N , and that Ag,N ,U∩G is smooth over OK , over the
ordinary locus of Ag,N . Combining this with Proposition 2.6 proves the theorem. �

3 Modular symplectic representations of finite groups

3.1 General finite groups

Let p be prime, G a finite group and V a faithful, finite-dimensional G-representation
over Fp. The pairing

ev : V ⊗ V∨ → Fp

extends to a G-invariant symplectic form on V ⊕ V∨. We refer to the associated
representation

G → Sp(V ⊕ V∨)

as the diagonal (symplectic) representation associated to V .

Lemma 3.1 Let H ⊂ G be an elementary abelian p-subgroup, such that H maps to
the unipotent radical of a maximal parabolic in GL(V ). Then there exists a Siegel
parabolic of P ⊂ Sp(V ⊕V∨) with unipotent radical U such that, under the diagonal
representation associated to V ,

H ⊂ U ∩ G.

Proof Anymaximal parabolic in GL(V ) is the stabilizer P(W ) of a subspaceW ⊂ V .

Let U (W ) denote the unipotent radical of P(W ). Let W⊥ ⊂ V∨ denote the dual
subspace. Then W ⊕ W⊥ is a Lagrangian subspace of V ⊕ V∨, and

GL(V ) ∩ StabSp(V⊕V∨)(W ⊕ W⊥) = StabGL(V )(W ) = P(W ).

Hence
GL(V ) ∩U (W ⊕ W⊥) = U (W ),

where U (W ⊕ W⊥) is the unipotent radical of StabSp(V⊕V∨)(W ⊕ W⊥), the Siegel
parabolic corresponding to W ⊕ W⊥. In particular H ⊂ U (W ) ⊂ U (W ⊕ W⊥), the
Siegel parabolic corresponding to W ⊕ W⊥. �
3.1.1. Let

sp(G) := max
U⊂GL(V )

dimFp U ∩ G

where the maximum is taken over all faithful representations G of V , and unipotents
U of maximal parabolics in GL(V ). Proposition 3.1 and Theorem 2.9 immediately
imply the following.

123



Modular functions and resolvent problems

Corollary 3.2 For some g, there exists a congruence cover Ag,p → Ag,G with

ed(Ag,p/Ag,G; p) ≥ sp(G).

Remark 3.3 While Corollary 3.2 implies that ed(G; p) ≥ sp(G), this is not hard to
show directly, e.g. by [9,Lemma 4.1]. In fact, let

rp(G) := max
H⊂G

dimFp H

where the maximum is taken over all elementary abelian p-groups H ⊂ G. Then
ed(G; p) ≥ rp(G) ≥ sp(G). The novelty of Corollary 3.2 is that (a) this lower bound
can be realized by an explicit congruence cover; and (b) the congruence cover, and
thus the lower bound, comes frommodular representation theory at the relevant prime,
rather than from ordinary representation theory in characteristic 0 (as in e.g. [9] or the
theorem of Karpenko–Merkurjev [40]).

The corollary is most interesting in those cases where sp(G) is large. In the remain-
der of this section we give examples where sp(G) is equal to, or at least very close
to rp(G). These consist of the case of alternating groups when p = 2, and the case
where G is the Fq -points of a split semisimple group of classical type.

3.2 The groups Sn and An

We now specialize to the symmetric groups Sn and the alternating groups An .

3.2.1. We would like to apply Corollary 3.2 to the case of symmetric and alternating
groups. Meyer–Reichstein [59,Corollary 4.2] proved that ed(Sn; p) = rp(Sn) and
similarly for An for all n and p. However, in Appendix A, Harman shows that for p >

2, sp(Sn) < rp(Sn) and similarly for An . The purpose of this section is to show—see
Proposition 3.4 below—that one has s2(Sn) = r2(Sn) for all n, and s2(An) = r2(An)

(resp. s2(An) = r2(An)−1) for n = 2, 3 (resp. 0, 1) modulo 4. This uses a remarkable
mod2 symplectic representation of Sn,discovered byDickson.Harmon’s results imply
that for n ≥ 5, this is the only mod 2 representations for which the unipotent of a
maximal parabolic meets Sn in a maximal elementary abelian 2-group.

Recall the “permutation irrep” V of Sn over Fp.4 For p � n this is the analogue over
Fp of the standard permutation irrep in characteristic 0, i.e. the invariant hyperplane

V = {(a1, . . . , an) ∈ F
n
p |
∑

ai = 0}

For p | n the diagonal line 
 := {(a, . . . , a)} ⊂ F
n
p is an invariant subspace of the

invariant hyperplane, and

V = {(a1, . . . , an) ∈ F
n
p |
∑

ai = 0}/
.

4 The results of Dickson [18] andWagner [71, 72] show that the permutation irrep is aminimal-dimensional
faithful irrep for n > 8 and p = 2, or for n > 6 and p odd.
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Dickson [18] showed that over F2, the permutation irrep of Sn is a symplectic repre-
sentation. Let

dn :=
⌈n
2

⌉
− 1,

so that Dickson’s representation gives a “Dickson embedding” Sn ⊂ Sp2dn (F2).

Proposition 3.4 Let N ≥ 3 be odd. For all n ≥ 2, consider the Dickson embedding
Sn ⊂ Sp2dn (F2) ⊂ Sp2dn (Z/2NZ). There exists a Siegel parabolic with unipotent
radical U such that

dimF2 U ∩ Sn =
⌊n
2

⌋
,

dimF2 U ∩ An =
⌊n
2

⌋
− 1.

By Theorem 2.9, for all n ≥ 1:

ed(Adn ,2N/Adn ,Sn ; 2) =
⌊n
2

⌋
= ed(Sn; 2),

ed(Adn ,2N/Adn ,An ; 2) =
⌊n
2

⌋
− 1,

i.e.

ed(Adn ,2N/Adn ,An ; 2) =
{
ed(An; 2) − 1 n = 0, 1 mod 4
ed(An; 2) n = 2, 3 mod 4

Proof Let V denote the permutation irrep of n over F2, as in [18], i.e.

V = H/
 =
{

(x1, . . . , x2� n
2 �) ∈ F

2� n
2 �

2

∣∣∣∣∣
∑
i

xi = 0

}
/ {(x, . . . , x) ∈ F2}

A convenient basis for V is given by the cosets in H of

ei := [(0, . . . , 1, . . . , 0︸ ︷︷ ︸
1 in the i th place

, 0, 1)]

for i = 1, . . . , 2dn . With respect to this basis the action of S2dn ⊂ Sn is the standard
permutation action of S2dn on F

2dn
2 . Dickson [18,p. 124] proved that the Sn action on

F
2dn
2 preserves the symplectic form

∑
1≤i �= j≤dn xi y j . We now change basis for ease

of studying a Lagrangian. Let

ωi := e2i−1 + e2i

ω∨
i = ∑2i−1

j=0 e j .
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A straightforward computation shows that the planes W = 〈{ωi }ni=1〉 and W⊥ =
〈{ω∨

i }ni=1〉 are dual Lagrangians written with dual Lagrangian bases.
Now fix W and let P := Stab(W ) be the corresponding Siegel parabolic with

unipotent U . From the Lagrangian basis for W , we see that

F
	 n
2 


2 =
〈
(12), (34), . . . ,

(
2
⌊n
2

⌋
− 1 2

⌊n
2

⌋)〉
⊂ U ∩ Sn (3.1)

But this is a maximal elementary abelian 2-group in Sn , so (3.1) is an equality. Thus

U ∩ An =
〈
(12)(34), . . . , (12)

(
2
⌊n
2

⌋
− 1 2

⌊n
2

⌋)〉
= F

	 n
2 
−1

2

as claimed. �

3.3 Finite groups of Lie type

Proposition 3.5 Let q = pr , and G = H(Fq), where H is one of the semisimple Lie
groups SLm, SO2m+1, Sp2m with m ≥ 2 or SO2m, with m ≥ 4. Let ρ : H → GL(V )

be the standard representation of H over Fq . Then there exists a parabolic P(W ) ⊂
GL(V ) with unipotent radical U , such that dimFq W = 	 dim V

2 
, and r ′
p(G) :=

dimFq G ∩U satisfies:

• If G = SLm(Fq), then r ′
p(G) = 	m2

4 
.
• If G = Sp2m(Fq) then r ′

p(G) = m(m+1)
2 .

