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A GENERALIZED CONTOU-CARRERE SYMBOL
AND ITS RECIPROCITY LAWS IN HIGHER DIMENSIONS

OLIVER BRAUNLING, MICHAEL GROECHENIG, AND JESSE WOLFSON

ABSTRACT. We generalize Contou-Carrére symbols to higher dimensions. To
an (n + 1)-tuple fo,..., fn € A((t1)) - ((tn))*, where A denotes an algebra
over a field k, we associate an element (fo, ..., fn) € A%, extending the higher
tame symbol for k = A, and earlier constructions for n = 1 by Contou-Carrere,
and n = 2 by Osipov—Zhu. It is based on the concept of higher commutators
for central extensions by spectra. Using these tools, we describe the higher
Contou-Carrére symbol as a composition of boundary maps in algebraic K-
theory, and prove a version of Parshin-Kato reciprocity for higher Contou-
Carrére symbols.

1. INTRODUCTION

This article concerns a higher-dimensional generalization of the Contou-Carrere
symbol [CC94]. The original symbol plays a key role in the local theory of general-
ized Jacobians for a relative curve, as developed by Contou-Carrere [CCT9], [CC90).
This theory was inspired by a conjectural picture due to Grothendieck [Gro01]. If
the relative curve is just a plain curve over a field, the symbol specializes to the
tame symbol. We review this in detail along with an explicit definition below in
§1.5. But in general the Contou-Carrére symbol is far richer. For example, one
recovers the residue symbol in its tangent space. This aspect cannot be seen in the
tame symbol.

If G : Rings — Groups is a group functor, one defines its (formal) loop group LG
as the group functor

(1) LG(A)=G(A(T), where A((T)):= A[T][T].
The classical Contou-Carrere symbol is a non-degenerate pairing of loop groups

LG,, x LG,, — G,,,

Received by the editors November 12, 2015, and, in revised form, December 17, 2016, November
19, 2018, May 25, 2019, and September 28, 2020.

2020 Mathematics Subject Classification. Primary 19D45.

The first author was supported by DFG SFB/TR 45 “Periods, moduli spaces and arithmetic
of algebraic varieties”, the Alexander von Humboldt Foundation, and DFG GK1821 “Cohomolog-
ical Methods in Geometry” . The second author was partially supported by EPRSC Grant No.
EP/G06170X/1. The third author was partially supported by an NSF Graduate Research Fellow-
ship under Grant No. DGE-0824162, by an NSF Research Training Group in the Mathematical
Sciences under Grant No. DMS-0636646, and by an NSF Post-doctoral Research Fellowship under
Grant No. DMS-1400349. This research was supported in part by NSF Grant No. DMS-1303100
and EPSRC Mathematics Platform grant EP/I019111/1.

(©2021 by the authors under Creative Commons Attribution 3.0 License (CC BY 3.0)

679


https://www.ams.org/btran/
https://www.ams.org/btran/
https://doi.org/10.1090/btran/81
https://creativecommons.org/licenses/by/3.0/

680 OLIVER BRAUNLING ET AL.

which can also be seen as the statement that LG, is self-dual under Cartier duality.
Our generalized symbol will be (n + 1)-multilinear on n-fold loops

LnGm X X LnGm — Gm

n+1 factors

for any n > 1. This might at first sight not look like an appropriate generalization
of a duality, but we shall explain below both why the generalization should have this
form, as well as our approach for defining it. See Theorem 1.1 if you want to jump
ahead to a precise formulation of the properties of our symbol (including compat-
ibility with the classical Contou-Carrere symbol and with a previous construction
of a two-dimensional Contou-Carrére symbol in [0Z16]), or jump to Theorem 1.4
for the reciprocity law which we prove for it, generalizing the reciprocity law of the
Contou-Carrere symbol on curves. Even when speaking of the classical Contou-
Carrere symbol, the literature approaches the topic from various angles and we use
this introduction as an opportunity to explain the relations between these view-
points. This is also vital to explain the idea behind our construction in arbitrary
dimension.

1.1. The origins. Let us first review the classical story before Contou-Carrere’s
theory. Suppose (for simplicity) that X/k is a smooth curve over an algebraically
closed field k, not necessarily proper. The curve comes equipped with a generalized
Jacobian J along with an Abel-Jacobi map

X —J

sending a closed point = to the degree one! line bundle O([x]). There are many
ways to formulate geometric class field theory, but a reasonable summary can be
given in terms of the following two principles:
Every morphism X — G to a commutative algebraic k-group G factors uniquely

over J. This can be phrased as an isomorphism
(2) Hom (J,G) = H(X, @),

k—groups
where we consider fppf cohomology on the right side. This is essentially character-
izing J as a type of Albanese variety.? Moreover, extensions of J by G correspond
to G-torsors,
(3) Ext (J,G)= HYX,G).

k—groups
This property provides a link to class field theory: As a special case of it, one
obtains that every abelian finite étale covering of X arises as the pullback of an
isogeny of the Jacobian. For example, if X is P! minus at least two points, the
Jacobian has a non-trivial torus part and a pullback of the isogeny G,, — G,
yields a degree n cyclic Kummer extension. The kernel sequence of this isogeny
defines the corresponding extension in Ext!.

LOther people prefer to fix an auxiliary point p and take differences [z] — [p] so that one obtains
a degree zero line bundle, living in what is perhaps more classically called the Jacobian or Pic®.
The dependency on the choice of p makes this less functorial. We use the term “Jacobian” in a
broader sense here.

2In a generalized sense.
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There is a more precise formulation, where one replaces J by a Jacobian with
respect to a fixed modulus® m with support in X \ X, and then one obtains a
description of exactly such abelian finite coverings which are étale over X and
whose ramification at the boundary X \ X is bounded by the multiplicities of m.

Background can be found in [Ser88], but our exposition here follows [AGVTL,
Tome 3, Exposé XVIII] and [BEO1, Appendix, Deligne’s letter, (e)].*

1.2. The relative situation. Contou-Carrere generalized this story to the sit-
uation of relative curves, i.e. the compactified curve X /k is replaced by a flat
morphism of finite presentation

f:X—S

such that the fibers are geometrically integral of dimension one and locally pro-
jective over the base and X := X \ D is taken to be the open complement of a
relative divisor D. The papers [CC79], [CC90] set up a corresponding theory of a
relative generalized Jacobian attached to f, along with a local theory [CC81]. The
analogue of Equation (2) is set up in [CC13, Thm. 1.6.6].

The present paper also concerns the relative situation, but we should first explain
a few more concepts in a simpler setting.’

1.3. Local symbols and the Contou-Carrére symbol. Returning to the origi-
nal formulation of class field theory for curves, i.e. back in the situation S := Speck
with k& = k, one can also understand abelian finite étale coverings with bounded
ramification using a more classical approach based on the idele class group and
methods adapted from number theory.%

In terms of the idele class group, the choice of a modulus m bounding the al-
lowed ramification identifies the deck transformation group with a so-called ray
class group. Such is a quotient of the idele class group. The fact that the global
reciprocity map is trivial on the terms which we quotient out, amounts to a reci-
procity law. Since the global reciprocity map is a product of the local reciprocity
maps, the triviality of the global action means that a suitable linear combination of
local terms adds up to zero. Neglecting a few details, these contributions amount
to the so-called local symbols. The formalism of local symbols extends beyond the
mere application in class field theory to all commutative algebraic k-groups G.7

For example, the tame symbol is a local contribution which arises in the context
of Kummer cyclic coverings. These abelian extensions arise as the pullback along

an isogeny G,, — G,,, just as mentioned above.

31t is standard to call this a modulus in this setting, but in this context it is the same thing as
an effective Weil divisor. The Jacobian Jy, classifies line bundles with extra trivializations at the
support of the modulus. Sections of such can be understood in terms of certain lattices; a concept
we shall soon return to in §1.9.

4Recently, it has become more popular to re-interpret geometric class field theory as rank one
local systems arising as pullbacks from the Jacobian. We refrain from using this slight shift of
perspective in this text.

5For the sake of completeness, we mention that Deligne [Del91] has also found the Contou-
Carrére symbol, albeit in an analytic setting. This extends the overall picture in a different
direction and would lead us too far here.

6That is: Approaches to the global class field theory of curves which do not rely on the Jacobian
(there are several ways to do this).

"This theory has since found a new formulation in terms of reciprocity sheaves [IR17], [KSY16]
or more broadly motives with modulus.
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This suggests the existence of a local analogue of the entire story, where the roles
of X, X are replaced by

X = SpecFracOx 5 and X := Spec Ox .z,

so that one can think of X as a punctured disc and X the “compactification”
obtained by filling the puncture. This setting would still retain most of the global
geometry since the field of fractions of course determines the curve (so it is not ‘as
local’ as one might wish for). This suggests to work with the formal completions
instead.

4) X := SpecFrac Ox o and X := Spec @XJ.

Of course, one can choose a local coordinate and obtain (non-canonical) isomor-
phisms

(5) FracOx, ~ k(z)((t)  and  Ox., ~ s(a)[[]].

The analogy to the loop group construction in Equation (1) is apparent.
Before we continue, let us recall that these (formal) local contributions admit a
class field theory in their own right, known as local class field theory.

1.4. Duality formulation of local class field theory. Let us first look at the
original local theory originating from arithmetic. Suppose F' is a finite extension
of Q,. Local class field theory can be expressed as a duality in Galois cohomology.
The pairing

(6) HY(F,Z/n(1)) @ H* Y(F,Z/n) — H?*(F,Z/n(1)) 2 Z/n

is non-degenerate for any n > 1 and any i. Here Z/n(1) refers to the Tate twist;
one could also write p,. Since

HY(F,Z/n) = Hom(Gal(F*?/F),Z/n)

is the Z/n-dual of the abelianized Galois group, this encodes the classification of
degree n abelian étale coverings of Spec F' in terms of H'(F,Z/n(1)) & F*/nF*.

The same is true if F is a finite extension of F,,((¢)), except that a more involved
formulation is necessary if p | n, which we do not wish to discuss in the introduction
(to keep this exposition at reasonable length).®

Let us now discuss a generalization of this which is vital for understanding the
deeper motivations for the present paper.

The above duality formulation of local class field theory can be generalized to
r-local fields, e.g., when F' is a finite extension of

(7) Qp(E))((t2)) - - ((tr-1))  or Fp((t1))((E2)) - - ((Er))-

There are more r-local fields than just these, but again let us sweep this under the
rug for the purpose of this introduction.

A duality formulation of class field theory as in Equation (6) remains intact also
in this broader setting, but the cohomological dimension increases from 2 to r + 1.
We get, again ignoring the case where the characteristic divides n, a non-degenerate
pairing
(8) H'(F,Z/n(i)) ® H™ 7 (F,Z/n) — H™Y(F, Z/n(i)) = Z/n.

8The story is entirely analogous to what happens in geometric class field theory, where G, (or

truncated Witt vectors) are needed as the relevant commutative group scheme, and the pullbacks
are Artin—Schreier—Witt extensions.
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Letting ¢ := r, this now pairs the Z/n-dual of the abelianized Galois group with
the cohomology group

(9) H'(F,Z/n(r)) = KM (F)/n,

where the map is the norm residue isomorphism. We observe two key facts: (1)
as the cohomological dimension increases, the duality moves to higher homological
degrees, and (2) the role of G,, in 1-dimensional class field theory is now taken
over by a Milnor K-group (or the motivic sheaf Z(r), but let us stay entirely in the
language of K-theory; see Remark 2.2).

1.5. Back to the Contou-Carrére symbol. The duality considerations in §1.4
were only on the level of Galois cohomology, or the étale topos if you will. They
are not geometric. Despite the formal similarity to Poincare duality, the underlying
scheme is just Spec F' and the duality a group-theoretic fact of Gal(F*°P?/F). One
would expect more, especially when attempting to move this story to the relative
setting of §1.2. This is the motivation for the original Contou-Carrere symbol
[CCY4].

We return to the situation of a relative curve. The Contou—Carrére symbol is a
non-degenerate pairing on the loop group of G,,

(—, =) : LGy, x LGy, — G,y

It can be given by an explicit formula. Using a presentation
(10)

1=—1

f= H (1—a;t’ aot”(f)

i=—1

(1-a;t’), and  g= [] A=bit)bot”@ [J(1-bit"),

1 —0oo i=1

8

7

for suitable v(f),v(g) € Z (just the order of the power series) and a;,b; € A
(nilpotent for ¢ negative), the value is given by

Vo) V(y) HZ 1H]— (1 ag/(17j)bz_/](1»3))(i,j)

(11) (.9)= (=103 O )
(f) Hz 1HJ 1( aJ_/i(m)b;/(m))(z,g)

We can directly connect this to the local class field theory story of §1.4. If we
evaluate the Contou—Carrere symbol on a field k, it simplifies to

(12) LGy (k) X LGy (k) — G (k)
k()" X k((8)* — £~
sending
(Yol 2
(13) (g o (555 o)

Here we exploit that since the fraction in the big brackets has degree zero, its
evaluation at zero is possible and non-zero. This expression is known as the tame
symbol. Tts relation to local class field theory is as follows: Taking F := k((t)) for
any field k such that char(F) t n, the Galois cohomology pairing

(14) HYF,Z/n(1)) @ H'(F,Z/n(1)) — H*(F,Z/n(2))
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can, through the norm residue isomorphism (as in Equation (9)) be realized as a
quotient of the natural pairing in Milnor K-theory

(15) KM(F) ® K{M(F) ————— K3/(F)

| |

HY(F,Z/n(1)) ® HY(F,Z/n(1)) —— H?(F,Z/n(2)),
and along with the boundary map
(16) KM (F) © K (F) — K3'(F) 2 k>,

the composition of maps in the top row is given by the same formula as in Equation
(13). This shows that the duality maps which occur in local class field theory are
at least close to the ones realized by the tame symbol; and thus are reasonable to
generalize in some way to the Contou—Carrere symbol. We also get a strong hint
of the relevance of K-theory here. The full story is a little more complicated: The
pairing in Equation (14) has a different Tate twist than in Equation (6), so it is a
little bit off. Once the field contains a primitive n-th root of unity, one can pick an
isomorphism of étale sheaves Z/n ~ Z/n(1) (= p,) to fix this, but really the tame
symbol corresponds to the (prime to the characteristic part of the) Hilbert symbol
and not to the reciprocity pairing. Let us sweep these issues under the rug for the
purpose of this introduction.

The boundary map 0 in Equation (16) arises from the localization sequence in
(Quillen) K-theory, corresponding to the open-closed complement decomposition
(17) Speck <— SpecOp <+ SpecF.

closed open
Here (Op,m) is the ring of integers in the local field F' and we use that Op /m = k.
The boundary map appears in the attached long exact sequence in the spot

(18) o Ko (Op) — Ko(F) -2 Ky(k) — -+

In these low degrees there is no difference between Quillen K-theory and Milnor
K-theory (see §2 for more on this).

It turns out that this description generalizes without any problem to the n-
dimensional case of the pairing in Equation (8). This gives rise to the higher tame
symbol. Tts role in higher-dimensional class field theory of schemes (as provided by
Parshin [Par78], [Par84], [PF99] and Kato [Kat79], [Kat83], Kato—Saito [KS86]) is
analogous to the classical tame symbol. Its reciprocity laws have the same formal
shape as reciprocity laws® for rational n-forms in Grothendieck—Serre Duality for
coherent sheaves. We explain the higher tame symbol and the generalization of the
boundary map construction using 0 in §3 below.

