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Few-shot learning is proposed to overcome the problem of scarce training data in novel classes.
Recently, few-shot learning has been well adopted in various computer vision tasks such as object
recognition and object detection. However, the state-of-the-art (SOTA) methods have less attention
to effectively reuse the information from previous stages. In this paper, we propose a new framework

of few-shot learning for object detection. In particular, we adopt Baby Learning mechanism along
with the multiple receptive fields to effectively utilize the former knowledge in novel domain. The
proposed framework imitates the learning process of a baby through visual cues. The extensive
experiments demonstrate the superiority of the proposed method over the SOTA methods on the
benchmarks (improve average 7.0% on PASCAL VOC and 1.6% on MS COCO).

1. Introduction

Object detection has been a successful application do-
main of convolutional neural networks (CNNs). In litera-
ture, numerous works have been proposed such as Faster
RCNN Ren, He, Girshick and Sun (2016), EfficientDet
Tan, Pang and Le (2020), RetinaNet Lin, Goyal, Girshick,
He and Dolldr (2017b), YOLO Bochkovskiy, Wang and
Liao (2020); Redmon and Farhadi (2018), and SSD Liu,
Anguelov, Erhan, Szegedy, Reed, Fu and Berg (2016).
These deep learning-based approaches primarily rely on
abundant data in the training phase. However, this condition
is not always true, especially when annotated data is ex-
tremely scarce. Given novel classes along with a few train-
ing samples, an object detection model trained on known
classes needs to learn to detect novel class objects. This
learning of these novel knowledge is commonly referred as
few-shot object detection (FSOD).

Recent works in FSOD have been successful in over-
coming the data scarcity by constructing meta-learning aids
Kang, Liu, Wang, Yu, Feng and Darrell (2019); Wang,
Ramanan and Hebert (2019); Yan, Chen, Xu, Wang, Liang
and Lin (2019) or leveraging a fine-tuning technique Wang,
Huang, Darrell, Gonzalez and Yu (2020). Of all those meth-
ods, the two-stage fine-tuning approach (TFA) Wang et al.
(2020) obtains the state-of-the-art (SOTA) performance in
FSOD. Generally, the more visual shots a model learns, the
more knowledge the model captures. However, Tab.1, which
presents visual concepts between the different shots, gives
a look at the performance of TFA (shown in Tab.1 for the
original model and our reproduced model), the performance
in a single shot learning is better than 2- or 3-shot learning.
In addition, the knowledge quantification of 3-shot learning
is worse than the one of 2-shot, as also shown in Tab.1.
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Figure 1: The overall difference of the learning scheme
between normal fine-tuning and Baby Learning one. Our
proposed model, FORD+BL (Baby Learning Multi-receptive
Fields), adopts the baby learning mechanism along with
the multiple receptive fields. Finally, FORD+BL significantly
outperforms TFA.

Note that we follow Cheng er al. Cheng, Rao, Chen and
Zhang (2020) to compute the knowledge quantification
over the bounding box classifiers. The metric measures the
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Method
TFA Wang et al. (2020)

TFA* Wang et al. (2020)

Metric / Shot 1 2 3 5 10
MAP@50 1 39.8 36.1 447 557 56.0
mAP@50 t 373 406 353 438 529
Visual Concepts x10° 1 | 19.3 223 21.7 236 25.3

Table 1

Motivation of Baby Learning in our work. Given very few
shots such as 2 or 3 shots, their performance is always lower
than 1 shot regardless of random or fixed instance in shots.
*Our re-implementation with fixed shots.

discriminative power of features. Models with high visual
and conceptual value should focus more on objects and gain
better recognition abilities. Read Cheng et al. (2020) for
more details. This abnormal problem shown in Tab.1 may
occur due to a large variation on object appearances as a
few samples that are used to train a few-shot model. On
the contrary, humans, especially babies, have a perceptive
ability of recognizing new concepts quickly by only being
exposed to a very few samples. At first, their parent(s)
shows a totally new object instance to form the initially
visual recognition capability of the babies. Then, to further
encourage strong visual development, the babies are rapidly
taught with diverse instances. Since then the baby grad-
ually improves his/her recognition capability to recognize
the unseen instances. Note that this observation does not
mean baby truly learns in this way from neuronscience
perspective. Hence, we mimic this learning scheme to train
the model with a totally new object at the very first time.
This behaviour allows our model to reduce the variability
of training data while the generalization of the detector is
enhanced by being trained with more and more samples at
the next times.

It is also worth noting that TFA adopts a two-stage fine-
tuning technique which outperforms meta-based methods.
In comparison to meta-learning works with a complex aid
from the meta network, TFA simply fine-tunes only the last
box predictor on novel classes while the rest is frozen during
the fine-tuning stage. By freezing most of the layers in the
network, TFA reuses the prior knowledge of base objects
to predict novel ones. The simple approach takes a big gap
compared to the previous works. However, they are not
well-learned about the novel appearance that could be far
different from the base domain due to freezing the most
network. This makes the detector ignore the potential ap-
pearance of unseen classes or predict low-quality ones with
low confident scores. To address this issue, we leverage the
ability of multiple receptive fields to capture more spatial
locations of an object in an image to its surrounding. This
capability allow us to exploit the potential appearance in the
base domain and use them in the novel domain effectively
by fine-tuning the multiple receptive module. Therefore, we
propose a new architecture which adopts the multi-receptive
field named as Few-shOt with Multiple Receptive FielD
(FORD). In this paper, our contributions are three-fold:

* First, motivated from the early observations, we pro-
pose a novel and straightforward learning mechanism

called Baby Learning (BL) in a way that imitates
the learning process of a baby through visual cues
to reinforce the development of visual recognition.
Fig.1 illustrates the difference between of normal
fine-tuning and BL approaches.