• If G = SO2m(Fq) then r ′
p(G) = m(m−1)

2 .

• If G = SO2m+1(Fq) then r ′
p(G) = m(m−1)

2 .

We have r · r ′
p(G) = rp(G) in all cases except if G = SO2m+1, in which case

rp(G)/r = m(m+1)
2 if q is even and rp(G)/r = m(m−1)

2 + 1 (resp. 5, resp. 3) if q is
odd and m ≥ 4, (resp. m = 3, resp. m = 2).

Proof Weuse the standard representations of the root systems of each of the groups H .

In each case, we will recall the weights appearing in V , specify the subspaceW ⊂ V ,

and describe a subgroup UG ⊂ H as a sum of root spaces. In each case if r is a root
appearing in UG and w,w′ are weights appearing in W and V /W respectively, then
r + w does not appear in V , and r + w′ does not appear in V /W . This implies that
UG ⊂ H ∩U .

If G = SLm(Fq), then the weights of V are e1, . . . , em, and W = 〈e1, . . . , e	m
2 
〉.

The roots appearing in UG are ei − e j with i ≤ 	m
2 
 < j .

IfG = Sp2m(Fq), then theweights ofV are±e1, . . . ,±em, andW = 〈e1, . . . , em〉.
The roots appearing in UG are ei + e j and 2ei for 1 ≤ i < j ≤ m.

If G = SO2m(Fq), then the weights of V are ±e1, . . . ,±em, and W =
〈e1, . . . , em〉. The roots appearing in UG are ei + e j for 1 ≤ i < j ≤ m.

If G = SO2m+1(Fq), then the weights of V are ±e1, . . . ,±em, 0 and W =
〈e1, . . . , em〉. The roots appearing in UG are ei + e j for 1 ≤ i < j ≤ m.
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The maximal elementary abelian p-subgroups of H(Fq) for each group H
appearing above are computed in [4]. In particular, for G equal to one of
SLm(Fq),Sp2m(Fq),SO2m(Fq), one sees that UG is already a maximal elementary
abelian p-subgroup, so thatUG = H∩U and r ·r ′

p(G) = rp(G).ForG = SO2m+1(Fq)

the claims about rp(G) also follows from loc. cit, and it remains only to prove that
UG = H ∩U in this case.

To see this, consider v = ∑
r arr ∈ Lie (H ∩U )where r is a positive root of H and

ar is a scalar. Now V is a cyclic highest weight module for Lie H . Using this and that
v annihilates e j ∈ W , one gets ar = 0 if r = ei − e j . Similarly, since v annihilates
−e j ∈ V /W , ar = 0 for r = e j . Thus v ∈ UG . �

Remark 3.6 Note that when q is even, one has SO2m+1(Fq) � Sp2m(Fq), so that
sp(G) = rp(G) in this case.

4 Classical problems and congruence covers

Beginning with the work of Hermite on the quintic [31], the use of modular functions
to solve algebraic equations is a major theme of 19th century work, including Klein’s
icosahedral solution of the quintic [43], the Klein–Burkhardt formula for the 27 lines
on a cubic surface [11–13, 45], the Klein–Gordan solution of equations with Galois
group the simple group PSL(2, 7) [28, 42], and the Klein–Fricke solution of the sextic
[25, 47]. Underlying this work is the fact that problems of algebraic functions are often
equivalent to problems of modular functions and congruence covers.

Our goal in this section is to record the classical equivalences, and add to them
using recent advances in uniformization. We begin by axiomatizing the notion of
accessory irrationality, and recalling the general context in which to take up Klein’s
call to “fathom the nature and significance of the necessary accessory irrationalities”
[43,p. 174].We then recall the general setup of congruence covers of locally symmetric
varieties in order to state the precise equivalences.

While many of the results of this section are implicit in the classical literature, as
far as we can tell, with the exception of Klein’s Normalformsatz [43], that various
classical problems are in fact equivalent has gone unremarked in the literature until
quite recently [23].

4.1 Accessory irrationalities and E-versality

For the rest of the paper we fix an algebraically closed field K of characteristic 0.
4.1.1. By a branched cover Y → X , we mean a dominant, finite map of normal

K -schemes of finite type. Branched covers form a category: a map (Y ′ → X ′) →
(Y → X) is a commutative diagram

Y ′ Y

X ′ X .
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If f : X ′ → X is a map of normal K -schemes of finite type, denote by f ∗Y the
normalization of Y ×X X ′. If X is irreducible with geometric generic point 
 → X
(i.e. an algebaic closure of K (X)), then Y → X corresponds to a finite set SY with an
action of π1(U ,
) for some dense open U ⊂ X , where π1(U ,
) denotes the étale
fundamental group of U at 
. We denote by Mon(Y/X) the image of π1(U ,
) in
Aut(SY ).

4.1.2.We now introduce the notion of a class of accessory irrationalities (cf. Klein [43,
46], see also Chebotarev [14]). These are branched covers introduced to manipulate
some fixed branch cover of interest Y → X (hence the term “accessory”). To indicate
this visually, we will use the notation Y → X to denote a general branched cover of
interest, and we will use the notation E → X to denote an accessory irrationality.

Definition 4.1 (Accessory irrationalities). A class of accessory irrationalities is a full
subcategory E of the category of branched covers. If E(X) ⊂ E denotes the subcategory
consisting of branched covers X̃ → X , then we require that E(X) is stable under
isomorphisms, and satisfies the following conditions.

(1) For any X , the identity X → X is in E(X).

(2) For any map f : X ′ → X of normal K -schemes of finite type, f ∗ induces a
functor f ∗ : E(X) → E(X ′).

(3) E(X∐ X ′) = E(X) × E(X ′).
(4) E(X) is closed under products: If E, E ′ ∈ E(X), then E ×X E ′ ∈ E(X).

(5) If U ⊂ X is dense open, then the map E(X) → E(U ) induced by restriction is an
equivalence of categories.

(6) If E → X ′ → X are branched covers and if E → X is in E(X) then E → X ′ is
in E(X ′).

Axiom (2) implies that E is a category fibered over the category of normal K -
schemes.Note thatAxiom (3) implies that it is enough to specifyE(X) for X connected.

Definition 4.2 Fix a class E of accessory irrationalities. The essential dimension of a
cover X̃ → X , with respect to E is:

ed(X̃/X; E) := min
(E→X)∈E ed(E ×X X̃/E).

Example 4.3 Some of the core classical examples of E are as follows (for simplicity
we specify E(X) only for X connected):

(1) For E(X) = {id : X → X}, the quantity ed(X̃/X; E) is just the essential dimension
ed(X̃/X).