For the higher tame symbol, one obtains the same object irrespective of whether
one uses Milnor K-theory or Quillen K-theory. This leads us to a first idea how one
might construct a higher Contou-Carrere symbol. Firstly, it should be concerned
with higher formal loop groups, as in

(19) L'G(A) := G (A(T))(T2)) .. ((T3))) ,

9They are customarily also called residue theorems in this setting.
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which is just the r-fold iterate of the loop construction in Equation (1), and is
visibly a good formal model for various (equicharacteristic) higher local fields, see
Equation (7).

Idea 1. Replace the open-closed complement in Equation (17) by
Spec A = Spec A[[T]] <= Spec A((T"))
open

close
and attempt to work with the corresponding boundary map 0, imitating the con-
struction of the higher tame symbol. If A is a field, this should specialize to the
previous situation and thus, by construction, this generalized symbol would neces-
sarily degenerate to the tame symbol in the classical situation, analogous to what
happened around Equation (12)-13.

Firstly, one should ask whether this recovers the original Contou-Carrere symbol
even in the one-dimensional case. This had been suggested by Kapranov—Vasserot
[KV07, 4.3.7. (Remark)] and is answered affirmatively in this paper (see Theorem
1.3), and was shown around the same time also by Osipov—Zhu [0Z16].

We pursue Idea 1 in §3. It leads to one possible construction of our Contou-
Carrere symbol in all dimensions (Definition 3.16); probably the quickest.!°

1.6. Central extensions. On the other hand, this approach also has a drawback:
Going from Equation (4) to Equation (5) we chose a local coordinate. In other
words, we were using Cohen’s Structure Theorem, telling us that an equicharacter-
istic discrete valuation field is always isomorphic to a Laurent series field,

(20) Frac Ox., =~ k(2)((t)),

where () is the residue field. This isomorphism is highly non-canonical. However,
of course none of our constructions should depend on the choice of such a coordi-
nate.!! Translated to the Contou-Carrére symbol, i.e. to abstract loop group
functors

LG(A) =G (A((1)),

this suggests that our constructions should really be invariant under all ring auto-
morphisms of A((t)), of which there are many.'? This property indeed holds for
the original Contou—Carreére symbol, but note that it is not at all obvious from the
complicated formula in Equation (11). This suggests to look for a definition of the
Contou-Carrére symbol (as well as its higher analogues) where this invariance is
automatic by construction.

Tate in his famous paper [Tat68] had asked a related question: Suppose X/k is a
curve. He wanted to define the residue of a Laurent series at a closed point x € X.
While

fdt—a_ for f= Z ait’ € k((t)) (z) Frac (/9\X7z
is a clear candidate for a definition, it suffers from the same problem of depending
on the isomorphism (x). Instead, he wanted a construction which was a priori

10 Actually, we do something more general: Using Parshin-Beilinson adeles one can run such a
construction for arbitrary descending chains of subschemes. The case discussed in this introduction
arises as a special case.

11 Just as class field theory doesn’t depend on choosing a coordinate.

12And themselves representable as a group ind-scheme.
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independent of the choice of a coordinate. This issue can be connected to the
Contou-Carrére symbol, since it also encodes the residue: The formula

(21) (1-cf,1—eg)=1—c"res(gdf)

holds for the choice A := k[e]/(¢?), k any field and regarding f,g € k((t))* as a
subgroup of LG,,(k), [APR04], [BBE02]. Thus, a coordinate-invariant construc-
tion of the classical Contou-Carrere symbol includes such a coordinate-independent
approach to the residue. Conversely, our second method for constructing a higher
Contou-Carrere symbol goes the reverse direction: We adapt Tate’s solution for
residues in [Tat68], which we shall recall in §1.7 below, to the Contou-Carrére sym-
bol. Tate also showed the residue theorem using his method for curves. Arbarello—
de Concini-Kac have used the same idea to set up the tame symbol and prove
the corresponding reciprocity law on curves [ADCKS89] (and more broadly [PR02]).
Based on this idea, Anderson—Pablos Romo [APR04] and Beilinson-Bloch-Esnault
[BBE02] had the insight that the same strategy should both make it possible to
construct the classical Contou-Carrére symbol coordinate-independently and prove
its reciprocity law on suitable relative curves.

Next, let us explain how Tate’s solution works since this is also the foundation
for our second construction of the higher symbol.

1.7. Tate spaces. Let us briefly recall Tate’s idea in modern terms: The ingre-
dients for our local symbols can always be written as an ind-pro limit of finite-
dimensional k-vector spaces, e.g.,

k((t)) = colimim T~"k[T]/(T™)  or  FracOx, = colimlimm "Ox,/m%,,

(for any uniformizer 7). Tate had the ingenious insight that for defining the residue,
one only needs to know these objects as ind-pro limits.'®> He manages to express
the residue as a certain commutator of endomorphisms of these ind-pro objects.
Since the ind-pro structure on Frac O x,» can be given without choosing a coordi-
nate isomorphism (as exhibited above on the right), this solves the problem. The
commutator in turn can be understood as coming from a central extension of a
suitable Lie algebra, i.e. a Lie 2-cocycle in H?(g, k) for a suitable Lie algebra g.

The papers [ADCKB89], [APR04] now recover the tame symbol by studying the
corresponding central extension of groups, i.e. a group 2-cocycle H2(G,k*) for a
suitable group. Neglecting various details, one can visualize this as the Lie corre-
spondence between Lie algebras and Lie groups. This is also seen in Equation (21),
where the residue is explicitly recovered in a tangent space (to a functor).

In fact, the Lie algebra g can be taken to be the endomorphism Lie algebra, and
G to be its group of automorphisms (in each case respecting the ind-pro structure).

A key point of the present paper will be to explain how this approach is compat-
ible with the ideas about K-theory boundary maps earlier in the introduction. As
Anderson—Pablos Romo [APR04] set up both the classical Contou-Carrére symbol
as well as the reciprocity law using this method, this is another promising approach
to construct a higher Contou-Carrére symbol. A natural idea is to iterate the

13 These have since become known as Tate vector spaces. Alternatively (but equivalently), one
can work in the setting of locally linearly compact topological k-vector spaces. However, the latter
setting is problematic to adapt to the relative situation.
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ind-pro limits, corresponding to the iterated loop functor in Equation (19).

A(T)(T2)) -+ ((T2))
= colim@- . colirn&an”1 s T[Ty TR (T T,

ni

Ny My

In order to treat such objects “by induction” in the number of loops r, it is natural
to set up a category of ind-pro objects with respect to an arbitrary input category so
that iterating this categorical construction corresponds to iterating the loop group
construction. These are the so-called Tate categories, [Prell], [BGW16¢c]. One
then finds that the correct analogue of the group 2-cocycles above are higher group
(r + 1)-cocycles for the automorphism groups of suitable objects in such iterated
Tate categories (called r-Tate categories).!4

The two-dimensional tame symbol and its reciprocity law were set up by Osipov
and Osipov-Zhu [Osi05], [OZ11]. Osipov-Zhu also constructed a two-dimensional
Contou-Carrére symbol using this method [OZ16] and showed its reciprocity law
on surfaces. They also showed how the residue symbol for 2-forms on surfaces
is encoded in their symbol, generalizing Equation (21). In the case of the tame
symbol these recover the Parshin reciprocity law from his approach to global class
field theory.

Idea 2. Construct a higher Contou-Carrere symbol using a generalized central
extension, based on a higher group cocycle of an automorphism group of an object
in an iterated Tate category.

This will also work and we pursue this in §5. In some sense it is more general
since it really only relies on the iterated ind-pro structures.

1.8. Our approach through homotopy theory. A central part of this paper is
devoted to establishing a clear connection between these two ideas. To this end,
we need to work with Quillen K-theory as a space (or spectrum) and not just the
individual K-groups. Let us sketch the main idea.

The boundary maps 0 between K-groups which appear in Idea I really come
from maps between spectra,'® e.g., using the boundary map of the localization
sequence on the level of spectra,

(22) QK (F) -% K (k)

taking 71 functorially yields the map in Equation (18). Now truncate the homotopy
type of K(k) to its [0, 1]-type. Since K;(A) = A* (at least for local rings, not in
general), and if we for simplicity ignore 7y (which is a serious oversimplification),
K (k) essentially looks like BG,,. So, very roughly speaking, one almost has a
truncation map

(23) QK (F) -2 K(k) - BGyy, .

The dotted arrow does not quite exist because we ignored my. Nonetheless, writing
F-vector spaces as Tate k-vector spaces (i.e. as the aforementioned ind-pro limits),

14This also works on the Lie algebra level. A Lie algebra (r4-1)-cocycle gives the higher residue
symbols of Grothendieck—Serre coherent duality theory; this is due to Beilinson [Bei80]; see also
[Bralg].

15We shall provide background on spectra in §4.2.1.
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we obtain a map K(F) — K(Tate(k)). Modulo the issues with the dotted map
above, there is a factorization

(24) QK (F) —— K(k) - BGp,

> —
—
~ —
- _ -
- —
—
—

QK (Tate(k)).
Next, in [BGW18b, Theorem 1.4 (2)] we showed that

T
(25) K(Tate(k)) = (B Aut (“k((t))”)> ,
Tate(k)

where the plus superscript refers to the plus construction. This is an analogue of
Quillen’s construction of K-theory via the plus construction, i.e., K(A) ~ Ky(A) x
B GL(A)™, except that no corrections to deal with K are needed and instead of
GL we deal with the automorphism group of an object in the Tate category.'® The
outer diagonal arrow in Equation (24) thus also pins down a map

i
Q (B Aut (“k((t))”)) — BG,,.
Tate(k)
By adjunction we can move ) to the right, lifting BG,, to B*G,,. However, one
of the defining properties of the plus construction is that it does not affect the
homology of a space. Thus, the above map defines a degree 2 cohomology class of
the classifying space B Autrae(r)(“k((2))”), without having applied the plus con-
struction. This is equivalent!” to providing a group 2-cocycle
(26) H2, (At (R(1)"). G.n)
We have explained this in an oversimplified fashion here, especially our imprecise
handling of 7wy (which is just wrong). Also, we have not been very precise what
categories we work in. Nonetheless, the idea should have become clear. We shall
show that a careful variant of the above idea provides the connecting link between
defining the Contou-Carrere symbol either via Idea I or Idea 2.

The above considerations necessitate to work with K-theory on the level of spec-
tra. Moreover, when handling 7o correctly, the right side in Equation (23) is not
just a classifying space, but sits in several homotopical degrees. Thus, one needs to
work with a slight generalization of the concept of a group extension when wanting
to do this right (we shall work in the context of spectral extensions).

The above picture generalizes to explain also the connection between our two
approaches to higher Contou-Carrere symbols. Iterated use of the boundary maps
0 corresponds to an iterated use of Tate categories and a straightforward gener-
alization of Diagram (24). Moreover, all these constructions (including Equation
(25), [BGW18b, Theorem 1.4 (2)]) work for arbitrary rings A and thus for A((T))
and not just k((¢)), making it possible to use it also in a relative setting.

This leads to our main construction, in the spirit of Idea 2.

16 As we explain in [BGW18b, §4], this result can also be thought of as an algebraic analogue
of the Atiyah—Jéanich theorem in topological K-theory.

7The group cohomology group Hg,‘rp(G7 M) can equivalently be described as the group of
homotopy classes of maps from BG to BI M.
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Theorem-Construction 1.1. Let k be a field and A a k-algebra.

(1) For every n-Tate object V € n-Tate(A), we construct a nontrivial spectral
extension of Aut(V) by the (n—2)-shifted non-connective K -theory spectrum
Y 2K 4 (we leave the detailed construction to the main body of the paper).

(2) Restricting the latter to the units A((t1))--- ((tn))™, they acquire a spectral
extension by the non-connective K -theory spectrum X" 2K . For fo, ..., fn
€ A((t1)) -+ - ((tn))* we define the Contou-Carrére symbol to be the corre-
sponding higher commutator (fo,..., fn).

(3) Formn < 2 the constructions of (1) and (2) recover the definitions of Contou-
Carrére and Osipov—-Zhu [OZ16].

The first two statements are an immediate consequence of our formalism of
spectral extensions and higher commutators (§4) applied to the n-fold iterate of
the index map (see Definition 5.4). For the third statement, see Propositions 5.6
and 5.10.

Denote by 0; the boundary map in algebraic K-theory , where K(—,I) is K-
theory with support in the subset given by the ideal I:

Oit Kiy1 (A((t1)) -+ (@)[[tia]l, (Givn) ) = K (A((E2)) -~ ((Gim)[[E]], (82)) -
Let m.: K1(A[[t1]], (t1)) — Ki1(A) be the map induced by A — A[[t1]], and let
det: K1(A) — A* be the determinant.

Theorem 1.2. Let k be a field and A a k-algebra. For fo, ..., fn€A((t1)) -+ ((tn))™
we have

(forvos f) V" =det w0y - 0 {for- -, fu},
where the left-hand side is our Contou-Carrére symbol of Theorem 1.1. If A is a
field, it agrees with the higher tame symbol of Parshin and Kato.

See Theorem 6.5. This theorem shows that Idea 1 is entirely compatible with
our construction following Idea 2.

The right-hand side in the above formula is probably the quickest way to define
our higher Contou-Carrere symbol. However, our construction following Idea 2 is
more general since Theorem 1.1 (1) defines an extension of the entire automorphism
group, while the above only sees the restriction to the units of multiplication.!® The
key point of the above theorem is that it connects our generalization of the ideas
around central extensions as in Arbarello-de Concini-Kac [ADCK89] or Anderson—
Pablos Romo [APRO04] with the purely algebraic perspective of boundary maps on
the right side.

For concreteness, we now state a special case of these results: The following had
been conjectured by Kapranov—Vasserot in [KVO07].

Theorem 1.3. Let k be a field, and let A be a k-algebra. The classical Contou-
Carrere symbol factors through the boundary map in K-theory

A((B)* x A< — Sy

{a}l Tdct()

Ks(A((1) —— 22— K (A)

18The multiplication with any unit of the ring induces an automorphism of the Tate object.
But of course there are many more automorphisms. For example, note that the multiplication
automorphisms by units only span a commutative subgroup of the entire automorphism group.
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or, in equations, (f,g)~1 = det(0({f,g})). Here (—,—) and {—,—} refer to the
classical commutator and classical Steinberg symbol respectively.

A second proof of this case has recently appeared in Osipov—Zhu [0Z16].

1.9. Grassmannian and determinant bundles. Previous papers on these sub-
jects have constructed the relevant central extensions of §1.8, especially the group
2-cocycle in Equation (26), using different devices. The most popular approach to
this proceeds by constructing the so-called (regularized) determinant line bundle
on the Sato Grassmannian directly. Let us explain this.