* Second, we propose a new architecture that leverages
multi-receptive to capture the variant object appear-
ance. Then, we fine-tune the new model to learn new
shapes in the novel domain. Our model is named as
Few-shOt with Multiple Receptive FielD (FORD).

* Finally, we apply BL mechanism for FORD as a new
framework for few-shot object detection learning. The
extensive experiments demonstrate the superiority of
the proposed method over state-of-the-art methods on
benchmark datasets.

2. Related Work

Generic Object Detection. From the first introduction
of RCNN Girshick, Donahue, Darrell and Malik (2014)
in a series of RCNN family, object detection re-emerges
with consecutively proposed methods Bochkovskiy et al.
(2020); He, Gkioxari, Dollar and Girshick (2017); Kar-
linsky, Shtok, Harary, Schwartz, Aides, Feris, Giryes and
Bronstein (2019); Liu et al. (2016); Redmon and Farhadi
(2018); Ren et al. (2016); Tan et al. (2020) . These meth-
ods are then grouped into two genres such as one-stage
and two-stage approaches. The one-stage approach aims to
deal with object detection by proposal-free methods YOLO
Bochkovskiy et al. (2020); Redmon and Farhadi (2018),
RetinaNet Lin et al. (2017b), SSD Liu et al. (2016). While
the two-stage approach includes methods such as RCNN
family He et al. (2017); He, Zhang, Ren and Sun (2015);
Ren et al. (2016), Efficientdet Tan et al. (2020) focusing on
proposal-based algorithms Uijlings, Van De Sande, Gevers
and Smeulders (2013). Most of the methods improve their
performance by using informative characteristics on multi-
scale feature maps. For example, YOLOv3 Redmon and
Farhadi (2018) made its prediction based on three different
scales of feature maps from Darknet53, while YOLOv4
Bochkovskiy et al. (2020) additionally chose the SPP block
to enhance context features. SSD Liu et al. (2016) added
multiple feature layers with different scales decreasing in
size progressively after the backbone and deployed default
boxes of different scales and aspect ratios. RetinaNet Lin
et al. (2017b) used a newly proposed focal loss and attached
FPN as its backbone to create a pyramid of feature maps.
Similarly, EfficientDet Tan et al. (2020) was proposed with
BiFPN for fusing multi-scale features.

Few-Shot Object Detection. FSOD refers to learning from
just a few training examples per class. To date, there have
been several works Kang et al. (2019); Yan et al. (2019);
Wang et al. (2020); Fan, Zhuo, Tang and Tai (2020) focusing
on FSOD. Two prior works Kang et al. (2019); Yan et al.
(2019) mainly aim at tackling the problems of FSOD via
meta-learning approaches that learn supportive information
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from their meta learner to help models overcome the diffi-
culties of the scarcity of data. Meta RCNN Yan et al. (2019)
used labels of bounding boxes and segmented masks to
train their meta network called Predictor-head Remodeling
Network for inferring attention features. Feature Reweight-
ing Kang et al. (2019) used a meta-model that takes mask
areas of supportive objects formed by their associated object
bounding box annotations to generate reweighting vectors
for highlighting attention to each class. While Fan ez al. Fan
et al. (2020) exploited the advantages of support images
from a massive FSOD dataset to generate significant results
combined with their proposed network called Attention-
RPN, Multi-Relation Detectors. The Attention-RPN directs
the trained model where to look on the image for the
task of object detection. Differently, Wang et al. Wang
et al. (2020) simply adopted Faster RCNN and transferred
massive knowledge from abundant data in the base model
to fine-tune the novel one on few-shot data by freezing
the whole network except for the fully connected layer for
object classification. Through this simple straightforward
mechanism, this model significantly improved few-shot per-
formance without a complex pipeline of training the model.
However mentioned methods suffer from a drop in
performance due to knowledge forgetting of base classes
when trained on novel ones, Retentive R-CNN Fan, Ma, Li
and Sun (2021), therefore, proposed Bias-Balanced RPN to
debias the pretrained RPN and Re-detector to find few-shot
class objects without forgetting previous knowledge.
Lately, there are newly proposed ideas for FSOD im-
provements by class correlation enhancement for discrim-
inative power and multi-task learning with modified loss,
namely Meta-DETR and DeFRCN. In 2021, based on De-
formable DETR Zhu, Su, Lu, Li, Wang and Dai (2020),
Meta-DETR Zhang, Luo, Cui and Lu (2021) utilized Cor-
relational Aggregation Module (CAM) to aggregate query
features with support classes. A highlight point of CAM
is that CAM applies multiple support classes to query
features simultaneously that allows the model to capture
inter-class correlation during the training. In Qiao, Zhao, Li,
Qiu, Wu and Zhang (2021), the authors presented DeFRCN
employing Gradient Decoupled Layer to tackle FSOD from
a multi-stage view. They also used Prototypical Calibration
Block to decouple multiple tasks during the inference time.
Based on meta-learning appoarch, CME Bohao Li and
Ye (2021) tried to create the classification feature space
and optimize it via max-margin loss. The loss is calculated
between intra-class and inter-class distance.
Spatial Pyramid Pooling. Exploiting the spatial details in
an image has always been an essential component of the im-
age analysis. However, very few works attached the spatial
pyramid pooling for few-shot object detection. Most spatial
attention models are often employed in segmentation or
pose estimation. Several works used spatial pyramid pooling
in their architecture like PSPNet Zhao, Shi, Qi, Wang and
Jia (2017), Deeplab Chen, Zhu, Papandreou, Schroff and
Adam (2018), UniPose Artacho and Savakis (2020) and
DetectoRS Qiao, Chen and Yuille (2020). PSPNet Zhao