(2) Let p be a prime and let E(X) be the subcategory of branched covers of X whose
degree is coprime to p. Then ed(X̃/X; E) is the essential dimension at p. We
emphasize that, although it leads to the same notion of essential dimension at p,
we do not insist that E is connected, as this version of the definition does not
satisfy Axiom (3) of Definition 4.1.

(3) Let E(X) be the set of covers E → X with Mon(E/X) abelian. Then ed(X̃/X; E)
is the abelian resolvent degree. Likewise, we can consider the class of accessory
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irrationalities with nilpotent (resp. solvable) monodromy, to obtain the nilpotent
(resp. solvable) resolvent degree (see [14, 15, 46]).

(4) Let G be a finite simple group, and let E(X) consist of all E → X such that
for each connected component E ′ of E, the branched cover E ′ → X is Galois
and a composition series for Aut(E ′/X) has no factor isomorphic to G. We write
ed(X̃/X;G) for ed(X̃/X; E).

Definition 4.4 (E-versality). Let E be a class of accessory irrationalities. A Galois
branched cover X̃ → X with group G is E-versal if for any other Galois G-cover
Ỹ → Y , and any Zariski open U ⊂ X , there exists

(1) an accessory irrationality E → Y in E(Y ),
(2) a nontrivial rational map f : E → U , and
(3) an isomorphism f ∗ X̃ |U ∼= Ỹ |E .
Remark 4.5 If E is the trivial class of accessory irrationalities, i.e. E(X) only contains
the identity, then E-versal is just “versal” in the usual sense of the term (see e.g.
[27,Sect. 1.5]).

If E′ ⊂ E are classes of accessory irrationalities, then E′-versality for a G-cover
implies E-versality. In particular a cover which is versal is E-versal for any class E.
Example 4.6 (1) Hilbert’s Theorem 90 implies that for a finite group G, and a faithful

linear action G � A
n , the map A

n → A
n/G is versal (see [21]).

(2) The Merkujev–Suslin Theorem [58,Theorem 16.1] implies that for every faithful,
projective-linear action G � P

n , the map P
n → P

n/G is solvably versal, i.e.
E-versal for the class E of solvable branched covers.5

Lemma 4.7 Let G be a finite group, let E be a class of accessory irrationalities, and
let X̃ → X be an E-versal G-cover.

(1) Let X̃ → Z̃ be a G-equivariant dominant rational map. Then Z̃ → Z̃/G is an
E-versal G-cover.

(2) Let H ⊂ G be any subgroup. Then X̃ → X̃/H is an E-versal H-cover.

Proof The first statement follows immediately from the definition. For the second, let
Ỹ → Y be a Galois H -cover. Then

Ỹ ×H G → Y

is a Galois G-cover which is H -equivariantly isomorphic to Ỹ × G/H → Y . By
E-versality, for any Zariski open U ⊂ X , there exists an accessory irrationality

E → Y

in E, and a rational map

f : E → U

5 Mutatis mutandis, this follows by the same reasoning as in [21].
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with an isomorphism of G-covers

f ∗ X̃ ∼= (Ỹ ×H G)|E .

By the Galois correspondence for covers, the H -equviariant isomorphism above
implies that E → U factors through a map

f̃ : E → (X̃/H)|U

We conclude that f̃ ∗ X̃ ∼= Ỹ |E and that X̃ → X̃/H is E-versal for H as claimed. �

Remark 4.8 Example 4.6(1) and Lemma 4.7(1) immediately imply that for each n ≥ 5,
the cover M0,n → M0,n/Sn is versal for the group Sn .

4.1.3. We can also consider the resolvent degree of a cover X̃ → X , which is
somewhat different from, but related to the idea of the general notion of essential
dimension defined above. To explain this, write E• → X for a tower of branched
covers E = Er → · · · → E0 = X . The resolvent degree of X̃ → X is defined as

RD(X̃/X) = min
E•→X

max
{
ed(E ×X X̃/E), {ed(Ei/Ei−1)}ri=1

}

where E• → X runs over all sequences of covers.
When Mon(X̃/X) is simple, it follows from [23,Cor. 2.18] that the definition of

RD(X̃/X) does not change if we consider only E• → X such that the composition
π1(E,
) → π1(X ,
) → Mon(X̃/X) is surjective and ed(Ei/Ei−1) < dim(X)

(n.b. here as above, 
 → X denotes a geometric generic point). In particular

min
E•→X

ed(E ×X X̃/E) ≤ RD(X̃/X) (4.1)

where E• → X runs over sequences of covers satisfying these conditions. On the
other hand, in every known example, the current best upper bound for RD(−) can be
exhibited using such a sequence E• → X which in addition satisfies ed(E×X X̃/E) ≥
ed(Ei+1/Ei ), for i = 1, . . . , r .

Hilbert [33, 34]made three conjectures on the resolvent degree of the general degree
n polynomial; equivalently on

RD(n) := RD(M0,n/(M0,n/Sn)) = RD(M0,n/(M0,n/An)).

Conjecture 1 (Hilbert) The following equalities hold:

SexticConjecture : RD(6) = 2.
13thProblem : RD(7) = 3.

OcticConjecture : RD(8) = RD(9) = 4.
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The upper bounds in Conjecture 1 are known; the first two are due to Hamilton, the
last to Hilbert.

Our interest inE-versality comes from the following lemma,which is provenmutatis
mutandis by the same argument as in the proof of [23,Proposition 3.7].

Lemma 4.9 Let E be a class of accessory irrationalities and let X̃ → X be an E-versal
G-cover. For any Galois branched cover Ỹ → Y with monodromy G,

ed(Ỹ/Y ; E) ≤ ed(X̃/X; E).

In particular, for any other E-versal G-cover X̃ ′ → X ′,

ed(X̃ ′/X ′; E) = ed(X̃/X; E).

Further, if E is any of the classes of Example 4.3 and if G is simple, then

RD(Ỹ/Y ) ≤ RD(X̃/X) and RD(X̃ ′/X ′) = RD(X̃/X).

Lemma 4.9 makes precise the classical discovery that E-versal G-covers provide
“normal forms” to which every other G-cover or can be reduced. Notably, for many
groups G of classical interest, congruence covers are E-versal for a natural choice of
E.

Remark 4.10 While the notion of versality has been studied intensively for several
decades, many of the most interesting normal forms, beginning with Klein’s Normal-
formsatz, rely on the notion of solvable versality, which is substantially more flexible.
For example, a versal G-variety of minimal dimension must be unirational. On the
other hand, there are no rational A6 curves (by Klein’s classification of finite Möbius
groups), and the level 3 Hilbert modular surface of discriminant 5, which is solvably
versal for A6 and conjectured by Hilbert to be of minimal dimension among such
varieties, has arithmetic genus equal to 5 (see the discussion in the proof of Proposi-
ton 4.14 below). A better understanding of the geometric implications of solvable
versality (and related notions) could shed significant light on the underpinnings of
Hilbert’s conjectures.

4.2 E-versal congruence covers

We can now record the E-versal congruence covers that we know. Klein’s Normal-
formsatz provides the paradigmatic example for what follows.