Let k be a field as before. Let Pic denote the Picard groupoid of k-lines (without
grading, for the moment). View E := k((t)) as a Tate k-vector space and let Grass
denote its set of lattices.'® Recall that for any finite-dimensional vector space one
can define its determinant as its top exterior power

detV=A\"V

and this generalizes nicely to families. Lattices, being infinite-dimensional over k,
do not a priori have such a determinant. It would not be clear what the “top”
exterior power should be once dim V' = oo.

In their approach to the tame symbol cocycle, Arbarello-de Concini-Kac
[ADCKB89] considered maps

det : Grass —» Pic,

associating a line to any lattice. Whenever L’ C L for lattices, they demand
top

(%) det(L) = det(L') @ \(L/L)

to hold, which makes sense since L/L’ is finite-dimensional over k. There are several
choices of such maps &gc, in fact the set of choices is a k*-torsor. Automorphisms
Aut(FE) of E as a Tate vector space do not preserve this choice and rescale the lines.
As a result, Aut(E) does not act on ‘the total bundle space’ [} cg,qss dAe/t(L)7 only
a central extension does. This central extension yields a class in

H}.,(Aut(E), k),

giving the so-called unsigned tame symbol, which is like Equation (13), but without
the sign term. This construction can be adapted to E := A((¢)), i.e. to the
relative situation of §1.2. This class is (except for the correct sign), the same one
as the one in Equation (26). To get the full theory, Pic can be upgraded to be the
Picard groupoid of graded lines PicZ. The corresponding cocycle then yields the
full classical Contou-Carrere symbol, as was shown by an explicit computation in
[APRO4], [BBE02].

Essentially, the above is an explicit construction of our homotopical approach in
§1.8. It sets up the same cocycle using a group action on the Grassmannian instead
of a purely homotopical consideration.

We can also explain our higher Contou-Carrere symbol in terms analogous to
the above, an Idea 3 if you will:

(1) The Tate vector space E is generalized to an n-Tate object. By the corre-
spondence between 1-Tate objects of finite-dimensional k-vector spaces and locally

19That lattices are of relevance for our considerations reflects a corresponding phenomenon,
where lattices appear in Contou-Carrere’s local theory of Jacobians.
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linearly compact k-vector spaces, this is equivalent to older literature when it refers
to similar constructions in terms of linearly compact vector spaces.

(2) The group Aut(FE) is taken to be automorphisms in the category of n-Tate
objects. .

(8) The map det is trickier to generalize. We replace the lattice Grassmannian
Grass by a generalized flag space

LOL)Ll‘—)%Ln%E

of nested lattices L; in the n-Tate object E. We implement an unpublished idea
of Kapranov: We generalize det to a map taking values in K-theory, without any
truncation, and since Waldhausen’s explicit Se-model for the K-theory of & is a sim-
plicial set with simplices 0 < X; < --- < X, where the X; are finite-dimensional
k-vector spaces, we may define a map

(27) [Lo— Ly — -+ — L, = E| — [0 Ly/Ly - — L,/Lg],

sending flags of lattices to simplices in the K-theory space. The special case of
just two lattices, [L' < L < E] — [0 — L/L’], should ring a bell in view of Equa-
tion (x). We have worked out the simplicial details of this in our previous paper
[BGW18b], and use these ideas here.

The role of the Picard groupoids Pic or Pic” is seen as follows: Deligne had the
insight that there is an equivalence of homotopy categories

(28) stable homotopy [0, 1]-types & Picard groupoids.

This means that spectra whose homotopy groups vanish outside degrees 0 and
1 can equivalently be modelled by Picard groupoids.?® Thus, our homotopical
considerations in §1.8 can also be studied using Picard groupoids, at least once we
truncate to homotopical degrees 0 and 1. When one studies the classical Contou-
Carrere symbol, it is (cum grano salis) almost sufficient to work in such low degrees.
Then we use Deligne’s insight that PicZ receives a map from the truncated K-theory
spectrum 7<1K: The Picard groupoid Pic? is a simplified model for the homotopy
type of the 1-truncation of the Quillen K-theory spectrum. This is, by the way, just
a different way of expressing how we found BG,, around Equations (22)-(23); Pic
is the Picard groupoid corresponding to BG,, under the equivalence in Equation
(28).

This is the deeper reason why the above construction can use PicZ and yields
equivalent output to what we had otherwise set up in §1.8 using homotopy types.
The need to work with graded lines is the same complication which we had around
mp in §1.8.

This discussion also reveals that for higher Contou-Carrere symbols, where higher
homotopical degrees are needed, one would have to work in more complicated mod-
els than stable [0, 1]-types.

(4) Cocycles H?(G, A) are classically modelled through commutators. We phrase
this as a shuffle product, which generalizes easily to higher degrees. Based on
this, we define a concept of higher commutators in §4. Finally, we interpret all of
these constructions consistently through homotopy theory. The group of central
extensions H?(G, A) equals the group of homotopy classes of maps (of unpointed
spaces) from the classifying space BG to B2A. To gain additional flexibility, we

20We shall elaborate a little on this and related facts in §4.2.1.
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define a notion of spectral extension. It amounts to maps X BG to Y2E for a
spectrum E (where X5° X denotes the infinite suspension of a (unpointed) space X
with a disjoint basepoint added). This turns out to be the appropriate language to
generalize the Contou-Carrére symbol. See §4 for details.

Main Principle. Ideas 1, 2 and 8 all yield the same concept of a higher Contou-
Carrere symbol.

The compatibility of Idea 1 and Idea 2 is Theorem 1.2 and the compatibility to
Idea 3 is part of Theorem 1.1 (3).

1.10. Higher reciprocity laws. Our next result is a type of adelic reciprocity
law: let X be a reduced, separated k-scheme of finite type and dimension n. Fix
an integer 0 < ¢ < n. Let ¢ denote a flag of integral closed subschemes

C:(ZnDanlD"'DZH,lDZile"'DZo),

indexed by j # 4, with dim Z; = j. If 7 = 0, we assume that Z; is proper over k.
Exactly one dimension is missing, namely Z;; such flags are called almost saturated.
We denote by Ax ¢ a certain ring formed as an iterated completion of A(X), the
A-valued rational functions on X, at the places Z; x, Spec(A), cf. §3.1. As for the
classical adeles, the ring Ax ¢ is built from rings Ax ¢, , one for each i-dimensional
closed subset

Zi1 C ZC ZiJrl.

Each of these rings carries a higher Contou-Carrere symbol (fo, ..., fn)e,, and the
geometry of Ax ¢ gives rise to a relation satisfied by these symbols:

Theorem 1.4. For fo,..., fn € A§(C the product of the Contou-Carrére symbols
over all Z;_1 C Z C Z;41 is well defined, and we have

H(fO> cosfn)e, =1

Z

See Theorem 7.4. This theorem extends results for X of dimension one by
Anderson—Pablos Romo [APR04] and P4l [P4l10] (for A 0-dimensional), Beilinson—
Bloch-Esnault [BBE02] (for A arbitrary), and results for X of dimension 2 by
Osipov—Zhu [0Z16].

The finite dimensionality of the cohomology of a proper curve provides a key
geometric input in proving the reciprocity law for 1-dimensional symbols. In the
setting of higher dimensional reciprocity laws, we can morally interpret the ring
Ax ¢ of Theorem 1.4 as the ring of A-valued rational functions of an exotic “curve”
X¢ associated to the almost saturated flag { Z; } ;2;. In principle, this “curve” should
be obtained by iteratively completing X at the Z; and then removing the special
point Z;. However, at present, the theories of Berkovich or rigid analytic spaces are
insufficient to handle such constructions. Rather than develop such a theory, we
take a non-commutative geometry approach and replace X by its stable co-category
of perfect complexes. The operations of localization and completion of schemes have
analogues for stable oo-categories, cf. Thomason—Trobaugh [TT90] (localization)
and Efimov [Efil0] (completion). We apply these in §7 to construct a stable oo-
category which plays the role of “Perf(X¢)” and we use the (non-commutative)
“geometry” of this stable co-category to deduce the reciprocity law.
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These categorical constructions could be pictured as a “non-commutative shadow”
of the formal scheme obtained by formal completion. Their role should be un-
derstood to be analogous to the one of the “commutative shadows” utilized by
Contou-Carrere (and called ombres in [CC94], [CC13]).

For our proof of reciprocity, we adopt a general strategy which was first intro-
duced by Gillet [Gil78].2! The reciprocity law of Theorem 1.4 expresses information
about the local geometry of a variety around an almost saturated flag. As remarked
above, our approach to higher symbols allows us to reduce the reciprocity law to
the statement that d> = 0 in a Gersten-style complex. As with the classical Gersten
complex, the differentials arise as (sums of ) boundary maps in K-theory localization
sequences. Our work on derived completion allows us to obtain these localization
sequences in our setting and deduce reciprocity.

We now explain the strategy of this proof in the case A = k and n = 2. Let
Y be a smooth surface over k and = € Y a closed point. For a triple of non-zero
elements f, g, h of the fraction field of Oy, we must show that the product

H(f,ga h)c,z

C

ranging over curves containing x, is well-defined and equals 1. There exists a closed
subset Z C Y, such that Z is a union of curves containing z, and f, g, h are regular
elements on U = Y\ Z. Our results above identify this product with a composition
of boundary maps as in the lower path of the diagram

K3(U) 2= Ka(Y \ {2}, 2\ {z}) —— Fa(Y \ {a})

T,

Ki({z}).

However, this is also equivalent to the upper path of the diagram, the last two maps
of which are successive maps in a long exact sequence.

For dimension n > 2, we employ an analogous argument. However, we must now
replace the punctured surface Spec Oy, — {x} with a more exotic object obtained
by completing and removing at all the closed subsets in an almost saturated flag.
Our treatment of derived completions supplies us with the necessary localization
sequences in this setting, while our treatment of symbols allows us to identify the
appropriate product with a composition of boundary maps from these sequences.
It is then a relatively straightforward matter to show that this composition is zero
when restricted to tuples of invertible elements of Ax ..

2. K-THEORY

2.1. Background on the flavours of K-theory. We shall use K-theory in var-
ious flavours, so let us quickly recall the key players and motivate how and why
they enter our considerations.

21We thank the first anonymous referee for bringing this to our attention.
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2.1.1. Origins. Historically inspired by the study of vector bundles in algebraic
geometry, one can form for any (small) exact category C the Ky-group

{iso-classes [X] of objects X € C}

Ky(C) = .
o(©) relations [X] = [X'] + [X"] for any exact sequence X’ — X — X"

Choosing C to be the exact category of vector bundles VB(X) on a variety X,
this provided the necessary context for Grothendieck’s extension of the classical
Riemann-Roch theorem.

The freedom to develop the whole theory for very general categories instead of
just vector bundles has proven very useful and will also be vital for our considera-
tions.

2.1.2. Localization (geometry). Returning to vector bundles, studying the relation-
ship of the Ky-group for a scheme X in comparison to the one of a reduced closed
subscheme Z C X and its open complement U = X — Z leads to “higher” K-groups
fitting together into the so-called localization sequence. In this geometric setting
(and only if everything is smooth), it takes the form of an exact sequence

(29) o — Kp(2) —- Kp(X) — K,(U) — K1 (Z2) — -+

In fact, this long exact sequence can be understood in terms of different categories.
For example, still assuming everything to be smooth, one gets the relevant K-
groups by taking the category of coherent sheaves on Z, X and U respectively, and
obtains

Coh(U) = Coh(X)/ Cohz(X),

expressing the category of coherent sheaves on the open complement U as the quo-
tient abelian category of the coherent sheaves on X, modulo those having support
in Z, called Cohyz(X). In other words: The decomposition of X into Z and its
complement U can be reflected as a subcategory and the respective quotient on the
level of categories. This suggests a general picture for categories, valid beyond this
geometric application:

2.1.3. Localization (general principles). Generalized to arbitrary (say abelian or
exact categories) C and suitable subcategories C' C C, the above picture generalizes
to long exact sequences

(30) o — K, (C') — K, (C) — K, (C/C) — K1 (C') — -+

In the hands of Quillen, general algebraic K-theory was defined as the homotopy
groups of certain spaces attached to (for example) exact categories, as in

(31) K,(C) :=m,K(C),

where K(C) is a pointed space. There are several ways to set up K(C); e.g., as
a simplicial set using simplicial homotopy theory or as a topological spaces using
classical homotopy theory. Moreover, there are different ways to set up these spaces,
all leading to the same homotopy type (e.g., the @- or S-construction). These
differences are not so important for the present paper. Background for simplicial
homotopy theory can be found for example in [May92], [Lam68] or [GJ09].
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2.1.4. Finer points. To get a really nice picture, the above suggests various im-
provements:

(1a) As the K-groups are defined as the homotopy groups of a space as in
Equation (31), it is natural to hope that the long exact sequences in Equation (29)
resp. Equation (30) stem from fiber sequences of pointed spaces. This can indeed
be implemented and leads to defining Quillen K-theory as an invariant of certain
categories, taking values in pointed spaces. This path is already taken by Quillen
[QuiT3] or Waldhausen [Wal85]. These two approaches only differ in generality, but
yield the same theory, which in this paper will be called connective K -theory.

(1b) Actually, the pointed spaces K(C) of connective K-theory are of a very
special type: They come equipped with the structure of an infinite loop space
[Ada78]. While infinite loop spaces can be regarded on the one hand as pointed
spaces with extra structure, they can equivalently be regarded as connective spectra,
i.e. spectra S such that m;§ = 0 for all ¢ < 0. Thus, modulo switching between
equivalent categories, the K (—) in Equation (31) can alternatively be taken to refer
to a (connective) spectrum. Background on spectra can be found for example in
[Wei94, §10.9] (for a survey), or in [HSS00, § 1], [Hov01, § 1] or [Lura, §1.4]for more
general treatments.

(2) The sequence in Equation (29) only exists under very restrictive assumptions,
and using Quillen’s K-theory it is not right-exact at K. However, this nuisance can
be smoothened out and leads to slightly modified versions of K-theory. Nowadays,
and also in the present paper, these are all jointly generalized to the so-called non-
connective K-theory (we recall the details below). A general construction on the
level of arbitrary exact categories is given in [Sch06]. The cited paper also proves
the compatibility with the previous approaches to resolve this issue (e.g., the so-
called Bass ‘negative K-groups’ [Bas68] or Thomason—Trobaugh K-theory [TT90]).
Unfortunately, there is no way to fix the lack of exactness at Ky without needing
negative K-groups further to the right in the respective sequences as in Equation
(30). Thus, non-connective K-theory cannot really be modelled in spaces. However,
the property to be a spectrum remains intact also for non-connective K-theory.
Hence, the natural habitat for non-connective K-theory are spectra. This time,
however, they are not necessarily connective. In particular, it is not necessarily
possible to still model this using infinite loop spaces instead of spectra.

Remark 2.1. This also explains the names of connective and non-connective K-
theory. This use of terminology is also in line with the conventions of [BGT13],
which shows that one can also describe the two variants of K-theory in terms of
certain universal properties, giving a further justification to work with both theories
in parallel, yet carefully distinguish between them.