et al. (2017) proposed a pyramid scene parsing network,
which used 4 kernels with different sizes to extract feature
maps and get global context. Deeplab Chen et al. (2018)
used ASPP to improve performance and cost (storage, com-
putation). In another work, instead of tackling segmentation,
UniPose Artacho and Savakis (2020) proposed Water-fall
Atrous Spatial Pooling (WASP) module and get significant
performance in pose estimation. Likewise, DetectoRS Qiao
et al. (2020) proposed Recursive Feature Pyramid to twice
extract information from bottom-up and top-down in order
to tackle both segmentation and detection tasks. Unlike
the aforementioned methods, we mainly focus on object
detection. Our model applies multi-receptive field to guide
the model’s attention to reliable potential bounding boxes.

3. Proposed Framework

In this section, we first summarize the traditional train-
ing phase in few-shot object detection. Then we refine
this phase with BL. In terms of FSOD, we have two
subsets of data to investigate in a detection dataset including
base classes C,,,, and novel classes C,,,,;, where Cy ., N
C,ovet = 0. The base classes are composed of abundant

data with many instances of classes, denoted by D,,,, =

base baseyyNbase

from base class i, and {y;***} denotes the associated object
bounding box labels, and N, is the number of base
classes. Meanwhile, the novel classes solely contain a lim-
ited number of samples D, = {(I"" ,ylflo”e’)}i]\:r"l””e’
that totally have K instances available per class. Here,
{I i”"“el o ylf"’”el } are input images from novel class i, their
associated object bounding box labels, and N, is the
number of novel classes, respectively. Therefore, there are
traditionally two stages to train a few-shot object detector. In
the first stage, the detector is trained with the abundant data
Dy, from base classes Cy,, called base training. In the
second stage or novel fine-tuning, the detector is continually
deployed for training with the extension of novel classes
C,over and these novel classes only have a few labeled
samples. For standard datasets such as PASCAL VOC and
COCO, the novel set S;,,;, = Dpyse U D,y fOr training
is sampled in a balanced way to avoid problems of data
imbalance and each class has the identical number of object
annotations (K-shot, K € {1,2,3,5,10}). We differentiate
this setup from the few-shot detection scenario of a N-
shot, M-way episode in ImageNet dataset for the FSOD
task. This setup is derived from the few-shot classification
literature.

, where {Il.b‘”e} represents input images
base

3.1. Baby Learning

Shafto et al. Shafto, Conway, Field and Houston (2012)
suggested that the visual learning in infancy is a sequential
process. This non-linguistic learning ability plays a vital
role to language development. We observe how the baby
learns the new concept. At first parent(s) shows a totally
new object instance to teach their baby about a new concept.
At this point, an initial recognition capability about the
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Figure 2: Overview architecture of FORD. In the base stage, the whole network is trained on base classes. In the novel stage,
only the multiple receptive fields module and the box predictor are fine-tuned on a balanced data from both base and novel
classes under baby learning mechanism. The blue rectangular boxes are the frozen modules in the novel stage.

concept emerges. Then, the baby is continuously taught with
more visual instances to accumulate knowledge about the
concept. Since then, the baby can gradually improve his/her
recognition capability and recognize unseen instances. Mo-
tivated from the learning capability that a baby visually
explores new stuff in the real world by learning from a few
positive instances. These intuitive observations encourage
us to propose a setup for training a few-shot detector called
Baby Learning.

For an appearance of novel concepts, available works
randomly initialize weights of the classification layer, then
update learning weights via the novel training stage with few
given samples per new class. This behavior unexpectedly
gives a burden on the network when receiving new things in
one time to learn with only a few available samples. Instead
of doing a process that feeds all K instances one time per
class (K > 2), we deploy a straightforward and simple
BL that we first give a chance for our model to be familiar
with a single shot in the very first time. Then the model is
gradually trained with the greater number of shot instances.
This practice is repeatedly done for each shot excluding one
shot. Unlike normal fine-tuning , this “learning paradigm”
inherits prior knowledge in the previously training times and
thus the model comfortably exposes to more diverse and
complicated samples afterwards. The conception can also be
applied to many different tasks such as image segmentation,
image generation and posture estimation. The following
content is formulating BL approach:

We define X = {x y };’zl as a set containing a number of
instances in subshot of K-shot. X with n elements (n > 2)
satisfies the following condition:

1§x~<xj+1§K,Vj22, (1)

~and x,, = K. The
contmuously It

where x; is the number of shots on D,
pretralned CNNon D, 1s trained on D
Jj = 1, we use the pretramed on Dy,,. The dataset D as
follows.