4.2.1. Write A f for the group of finite adeles over Q. Let G be a group-scheme
of finite type over Z whose generic fiber, which we also denote by G, is a connected
semisimple group. SinceG is of finite type,G(Ẑ) = lim←−nG(Z/nZ) is profinite. Recall
that G(A f ) is naturally a locally compact topological group which depends only on
the generic fiber of G, and for which the subgroup G(Ẑ) ⊂ G(A f ), with its natural
profinite topology, is open; this construction goes back to Weil [73].
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A subgroup � ⊂ G(Q) is called a congruence subgroup if it contains G(Q) ∩ K
for some compact open K ⊂ G(A f ). This is equivalent to requiring that for some
positive integer n, � contains

G(Z, n) := ker(G(Z) → G(Z/n)) = ker(G(Ẑ) → G(Z/n)) ∩ G(Q).

We assume that the quotient X of G(R) by a maximal compact subgroup is
a Hermitian symmetric domain. Then for any congruence subgroup �, a theorem
of Baily–Borel asserts that M� := X/� is a complex, quasiprojective variety,
cf. [17,2.1.2]. For �′ ⊂ � congruence subgroups, there is a natural covering map
M�′ → M�.

For L a totally real number field, and G a group scheme of finite type over OL

whose generic fiber is a connected semisimple group, one can apply the above to
ResL/QG instead of G. More precisely, we write simply ResL/QG for the Z-group

scheme ResOL/ZG. Then we have G(OL)
∼−→ ResL/QG(Z) and when we write

G(OL)wemean thatwe areworking theHermitian symmetric domain and congruence
subgroups associated with the group ResL/QG. Similarly, we write G(OL , n) for
(ResL/QG)(Z, n). If L = Q(

√
d) is real quadratic, denote by G(OL ,

√
d) the kernel

of

ResL/QG(Z) = G(OL) → G(OL/
√
d).

If L is quadratic imaginary and a, b are non-negative integers, one can consider the
unitary group U(a, b) of signature a, b defined by L. This is the subgroup scheme of
ResOL/ZGLn, where n = a + b, which fixes the standard Hermitian (with respect to
conjugation on K ) form of signature (a, b). One also has the corresponding projective
unitary group PU(a, b).

In fact for the rest of this section we take L = Q(ω), where ω is a primitive
cube root of 1, and we will only need groups of signature n − 1, 1. We denote by
PU(n − 1, 1)(Z,

√−3) the kernel of the composite

PU(n − 1, 1)(Z) → ResOL/Z PGLn(Z) = PGLn(OL) → PGLn(F3).

Theorem 4.11 (Klein’s Normalformsatz, [43]). Let E be any class of accessory irra-

tionalities containing all quadratic branched covers. Let ˜SL2(Z, 5) := ker(SL2(Z) →
PSL2(Z/5Z)). Then the level 5 cover of the modular curve

M
˜SL2(Z,5)

→ MSL2(Z).

is an E-versal PSL2(F5) = A5-cover. In particular, for any branched cover X̃ → X
with monodromy A5,

ed(X̃/X; E) = RD(X̃/X) = 1.
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This is in contrast to Klein’s theorem that ed(A5) = 2.We can add another example
for A5, which was studied in detail by Hirzebruch [35], and was likely known to
Kronecker, Klein and Hilbert.

Proposition 4.12 The level 2 cover of the Hilbert modular surface

M
SL2(Z[ 1+

√
5

2 ],2) → M
SL2(Z[ 1+

√
5

2 ])

is versal for A5.

Proof Let C ⊂ P
4 be Clebsch’s diagonal cubic surface, i.e. C is the vanishing of the

first and third elementary symmetric polynomials in x0, . . . , x4. By [35,Theorem 1],
there is a birational equivalence

C � M
SL2(Z[ 1+

√
5

2 ],2).

By the proof of [35,Theorem 2], this birational equivalence is in fact SL2(F4) = A5-
equivariant. Next, an 1861 theorem of Hermite [32] shows that there is a dominant
A5-equivariant dominant rational map

A
5 → C,

where the source is the permutation representation of A5 (see [54] for a modern
treatment of this map, see [6, 16, 63] for other treatments of Hermite’s theorem). By
Hilbert’s Theorem 90, A5 is versal. The proposition now follows from Lemma 4.7. �

Similar to, but less well-known than, Klein’s normalformsatz is the following (see
[28, 42], [36,pp. 318–319] and [25,Vol. II, Part 2, Chaps. 1–2]). Denote by PSL(2, 7)
the image of SL2(F7) → PGL2(F7); this is a simple group.

Proposition 4.13 (Normal forms for PSL(2, 7)).

(1) Let PGL+
2 (Z[√7]) ⊂ PGL2(Z[√7]) denote the subgroup of elements which lift

to an element of GL2(Z[√7]) with totally positive determinant. The cover

M PGL2(Z[√7],√7) → M PGL+
2 (Z[√7])

of Hilbert modular surfaces is versal for the simple group PSL(2, 7).
(2) Let E be any class of accessory irrationalities containing all S4-covers. Let

˜SL2(Z, 7) denote the kernel of the surjection SL2(Z) → PSL(2, 7). Then the
level 7 modular curve

M
˜SL2(Z,7)

→ MSL2(Z)

is an E-versal PSL(2, 7)-cover. In particular, for any branched cover X̃ → X with
monodromy PSL(2, 7),

ed(X̃/X; E) = RD(X̃/X) = 1.
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Proof We remark that Z[√7]× = {±εn} where ε = 8+ 3
√
7 is the fundamental unit.

Hence PGL2(Z[√7],√7) ⊂ PGL+
2 (Z[√7]), and in particular, the latter group is a

congruence subgroup.
Consider the modular curve M

˜SL2(Z,7)
. This has genus 3, and so the action of

PSL(2, 7) on 1-forms gives a linear action of PSL(2, 7) on A
3, and an equivariant

dominant rational map A
3 → P

2. Lemma 4.7 then implies that P
2 is versal for

PSL(2, 7). As noted on [36,pp. 318–319], there is a PSL(2, 7)-equivariant birational
isomorphism

P
2 ∼= M PGL2(Z[√7],√7).

This proves the first statement of the proposition.
The second statement follows from [28, 42]. In modern language, it suffices to

construct an accessory irrationality E → P
2/PSL(2, 7) and a PSL(2, 7)-equivariant

dominant rational map

P
2|E → M

˜SL2(Z,7)
.

For this, the canonical embedding of the modular curve M
˜SL2(Z,7)

gives a PSL(2, 7)-
equivariant map

M
˜SL2(Z,7)

→ P
2.

As Klein discovered, the image of this map is a quartic curve, the so-called “Klein
quartic”. Fixing any PSL(2, 7)-invariant pairing on P

2, there is a rational map

P
2 → M0,4/S4.

which sends a point x ∈ P
2 to the intersection of the dual line Lx with the Klein

quartic. Let

E = M0,4|P2 .

Then there is a PSL(2, 7)-equivariant dominant map

P
2|E → M

˜SL2(Z,7)

as claimed. �

We can add the following result to the above.

Proposition 4.14 (Normal forms for the sextic).

(1) The congruence cover

A2,2 → A2
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and the Picard modular 3-fold

MPU(3,1)(Z,
√−3) → MPU(3,1)(Z)

are versal for A6.6

(2) For E any class of accessory irrationalities containing all quadratic covers and
composites thereof, the congruence cover

A2,3/F
×
3 → A2,A6

and the Picard modular 3-fold

MPU(3,1)(Z,2) → MPU(3,1)(Z,A6)

are E-versal for A6.
(3) For E any class of accessory irrationalities containing all quadratic and cubic

covers and composites thereof, the Hilbert modular surface

M
˜

SL2(Z[ 1+
√
5

2 ],3)
→ M

SL2(Z[ 1+
√
5

2 ])

is E-versal for A6, where
˜

SL2(Z[ 1+
√
5

2 ], 3) denotes the kernel of the map

SL2(Z[ 1+
√
5

2 ]) → PGL2(F9) = A6.