(3) Quillen’s foundations for connective K-theory from [Qui73] allow all ex-
act categories as input; and similarly [Sch06] gives similar foundations for non-
connective K-theory. However, wanting a very general localization sequence as
in Equation (30) there is an issue with the formation of the quotient C/C’. For
many natural choices of exact categories and subcategories this quotient does not
reasonably exist as an exact category. Going beyond this, there are various in-
teresting categories, for example arising from glueing constructions of categories,
which are of a profoundly more subtle nature than what can be captured through
the formalism of exact categories. To this end, it roughly speaking makes sense
to generalize K-theory to accept all stable co-categories [Lura] as input. Abelian
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categories (or exact categories) have a natural attached stable oo-category, so that
this is a genuine generalization. This generalization is available for both connective
and non-connective K-theory, and as described above, [BGT13] describes either in
terms of a universal property whose formulation also necessitates the use of stable
oo-categories.

2.1.5. Milnor K -theory. Finally, we shall also use Milnor K-theory. Classically,
this is only defined for fields, even though the definition can be extended to local
rings [Ker09], [Ker10]. At least for fields F', one just has

T;(F™)
(r@(1—=z)foralzeF\{0,1})’

Ké”(F) =

where T3 (M) = ,,, M®Z denotes the free tensor algebra of an abelian group.
Historically, this was regarded as a candidate definition for higher K-groups, but
since then the picture has clarified a lot: In this paper we mostly refer to Milnor
K-theory because of the simplicity of its definition, or the natural graded ring
homomorphism

KM (F) — K.(F),
which easily exhibits high degree elements in the connective K-theory of fields.

Remark 2.2. The deeper truth however is that the motivic Atiyah—Hirzebruch spec-
tral sequence starts from motivic cohomology H"(F,Z(m)) on the Es-page and
converges to connective K-theory. It satisfies

H"(F,Z(n)) = K, (F),

so the deeper reason for the similarities between Milnor and connective K-theory (of
a field) is just their ‘proximity’ as provided by the motivic weight filtration on the
K-theory spectrum, exhibited here through the spectral sequence. The comparison
of this with étale K-theory (resp. étale motivic cohomology) also lies at the core
behind the compatibility to Galois cohomology in Diagram (15). However, none of
this is needed in the present paper. See [MVWO06] and [Gei05] for background.

2.2. Axiomatic review of algebraic K-theory. After this review, let us sum-
marize the key statements we shall need in the format most suitable for us. We
view algebraic K-theory as a machine, which assigns, to an exact category or stable
oo-category C, its spectral shadow Kc¢. This machine sends exact functors C — D
to maps of spectra K¢ — Kp, and preserves exact sequences. We refer the reader to
appendix A for a brief overview of the theory of (stable and unstable) co-categories,
and to [Lur09b, Lura] for detailed references.

We encourage the reader unfamiliar with stable co-categories to think of them
as a higher homotopical enrichment of triangulated categories. For example, by
[Lura, Theorem 1.1.2.14], the homotopy category Ho(C) of any stable oco-category
inherits a canonical triangulated structure. The advantage of working with sta-
ble co-categories is that many standard constructions for triangulated categories
become better behaved and more conceptually straightforward in this context.

Recall that given an oo-category C, we can form an oo-category of “ind-objects”
Ind(C) (with subcategories Ind,;(C) for each regular ) of “formal filtered colimits”
of diagrams in C (or such over diagrams of size at most ) (see [Lur09b, §5.3.5]). If
C is a stable co-category, then so is Ind,(C) [Lura, Prop. 1.1.3.6]. Similarly, every
oo-category C admits an idempotent completion C — Ci¢ (see [Lur09b, §5.1.4]), and
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if C is stable, so is C'¢ [Lura, Cor. 1.1.3.7]. Last, just as there is a good notion of
exact functors of triangulated categories C — D and of exact sequences

C—-D—=D/C

of such functors, there is a good notion of such for stable co-categories. In fact,
by [BGT13, Prop. 5.1.5], a sequence of stable co-categories is exact if and only if
the induced sequence of homotopy categories is an exact sequence of triangulated
categories. In particular, given a fully faithful exact functor of (presentable) stable
oo-categories C — D, we can form the quotient stable co-category D/C, which we
should think of as a higher homotopical analogue of the classical Verdier quotient.

2.2.1. Connective algebraic K -theory. The proposition below captures the most
important phenomena for the so-called connective K-theory of stable co-categories
(cf. [BGT13]). This is the flavour of K-theory which is compatible with Quillen’s
original definition of algebraic K-theory.

In the following we denote by Sps the stable co-category of connective spec-
tra. We refer the reader to Subsection 4.2.1 for a brief reminder of stable homo-
topy theory, and for more details to [Wei94, §10.9] (for a survey), [HSS00, § 1],
[Hov01, § 1] or [Lura, §1.4].

Proposition 2.3. The functor of connective K -theory for stable co-categories
K_: Catoo73t — sz

satisfies the following properties.

(1) If C is a stable co-category admitting countable products (or coproducts),
then Kc =2 0.

(2) The inclusion C — Ci¢ (where ic denotes idempotent completion) gives rise
to a map of connective spectra K¢ — Kcic, inducing an isomorphism on m;
for i >1, and a monomorphism on m.

(3) Let C < D — D/C be an exact sequence of stable co-categories, where we
denote the functor C — D by i and D — D/C by q. Then, there is a fibre
sequence

IC(;%ICD

L

0 ——Kp/c
in the oo-category sz of connective spectra.

Property (3) is often referred to as proto-localization (e.g. by [TT90]). The
long exact fibration sequence for m, yields a long exact sequence in non-negative
degrees. The map m(Kp) — mo(Kp,c) will not be surjective in general.?* This
suggests the existence of negative K-groups, obtained by the homotopy groups of a
non-connective K-theory spectrum. This leads to non-connective K-theory, whose
properties we recall in the following section.

22This is the same issue which already appears in purely geometric applications and is alluded
to in §2.1.4.
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2.2.2. Non-connective algebraic K-theory. In the work of Blumberg—Gepner—
Tabuada, the following properties were shown to be characteristic for non-connective
K-theory (see [BGT13, Thm. 9.10]). In the following we denote by Sp the stable
oo-category of all spectra.

Proposition 2.4. Non-connective algebraic K-theory is a functor
K_: Catoo_,st — Sp
satisfying the following properties.
(1) If C is a stable co-category admitting countable products (or countable co-
products), then K¢ =2 0.
(2) The inclusion C — Ci¢ (where ic denotes idempotent completion) gives rise
to an equivalence of spectra K¢ =N Kcic.
(3) Let C— D — D/C be an ezxact sequence of stable co-categories, where we
denote the functor C — D by i and D — D/C by q. Then, there is a a
bi-cartesian square

Kc—i>KD

L

0—— KD/C
in the stable oco-category Sp of spectra.

We say that non-connective K-theory K_ completes connective K-theory K_,
referring to the canonical equivalence

Keie =2 m>0Kc.
Following Schlichting [Sch06], we see how every connective theory, satisfying the
axioms of Proposition 2.3, induces a non-connective K-theory, subject to the prop-

erties of Proposition 2.4 (see also [BGT13]). This requires the suspension of a stable
oo-category.
Definition 2.5. We define the suspension of a stable co-category C as the stable
oo-category

S:(C) =1Ind,,C/C,
where k denotes an arbitrary infinite cardinal, and Ind,C denotes the stable oco-

category of Ind-objects represented by diagrams of size at most . Let Calk,(C)
denote S, (C)'.

By definition, we have an exact sequence of stable co-categories
C < Ind(C) - S(C).
Using the fact that Ind(C) admits countable coproducts, properties (1) and (3) of
Proposition 2.3 imply that
Ke—0— ICS(C)
is a fibre sequence of connective spectra. Since my(0) = mo(S(C)), we know that it

is actually a fibre-cofibre sequence of spectra. This allows us to identify K¢ with
QK s(c)- We define the non-connective completion K_ to be the functor

(32) lim " Kcaen ()
where Calk’(C) := C and Calk™(C) := Calk(Calk"~*(C)) for n > 0.
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Definition 2.6. Let C be an (idempotent complete) exact category. We have a
well-defined dg-category Ch®(C) of bounded chain complexes in C. We denote by
Ch?,(C) the full subcategory of acyclic complexes. The stable co-category Perf(C)
is defined to be the dg-nerve (see [Lura, §1.3.1]) of the dg-quotient Ch®(C)/Ch® (C).
Since the latter is a pre-triangulated dg-category (see [Kel99, §2]), Perf(C) is stable.

The lemma below follows from the discussion in [BGT13, §9.1] and [Sch06, §6.2]

Lemma 2.7. Let C be an exact category. The non-connective K -theory of C, in the
sense of Schlichting [Sch06], agrees with the non-connective K-theory of the stable
oo-category Perf(C) in the sense of Blumberg—Gepner—Tabuada [BGT13].

It will be necessary to compare algebraic K-theory with the original category,
in order to be able to use it. Heuristically, this is captured by the slogan that K¢
is a spectrum, where objects in C give rise to points, automorphisms of objects
give rise to loops, and, for n > 1, commuting n-tuples of automorphisms in C give
rise to elements of K, (C) = m,(Kc). This intuition is captured by the following
observation.

Remark 2.8. We denote by C* the (co—)groupoid of objects in C (i.e. we discard all
non-isomorphisms). Recall that every (co—)groupoid can be viewed as an unpointed
space via the geometric realization of its nerve.?? There exists a canonical morphism
of pointed spaces (C*); — Q°Kc, and by the adjunction 3> 4 Q°°, a morphism
of spectra X3°C* — Kc, see [Wal85, §1.3, p. 12].

Example 2.9. Under special circumstances the last map of the previous remark
can be promoted to an equivalence. Such a phenomenon underlies Equation (25)
along with the fact that the Tate category has vanishing Ky-group.

Definition 2.10. We shall frequently use the following shorthands:

(1) If R is a ring, we write Kg to denote the nonconnective K-theory spectrum
of the category of perfect complexes over R.

(2) Analogously, if X denotes a scheme, we write Kx for the nonconnective
K-theory spectrum of perfect complexes on X.

(3) If X has a closed subscheme Z, we write Kx z for the nonconnective K-
theory spectrum of the category of perfect complexes on X with support
in Z. The latter means that they are required to be acyclic over the com-
plement X — Z.

Example 2.11. If X is Noetherian (for example) and has the closed subscheme
Z, then there is an exact sequence relating their stable co-categories of perfect
complexes. Using Proposition 2.4 (3) we obtain the fibre sequence

KX,Z — KX — KXfZ
of spectra. The induced long exact sequence of the homotopy groups of the K-

theory spectra is perhaps the most prominent example of the localization sequence.

23We review the nerve, i.e. the ways of regarding a category as a simplicial set or space in
§A.1.2.
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3. THE CC SYMBOL VIA BOUNDARY MAPS

In this section we will give a first definition of our higher Contou-Carrére symbol.
We follow a generalization of the idea of boundary maps (which we had called
Idea 1 in the introduction). Instead of working with iterated loop groups, we
use localizations-completions along flags of subschemes. Abstractly, these look like
iterated loop groups, but our methods avoids choosing a coordinate. The case
discussed in the introduction follows as a special case (see Example 3.1).

3.1. Flags of closed subschemes. Let X be a reduced excellent separated scheme
of dimension n. A flag is a sequence

& Z, DD 7

of integral closed subschemes of pure dimension dim Z; = 7, indexed by a subset of
{0,1,...,n}. If it is indexed by all of {0,1,...,n}, we call it saturated. If exactly
one dimension is missing, such flags are called almost saturated.

Definition 3.1. If £ := (Z,, D --- D Zp) denotes a flag, we abbreviate the Parshin—
Beilinson adéle ring by

Fxe =A@ 0x) = A{(Zn 2 -+ 2 Z)}), Ox).
The notation A(—,—) is as in Beilinson’s original paper [Bei80, §2].

The definition of these adeles is alternatively also given in [Hub91, Proposition
2.1.1] or [BGW16a, §2.1], viewed from different angles.

Example 3.2. This section also covers the case relevant for
(33) L"G(A) =G (A(T1))(T2)) - - - ((Tx)))

as discussed in the introduction. Choose X to be affine n-space and take a standard
flag of coordinate hyperplane subspaces. See also Example 7.6.

For a saturated flag, there is a canonical isomorphism of rings
T
(34) Fxe=][F
i=1

for some finite r, and each F; is an n-local field. For a proof, see [Yek92, §3] or
[BGW16a, Theorem 4.2].

Whenever F' denotes an n-local field, this means that it comes with a canonically
determined diagram

F

]

01 — k1
(35) I

Oy —» ko
I

where each O; denotes the rings of integers of the field depicted above it, and each
k; denotes the residue field of the ring depicted to its left.
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The K-groups of the various rings attached to F' are related by the localization
sequence

(36) o Ki(k) = Ki(0) = Ky(F) 3 K1 (k) — -

which can be used inductively for each step in the above downward ladder of residue
fields because of an identification of Ko, with the K-theory of the residue field
K(m).24

The above localization sequence stems from the bi-cartesian square

Koﬂn — K(g

T

o — Ky

In order to obtain this square, apply Example 2.11 to Spec O and the closed sub-
scheme cut out by the unique maximal ideal (the valuation ideal). The open com-
plement is just Spec F'. In the present situation it makes no difference whether we
use connective or non-connective K-theory.

Remark 3.3. We will soon generalize the above by instead using the square in
Equation (37) below.

Definition 3.4. Let I be an n-local field.

(1) The higher tame symbol (in Quillen K-theory) is defined to be the compo-

sition
OWo...00™: K, 1(F) = K (k) = K%,

where & is the last residue field and 9 refers to the respective boundary maps
coming (inductively for each residue field) from the localization sequence
in (36).

(2) In many ways simpler, the higher tame symbol (in Milnor K-theory) is
defined to be the composition

W oo™ KM (F) = Ki(k) = £,

where KM refers to Milnor K-theory and 0 is the boundary map in an en-
tirely analogous localization sequence in motivic cohomology. See Remark
2.2 for the relation between Quillen and Milnor K-theory.

The higher tame symbol in Milnor K-theory is simpler because Milnor K-groups
have a generator-relator presentation and the relevant boundary map can alterna-
tively be defined by an explicit formula. See [Mil70, §2]. In fact, historically this was
known before the interpretation as motivic cohomology. Only the latter however
shows how closely connected both viewpoints are.

We move on to the relative situation.

Definition 3.5. If X is additionally a scheme of finite type over k, then for every
k-algebra A we define

AX75 = FX7§ R A7
and for saturated flags, we note that the canonical isomorphism of Equation (34)
can be promoted to an isomorphism of k-algebras, see [BGW16a, Theorem 4.2].

24 A5 the rings are all regular, we can also work with the K-theory of coherent sheaves, where
devissage applies. Hence, the K-theory of coherent sheaves with support in the maximal ideal is
equivalent to the K-theory of the residue field. This yields the identification.
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Following Morrow’s [Mor|, we give a self-contained construction of Fx ¢, in a
format which will be particularly useful for us later.

Definition 3.6. An ideal I C R of a Noetherian ring R is called equiheighted if all
minimal prime ideals over I have the same height in R. We define the localization
of an R-module M at I, to be

M; = S~'M, where S = {s € R | s is a non-zero-divisor in R/I}.

Geometrically, an equiheighted ideal defines a closed subspace of Spec R, with
all irreducible components having the same codimension in Spec R. Although not
completely obvious, the two operations introduced below preserve chains of equi-
heighted ideals [Mor, Lemma 7.3].