D, C D, C Dy Vi 22 2

X novel»

The current benchmarks satisfy Eq.1 when we group
the K-shot datasets (i.e., {1-shot, 3-shot} or {2-shot, 5-
shot, 10-shot}). However, due to random shot generation,

instances in 1-shot may be dissimilar in different K-shot
(2, 3, 5). For that reason, the benchmarks cannot satisfy
Eq.2 to implement BL. In this situation, to experiment our
BL approach and compare with other methods on the same
benchmarks, we split a K-shot dataset into subshots. For
example, in 3-shot dataset benchmark, we get one and three
instances to create D, and D, , respectively. The result of
these steps is a new dataset having similar instances with
3-shot dataset and its X satisfies both Eq.1 and Eq.2 to
implement BL approach, where X = {x,x,}.

3.2. Baby Learning with Multiple Receptive Field

As studied in Gomez, Natu, Jeska, Barnett and Grill-
Spector (2018), receptive fields (RFs) processing informa-
tion in the visual field are a key property of human visual
system neurons. Gomez et al. Gomez et al. (2018) found
that multiple receptive fields were formed and developed
early from childhood. Therefore, we aim to incorporate
baby learning with multiple receptive fields. To this end,
we first revisit TFA Wang et al. (2020). By freezing RPN
in the fine-tuning stage, TFA Wang et al. (2020) leverages
potential bounding boxes of base classes to predict the
objects on novel classes. However, the diversity of the
objects in the reality are very plentiful among classes and
therefore the feature representations of novel objects could
be far different from base objects. This makes the model
miss potential bounding boxes or predict low-quality ones
with low confident scores.

To deal with the problem, we enhance the localizability
of the detection model in few-shot learning. We apply the
multiple receptive field module to pay attention to more
spatial information of an object in the image. As a result,
FSOD algorithm can better recognize the base shapes and
improve the generalizability in the new domain. Specifi-
cally, we apply multiple receptive fields by adopting the
Atrous Spatial Pyramid Pooling (ASPP) Chen et al. (2018)
in RPN branch of Faster RCNN Ren et al. (2016). The new
model is named as Few-shOt with Multiple Receptive FielD
(FORD) that not only recognizes base objects better but also
transfers the prior spatial knowledge to the novel domain
effectively by fine-tuning multiple receptive fields module.
The overview architecture of FORD is shown in Fig.2.
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Novel Set 1 Novel Set 2 Novel Set 3
Method / Shot 1 2 3 5 1f0 | 1 2 3 5 10| 1 2 3 5 10
FSRW' Kang et al. (2019) 14.8 15.5 26.7 33.9 472 | 15,7 153 227 30.1 405 | 21.3 256 284 428 459
MetaDet” Wang et al. (2019) 18.9 20.6 30.2 36.8 496 | 21.8 231 27.8 317 43.0 | 206 239 294 439 441
Meta R-CNN' Yan et al. (2019) 19.9 25.5 35.0 45.7 515 | 104 194 296 348 454 | 143 182 275 412 48.1
TFA Wang et al. (2020) 39.8 36.1 447 55.7 56.0 | 23,5 269 341 351 39.1 | 30.8 348 428 495 4938
TFA* Wang et al. (2020) 37.3 406 35.3 438 529 | 234 272 354 332 395|285 372 426 484 489
Retentive R-CNN Fan et al. (2021) | 42.4 45.8 45.9 53.7 56.1 | 21,7 278 352 370 403|302 376 43.0 49.7 501
FORD+BL 46.3 54.2 499 56.3 618 | 19.0 30.8 384 393 473 | 364 46,5 454 532 558
Bohao Li and Ye (2021
Zhang et al. (2021
Improvement from TFA +9.0 +136 +146 +125 +89 | -44 +36 +3.0 +6.1 +78 | +79 +93 +2.8 +48 +6.9

Table 2

Few-shot detection performance (mAP) on the PASCAL VOC novel test set. The best performance is marked in boldfaced.

*Our re-implementation with fixed shots. Methods in the
learning approaches.

AP@50 AP@75
Method / Base set 1 2 3 1 2 3
TFA° Wang et al. (2020) | 81.1 80.7 81.6 | 61.6 61.8 622
FORD 814 82.0 826 | 60.8 629 628
Table 3

Detection performance (MAP@50 & mAP@75) on three dif-
ferent base sets of PASCAL VOC. ° Our re-implementation.

3.3. Fine-tuning Implementation

In this subsection, we describe training stages that are
applied to FORD in Fig.2. FORD uses the RFs module to
gather more spatial information in base training. Then, we
leverage the ability of the feature map with RFs to learn
the positions from the novel object to its surrounding. In
this way, we transfer the spatial information from the former
domain to the current domain effectively.
Base model training. In the first stage, the model is trained
on abundant data of base classes Cy,, to learn base knowl-
edge which is suitable for the target domain. The joint loss
function of Ren et al. (2016) is used during the optimization
process.
Few-shot fine-tuning. In the first stage, our training data
contains K shots per class for both base and novel classes.
We assign randomly initialized weights for classes of the
novel and reuse weights of base classes. During the time of
training the model on the novel dataset, we jointly fine-tune
both the box predictor and RFs module referred as jointly
fine-tuning stage. Meanwhile, we freeze the rest of network
weights to transfer the knowledge from the base to novel
data.