In particular (cf. Remark 4.8 and Lemma 4.9) Hilbert’s Sextic Conjecture is equiv-
alent to the statement that the resolvent degree of any (and thus each) of the above
covers is dim(M

SL2(Z[ 1+
√
5

2 ])) = 2.

Let PSp(4, 3) denote the image of Sp4(F3) → PSp4(F3); this is a simple group.
To prove the proposition, we make use of the following lemma.

Lemma 4.15 Let PSp(4, 3) act linearly on P
3 and let G ⊂ PSp(4, 3) be any subgroup.

Let E be any class of accessory irrationalities containing all composites of quadratic
covers. Then P

3 is an E-versal G-variety.

Proof There is (see e.g. [1]) an Sp4(F3)-equivariant dominant rational map

A
4 → P

3.

Lemma 4.7 then implies that P
3 is versal for Sp4(F3) As observed in the proof of

[23,Theorem4.3], this implies thatP3 is E-versal for PSp(4, 3) and thus, by Lemma 4.7
for any G ⊂ PSp(4, 3) as well. �

6 Recall that there are exceptional isomorphisms Sp4(F2) ∼= O+
4 (F3) ∼= S6.
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Proof of Proposition 4.14 For versality, as in the proof of Proposition 4.12, it suffices
to prove that there are A6-equivariant birational isomorphisms

M0,6 ∼= A2,2 ∼= MPU(3,1)(Z,
√−3) (4.2)

whereM0,6 is the moduli of 6 distinct points in P
1. The first isomorphism of (4.2) is

the classical period map which sends 6 points in P
1 to the Jacobian of the hyperelliptic

curve branched at those points. For the second, consider the Segre cubic threefold X3
in P

5 given by

X3 :=
{

[x0 : · · · : x5] ∈ P
5 :

5∑
i=0

xi = 0 =
5∑

i=0

x3i

}
.

The permutation action of S6 onP
5 leaves invariant X3, permuting its 10 nodes. Kondo

[53] proved that X3 is isomorphic to the Satake–Bailey–Borel compactification of
the Picard modular 3-fold MPU(3,1)(Z,

√−3). One can check that the birational map
MPU(3,1)(Z,

√−3) → X3 is S6-equivariant (cf. e.g. [65,p. 6, Lemma 2.1]).
Hunt proves in [37,Theorem 3.3.11] that the dual variety to X3 is the so-called Igusa

quartic I4, which is the moduli space of 6 points on a conic in P
2. The two varieties

X3 and I4 are S6-equivariantly birational. The Igusa quartic I4 is the Satake compact-
ification of A2,2. The second birational isomorphism in (4.2) is the composition of
these.

Now letEbe any class of accessory irrationalities containing all quadratic covers and
composites thereof. As explained in Hunt [37,Chap. 5.3], there is a 6 : 1 (in particular,
dominant) PSp(4, 3)-equivariant rational map

P
3 → B

where the action of PSp(4, 3) on P
3 is linear and where B denotes the “Burkhardt

quartic”. There is also a PSp(4, 3)-equivariant birational isomorphism

B ∼= A2,3/F
×
3 .

Lemma 4.15 implies that A2,3/F
×
3 is E-versal for G = A6 ⊂ PSp(4, 3).

Thus A2,3/F
×
3 is E-versal for any subgroup of PSp(4, 3), in particular A6. Finally,

Hunt [37,Theorem 5.6.1] proved that B is PSp(4, 3)-equivariantly biregularly isomor-
phic to the Baily–Borel compactification of MPU(3,1)(Z,2).

For the last statement, let E be any class of accessory irrationalities containing all
composites of quadratic and cubic covers. By [70,Chap. VIII, Theorem 2.6], there
exists a PSL2(F9) = A6-equivariant birational isomorphism

M
˜

SL2(Z[ 1+
√
5

2 ],3)
∼= V1,2,4 ⊂ P

5

where V1,2,4 is the common vanishing locus of the 1st, 2nd and 4th elementary sym-
metric polynomials and A6 acts on P

5 via the permutation representation. As above,
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it suffices to construct an accessory irrationality E → A
6/A6 in E and an equivariant

dominant rational map

A
6|E → V1,2,4.

This follows from the classical theory of Tschirnhaus transformations (see e.g. [74]
for a contemporary treatment). Recall that a Tschirnhaus transformation Tb, for some
b := (b0, . . . , b5) ∈ A

6, is the assignment which sends a root z of the generic sextic
to

5∑
i=0

bi z
i .

This defines an S6-equivariant rational map

Tb : A
6 → A

6

Letting b vary, we have anA
6
b parameter space of Tschirnhaus tranformations for each

sextic, which we view as a trivial bundle

π1 : A
6 × A

6
b → A

6.

We also have an evaluation map

ev : A
6 × A

6
b → A

6

By direct computation (see e.g. [74,Definition 3.5 and Lemma 3.6]), ev−1(Ṽ1,2,4), i.e.
the preimage under the map ev of the affine cone over V1,2,4, is the intersection of a
(trivial) family of hyperplanes T̃1, a cone over a generically smooth quadric T̃2 (for
smoothness, see e.g. [74,Lemma 2.6]), and a quartic cone T̃4. By the classical theory
of quadrics (e.g. [74,Lemma 5.10]), there exists a finite, generically étale map

E0 → A
6/A6

with monodromy a 2-group such that the quadric cone T̃2|E0 contains a (trivial) family
L → E0 of 2-planes over E0. The intersection

L ×E0 T̃4

is thus the affine cone over a family of 4 distinct points in P
1. There thus exists an

S4-cover

E → E0
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and a section σ : E → ev−1(Ṽ1,2,4)|E . The map

ev ◦ σ : A
6|E → V1,2,4

gives the dominant map we seek. By construction E → A
6/A6 is in the class E, and

thus V1,2,4 is indeed E-versal. �

Proposition 4.16 (Normal forms for the 27 lines).

(1) The congruence cover

MPU(4,1)(Z,
√−3) → MPU(4,1)(Z)

is versal for O+
5 (F3) ∼= W (E6).

7

(2) For E any class of accessory irrationalities containing all quadratic covers and
composites thereof, the congruence cover

A2,3/F
×
3 → A2

and the Picard modular 3-fold

MPU(3,1)(Z,2) → MPU(3,1)(Z)

are E-versal for the simple group PSp(4, 3) ∼= W (E6)
+ (the normal index 2-

subgroup of W (E6)).

In particular, [23,Conjecture 1.8] implies and is implied by the resolvent degree of
any (and thus each) of the above covers equaling dim(A2) = 3.

Proof ByAllcock–Carlson–Toledo [2], there exists an O+
5 (F3) ∼= W (E6)-equivariant

birational isomorphism

H3,3(27) � MPU(4,1)(Z,
√−3)

from the moduli H3,3(27) of smooth cubic surfaces with a full marking of the inter-
section of their 27 lines to the Picard modular 4-fold.

By [20,Lemma 6.1] H3,3(27) is versal for W (E6). By Lemma 4.7, both varieties
are therefore versal for any subgroup of W (E6).