Definition 3.7. Let R be a Noetherian ring of Krull dimension n. For a chain of
equiheighted ideals £ = (I C -+ C Ip), with ht I; = n—1, we define the completion
operation R

C(R7 f) = (le g)
We denote by

L(R’ 5) = (RI17§/)’
the localization operation, where £ is the restriction to Ry, of the shifted chain of
ideals given by I/ = I;41.

Example 3.8. If R is a Noetherian domain of Krull dimension 1, then for every
prime ideal p, we can consider the chain & = (0 C p). In this case, we have
(Lo Q)(R,&) = Frac R,.

Definition 3.9. Let R be an excellent reduced ring of Krull dimension n. For a
chain of radical equiheighted ideas (0 = I, C I,,_1 C --- C Iy), with htl; = n — i,
we define

FSpec R = (L o C)n(R7 f)

This definition is compatible with Definition 3.1.

3.2. Boundary maps of a flag. We begin by giving a precise definition of the
completion of a scheme at a closed subscheme. Although this seems fairly straight-
forward in the affine case, it is necessary to be finical in general.

Definition 3.10. Let X be a scheme and Z C Ox a sheaf of ideals for which the
corresponding closed subscheme Y C X is affine. We define the completion of X at
Y to be the affine scheme
Cy X = Speclim I'(X, Ox /I").
neN

A related construction is the formal neighbourhood Xy. It is defined to be
the direct limit in the sense of formal schemes, of the family of schemes Y, =
Specy Ox/Z™. The completion of Definition 3.10 on the other hand is equivalent
to the direct limit of the X-schemes Y,, in the category of affine schemes.

Warning 3.11. The definition above could lead to pathological situations if Y was
not assumed to be affine. For example, if Y C P" is an embedded projective curve,
the inverse limit l'&nnEN Ox/T™ in the category of Ox-modules is not necessarily
quasi-coherent.
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By virtue of Chevalley’s theorem [Gro64] (or for a recent exposition, see Con-
rad [Con07]), affineness of Y only depends on the underlying reduced subscheme
yred ¢ X (i.e. Chevalley’s theorem implies that a scheme is affine if and only if
the associated reduced scheme is affine).

Given a variety with a flag of closed subschemes one can iteratively complete
and localize at the flag. This is captured by the following algorithmic definition.

Definition 3.12. Let X be a Noetherian k-scheme and A a k-algebra. Given a
flag of closed subschemes ¢: X = Z,, D Z,,_1 D -+ D Zyg D Z_1 = 0, with Z; of
pure dimension i, we define a collection of schemes X for i = —1,...,n — 1 by
running the following recursive algorithm:

(a) X1 = X, = X x; Spec 4,

b) zM =X xx z;,

(¢) X = Cpun(XE=0)\ 270,

We need to verify that this algorithm is well-defined, by checking that the affine-
ness condition of Definition 3.10 is satisfied whenever we perform step (c). This is
the content of the following lemma.

Lemma 3.13. For k > 0 the schemes Z,ik_l) are affine.

Proof. This statement is established by induction on &, where the base case k =0
is clear, since X = nglX(*l) is defined to be the completion of X1 =
X Xy Spec A at the affine scheme Zjy x; A. Here we used that Z; was assumed to
be zero-dimensional, and therefore is automatically affine.

Let us assume that the assertion is known for all £ > 0, which satisfy k£ < m.
We will show that it also holds for K = m + 1. By definition we have

75 = X0 Xy Zpoi.

Since Z,,+1 — X is a closed immersion (hence in particular affine), we see that the
projection map Z,(nnj_)l = X x5 Zpyr — X is also a closed immersion (and
therefore affine). Moreover, the scheme X (m) is constructed as the completion at
the scheme quz”_l), which we know to be affine by the induction hypothesis. This

shows that X (™ is affine, and therefore that the closed subscheme Zﬁﬁ_)l is affine
too. This concludes the proof.

Remark 3.14. Pullback along the natural morphism
(CZ,EnW;)lX(m)7 an?l) - (X(m)v Zr(nwj»)l)

of pairs induces an equivalence of derived categories of perfect complexes with sup-

port condition. In particular we have an equivalence of K-theory K oy X, ZC)

Zmi1 et

>~ Ky (ny zom . For A a Noetherian ring this is a direct consequence of Theorem
L1

2.6.3 in [TT90]. The proof of the general case is deferred to Proposition B.8 in the

appendix.
We recall the following result from Thomason—Trobaugh [TT90, Porism 2.7.1].

Lemma 3.15. Let X be a scheme of finite type over k, with a subscheme Z finite
over k (in particular dim Z = 0). For every k-algebra A, we denote by

m: X4 =X X Spec A — Spec A
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the canonical projection. If F € Perfy,(X4), then m.F is a perfect complex of
A-modules.

Proof. This is a special case of Porism 2.7.1 in [TT90]. Up to change of notation,
the latter considers a finitely presented map h: X — W, a quasi-compact open
subset U C X, which is the complement of a closed immersion Z — X, such
that h|z is proper, and h|y is flat. Under these assumptions it is shown that the
pushforward h.F of a perfect complex F supported on |Z|, is perfect.

In order to apply this result, one observes that a morphism of finite type over a
field is finitely presented. Moreover, being of finite presentation, flat, or proper, is
a notion invariant under base change. Since every finite morphism is in particular
proper, all the conditions of the porism cited above are met. O

We are now in a position to state the main result of this section. At first we need
to introduce some notation. We denote by 0,, the morphism of K-theory spectra

. m m—1
Om: KX(W,Z("';_)l -0 KX(m,ILZT(:Hl),

obtained as the boundary map of the bi-cartesian square

(37) K (m,1)7ZT(17zn—l) —>K

1) p(m—1)
X CZ(mfl)X( Y.z

. Ky my 70m)
X( )Z7n+1’

where we have used the equivalence Kq . b X(m-1), Zm=1) = ~ Ky mo Z(m=1) of

Remark 3.14. The morphisms in the bi- cartesian square above are induced by the
inclusion maps between the respective pairs of schemes.

Definition 3.16 (Preliminary Contou-Carrere symbol). Let X be a Noetherian
k-scheme, and £ a saturated flag of closed subschemes Z;. For every k-algebra A,
we have a projection 7: X4 — Spec A. The pushforward m, sends Perfz, (X 4) to
Perf(A). Hence, we have a well-defined map

Te001 000, Q"Ka, , — Ka.

We call this the preliminary Contou-Carrére symbol 034}7&.

4. SPECTRAL EXTENSIONS AND HIGHER COMMUTATORS

In this section we introduce the notion of a central extension of a group by
a spectrum. We then define a generalization of the commutator pairing for such
spectral extensions and relate it to Loday’s Steinberg symbols in algebraic K-theory.

4.1. Classical central extensions.

4.1.1. Central extensions. Let A be an abelian group. A central extension of G by
A, denoted e, is a short exact sequence

(38) 1 A="E=PG -1,

such that ¢(A) C Z(E), where Z(E) C E denotes the centre of E.

Definition 4.1. We denote by P,(G) the set of n-tuples of pairwise commuting
elements
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Given (f,g) € P2(Q), let f, g be elements in p~1(f), respectively p~1(g). Since
p(fﬁf_lﬁ_l) = 1, we see that the commutator [f, g] = f3f 1! defines an element
in A. Because A is central in F, a simple computation shows that this element is
independent of the choice of liftings.

Definition 4.2. Let e be a central extension of G by A. We denote by *.: Pa(G) —
A the function (f,g) — ¢ [f,g]-

Short calculations [Bro82, Exercise IV.3.8(a)] show that  is bi-multiplicative
and anti-symmetric. For the convenience of the reader we include a proof.

Lemma 4.3. For (g1, 92,h) € P5(G), we have the following relations:

(2) (91 %e )+ (g2 xe h) = g1g2 *e h,

(b) (91 %e 92) " = g2 % g1
Proof. The first identity can be established by the following computation:

(g1 % 1) - (g2 % h) = @hgy 'h™") - (G2hgy 'h™") = Gu(Gahgy B )hgy h!

= G192hg5 "9y 'h™! = (g192) *e b,
where in the second equality sign we used that (§2E'g§ 1%’1) belongs to the centre
of G. The second identity follows from
(91 %e G2) " = (919207 "2 1) ™" = 920195 'G1 ' = g2 *e 91
This concludes the proof of the lemma. O
A central extension e as in (38) corresponds to a monoidal map from G to

the groupoid BA (that is, the groupoid of A-torsors with the natural symmetric
monoidal structure). To see this directly, one observes that every fibre p~1(g) C
FE has the structure of an A-torsor. Moreover, we have a natural isomorphism
p (gh) = p~(g9) ®a p~t(h) for every pair (g,h) € G2. Thus, (38) gives rise to a
map of monoidal groupoids
(39) ¢: G — BA,

where G is viewed as a discrete groupoid with monoidal structure given by the group
operation, and BA denotes the classifying groupoid of A-torsors. The following
interpretation of the commutator pairing is well-known.

Lemma 4.4. For (f,g) € P2(G) we have that f*g corresponds to the automorphism
in BA obtained from the following chain of morphisms

o(fg) = ¢(f)olg) = d(9)o(f) = o(gf) = ¢(f9)-

Proof. Choosing lifts f of f and g of g, we can express the torsors ¢(f) as A - f
and ¢(g) as A-g. We can also write

o(fg) = A- fg=(f) @4 d(g)-
The symmetry constraint of ® 4 induces an isomorphism with A - ﬁf, which sends
73 to [, 9137 } )
Using the identification ¢(g)¢(f) = ¢(gf) = ¢(fg) the element gf is sent to fg.
We conclude that the resulting automorphism of the torsor ¢(fg) = A - fﬁ sends
the element f’g to [f, mfﬁ Therefore, it corresponds to the commutator pairing

fxg. g
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4.1.2. Cohomological reformulation. The map (39) is the looping of a map of pointed
spaces

e: (BG,*) — (B*A, x).
Since the target is equivalent to an Eilenberg-Mac Lane space B2A = K(A,?2)
(as unpointed spaces), homotopy classes of (unpointed) maps BG — B?A agree
with H*(BG,A) = H?, (G, A). We denote the element in this cohomology group
resulting from e by [e].

If G is an abelian group, then the group homology H.(BG,Z) = H{™"(G,Z)
carries a natural graded commutative ring structure. Topologically this follows
from BG inheriting a group structure from the commutative group G, endowing
it with the structure of an H-group. Algebraically, this fact can be explained in
terms of the shuffle product on the normalized bar complex. In the remark below
we recall its definition.

Remark 4.5. Recall that the ZG-module By is defined to be the free module on
symbols (g1|...|gr), where the g; are pairwise distinct elements of the group G.
Using that G is abelian, we define

(g1l lgr) o (grsl - lgut1) = Z(—l)a(grlu)\ Y TR
where o runs over all permutations of {1,...,k + [} satisfying o(1) < --- < o(k)
and o(k+1) < --- < o(k+1) (so-called shuffles). Extending ZG-linearly, the shuffle
product endows @, By, with the structure of a commutative dg-algebra.

This graded commutative ring structure brings us to the following definition.

Definition 4.6. Let G be an arbitrary group. Given (g1,...,9n) € Pn(G), we
denote by ¢: Z™ — G the corresponding morphism of groups, sending the standard
vector e; to g;. Let ¢ denote (ejo---oe,) as in Remark 4.5. We set (g10---0gy,) :=
P« (c).

The class in HY'? (G, Z) corresponding to the cycle (fog) should be understood as
an abstract commutator. A pair (f,g) of commuting elements induces a map T? =
BZ? — BG. Topologically speaking, the cycle (f o g) is obtained by pushforward
of the fundamental class of the torus BZ? to BG.

The following lemma is standard (e.g. it is an immediate consequence of [Bro82,
Exercise IV.3.8.(b,c)] combined with [Bro82, Theorem V.6.4(iii)]).

Lemma 4.7. Let (—,—) denote the natural pairing between group cohomology and
homology. Given a central extension e of G by A, corresponding to the class [e] €

HZ,,(G,A), we have for all (f,g) € P,(G) the identity
freg=(le],(fog)

The following definition illustrates the flexibility of the cohomological viewpoint

on commutators. We use the notation K (A, k) to denote an unpointed space, which
represents the (co-)functor H*(—, A) valued in abelian groups.

Definition 4.8. A higher central extension of G by BF¥A = K(A, k) is an element
le] of HEF2(G, A). Given (g1,...,gkt2) € Pry2(G) we define
g1 %e -+ e Gry2 = ([e], (g1 0+ 0 gry2)).

In the following subsection we will formally generalize this definition to include

central extensions by arbitrary spectra, not just those of Eilenberg—Mac Lane type.
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4.2. Spectral extensions.

4.2.1. Stable oco-categories and spectra. A fundamental example of a stable oo-
category (see A.2) is given by the stable co-category Sp of spectra, which is defined
to be the limit
Sp := ]'&n[Space. & Space, & ]

where Space, denotes the category of pointed spaces, and € denotes the pointed
loop space functor.

Every pointed space X = (X, () gives rise to a spectrum, denoted by X*°X.
The infinite suspension functor 3 has a right adjoint

31°°: Space, — Sp, namely Q°°: Sp — Space,.
The latter functor is equivalent to the projection to the first component
@[Space, & Space, il --+] — Space,.

There is an array of functors to the category of abelian groups (7;);cz: Sp — Ab,
inducing a t-structure on Sp with heart Sp¥ = {X € Sp|m;(X) = 0 for i # 0} = Ab.

The subcategory Spjg ;) = {X € Sp|m;(X) = 0 for i # 0,1} is equivalent to the
2-category of Picard groupoids (that is, group-like symmetric monoidal groupoids).
More generally, the oo-category of connective spectra Sps. = {X € Sp|mi(X) =
0 for i < —1} is equivalent to the oo-category of Segal’s T-spaces (i.e. Picard oo-
groupoids, or equivalently, infinite loop spaces).

The behaviour of the oco-category of spectra with respect to this t¢-structure
reveals a remarkable similarity with the derived category D(Z) of abelian groups.
This time we have homology groups

H;: D(Z) — Ab,

inducing a t-structure on D(Z). Again, the heart D(Z)? is equivalent to the cat-
egory of abelian groups. Chain complexes in D(Z)[g,1], i-e. those concentrated in
degree 0 and 1, are, according to a theorem of Deligne, equivalent to strictly com-
mutative Picard groupoids. The Dold-Kan correspondence asserts that objects in
D(Z)>( correspond to simplicial abelian groups.

It seems therefore appropriate to think of spectra as another generalization of
abelian groups. The derived category of abelian groups serves a similar purpose,
but working with spectra corresponds to only stipulating a weak commutativity law,
which allows spectra to capture phenomena which could not be seen in the strict
framework of chain complexes of abelian groups.

4.2.2. Generalized group cohomology. For every spectrum E, we have an associated
generalized cohomology theory denoted by

H'(—,E): Space — Ab.
We define generalized group cohomology to be H: (G,E) = H'(BG,E).

grp

Definition 4.9. A spectral extension of G by E is a class [e] € HZ,,(G,E).