4. Experiments and Discussion

In this section, we evaluate our method and compare
it with previous works on the existing few-shot object
detection benchmarks using PASCAL VOC 2007 Evering-
ham, Van Gool, Williams, Winn and Zisserman (2010) and
2012 Everingham, Eslami, Van Gool, Williams, Winn and
Zisserman (2015) and MS COCO Lin, Maire, Belongie,
Hays, Perona, Ramanan, Dolldr and Zitnick (2014). For

are not main comparison in this work. ¥ denotes meta-

the fair comparison, we follow the setup from Kang et al.
(2019); Wang et al. (2020); Yan et al. (2019). In addition, for
the ease of a comparison between the existing procedure on
few-shot training and our proposed FORD+BL, we run all
experiments by choosing fixed instances for each shot and
re-produce the TFA results. In BL, with each shot except
for 1-shot, FORD+BL is first trained with a fixed single
instance, then with the whole instances of that shot.

4.1. Dataset and Settings

PASCAL VOC. PASCAL VOC is considered as a primary
benchmark of object detection. The dataset comprises of
20 classes with two versions as VOC 2007 and VOC
2012. VOC 2007 trainval and VOC 2012 trainval sets are
commonly used to train detectors and VOC 2007 test set
is for testing in generic object detection. Regarding FSOD,
both the trainval sets are separated into 3 certain splits
in which 5 random classes are for the novel set and 15
remaining ones are keeping as the base set per split. Each
novel class contains images with only K object instances
that are available per class, where K € {1,2,3,5,10}.

MS COCO. MS COCO is another challenging benchmark
with a wide range of variation per class. In total, MS COCO
has 80 classes. For FSOD experiments, COCO is split into
two subsets, where the novel set consists of 20 classes
overlapped with PASCAL VOC and 60 remaining ones are
belong to the base set. 5000 images from the validation
set, denoted as minival set, are used for evaluation while
the left images in the training and validation sets are used
for training. We follow previous works Kang et al. (2019);
Wang et al. (2020); Yan et al. (2019) by setting K = 10 or
K = 30 for MS COCO.

Implementation Details. In order to create individual shots
from the given K shots, we crop object bounding boxes. In
particular, we crop the target object with a random 20-pixel
margin. Our model adopts Faster RCNN Ren et al. (2016)
with ASPP Chen et al. (2018) and ResNet-101 backbone He,
Zhang, Ren and Sun (2016) with Feature Pyramid Network
Lin, Dollér, Girshick, He, Hariharan and Belongie (2017a).
We use SGD optimizer with an initial learning rate of 0.004,
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#shots | Method

Base classes

Novel classes

aero bike boat bottle car cat chair table dog horse person plant sheep train tv mean | bird bus cow mbike sofa mean | mAP

FSRW' Kang et al. (2019) 736 731 567 416 761 787 426 668 720 77.7 68.5 420 571 747 70.7 648 |26.1 19.1 407 204 271 267 | 55.3

Meta R-CNN' Yan et al. (2019) | 67.6 705 59.8 500 757 814 449 577 763 749 76.9 347 587 747 678 648 | 30.1 446 508 388 107 350 | 57.3

3 TFA* Wang et al. (2020) 863 875 728 708 878 864 623 773 827 835 86.0 517 780 866 820 787 | 187 313 344 505 418 353 | 68.0
FORD+BL 879 798 703 738 882 882 557 732 853 863 86.7 48.9 81.0 87.0 79.1 78.1 373 642 559 518 405 499 714

FSRW' Kang et al. (2019)
Meta R-CNN' Yan et al. (2019)
10 TFA* Wang et al. (2020)
FORD+BL

65.3
68.1
86.5
88.5

735
73.9
86.8
86.3

54.7
59.8
70.2
71.4

39.5
54.2
72.3
74.6

75.7
80.1
88.2
88.2

81.1
82.9
87.5
88.5

35.3
48.8
65.4
63.9

62.5
62.8
721
73.6

72.8
80.1
84.6
86.7

69.2
70.6
78.0
78.7

63.6
67.9
78.5
79.6

30.0
52.5
28.0
45.3

62.7
55.9
69.0
76.9

43.2
52.7
54.1
69.9

60.6
54.6
65.8
69.6

39.6
41.6
47.6
47.4

47.2
51.5
59.2
61.8

59.5
63.8
722
75.2

78.8
81.4
85.5
87.3

68.6
77.2
86.4
86.8

41.5
37.2
49.8
55.4

59.2
65.7
78.0
76.6

76.2
75.8
87.1
87.7

Table 4

AP and mAP on VOC test set for novel and base classes of novel set 1. Red and blue represent the best and the second
best performance, respectively (Best viewed in color). *Our re-implementation with fixed shots. © denotes meta-learning