The remaining statements follow from the proof of Proposition 4.14 above. Con-
cretely, there we showed that A2,3/F

×
3 was E-versal for any subgroup of PSp(4, 3),

in particular for PSp(4, 3) itself. Together with the PSp(4, 3)-equivariant birational
isomorphism

A2,3/F
×
3 � MPU(3,1)(Z,2)

recalled in the proof of Proposition 4.14, this implies the result. �

7 Recall that there is an exceptional isomorphism of O+
5 (F3) with the Weyl group of E6.
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Proposition 4.17 (Normal forms for the septic, the octic, and 28 bitangents). Let G ⊂
Sp6(F2) be any subgroup. Then the cover

A3,2 → A3,G

is versal for G. In particular (cf. Remark 4.8 and Lemma 4.9) :

(1) Hilbert’s 13th Problem is equivalent to

RD(A3,2/A3,A7) = 3.

(2) Hilbert’s Octic Conjecture [33,p. 248] is equivalent to

RD(A3,2/A3,A8) = 4.

(3) [23,Problem 5.5(2)], which asks for the resolvent degree of finding a bitangent on
a planar quartic, is equivalent to asking for RD(A3,2 → A3).

Proof This follows as in the proof of [23,Proposition 5.7], which in turn draws on [19]
and ideas of Coble. As explained there, there exists an Sp6(F2)-equivariant dominant
rational map

A
7 → H4,2(28) � M3[2]

where H4,2(28) denotes the moduli of smooth planar quartics with a marking of
their 28 bitangents, andM3[2] denotes the moduli of genus 3 curves with full level 2
structure. The periodmapping gives an Sp6(F2)-equivariantly birational isomorphism

M3[2] � A3,2,

and thus A3,2 is a versal G-variety for any G ⊂ Sp6(F2) as claimed. �

4.2.2. By Klein [44], the action A7 � P
3 is solvably versal. As a result, Hilbert’s 13th

problem is equivalent to the assertion that the cover P
3 → P

3/A7 is a normal form of
minimal dimension.

Question 4.18 Is there a congruence cover X�′ → X� with Galois group A7 and
dim X� = 3 which is also E-versal for one of the classes of accessory irrationalities
considered in Example 4.3?

Finding such a congruence cover would give the transcendental part of Klein’s
3-variable solution of the degree 7, as in [43,Chap. 5.9]. Note that Prokhorov’s clas-
sification [61,Theorem 1.5] of finite simple groups acting birationally on rationally
connected 3-folds gives strong constraints on any possible congruence cover.

Question 4.19 Is there a congruence cover X�′ → X� with Galois group A8 and
dim X� = 4 which is also E-versal for one of the classes of accessory irrationalities
considered in Example 4.3?
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4.2.2.1. As Propositions 4.14 and 4.17 show, for g = 2, 3 the Sp2g(F2)-variety Ag,2
is G-versal for any subgroup G ⊂ Sp2g(F2). Hence for n = 6, 7, 8 the resolvent
degree of the coverAdn ,2 → Adn ,An is equal to RD(n), as defined in the introduction.
Interestingly, Hilbert’s conjectured value for resolvent degree, and the value of the
essential dimension at 2 for these covers, almost agree :

n 6 7 8 9
Hilbert: RD(n) 2 3 4 4
ed(An; 2) 2 2 4 4

Note that in these cases the value of ed(Adn ,2 → Adn ,An ; 2) = ed(An; 2) is already
given by Proposition 3.4, except when n = 8 and g = 3, in which case Proposition 3.4
gives the lower bound 3. The actual value ed(A3,2 → A3,A8; 2) = 4 follows from
versality (e.g. from Lemma 4.9 applied to the modular cover A4,2 → A4,A8 arising
from the diagonal representation of A8 = SL4(F2); the ed at 2 of this cover follows
from Corollary 3.2).
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Appendix by Nate Harman

A On quadratic representations of Sn

A.1 Statement of results

Recall that any linear representation of a p-group G over a field k of characteristic p
contains a non-zero invariant vector, in particular this implies that the only irreducible
representation of G over k is the trivial representation. This does not mean that all rep-
resentations are trivial though, there are non-split extensions of trivial representations
and understanding their structure is a central part of modular representation theory.

In a non-semisimple setting, one basic invariant of a representation is its Lowey
length. For representations of p-groups in characteristic p it can be defined as follows:
Start with a representation V and then quotient it by its space of invariants to obtain
a new representation V ′ = V /VG , then repeat this process until the quotient is zero.
The Lowey length is the number of steps this takes.

In the above work Farb, Kisin, and Wolfson analyze certain special representations
of symmetric groups in characteristic 2, the so-called Dickson embeddings. Typically
denoted D(n−1,1) in the representation theory literature, these representations have the
following key property: Let n = 2m or 2m + 1, these representations have Lowey
length 2 when restricted to the rank m (which is the maximum possible) elementary
abelian 2-subgroup Hn generated by (1, 2), (3, 4), . . . , and (2m − 1, 2m).

This motivates the following definition: We say that an irreducible representation
of a Sn in characteristic p is quadratic with respect to a maximal rank elementary
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abelian p-subgroup H if it has Lowey length 2 upon restriction to H . The purpose of
this note is to prove first that this is only a characteristic 2 phenomenon, and second
that these representations D(n−1,1) are the only representations which are quadratic
with respect to some maximal rank elementary abelian p-subgroup for n sufficiently
large (n ≥ 9).

In characteristic p > 2, the maximal rank elementary abelian p-subgroups in Sn
are just those generated by a maximal collection of disjoint p-cycles. Our first main
theorem tells us that there are no quadratic representations in characteristic p > 2, and
in fact we can detect the failure to be quadratic here by restricting to a single p-cycle.

Theorem A.1 Any irreducible representation of Sn with n ≥ p in characteristic p > 2
which is not a character has Lowey length at least 3 upon restriction to the copy of Cp

generated by (1, 2, . . . , p), and therefore is not quadratic with respect to any maximal
rank elementary abelian p-subgroup.

Note that in any characteristic p > 2 the characters of Sn are just the trivial and
sign representations.

In characteristic 2 things are a bit more complicated. While the subgroup Hn

of Sn is a maximal rank elementary 2-subgroup, it is no longer the unique such
subgroup up to conjugation. Recall that in S4 there is the Klein four subgroup
K = {e, (12)(34), (13)(24), (14)(23)}, which is a copy of C2

2 not conjugate to H4.
We can construct other maximal rank elementary 2-subgroups of Sn by taking

products

K × K × · · · × K︸ ︷︷ ︸
m times

×Hn−4m ⊂ S4 × S4 × · · · × S4︸ ︷︷ ︸
m times

×Sn−4m ⊂ Sn

and up to conjugacy though these are all the maximal rank elementary abelian 2-
subgroups inside Sn .

S8 has a special irreducible representation D(5,3) of dimension 8 which upon
restriction A8 decomposes as a direct sum D(5,3)+ ⊕ D(5,3)− of two representa-
tions of dimension 4. These representations realize the “exceptional" isomorphism
A8 ∼= GL4(F2), or rather they realize two different isomorphisms differing by either
by conjugating A8 by a transposition in S8 or by the inverse-transpose automorphism
of GL4(F2). Under this isomorphism the subgroup K × K ⊂ A8 gets identified with
the subgroup of matrices of the form

⎡
⎢⎢⎣
1 0 a b
0 1 c d
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

which is manifestly quadratic. Our second main theorem will be to show that there
are no other quadratic representations other than the Dickson embedding once n is at
least 9.
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Theorem A.2 Suppose V is a non-trivial irreducible representation of Sn with n ≥ 9
over a field of characteristic 2 which is quadratic with respect to a maximal rank
elementary abelian 2-subgroup H. Then V ∼= D(n−1,1), and H is conjugate to Hn.