Every abelian group A can be viewed as a spectrum HA by means of the
Eilenberg-Mac Lane construction. Forgetting base points, we have an equivalence
of unpointed spaces Q*YX*HA ~ B*A.

A higher central extension of G by B*A in the sense of Definition 4.8, is given

by an element of ng‘;z(G, A)=HZ, (G, Y*HA). By the discussion above, we can
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therefore say that a higher central extension of G by B*A is the same thing as a
spectral extension of G by the k-fold suspension spectrum SFH A.

Remark 4.10. The definition of a spectral extension given in Definition 4.9 intro-
duces only the cocycle (up to equivalence) of what should be a central extension
by a spectrum. Without doubt it would be possible to give a definition along the
lines of Paragraph 4.1.1. However, spelling out such a definition would certainly
be more cumbersome than the shortcut used in Definition 4.9, which is exactly the
viewpoint we need to study higher commutators in the next paragraph.

4.3. The case of spectral extensions.

4.3.1. Basic definitions. Our definition of higher commutators for spectral exten-
sions hinges on three co-categories whose objects belong to the canon of classical
homotopy theory. These co-categories have already made an appearance earlier in
the paper.
(a) The oo-category of unpointed spaces Space, as defined in [Lurb, Definition
1.2.16.1].
(b) The co-category of pointed spaces will be referred to as Space, (see [Lura,
Notation 1.4.2.5]).
(¢) The stable oo-category of spectra Sp (see [Lura, Definition 1.4.3.1]).

All three co-categories happen to be generated under small colimits by a single
object. Spaces Space are generated by the singleton {e} (see [Lurb, Theorem 5.1.5.6]
applied to S being the co-category consisting of a single object and only the identity
morphism), pointed spaces Space, by a pointed space with two elements (S, x¢)
(combine the aforementioned result, and [Lura, Proposition 4.8.2.11]), and Sp is
generated by the sphere spectrum S (see [Lura, Corollary 1.4.4.6]). Furthermore,
these oo-categories do not just exist in isolation from each other, but are related
by a chain of functors.

(d) The functor (—)4: Space — Space, is well-defined (up to a contractible
space of choices) by the fact that it commutes with small colimits and
sends the singleton space {®} to a pointed space with two elements (S°, z).
Informally speaking it assigns to a space X the pointed space X obtained
as the disjoint union X U {zo} with base point x.

(e) The infinite suspension functor £°°: Space, — Sp is well-defined (up to a
contractible space of choices) by stipulating that it commutes with small
colimits, and sends (S°, ) to the sphere spectrum S.

Definition 4.11. The composition of (—) and X*° will be denoted by X°.

The fact that Space, Space, and Sp are generated by one object is not only
convenient for defining functors between them, but also implies directly that they
are presentable oco-categories (see [Lurb, Theorem 5.5.1.1(6)]). In [Lura, §4.8.2],
a symmetric monoidal structure on Pr’” (the oco-category of small presentable co-
categories) is used to establish the existence of symmetric monoidal smash products
on Space, and Sp, as well as compatibility between them. Just as one can talk of
commutative algebra objects in a symmetric monoidal (1-)category, one can talk
about analogous objects in a symmetric monoidal co-category. These go by the
name of Foo-rings or Es-objects (see [May77] or [Lura, §7]). We encourage the
reader to think of these as a higher homotopical analogue of commutative rings, or
commutative DGAs.
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4.3.2. Short summary. The functor ¥5°: Space — Sp is symmetric monoidal with
respect to the cartesian symmetric monoidal structure on unpointed spaces and
the smash product of spectra ®. That is, for two unpointed spaces X, Y we have
IP(X xY)~EPX @EPY.

In particular this functor preserves E-objects. We conclude that ¥°BZ is a
commutative ring spectrum. This induces a graded commutative product structure
on 7, and allows one to define higher commutators. We will now describe all of
this in more detail.

4.3.3. Facts from modern homotopy theory.

(f) There exists a canonical symmetric monoidal structure on Space, the carte-
sian symmetric monoidal structure (see [Lura, Sect. 2.4.3]). We denote
the corresponding symmetric monoidal co-category by Space,. Up to a
contractible space of choices it is well-defined by the fact that {e} is a unit,
and the induced bi-functor x: Space x Space — Space commutes in both
variables with small colimits.

(g) There exists a canonical symmetric monoidal structure on Space,, we de-
note the symmetric monoidal category by (Space,)A. Up to a contractible
space of choices it is well-defined by the property of having (S°, z¢) as a
unit, and the induced bi-functor A: Space, x Space, — Space, commuting
with small colimits in both variables (see [Lura, Remark 4.8.2.11]).

(h) There exists a canonical symmetric monoidal structure on Sp, we denote
the symmetric monoidal category by (Sp)g. Up to a contractible space of
choices it is well-defined by the property of having the sphere spectrum S
as a unit, and the induced bi-functor ®: Sp x Sp — Sp commuting with
small colimits in both variables (see [Lura, Corollary 4.8.2.19]).

(i) The functors (—)4 and 3°° have a natural symmetric monoidal structure
(well-defined up to a contractible space of choices). In particular we have
equivalences (well-defined up to a contractible space)

(40) X ANY, ~ (X xY)y
for X, Y € Space and
(41) TRX @Y = EX(XAY)
for X, € Space,.
The facts (f)-(i) are well-known outside of the context of stable co-categories.
After passing to homotopy categories, one recovers the classical concepts. In par-

ticular, the symmetric monoidal structure A on Space, may be thought of as the
smash product of pointed spaces

(X,20) A (Y,90) = (X x Y)/(X X {yo} U{zo} X Y), (z0,%0)) -

The advantage of the present approach is that it foregrounds the treatment of
homotopy coherence, rather than having to build this after the fact for a particular
space-level construction. We give a more detailed account of the proof of (i), since
it is only implicit in [Lura, §4.8.2].

Proof of (i). In [Lura, Definition 4.8.2.8] Lurie defines what it means for a small
colimit preserving functor of presentable co-categories Space — C to realize C as
an idempotent object. It is then shown (see [Lura, Proposition 4.8.2.9]) that there
is an equivalence on the full subcategory of Fun(A!, Prl ) corresponding to such
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morphisms, and the over-category of presentable symmetric monoidal co-categories
over Space, .

In [Lura, Proposition 4.8.2.11 & 4.8.2.18] it is shown that Space, and Sp are nat-
urally idempotent categories with respect to the canonical functors Space —(—)+
Space, and Space —>% Sp. This is then used to deduce the existence of the
symmetric monoidal structure mentioned in (g), (h). The same observation im-
plies that (=) and X*° are symmetric monoidal functors (see [Lura, Proposition
4.8.2.7]). |

Putting all of the facts recited above together, we obtain the following conse-
quences.

Corollary 4.12. The composition of functors °°(—) oforget: Space, — Space —
Sp is naturally equivalent to S @ L°°(—).

Proof. We begin by considering the category of pointed simplicial sets, which we
will use as a model for the co-category of pointed spaces. Let X = (X, zg) be a
pointed simplicial set. We use the notation S° to denote the pointed simplicial
set corresponding to the 0-sphere. We denote by i: S° — X, the map of pointed
simplicial sets which sends the base point of S° to the base point of X, and the
unique non-base point of S° to xy € X. Let s: X, — S° be the unique left-inverse
to this map in the category of pointed simplicial sets. We denote by g: X, — X
the unique map of pointed simplicial sets, such that g|x = idx. These maps belong
to a natural commutative diagram of pointed simplicial sets

S

L — o~
n— g
1

| |

o — X,

The dashed arrow refers to the well-defined retract in pointed simplicial sets. For
every X there is a unique retract, hence it is natural. Passing from model categories
to oo-categories (see [Lurb, A.2(2)] we obtain a natural commutative diagram of
functors taking values in Space,.

S0 L/—>_(—)+ o forget

|

o —id.

Furthermore we remark that this is a cofibre diagram in Space,. Applying the
functor X°° (which has a right adjoint and hence preserves small colimits by [Lurb,
Proposition 5.2.3.5] ) we obtain a natural bi-cartesian diagram of Sp-valued functors
Space, — Sp, with a canonical splitting

SET 4 :%(—), o forget
0 —— >,

We conclude that there is a natural equivalence X*°(—), o forget ~ S @ X of
Sp-valued functors. O
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Specialising this to the pointed space (S',1) we obtain the equivalence:
Corollary 4.13. ¥°S' ~S@ 5S.

The following assertion lies at the heart of the definition of higher commutators
for spectral extensions.

Corollary 4.14. The equivalence of Corollary 4.12 induces for a pointed space
X = (X, z0) a natural morphism and a natural left inverse thereof

NPXN S NP (XT).

Proof. We have recorded in (e) above that 3%° is symmetric monoidal. Hence for
every positive integer n, and every unpointed space X we get a contractible space
of morphisms

SP(X™) = (B X)®".
For X = (X, z() we can draw on the natural equivalence of functors 3°°(—) ~
S @ X°°(—) for X, which allows us to define a natural morphism with left inverse
(IPX)®" s Zex/,

Here we used repeatedly that ® commutes with small colimits in its entries. ]

We observe the following:
Remark 4.15. The corollary above can be refined to produce a natural equivalence
DR (X") = @222 0)
for every pointed space X = (X, xg).
The last conclusion we draw is again rather general.

Corollary 4.16. The functor £ : Space — Sp sends E-objects in (unpointed)
spaces to Eo-ring spectra.

Proof. 1t is a general statement that symmetric monoidal functors preserve E..-
objects (also called commutative algebra objects in [Lural). This follows directly
from the definitions, we give the proof since we could not find a reference. In the
notation of [Lura, Chapter 2|, a symmetric monoidal structure on an oo-category
is encoded by a functor Cg — N(Fin,) satisfying certain properties (see [Lura,
Definition 2.0.0.7]). A symmetric monoidal functor is given by a commutative
diagram (see [Lura] for a precise account of further technical conditions required
from the functor)

Ceg —— Dg

N

N (Fin,).

On the other hand, a commutative algebra object in Cg is encoded by a section
Cg = N(Fin,) which is a map of oco-operads (see [Lura, Definition 2.1.3.1]). It is
therefore clear that a symmetric monoidal functor sends such a section for Cgy —
N(Fin,) to one for Dg. O
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4.3.4. The definition of higher commutators. Let X be a groupoid, that is a cate-
gory where all morphisms are invertible. The groupoid X gives rise to an unpointed
space, namely the geometric realization of its nerve | NX|. Henceforth this will be
implicit, and we use this construction to realize the 2-category of groupoids as a
full subcategory of the co-category of unpointed spaces Space.

Every group G gives rise to a groupoid BG, by definition the category with a
unique object {*} and Autpg(*) = G. Consistent with the paragraph above, we
also denote the associated unpointed space by BG. However we remark that the
functor B: Grps — Space factors through the co-category of pointed spaces Space,:

B: G (BG,x).

Let E be a spectrum, and X a groupoid. A spectral extension of X by E is
defined to be a morphism XX — ¥2E. In particular, for G a group, a spectral
extension of G by E is given by a morphism e: ¥ BG — Y2E.

Definition 4.17. Let z € X be an object. We denote by P% the groupoid whose
objects are tuples (x;g1,...,9,) where z € X is an object, and (g1,...,9,) €
(Autx (z))™ is an n-tuple of pairwise commuting automorphisms. Morphisms
(x;91,---,9n) = (y;ha,...,hy) in PY are given by a morphism f: z — y, such
that fog; = h;o f for all 1 < ¢ < n. This defines an endofunctor P, of the
2-category of groupoids Grpd.

Objects of Py are pairwise commuting n-tuples of automorphisms in X at a fixed
object x. It follows that there is a natural equivalence P¥ ~ Map((BZ")+, X4).

Lemma 4.18. With respect to the embedding of groupoids in unpointed spaces, the
functor

P": Grpd — Grpd
is naturally equivalent to Mapg,,c.(BZ", X).

Proof. We obtain the object = as the image of * under the corresponding map of
unpointed spaces BZ"™ — X. Since Autpzn (zg) = Z™ we have a canonical choice for
an n-tuple of pairwise commuting automorphisms, given by the standard basis of
Z"™. We then transport this choice along the induced map of groups Z™ — Autx (z)
to conclude the proof. O

Recall that BZ™ is a strict abelian group object in Space. We obtain from
Corollary 4.16 that X°(BZ") is an E-ring spectrum. In particular we see that
(X (BZ")) is a graded commutative algebra. We will write (z]y) to denote
the product of two elements, and more generally (x1]---|z,) for the product of n
elements.

Definition 4.19. Let e: ¥3°X — Y2E be a spectral extension of a groupoid X by
a spectrum E.

(a) Corollary 4.12 applied to the pointed space (S!,1) = (BZ, ) yields a split-
ting X°BZ ~ S ® ¥S. The map of spectra XS — ¥°BZ will be denoted
by f.

(b) For an integer i satisfying 1 < ¢ < n we let Z — Z" be the map A —
(0,...,0,A,0,...,0) given by the inclusion of the i-th component. We write
¢;: BZ — BZ™ for the induced map of pointed spaces. The induced ele-
ment (¢;)«(f) € m1 (XL BZ"™) is denoted by e;.
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(c) Let (BZ") 2, X be an n-tuple of pairwise commuting automorphisms. We
denote the induced map of spectra £°(BZ") % £°(X) 5 S2E by ¢(g, e).
The higher commutator is defined to be ¢(g,e)«(e1]--|en) € mn_2(E) and
will be denoted by g1 *¢ - - - *c gn.-

4.3.5. Comparison. In order to show that this definition is non-trivial we compare
it to the construction of Definition 4.8.

Lemma 4.20. Let G be a group, and let [e] € H}'P?(G,A) be a higher central
extension corresponding to a map e: BG — B" "2 A and let (go, ..., gns1) be an (n+
2)-tuple of pairwise commuting elements. With respect to the natural isomorphism
(K (A,n)) =~ A we have that the spectral higher commutator go*e- - “*cgn11 agrees

with the higher commutator (go, ..., gn+1)e of Definition 4.8.

Proof. Recall that for an unpointed space X we have the Hurewicz morphism
h: 7. (X°X) — H,(X,Z), obtained by applying the functor 7, to the morphism of
spectra

(42) 22X = IPX ®Z,

where we use the notation Z to denote the Eilenberg-Mac Lane spectrum corre-
sponding to the ring Z.

If X is an Fo-object in (unpointed) spaces (that is, a commutative monoid), we
have already seen that 7,(X3°X) and H,(X,Z) are endowed with a graded com-
mutative product structure. The Hurewicz morphism respects this product, since
the morphism (42) is a morphism of F.,-ring spectra, induced by the morphism of
FE-ring spectra S — Z.

We have a commutative diagram of abelian groups

Tnia(N°BZM) @ HO(BZM, xn+24) 229, i, o (BZ", 77) @ H"2(BZ", A)

\i

)

and furthermore we have h(eg|---|ent+1) = (eol...|ent+1) by the discussion above.
By virtue of Definitions 4.19 and 4.8 we conclude that the new notions of higher
commutators agree. (]

4.3.6. Computing higher commutators recursively. For a group G, and g € G, we
write C¢(g) to denote the centralizer. We now describe a version of the classical
slash product to associate to a spectral extension e: XX — Y2E and an element
g € Autx (), a spectral extension e(g) : X BCauty (2)(9) — Z2(QE).