approaches.
Shot | Method AP APy, AP, AP, AP, AP, | AR, AR, AR, ARy AR, AR,
TFA* Wang et al. (2020) 4.2 7.2 46 2.8 3.7 6.7 6.7 9.4 9.5 5.1 8.8 14.0
1 FORD 3.6 71 3.5 1.1 3.4 5.4 6.7 9.1 9.1 1.5 7.7 153
Zhang et al. (2021
TFA* Wang et al. (2020) 71 130 7.0 3.6 56 113|112 173 175 79 158 258
3 FORD+BL 69 143 6.3 3.1 6.6 116 | 11.3 16.7 168 42 147 285
Zhang et al. (2021
Meta R-CNN'Yan et al. (2019) 3.5 9.9 1.2 1.2 3.9 5.8 - - - - - -
TFA* Wang et al. (2020) 84 161 82 43 73 130|128 201 203 9.1 194 2838
5 FORD+BL 82 168 7.3 3.6 76 136 | 131 205 208 6.4 185 32.6
Zhang et al. (2021
FSRW' Kang et al. (2019) 56 123 46 0.9 35 105|101 143 144 15 84 282
MetaDet" Wang et al. (2019) 71 146 6.1 1 4.1 122 | 11.9 151 15.5 1.7 9.7 301
Meta R-CNNT Yan et al. (2019) 8.7 19.1 6.6 2.3 7.7 14 | 126 178 179 7.8 156 27.2
TFA Wang et al. (2020) 10.0 - 9.2 - - - - - - - - -
10 TFA* Wang et al. (2020) 10.0 189 95 438 9.1 159 | 149 227 231 102 219 334
FORD+BL 112 225 102 52 101 182 | 159 248 253 88 238 383
Bohao Li and Ye (2021
Zhang et al. (2021
FSRW' Kang et al. (2019) 9.1 19 7.6 0. 49 168 | 132 177 178 15 104 335
MetaDet" Wang et al. (2019) 113 21.7 841 1.1 6.2 173 | 145 189 192 1.8 111 344
Meta R-CNNT Yan et al. (2019) 124 253 108 2 11.6 19 15 214 217 86 20 321
TFA Wang et al. (2020) 13.7 - 13.4 - - - - - - - - -
30 TFA* Wang et al. (2020) 142 257 143 59 121 223|174 266 269 10.0 24.0 402
FORD+BL 148 289 139 51 145 233 | 185 28.8 293 86 27.2 44.6
Bohao Li and Ye (2021
Zhang et al. (2021
Table 5

Few-shot detection performance for the novel categories on COCO dataset. The -" means the result is not reported in the

original paper. * means our re-implementation with fixed shots. Methods in the

work. © denotes meta-learning approaches.

a mini-batch size of 4, momentum of 0.9 and the weight
decay of 0.0001.

On PASCAL VOC, the base model is trained with
72,000 iterations and the learning rate is divided by 10 at
48,000 and 64,000 iterations. In the joint fine-tuning stage,
we train our model for 3,500 and 500 iterations with learn-
ing rates of 0.004 and 0.0004, respectively. In the stages of
BL, we trained model with the same configuration of the
joint fine-tuning for 1, 2, 3, 5-shot and halved iterations of
the first stages for 10-shot.

On MS COCO, the base model is trained for 180,000
iterations and the learning rate is divided by 10 at 120,000,
160,000 iterations. In the stages of fine-tuning with BL, the
10-shot dataset requires 8,000 iterations of the first stages

are not main comparison in this

and doubled for the last stage. In the 30-shot dataset, with
X530 = {1,5,10,20,30} defined in Eq.1, the model is trained
for 8,000 iterations with 1-shot and 5-shot stages, then
doubling the shots up to 30-shot with 32,000 iterations.

4.2. Results

We compare our approach with other SOTA methods
Yan et al. (2019); Wang et al. (2019); Kang et al. (2019); Fan
et al. (2021) and with the TFA baseline Wang et al. (2020)
which is built upon Detectron2 Wu, Kirillov, Massa, Lo and
Girshick (2019). For the ease of our evaluation, we first
re-implement the experimental evaluation of TFA on the
benchmarks (VOC and COCOQ) with fixed shots to compare
with our model instead of random data in shots alike the
origin in the paper, denoted TFA*. These experiments run
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Baseline

FORD+BL
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bird: 0.9340
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Figure 3: Qualitative 2-shot detection results on test set between TFA (top-2 rows) and FORD+BL (bottom-2 rows). Zoom in

the figure for more visual details.

with the available source code and the original TFA use
cosine similarity for the box classifier, which brings the best
results for the TFA. While the model with RFs termed as
FORD. We compare our approach FORD+BL formed by
BL and RFs with FORD, the replicated TFA* and the origin
TFA. In our experiments, FORD and FORD+BL do not use
the cosine similarity to avoid the reliance on it.

PASCAL VOC. We first provide the experimental results
of 3 novel sets on PASCAL VOC in Tab.2. Our proposed
model FORD+BL receives SOTA on all 3 sets, even when
labels are extremely scarce (1 or 2 shots). First, FORD+BL
is greater than recently published methods such as Retentive
R-CNN 3-5%; and significantly outperforms TFA about 5-
7.5% except for the one shot, which BL is not applied
for, in the novel set 2 lower than 4.4%. In case of the
same setup between FORD+BL and TFA*, FORD+BL truly
yields a remarkable performance on 3 splits. FORD+BL
has a range of improvements in 3-11% in comparison with
TFA* regardless of cosine similarity that have been used.
Getting a closer look at the performance of TFA* on the
novel set 1, 3-shot has a lower AP point than 1- and 2-shot.
When FORD+BL is deployed, the 3-shot result is better
than 1-shot. Specifically, the distances between TFA* and

FORD+BL are approximately 13% AP for 2-shot and 3-
shot. In the 1-shot, FORD demonstrates the efficiency of
leveraging the RFs in FSOD. These results indicate that BL
exceptionally reinforces FORD+BL with novel knowledge
to well detect novel objects. In addition, FORD+BL along
with RFs efficiently works on novel data by adapting spatial
features on base data to exploit weak representation of
unseen objects.