A.2 Proofs of main theorems

Wewill be assuming a familiaritywith themodular representation theory of symmetric
groups. A standard reference for this material the book [38] of James, which we
will be adopting the notation from and referring to for all the basic results we need.
The irreducible representations of Sn in characteristic p are denoted by Dλ, for p-
regular partitions λ of n. These arise as quotients of the corresponding Specht modules
Sλ, which are well behaved reductions of the ordinary irreducible representations in
characteristic zero.

A.2.1 Proof of Theorem A.1

First we will reduce the problem to just looking at representations of Sp. For that we
have the following lemma:

Lemma A.1 (1) Every irreducible representation V of Sn with n ≥ p in characteristic
p > 3 which is not a character has a composition factor when restricted to Sp
which is not a character.

(2) Every irreducible representation V of Sn with n ≥ 4 in characteristic 3 which
is not a character has a composition factor when restricted to S4 which is not a
character.

Proof For part (a) suppose V only has composition factors which are characters when
restricted to Sp. If we restrict this to the alternating group Ap all the composition
factors must be trivial, as Ap only has the trivial character. If we further restrict to
Ap−1 the whole actionmust be trivial because representations of Ap−1 are semisimple
in characteristic p. However if the action of Ap−1 is trivial on V then so is the action
of the entire normal subgroup generated by Ap−1 inside Sn , which we know is all of
An if n > 3. So V must be the trivial as a representation of An , and is therefore a
character of Sn .

For part (b), let’s again suppose V only has composition factors that are characters
when restricted to S4, which implies it only has trivial composition factors when
restricted to A4. If we further restrict to the Klein four subgroup K the whole action
must be trivial because representations of K are semisimple in characteristic p �= 2.
As before we see V must be trivial for the normal subgroup of Sn generated by K ,
which we know is all of An for n > 4. Therefore V is a character. �

Remark: The modification for characteristic 3 is necessary because in characteristic
3 the only irreducible representations of S3 are the trivial and sign representations.
Theorem A.1 holds vacuously in this case.

It is now enough to prove Theorem A.1 for Sp in characteristic p > 3, and for S4
in characteristic 3. Let’s first focus on the case where p > 3. If λ is a p-core, then
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Nakayama’s conjecture (which is actually a theorem, see [38] Theorem 21.11) tells us
Dλ = Sλ is projective, and hence remains projective when restricted to Cp and there-
fore has Lowey length p. This leaves those irreducible representations corresponding
to hook partitions λ = (p − k, 1k).

In the simplest case where λ = (p− 1, 1) then Dλ is the (p− 2)-dimensional quo-
tient of the standard (p−1)-dimensional representation S(p−1,1) by its one dimensional
space of invariants, and one can easily verify this forms a single (p − 2)-dimensional
indecomposable representation of Cp. Peel explicitly computed the decomposition
matrices for Sp in characteristic p (see [38] Theorem 24.1), and it follows from his
calculation that the remaining irreducible representations Dλ with λ = (p − k, 1k)
for 1 < k ≤ p − 2 are just exterior powers �k D(p−1,1) of this (p − 2)-dimensional
representation.

Since k < p we know that �k D(p−1,1) is a direct summand of (D(p−1,1))⊗k ,
which as a representation of Cp is just the unique (p − 2)-dimensional indecom-
posable representation tensored with itself k times. Tensor product decompositions
for representations of cyclic groups are known explicitly ([29] Theorem 3), and in
particular it is known that a tensor product of two odd dimensional indecomposable
representations of Cp always decomposes as a direct sum of odd dimensional inde-

composable representations. So we see (D(p−1,1))⊗k and �k D(p−1,1) = D(p−k,1k )

only have odd length indecomposable factors when restricted to Cp. If it had Lowey
length 1 when restricted to Cp that means the action is trivial, which implies the
action of Ap must also be trivial as Ap is simple, but that would imply the original
representation of Sn was a character.

In the characteristic 3 case there are only two irreducible representations of S4,
they are the standard 3-dimensional representation S(3,1) = D(3,1) and its sign twisted
version S(2,1,1) = D(2,1,1). These are 3-core partitions so again by Nakayama’s con-
jecture they are both projective and therefore remain projective when restricted to C3
and have Lowey length 3. �

A.2.2 Proof of Theorem A.2

The overall structure of the proof will be to successively rule different classes of
representations andmaximal rank elementary abelian 2-subgroups through a sequence
of lemmas. The first such lemma will let us rule out those irreducible representations
Dλ where λ is a 2-regular partition with at least 3 parts.

Lemma A.2 If λ is a 2-regular partition with at least 3 parts, then the irreducible
representation Dλ of Sn contains a projective summand when restricted to S6.

Proof: Note that any 2-regular partition λ with at least 3 parts can be written as
(3, 2, 1) + μ = (μ1 + 3, μ2 + 2, μ3 + 1, μ4, . . . , μ�) for some partition μ =
(μ1, μ2, . . . , μ�). James and Peel [39] constructed explicit Specht filtrations for
I ndSn

S6×Sn−6
(S(3,2,1) ⊗ Sμ), which have Sλ as the top filtered quotient. In particular

this implies I ndSn
S6×Sn−6

(S(3,2,1) ⊗ Sμ) has Dλ as a quotient. However by Frobenius
reciprocity we know that
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HomSn (I nd
Sn
S6×Sn−6

(S(3,2,1) ⊗ Sμ), Dλ) ∼= HomS6×Sn−6(S
(3,2,1) ⊗ Sμ, ResSnS6×Sn−6

(Dλ)).

So since the left hand side is nonzero, the right hand side is as well.
Now if we look at S(3,2,1) ⊗ Sμ as a representation of S6 it is just a direct sum of

dim(Sμ) copies of S(3,2,1),whichweknow is irreducible andprojective byNakayama’s
conjecture. In particular the image under any nonzero homomorphism is also just a
direct sum of copies of S(3,2,1), so Dλ must contain at least one copy of S(3,2,1) as a
direct summand. �
Corollary A.1 If λ is a 2-regular partition with at least 3 parts, then Dλ is not quadratic
with respect to any maximal rank elementary abelian 2-subgroup of Sn.

Proof. After conjugating we may assume that our maximal rank elementary abelian
subgroup intersects S6 in an elementary abelian 2-group of rank at least 2. The previous
lemma says any such irreducible representation must contain projective summand
when restricted to S6, and then this summand remains projective upon restriction
to the intersection of S6 with our maximal rank elementary 2-subgroup. Projective
representations ofC2

2 have Lowey length 3, so the Lowey length for the entiremaximal
rank elementary abelian 2-subgroup of Sn must be at least that big. �

This reduces the problem to understanding what happens for two-part partitions
λ = (a, b). These representations are much better understood then the general case.
For one thing, the branching rules for restriction are completely known in this case,
although we’ll just need the following simplified version:

Lemma A.3 (See [52] Theorem 3.6, following [66]). If (a, b) is a two-part partition of
n with a − b > 1 then D(a−1,b) appears as a subquotient with multiplicity one inside
the restriction of D(a,b) to Sn−1, and the other composition factors are all of the form
D(a−1+r ,b−r) with r > 0.

Recall that we defined H2k ⊂ S2k to be the elementary abelian 2-subgroup of S2k
generated by the odd position adjacent transpositions (2i − 1, 2i) for 1 ≤ i ≤ k, we
will also consider H2k as a subgroup of Sn for n > 2k via the standard inclusions of
S2k into Sn . The next lemma will be to settle for us exactly which representations are
have Lowey length 2 when restricted to the standard maximal rank elementary abelian
subgroup Hn .