Definition 4.21. Let X be a groupoid, z € X an object, and g € Autx(z) = G
an automorphism. We denote by e: ¥°X — Y2E a spectral extension of X by E.

(a) We let (BCautx(2)(9)) = X be the map of unpointed spaces induced by
the inclusion Caygy (2)(9) C Autx ().

(b) Let BZ x BCputy (x)(9) — BG be the map of unpointed spaces induced by
the map of groups Z x Cayty ()(9) — G sending 1 € Z to g, and given by
the inclusion of Cp sy (2)(9)-

(c) We denote by XS — X°BZ ~ 21051 the map specified by Corollary 4.13.
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(d) The map e(g): X BCauty (2)(9) = S*(QE) is defined to be the adjoint to
the map
EXTBCautx (x)(9) = Z°E

defined by the composition
EETBChuty (x)(9)
~ ¥S ® £ BCauty (2)(9) = BT (BZ x BCauiy(2)(9)) = ETG — £°E,

where we have used that ¥ is symmetric monoidal as explained in (i)
above.

The following assertion follows right from the definitions.

Lemma 4.22. Let (g1,-..,9n) € Po(G). Then we have (g1 %+ % gn)e = (ga* -+ *
n)egr)-

4.3.7. Comparison with Osipov—Zhu’s definition for n = 3. Recall that a groupoid
endowed with a symmetric monoidal structure is called a Picard groupoid, if the
monoidal structure is group-like. That is, the induced monoid structure on the set
of isomorphism classes is a group structure. We denote by P a Picard groupoid, and
by 0 € P a unit. The group Autp(0) is abelian (as a consequence of the Eckmann—
Hilton trick), and will be denoted by Q2P. Similar conventions will be applied to
Picard 2-groupoids, that is, group-like symmetric monoidal (2, 1)-groupoids.

Given a spectral extension e of G by E and an element g € G, we constructed
(see Definition 4.21) a spectral extension e(g) of the centralizer C(g) by QE. This
shifted spectral extension satisfies the identity (Lemma 4.22)

(g1 %% gn)e = (gg*-"*gn)e@l)'

Readers of Osipov—Zhu’s [OZ11] will recognize the similarity with their recursive
definition of higher commutators. The authors of loc. cit. associate to an extension
9 of a group G by a Picard groupoid P, and an element f € G a (graded) central
extension ¢ of C(f) by Autp(0). Eventually, the commutator Cs(f, g, h) is defined
to be Comm(vf)(g, h) with respect to the latter central extension. Here Comm(¢)y)
denotes the commutator pairing of [OZ11, Lemma-Definition 2.5].

Proposition 4.23. Let ¢: G — BP be the monoidal map corresponding to a central
extension of G by P. We denote by e: ¥°BG — YXBP the corresponding spectral
extension of G by QBP, the spectrum associated to the Picard groupoid P. Then,

OS(fagvh’) :f*g*h'

Proof. At first we recall Osipov—Zhu’s construction of the central extension of the
centralizer C'(f) by Q2P. In [OZ11, Lemma-Definition 2.13] they define a symmet-
ric monoidal map

c(f) =P,
which sends g € C(f) to the element of P ~ Autgp(0) given by
(43) o(f9) = o(f)o(g) = ¢(9)o(f) = o(gf) = o(fg)-

Tt is well-known that the (3,1)-category of group-like symmetric monoidal (2, 1)-
groupoids is equivalent to the full subcategory Sp[OQ] of the oco-category of spectra
Sp, consisting of spectra E with vanishing ;(E) for ¢ ¢ [0, 2]. This assertion can be
deduced from a result of Boardman—Vogt and May (see [Lura, Theorem 5.2.6.10]).
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This equivalence allows one to consider P as a spectrum, which we denote QBP.
Osipov—Zhu’s map (43) is then an explicit description of the adjoint to

SEPBO(f) ~ £7°(BZ x BC(f)) — BP,

and hence is equivalent to the central extension e(f) defined in Definition 4.21. We
infer the following assertion:

Claim 4.24. The symmetric monoidal map ¢ ;: C(f)— P defined in [0Z11, Lemma-
Definition 2.13] is homotopic to the map e(f) of Definition 4.21, with respect to
the natural embedding of Picard groupoids into the co-category of spectra.

It remains to compare Osipov—Zhu’s Comm(¢)(g, h) of [0Z11, Lemma-Definition
2.5] with g *(py h. This is the content of the next assertion.

Claim 4.25. Let H be a group, P a Picard groupoid, and v: H — P a monoidal
morphism. We denote by « the corresponding spectral extension of H by QBP.
Then we have for (g,h) € Po(H) the equality Comm(1)(g,h) = g *, h of elements
of Autp(()).

For any g € C(f), we have that the map (¥y)y: C(g9) — Autp(0) of [OZ11,
Lemma-Definition 2.5] is homotopic to a(g) (by an argument analogous to the one
above, one category level down).

To deduce Claim 4.25, observe that it follows directly from the definition given
in [OZ11, Lemma-Definition 2.5] that Comm(v)(g,h) = 94(h), and similarly, we
know by virtue of Lemma 4.22 that a{(g)(h) = g *o h. We deduce

Comm(t))(g,h) = g *qa h.
This concludes the proof of Claim 4.25. The proposition follows. ]
4.4. Spectral extensions coming from the K-theory of rings. We begin with

a quick review of the relevant facts about K-theory. This will also serve to fix
notation. Experts should feel free to skip ahead.

4.4.1. Steinberg symbols. In the following we denote by R a ring, again assumed
commutative and unital. Careful inspection of the definition of your choice of
algebraic K-theory, reveals the existence of a canonical morphism

(44) i ]_[ BGL,(R) = Kg.
TLENZl
More generally, for a stable co-category C, there is a canonical morphism

The morphism (44) is a special case of this construction.?’

Definition 4.26. The existence of the morphism (44) can be restated as saying
that the groupoid [, .y B GL,(R) is canonically endowed with a central extension
by Q?Kg. Similarly, (45) amounts to the oo-groupoid C* being endowed with a
central extension by Q2Kc. We will denote the extensions by er and ec respectively.

The central extension of GL,(R) by Q?Kg has appeared in work of Safronov
[Saf16]. The theory of higher commutators developed in this section enables us to
generalize Steinberg symbols to a general stable co-category.

251.e. after factoring through the inclusion Pp(R)* — Perf(R)*.
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Definition 4.27. We denote by (g1, ..., ¢gn) € P,(C*,z) a map of unpointed spaces
T" — C* mapping the base point of T™ to x. The map

(g1 % *Gn)ec: ST = Kc

is referred to as the higher commutator with respect to the natural extension of C*
by O%Kc.

The justification of the terminology Steinberg symbol is provided by the next
proposition, which compares the higher commutators of Definition 4.27 with Lo-
day’s higher Steinberg symbols, for the category of finitely generated projective
R-modules.

Proposition 4.28. Let R be a commutative ring, and r1,...,r, € R* be an n-
tuple of units in R. The higher commutator (rix---*7p)e,, computed with respect
to the spectral extension er of Definition 4.26, agrees with Loday’s higher Steinberg
symbol {ry,...,rn}.

Before giving the proof, we recall Loday’s definition from [Lod76]. In modern
language, Loday’s construction of the Steinberg symbols relies on the E.,-ring
structure of K (in which the product is induced by the tensor product ® of
R-modules). If ai,...,a, is an n-tuple of paths in Kg based at 0 € Kg, the
multiplication ® induces a map

z2(sH"" - KY" = Kg,
which defines an element (aq]...|ay) of m,(Kg) = K, (R).

Proof of Proposition 4.28. Let C be an exact category with a bi-exact symmetric
monoidal structure ®. This endows the maximal pointed groupoid C* with a
symmetric monoidal structure ®. By definition, the canonical map ¥°C* — Kc
is a map of FE.,-ring spectra.

For C = P;(R) the symmetric monoidal exact category of finitely generated
projective R-modules, we have a symmetric monoidal morphism BR* — (P(R))*.
It is obtained by viewing (BR*,®) as the symmetric monoidal category of free R-
modules of rank 1. Therefore we have a morphism BR* — Py(R)* of E.-objects
in (unpointed) spaces. By virtue of Corollary 4.16 we obtain a morphism of E..-ring
spectra

YPBR* — X Ps(R)™.

For (r1,...,r,) € R* the resulting map BZ" — BR* is symmetric monoidal,
and therefore, another application of Corollary 4.16 yields a morphism of E,-ring
spectra

YBL" — XFYBR*.
Composing the morphism of E..-ring spectra defined above, we obtain
: XFPBZ" = X Py(R)* — Kg.

Recall that we have a functor from the homotopy category of E..-ring spectra to the
category of graded commutative rings. This implies the equality ¥.(e1]---|en) =
(ril...|rn), where we denote by (eq,...,e,) € Z" the standard basis of Z". By
definition of higher commutators, the left hand side agrees with r; % --- % r,. The
right hand side on the other hand is given by Loday’s higher Steinberg symbol
{r1,...,mn}. This concludes the proof. O
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5. THE CC SYMBOL VIA TATE CATEGORIES

Now we are almost ready give the full definition of our higher Contou-Carrere
symbol, pursuing the strategy which had called Idea 2 in the introduction.

5.1. Lattices and Tate objects.

5.1.1. Tate objects in exact categories. We recall the constructions of Ind, Pro, and
Tate objects in exact categories, and refer the reader to [BGW16¢] for background.
The ideas of these constructions go back to papers by Beilinson [Bei87] and Kato
[Kat00], and have also been studied by Previdi in [Prell]. We also refer the reader
to Drinfeld’s theory of Tate R-modules introduced in [Dri06].

A filtered set I is a set I together with a partial ordering <, such that for each
pair (i,7) € I? there exists a k € I, satisfying i < k and j < k. Every filtered set
can be viewed as a category in a straightforward manner.

Let C be an exact category. An admissible Ind-object in C indexed by I is a
functor X : I — C, such that the relation 7 < j determines an admissible monomor-
phism with respect to the exact structure of C. For example, we can take I to be
the set N with its natural ordering. An N-indexed admissible Ind-object in C can
then be pictured as a formal colimit of a diagram

(46) Xo‘—>X1‘—>X2‘—>"'.

Every admissible Ind-object gives rise to a left exact presheaf. To X: I — C one
associates the presheaf A — @ie] Hom(A, X (7)). The resulting full subcategory
of Lex(C) of all objects of this shape is denoted by Ind*(C). In Theorem 3.7 of
[BGW16c] the authors showed that Ind”(C) is an extension closed subcategory of
Lex(C). This implies that it inherits a structure of an exact category.

Admissible Pro-objects in C are defined dually, i.e. by replacing the role of admis-
sible monomorphisms by admissible epimorphisms. In short we have, Pro®(C) =
(Ind®(C°P))°P. An admissible Pro-object indexed by a filtered set I is a functor
X: I°? — C, which sends i < j to an admissible epimorphism in C. For I = N we
obtain the dual depiction of a Pro-object as a formal limit of a diagram

(47) Xo« X1« Xg -

An elementary Tate object is an admissible Ind-Pro-object, i.e. an object V in
Ind“Pro”(C), which can be (non-canonically) written as an extension

(48) LV —>V/L,

with L € Pro®(C) and V/L € Ind*(C). We refer to any such L as a lattice in V. The
category of elementary Tate objects in C has a natural exact structure (Theorem
5.4 in [BGW16¢]), and will be denoted by Tate®(C).

Proposition 5.1 (Kapranov). If k is a field, then TateEl(Vectid), i.e. the ezact
category of elementary Tate objects of finite-dimensional k-vector spaces, is equiva-
lent to the category of locally linearly compact topological k-vector spaces (as exact
categories).

See [Kap01, §1.1.2].

The exact category Tate(C) of Tate objects in C is defined to be the idempotent
completion of Tateel(C). If Ris aring, and C = P;(R), the exact category of finitely-
generated projective R-modules, then Tate(Py(R)) contains Drinfeld’s category of
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Tate R-modules as a full subcategory. See [BGW16¢c, Thm. 5.26], where we show
that for countable index sets I, the two categories are in fact equivalent. We
emphasize that in [Dri06], Drinfeld refers to what we call lattices as co-projective
lattices.

Definition 5.2. For a category D (respectively oco-category), we denote by D* the
maximal groupoid contained in D (respectively co-groupoid).

The following result is [BGW18b, Prop. 3.3].

Proposition 5.3. For an idempotent complete exact category C, we denote by
Gr=(C) the simplicial object in groupoids, which parametrizes chains (V' O L, D
-+ D Lg), where V is an elementary Tate object in C, and each L; is a lattice in V.
We have a forgetful morphism Grs(C) — Tate®(C)*, which induces an equivalence

IGrE(C)| S Tate®(C)*.

5.1.2. The index map. Let C be an exact category, following Waldhausen [Wal85]
we denote by S,,(C) the exact category, whose objects correspond to chains

X ==X,

of admissible monomorphisms (plus a fixed choice for all possible quotients among
these objects). The S, (C) fit together to give a simplicial object Se(C) in the 2-
category of exact categories: face maps are given by omitting an object/composing
maps, and degeneracies by inserting the identity map.

Waldhausen’s treatment of algebraic K-theory in [Wal85] implies that, for an ex-
act category C, the classifying space BK¢ is equivalent to the geometric realization
of the simplicial object in groupoids |S,C*|.

Now let C be an idempotent complete exact category, and let G’)".S(C) be as in
Proposition 5.3.

Definition 5.4. Let Index: Gr5(C) — S,(C) be the map sending (V > L, D --- D
Lo) to (L1/Lg < -+ — Ly /Ly). Whenever convenient,

e the geometric realization Tate® (C)* — BKc, as well as
e the induced map Kyeet(c) — BKc (see [BGW18b, Cor. 3.5])

will also be denoted Index and called the index map as well.
This is the map which we had alluded to in the introduction of the paper, see

Equation (27).
For every elementary Tate object V', we obtain from

BAut(V) S Tate® (C)* " BRC,

a monoidal map
Aut(V) = Kc,

by applying the loop space functor Q2. Above, the map « is the one coming from
the construction of Remark 2.8.
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5.2. The classical Contou-Carrere symbol.