For more clear evidences of the capability for exploit-
ing spatial features by multiple receptive fields, we also
compare FORD with TFA on base categories only, shown
in Tab.3. AP@50 means that predicted boxes and their
corresponding ground truth have an overlap over 50%,
similarly 75% for AP@75. Literally, an ideal model should
run effectively when abundant data are given. Our proposal
with RFs, FORD, outperforms in almost base sets except
for AP@75 on the base set 1. This means FORD not only
improves AP points on a normal but also stricter metric with
the overlap ratio 0.75. This indicates that the model with
RFs preferably captured better object representations.

We further compare the performance for each class
in the novel set 1 on PASCAL VOC as shown in Tab.4.
FORD+BL obtains the SOTA performance in both base
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| 2shot | 3-shot | 5-shot | 10-shot
Subshot | 1 2 | 1 3 | 1 5 [ 1 5 10

Novel Set1 | 41.8 542 | 43.7 499 | 442 563 | 426 546 61.8
Novel Set2 | 153 30.8 | 15.7 38.4 | 16.4 39.3 | 125 39.1 473
Novel Set3 | 28.8 46.5 | 27.3 454 | 283 53.2 | 26.4 46.8 5538

Table 6

The performance of our proposed FORD+BL on PASCAL
VOC splits. All shots are separated into subshots and then
used to incrementally train our model. The last column in
each shot indicates the final result whereas other columns
are for intermediate results.

and novel classes. Despite the slight increment in base
classes, the improvement of FORD+BL in novel classes
is significant. FORD+BL surpasses all baselines in terms
of mAP. Compared with the second best in novel classes,
FORD+BL leads a remarkable margin for most classes.
Fig.3 shows qualitative 2-shot detection results between
TFA and FORD+BL on base and novel classes. The two
left columns show good cases indicating that our approach
captures new objects in more shapes than the baseline.
This is also shown in the failure cases of both TFA and
FORD+BL in the two right columns of Fig.3. Though the
two methods yield some false or miss-detection results,
FORD+BL still productively leverages information from
the previous stages and correctly detects more objects than
TFA.

MS COCO. Tab.5 shows the comparative metrics on MS
COCO dataset with k = 10 and k = 30. As shown in the
table, FORD+BL significantly outperforms other methods
including Retentive R-CNN and TFA with cosine similarity.
In general, our framework achieves more 1.6% on average
than TFA in both settings or than Retentive RCNN 1%
on AP, i.e., 10 and 30 shots. Our model gets significant
performance on both AP and AR except for the small
objects (32 x 32 pixels). In particular, our approach is
about 4.6% higher for the large objects and 2.6% for the
medium objects. In three common metrics (mAP, AP@50
and AP@75) our framework outperforms the other SOTA.
It is worth noting that there is a large variation in object
appearances in MS COCO. This is why the AP achieved in
MS COCO is much lower than the one obtained in PASCAL
VOC.

Extremely scarce data in MS COCO. We also conduct
the experiments for 1, 3 and 5-shot in Tab. 5. The results
of FORD are less improved or even worse when compared
with TFA*.The reason is caused by the cosine layer which is
applied to TFA* and is demonstrated to improve significant
performance in the context of extremely scarce data. On the
other hand, Meta-DETR gets incredible results in the same
settings by using the meta-learning approach. We provide
deep analyses in the Sec.4.3.

MS COCO to PASCAL. We evaluate our proposed frame-
work on cross-dataset experiments. In this setup, we train
all models on the MS COCO base classes and later fine-
tune them on the 10-shot in PASCAL VOC. The results of

Methods | RFs  BL | 1-shot 2-shot 3-shot 5-shot

. 37.3 40.6 35.4 43.9

TFA ‘ v ‘ - 427 412 502

v 46.3 50.4 43.7 48.4

FORD ‘ VR ‘ - 542 499 563
Table 7

Ablations of RFs and BL in Novel Set 1. *Re-implement with
fixed shots and using settings in the origin paper.

TFA, FORD and FORD+BL are 38.7%, 43.9% and 47.5%,
respectively. In general, they are worse than that when we
use base classes in PASCAL dataset due to the large domain
shift (i.e., number of classes or diversity of objects). The
cross-dataset experiments of FSRW Kang et al. (2019) and
Meta R-CNN Yan et al. (2019) are 32.3% and 37.4%,
respectively. Our approach achieves 47.5% (compared to
other methods we are about 10% higher in AP@50), which
indicates that ours has high generality even in the context of
cross-dataset.

BL Effectiveness. Tab.6 shows the performance of the
integration of BL for our model on PASCAL VOC splits. As
shown in the table, we note that fine-tuning with BL allows
model to better learn new concepts when starting off from a
single object to multiple objects. This opens a completely
new approach in FSOD that a few-shot model could be
progressively trained from simple to complex contexts to
be familiar with diverse variants instead of directly feed
them all with complicated instances once time. In this way,
a few-shot object detection model could adapt to any new
domains well, yet how many times of visual familiarity that
a few-shot novice should be exposed prior to truly becoming
a few-shot detector is still depending on the complexity of
domains that BL is applied for.