Lemma A.4 D(n−k,k) contains a projective summand when restricted to H2k .

Proof: We know from the branching rules (Lemma A.3) that D(n−k,k) contains a
copy of D(k+1,k) as a subquotient when restricted to S2k+1, so it is enough to verify
it for D(k+1,k). Moreover H2k ⊂ S2k so really this calculation is taking place inside
M(2k) := ResS2k+1

S2k
D(k+1,k).

These representations D(k+1,k) and M(2k) are well studied. Benson proved
D(k+1,k) is a reduction modulo 2 of the so-called basic spin representation of S2k+1
in characteristic zero ([5] Theorem 5.1). Nagai and Uno ([69] Theorem 2, or see
[60] Proposition 3.1 for an account in English), gave explicit matrix presentations for
M(2k) and showed that they have the following recursive structure:

ResS2mS2i×S2m−2i
M(2m) ∼= M(2i) ⊗ M(2m − 2i)
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In particular since M(2) can easily be seen to be the regular representation of
S2 = H2, it follows by induction that M(2k) is projective (and just a single copy of
the regular representation) for H2k . �

Corollary A.2 The only nontrivial irreducible representation of Sn which is quadratic
with respect to Hn is D(n−1,1).

Proof: Corollary A.1 tells us that if λ has at least 3 parts, Dλ has Lowey length at least
3 when restricted to Hn . Then Lemma A.4 tells us that D(n−k,k) has Lowey length at
least k + 1 as a Hn representation and is therefore not quadratic for k > 1. �

To finish the proof of TheoremA.2we need to show that for n at least 9 that there are
no representations which are quadratic with respect to to any of these other maximal
rank elementary abelian 2-subgroups Km × Hn−4k with m ≥ 1. Lemma A.1 rules out
Dλ for λ of length at least 3, so again we will just need to address the case when λ is
a length 2 partition.

We do this through a series of lemmas ruling out different cases, but first will state
the following well-known fact from the modular representation theory of symmetric
groups:

Lemma A.5 ([38] Theorem 9.3). If λ is a partition of n, then Sλ restricted to Sn−1
admits a filtration

0 = M0 ⊂ M1 ⊂ · · · ⊂ MN ∼= Sλ

such that the successive quotients Mi/Mi−1 are isomorphic to Specht modules Sμ,
and Sμ appears if and only if μ is obtained from λ by removing a single box, in which
case it appears with multiplicity one.

Lemma A.6 D(n−1,1), for n ≥ 5, contains a projective summand when restricted to
K , and is therefore not quadratic with respect to any group containing K .

Proof: It suffices to prove it for D(4,1) as every D(n−1,1) for n > 5 contains it as a
composition factor upon restriction to S5 by Lemma A.3. This representation D(4,1) is
just the 4 dimensional subspace of F

5
2 where the sum of the coordinates is zero. If we

restrict this representation to S4 this can be identified with the standard 4-dimensional
permutation representation via the map (a, b, c, d) → (a, b, c, d,−a − b − c − d).
The restriction of the standard action of S4 on a 4-element set to K is simply transitive,
so this representation is just a copy of the regular representation. �

Lemma A.7 D(n−2,2) for n ≥ 7 and D(n−3,3) for n ≥ 9 each contain a projective
summand when restricted to K , and are therefore not quadratic with respect to any
group containing K .

Proof: It suffices to prove it for D(5,2) and D(6,3) as every D(n−2,2) for n > 7 contains
D(5,2) as a composition factor upon restriction to S7, and similarly every D(n−2,2) for
n > 7 contains D(6,3) as a composition factor upon restriction to S9 by Lemma A.3.

For S7 and S9 the decomposition matrices are known explicitly and we have that
D(5,2) = S(5,2) and D(6,3) = S(6,3) (see the appendix of [38]). For Specht modules the
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branching rules are given by Lemma A.5 and S(5,2) and S(6,3) both contain S(4,1) as a
subquotient upon restriction to S5. The result then follows from the previous lemma.

�
Lemma A.8 D(n−k,k) for k ≥ 4 and n ≥ 2k + 1 is not quadratic when restricted to
Km × Hn−4m for any m ≥ 1.

Proof: We know by Lemma A.4 these are projective upon restriction to H2k , and are
therefore projective when restricted to the intersection of H2k with Km × Hn−4m .
This intersection has rank at least 2 since k ≥ 4, and therefore projective objects have
Lowey length at least 3. This completes the proof of Theorem A.2. �

A.3 Modifications for An

We will now briefly describe what changes if we work with alternating groups instead
of symmetric groups, but we will omit some of the details of the calculations. First a
quick summary of the modular representation theory of alternating groups in terms of
the theory for symmetric groups:

Upon restriction from Sn to An , the irreducible representations Dλ either remain
irreducible, or split as a direct sums Dλ ∼= Dλ+ ⊕ Dλ− of two irreducible non-
isomorphic representations of the same dimension; all irreducible representations of
An are uniquely obtained this way. We’ll note that in characteristic p > 2 this is a
standard application of Clifford theory, but in characteristic 2 it is a difficult theorem
of Benson ([5] Theorem 1.1). Moreover it is known exactly which Dλ split this way,
but we won’t go into the combinatorics here.

When p > 2 the maximum rank abelian p-groups in Sn all lie in An , and the proof
of Theorem A.1 goes through without modification to give the following theorem.

Theorem A.1’. Any non-trivial irreducible representation of An with n ≥ p in
characteristic p > 2 has Lowey length at least 3 upon restriction to the copy of Cp

generated by (1, 2, . . . , p), and is therefore not quadratic with respect to any maximal
rank elementary abelian p-subgroup.

When p = 2, the difference is more dramatic. It is no longer true that every
maximum rank abelian 2-subgroup of Sn lies in An , in particular Hn is not a subgroup
of An . Let H̃n denote the intersection of Hn and An , this has rank one less than Hn .
The maximal rank elementary abelian 2-subgroups of An are as follows:

If n = 4b or 4b + 1 then up to conjugacy the only maximal rank elementary
abelian 2-subgroup inside An is Kb, and it is of rank 2b. If n = 4b + 2 or 4b + 3
then all maximal rank elementary abelian 2-subgroups in Sn still have maximal rank
when intersected with An , and up to conjugacy the maximal rank elementary abelian
2-subgroups inside An are of the form:

K × K × · · · × K︸ ︷︷ ︸
m times

×H̃n−4m ⊂ A4 × A4 × · · · × A4︸ ︷︷ ︸
m times

×An−4m ⊂ An

and these have rank 2b − 1.
The appropriate modification to Theorem A.2 for alternating groups is the follow-

ing:
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Theorem A.2’. Suppose V is a non-trivial irreducible representation of An with
n ≥ 9 over a field of characteristic 2 which is quadratic with respect to a maximal
rank elementary abelian 2-subgroup H . Then n ≡ 2 or 3 modulo 4, V ∼= D(n−1,1),
and H is conjugate to H̃n .

The proof of TheoremA.2mostly goes through in this case. Some additional care is
needed to handle the representations Dλ+ and Dλ− which are not restrictions of irre-
ducible representations of Sn , however one simplifying observation is that since Dλ+
and Dλ− just differ by conjugation by a transposition, they are actually isomorphic to
one another upon restriction to a maximal rank elementary abelian 2-subgroup. We
will omit the remaining details though.
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