Tab.7 and Tab.8 show further ablations on Novel set 1
of VOC to demonstrate the effectiveness of BL. Models
with BL significantly achieve the superiority over ones
without BL on all shots regardless of freezing or unfreezing
modules. This means that with the aid of BL which learns
from simple to complicated knowledge is very helpful for
a few-shot learner so that they could tackle the diversity of
variants in terms of a few available samples. The result also
shows the consistency of changes in the variant diversity
from very few to more available shots with and without
BL paradigm. In addition, Tab.7 shows the performance
difference between our model and the TFA baseline. Our
models use RFs, which adapt spatial signal to predict
novel appearances better than the TFA baseline regardless
with/without BL. In the context of applying BL. mechanism,
the baseline and FORD have significant improvements for
reusing the previous information of the novel domain (aver-
age improvements of 4.7 % for TFA* and 6.0% for FORD).
Our model with BL all gains better performance than the
TFA baseline with the average about 13.5%. Tab.8 provides
an overall look on the contributions of different frozen mod-
ules that have less parameters but helps to describe crucial
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Frozen module BL Novel Set 1
RPN ASPP  Project 1-shot 2-shot 3-shot 5-shot
v 46.3 50.4 43.7 48.4
v - 54.2 49.9 56.3
v 46.4 49.8 42.2 49.0
v/ - 53.5 48.6 54.0
v v 46.3 51.6 43.7 48.9
v - 54.3 49.5 54.2
/ v 46.0 49.2 40.8 48.8
v - 53.9 48.4 54.7
453 47.7 41.3 49.7
v v v v - 541 48.8 55.0

Table 8

Ablations of freezing modules with/without BL.

features during learning phase. The models with unfreezing
the project layer gets the higher performance than others.
Adding more frozen modules reduce the AP about 1-4%.
This implies that when modules are frozen, they suffer from
adapt to novel knowledge due to the domination of base data
on the previous stage. Note that ASPP and the project layer
are used to create the feature maps with multiple receptive
fields.

4.3. Compare with meta-learning approaches

Previous works such as Kang et al. (2019);Yan et al.
(2019); Wang et al. (2019) have demonstrated the benefits
of the meta-learning approach when compared to the fully
supervised-based models such as Ren et al. (2016); Redmon
and Farhadi (2018) in the term of FSOD. However, latter
works in 2020, our baseline architecture TFA Wang et al.
(2020), for example, is fully based on Faster RCNN Ren
et al. (2016) coming with a proposal which freezes the
modules in the few-shot fine-tuning phase to get great supe-
riority about 2-20% over former meta-learning approaches.
Therefore, FORD+BL improves the TFA and enhances
the gap to 3-34% when compared to above meta-learning
methods.

In 2021, meta-learning based-methods bounce back and
achieve outstanding results in FSOD, especially CME Bo-
hao Li and Ye (2021) and Meta-DETR Zhang et al. (2021).
On Pascal VOC, CME detector achieves comparative re-
sults with FORD+BL. While Meta-DETR demonstrates a
great improvement over FORD+BL 4-10%. On COCO,
CME achieves 2-5% compared to our work and Meta-
DETR similarly outperforms CME by 4-6%. Both methods
are designed to create effective feature space for learning
discriminative features of novel classes from base model
training. Concretely, CME Bohao Li and Ye (2021) designs
a max-margin loss with an aim to optimize feature space
partition. On the other hand, meta-DETR Zhang et al.
(2021) exploits the inter-class correlation to enhance the
generalization of the model.

It is worth noting that our method is based on Faster
RCNN architecture Ren et al. (2016) with the fine-tuning
approach similar to our baseline and does not use meta-
learning techniques to produce the base model or the final
prediction for novel classes. Besides, our proposed method

can combine with meta-learning approaches to get potential
results. Finally, with the way of BL mechanism, we can
apply this learning to FSOD methods in order to further
improve the performance by reducing the difficulty of the
novel appearance and tackling the data scarcity.

4.4. Open Issues

One of the main challenges is to effectively leverage BL
mechanism so that gains better performance and addresses
the variant objects by differentiating a bad or good sample at
the very first times. In addition, we have to clarify how many
times of visual familiarity that a few-shot novice should be
exposed prior to truly becoming a few-shot detector.

Another critical issue that has not been addressed yet is
how to enhance the generalization of the model when novel
and base objects all occur. We need to reduce the domination
of base classes on novel domain with few samples while
still remaining performance. Finally, it is vital to clarify the
advantages of BL ability to apply it for other tasks.

5. Conclusion

We have presented a new framework dubbed FORD+BL
for few-shot object detection that adopts the baby learning
mechanism along with the multiple receptive fields. We first
proposed the straightforward BL that benefits the model
training. BL learns from diverse instances of novel classes
by first being familiar with a single instance and then more
visual variants. Meanwhile, multiple receptive fields allow
the model to work well and overcome the data scarcity
by only fine-tuning the project layer. Finally, our proposed
model achieved the superiority over state-of-the-art methods
on benchmark datasets.

In the future, we improve the proposed FORD+BL
framework. We plan to explore the impact of object’s
size or occlusion in FSOD and FORD+BL. We notice the
performance of the model on novel classes is affected by
training setup on base classes. Hence, we aim to quantify
the quality of the feature maps on base classes that is
good for novel classes. FORD+BL demonstrates its superior
performance on few-shot learning, however, we just fix
instances for the fine-tuning stage and ignore the well-
presented instances as representatives for a specific class,
which is worth investigating in the future.
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