5.2.1. The Contou-Carrére symbol. We had recalled the classical tame symbol in
Equation (13). The Contou-Carrére symbol arises as a “deformation” of the tame
symbol for the discrete valuation ring R = k((¢)). For every (commutative) k-
algebra A, we can consider the ring of formal Laurent series A((¢)), which is almost
never a discrete valuation ring. Nonetheless, there exists a natural pairing A((¢))* x
A((t))* — A*, which specializes to the tame symbol for the case A = k. For
A # E, the explicit formula (13) no longer holds. However the interpretation of the
tame symbol as a graded commutator [ADCK89] remains valid for Contou-Carreére
symbols by work of Anderson-Pablos Romo [APR04] and Beilinson-Bloch-Esnault
[BBEO02]. We hence begin by summarizing the definition using graded commutators.
We denote by V4 the Tate object A((t)) in Tate(Pf(A)), see [BGW16b, Example
10] for a precise definition. There is a natural map A((¢))* — Aut(V4). Let
BZG,,,(A) denote the spectrum associated to the Picard groupoid of graded A-lines.
For each A, the index map and determinant give rise to a spectral extension
(49)
SBA((1)%) = SPBAUt(VA) = Kraea(py(a)) 5 SKp,(a) < SBZGyn (A).
Looping the adjoint of this map yields an Ej-map
(50) A((6)* = B G (A),

classifying a graded central extension of A((t))*. The construction is natural in
maps A — A’, so it defines a central extension of group-valued sheaves. We record
this observation in the following definition. Recall that the loop group LG, is
defined as the group-valued presheaf
LGy, : (Afff)°P — Grp
sending A to A((t))*.
Definition 5.5. The graded central extension (50) of LG,, will be denoted by
¢KM: LGm — BZGm,

and referred to as the Kac—Moody extension of the loop group. We denote the
spectral Kac—Moody extension (49) by

CsKM: EioBLGm — E’C,
where IC denotes the presheaf in connective spectra, sending a ring A to K 4.

Note that the Kac-Moody extension is obtained from the spectral Kac-Moody
extension by looping and applying the determinant.

We can now recall the following well-known result, which generalizes the main
result of the paper [APRO4] to arbitrary k-algebras (without restricting to the
artinian case).

Proposition 5.6. The graded central extension ¢ of Definition 5.5 relates to
the Contou-Carrére symbol by means of the relation

(_’ _)_1 = T Kerm T
Proof. Proposition 3.3 of [BBE02] verifies that the classical notion of the Kac—
Moody extension of loop groups has this property. In [BGW18b, §5.3, and Prop.

5.3] we compare the extension ¢ with its classical definition in terms of deter-
minant lines. ]
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5.3. Higher Contou-Carrére symbols. We begin this Subsection with a defini-
tion, in order to avoid the cumbersome notation A((t1))--- ((tn))*.

Definition 5.7. The n-fold loop group LG of a group-valued presheaf G is de-
fined to be the group-valued presheaf which sends the affine scheme Spec A to

G(A((t)) -+ ((tn)))-

There is an analogue of the Kac-Moody extension for loop groups. Denoting by
V' the n-Tate object A((t1))...((t,)) in n-Tate(Pf(A)), we have a natural map

L"G(A) — Aut(Vy)
for every k-algebra A. The index map gives rise to a spectral extension
0o n 0o n Index™ n
(51) ZJr BL"G,,(4) — E+ BAut(V}) — Kn—Tate(Pf(A)) — ¥ Kpf(A)

of L"G,,(A) by E"’QKpf(A). As above, the construction is natural in maps A — A’,
so it defines a central extension of sheaves in groups.

Definition 5.8. The spectral extension (51) of L"G,, by ¥" 2K will be referred
to as the canonical spectral extension of the n-fold loop group L"G,,. We denote
the corresponding map of spectra by e,.

As an application of this construction we give a definition of higher Contou-
Carrere symbols.

Definition 5.9. Let fo,...,fn € L"Gp(A) = A((t1)) ... ((tn))*. We denote by
det the determinant map K;(A) — A*. The Contou-Carrere symbol (fo,..., fn)
is defined to be the higher commutator

det((fox---* fn) V7).

The study of the higher Contou-Carrére symbol (fo,..., f,) for an (n 4+ 1)-
tuple in A((¢1))...((tn)), with A a k-algebra, has been pioneered by Osipov-Zhu
in the case of n = 2 (see [0Z16]). They identified this symbol with a higher
commutator in a central extension of the double loop group L%G,, by B*G,,.
Inspired by this observation and the one-dimensional case (Proposition 5.6), they
define the two-dimensional Contou-Carrére symbol for general k-algebras A as a
higher commutator Cs(f, g, h).

Proposition 5.10. Definition 5.9 is compatible with the definition of Contou-
Carrére in dimension 1, and Osipov—Zhu in dimension 2.

The proof of the 1-dimensional case was the content of Proposition 5.6. We now
turn to verifying the assertion for n = 2.

Proof of the 2-dimensional case. Osipov-Zhu construct a central extension of L2G,,
by the Picard groupoid B%G,, ([0Z16, p. 28]), and define (f, g, h) for a triple in
A((t1))((t2))™, as the higher commutator Cs(f, g, h). We have seen in Proposition
4.23 that fxgxh = C3(f, g, h). So to conclude the assertion, we need to verify that
for n = 2 the spectral extension of L"G,, constructed in Definition 5.8 is related
to the extension
YPBL*G,, — X?BYG,,.
constructed by Osipov—Zhu.
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By Nisnevich descent, it suffices to consider rings A with K_1(A) = 0. We then
have a commutative diagram

£%° BL2G,, (A) —— $2K4 ~220 Y2B2G,, (A)

e

2K ,.
Using the adjunction between ¥5° and Q°°, we obtain a map
es: BL*G,, — B*B%G,,.

Picking a basepoint in BL%G,,, and looping once yields an E;-map to the classifying
space of the Picard groupoid of graded lines BZG,,

é: L*G,, — BB%G,,.

We have to show that this morphism is —1 times of the one constructed by Osipov—
Zhu. According to [BGW18a, Prop. 3.28 & Thm. 3.31], ¢ sends f € L?G,,(A)
to

det “(N/fL) ® det “(N/L)",
for N a lattice containing both fL and L, with the monoidal structure being defined
in terms of common enveloping lattices. This is precisely the dual of the definition
given by Osipov—Zhu [OZ16, p. 28]. O

The comparison of the generalized Contou-Carrére symbol with the classical
cases in dimension 1 and 2 already shows that our definition produces a non-trivial
map in these dimensions. We will explain why this is also the case in general.

Remark 5.11. Let k C k' be a field extension and A —¢ &’ a ring homomorphism.
Since our constructions are functorial in the k-algebra A we see that

for fo,..., fn € L"G,(A). If we choose f; =t;4q1 fori=0,...,n—1 and f, € k*
we obtain ¢((fo,..., fn)) = ¢(fn). This follows from Corollary 6.6 below, which
asserts that the higher Contou-Carrere symbol for A a field agrees with the tame
symbol.

After these preparations, let us return to geometry. Let X be a Noetherian k-
scheme and £ a saturated flag of integral closed subschemes Z;. Moreover, suppose
we are given a k-algebra A. Equipped with this data, we defined objects Fx ¢ and
AX@ in §31

By Theorem 7.10 of [BGW16¢], the object F'x ¢ carries a canonical structure of
a higher Tate object. In particular, we see that Fix ¢ gives rise to an n-Tate object
F ¢ in the abelian category Cohz,(X) (coherent sheaves on X, set-theoretically
supported at Zp). If X is defined over a field &, then, because Z; is 0-dimensional,
global sections give rise to an exact functor

['(X,—): n-Tate(Cohg, X) — n-Tate(k).

Thus, Fx ¢ gives rise to an n-Tate object in the category of finite-dimensional vector
spaces over k. If A is an arbitrary k-algebra, the tensor product —®j A: Vect;(k) —
Pr(A) determines an exact functor

—®rA: n-Tate(k) — n-Tate(A).



722 OLIVER BRAUNLING ET AL.

Definition 5.12. Let X, £, k, and A be as described earlier. We define
AX,E = FX’§(§>1€A.

The A-module underlying Ay  (via the forgetful functor n-Tate(A) — Mod(A))
inherits a k-algebra structure from Fx ¢; we denote this k-algebra by Ax¢. For
a group scheme G over k, we define the iterated loop group at (X&) to be the
group-valued presheaf given by

% eG(A) = G(Axe).
By definition, we have L% .G, = F5 ;.

Example 5.13. If X = A? = Specklt1,...,t,], and Zx = Specklty,...,tx], then
we have Ax ¢ = A((t1))...((tn)), and L% Gy, = L"Gp,.

Note that for any ring R, the exact category of finitely-generated projective mod-
ules Py(R) is the idempotent completion of the exact category of finitely-generated
free R-modules. Therefore, any exact functor ¢: Py(R) — C, into any idempotent
complete exact category C, is determined by ¢(R) up to equivalence.

Definition 5.14 (Spectral Contou-Carrere symbol). Let T': Pr(Ax ) — n-Tate(A)
be the unique functor sending Ax ¢ to Ay .. The composition

T (=1)"Index™
o%e Kaye = KpTate(a) ——— 'Ky

will be referred to as the spectral Contou-Carréere symbol.

Replacing K-theory by G-theory (i.e. working with all coherent sheaves instead
of only locally free ones), we obtain an analogous spectrification of the tame symbol.

Definition 5.15. Let T': Py(Fx¢) — n-Tate(Cohz, (X)) be the unique functor
sending Fx ¢ to 'y .. The composition

DT, SnGy g =5 B7K g, — BK),

T
oxe: Kpy e = Ky Tate(Cohz, (X))
will be referred to as the spectral tame symbol.

Switching back to the Contou-Carrére setup, we can use higher commutators to
extract Contou-Carrére symbols from the morphism of spectra in Definition 5.14.

Definition 5.16. Denote by det: K;(A) — A* the map induced by the determi-
nant of matrices. For an n + 1-tuple fy,..., fn € A)X(_5 we define

(an'”vfn) = det((fo*- "*fn)a;ﬁg)a

and refer to this expression as the Contou-Carrére symbol of X at &.

6. COMPARISON OF BOTH DEFINITIONS

This section is devoted to linking higher Contou-Carrére symbols to their clas-
sical counterparts.
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6.1. K-theory and Tate categories.

6.1.1. For exact categories. Schlichting developed a localization theorem for exact
categories in [Sch04], which states that, for every left (respectively right) s-filtering
inclusion of exact categories C < D, the quotient category D/C carries a natural
structure as an exact category. Moreover, attaching their associated stable co-
categories to them as in Definition 2.6,

(52) Perf(C)——"— Perf(D) —~s Perf(D/C)

becomes an exact sequence of stable oo-categories. Further, if C is idempotent
complete, then by Proposition 2.4 (3), we obtain a bi-cartesian square of spectra

Ke — 5 Kp

L)

0 —— Kop/c,

where the relation K¢ = Kpef(cy holds essentially by definition. Schlichting ob-
served that if one chooses D such that Kp 2 0, then the boundary morphism of this
square gives an equivalence 0: Kp,c = YKc. Proposition 2.4 (1) guarantees that
Kinge(cy = 0 for every exact category C. Thus, we see that, for C idempotent com-
plete, we have a canonical delooping Kjgs(c)/c = XKc. Using similar techniques,
Saito establishes an abstract equivalence Kryec) = XKc in [Sail5]. In fact, this
equivalence can be constructed as the composition

(53) (Y2 KTate(C) = KTate“‘(C) = KTate“l(C)/Pro“ (C) = Klnd”(C)/C7
followed by

Kinge(cy/c = XK.
In the first row, the first equivalence follows from the cofinal invariance of non-
connective K-theory (i.e. (2) of Proposition 2.4). The second map is an equivalence
as a corollary of the aforementioned localization theorem, and the third equivalence
exists already on the level of exact categories (e.g. [BGW16¢, Prop. 5.32]).

The index map of Definition 5.4 is an explicit description of these boundary
maps. See [BGW18b, Thm. 3.6] for the proof.

Theorem 6.1. Let C be an idempotent complete exact category. The exact equiv-
alence of exact categories q : Tate®(C)/Pro(C) = Ind*(C)/C (see [BGW16¢c, Prop.
5.32]) induces a commutative diagram

2 Tate® (C)* — M9 ¥R,
ql /
“a
Kinda(cy/cs

where both Index and O arise as the boundary maps of the localization sequences
discussed above.

This theorem motivates the following definition of the non-connective index map.
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Definition 6.2. For an idempotent complete exact category C, we define the map
Index: Krate(c) — XIKc as the composition so that the diagram

Index
KTate(C) L> YKc

| A

Kinga(cy/c-
commutes, where ¢ is the map of Equation (53).

6.1.2. Suspension and Calkin objects for stable co-categories. Let C be a stable
oo-category, and k an infinite cardinal. Recall Definition 2.5, which defines the
suspension S,;(C) as the localization

8x(C) = Ind,(C)/C,

and which defines the oco-category of Calkin objects Calk(C) as the idempotent
completion of the suspension.

Since non-connective K-theory cannot distinguish between a category and its
idempotent completion (see (2) of Proposition 2.4): Kcak,(c) = Ks,(c) = EKc,
we will often omit the cardinal x from our notation. Following Schlichting [Sch04],
Blumberg—Gepner—Tabuada [BGT13] observed the following delooping property for
K-theory introduced in (32).

Proposition 6.3. The boundary map O of the localization sequence of the exact
sequence

C < Ind(C) —» S(C)

of stable co-categories, induces an equivalence of non-connective K-theory spectra
0: KCaIk(C) = YKc.

This result serves as a motivation to call S(C) the suspension of C. Recall that
the suspension of a topological space X is formed by embedding X into the cone
CX, which is contractible. The resulting homotopy cofibre, obtained by taking the
quotient space, is one possible incarnation of the suspension. By analogy, Schlicht-
ing embeds a category C into an ambient K-contractible category Ind(C), and takes
the quotient to obtain the categorical suspension. A second possibility is to con-
struct the suspension of X by glueing a second copy C~X to the cone CX along
the common subspace X. Since C~ X is contractible, this yields a homotopy equiv-
alent space. Categorically this is analogous to pasting the K-contractible categories
Ind”*(C) and Pro”(C) along the common subcategory C. This is the underlying idea
of Saito’s delooping statement. For later use, we record the following naturality

property.

Lemma 6.4 (Naturality). For every idempotent complete exact category C, there
exists a commutative diagram

Kinde(c)/c — Keai(pert(c))

al la

YKe —— ZKpert(c)
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of spectra, where the horizontal maps K¢ = Kpe,p(cy are the equivalences stipulated
by Lemma 2.7, and the vertical maps are the equivalences coming from the boundary
maps of the localization sequence discussed above.

6.2. Comparison.

Theorem 6.5. Let X be a Noetherian k-scheme, and & a saturated flag of closed
subschemes Z;. For every k-algebra A, the spectral Contou-Carrére symbol 034}75 of
Definition 5.14 agrees with the n-fold delooping of the preliminary Contou-Carrére
symbol of Definition 3.16.

The proof of this result will be given in the next paragraph. It uses the concept
of realization functors which we will subsequently introduce. We conclude:

Corollary 6.6. For A a field, the Contou-Carrére symbol agrees with the higher
tame symbol for algebraic K -theory.

6.3. Contou-Carrére symbols and realization functors.

Definition 6.7 (Tate realization). Let X be a Noetherian scheme, and j: U — X
an open immersion, with complement denoted by Z. Let W O Z be a closed
subscheme of X, such that the open immersion U N W < W is affine.2® Then, we
have exact functors ind, pro, and tate, defined as follows.

(a) The functor ind: Cohyy |ny (U) — Ind*(Cohy (X)) sends F € Cohy |y (U)
to j..JF, viewed as an ascending union of coherent sheaves on X with set-
theoretic support in |[W].

(b) We denote by 4,: Z™ — X the inclusion of the n-th order infinitesimal
neighbourhood of Z. We define pro: Cohy (X) — Pro®(Coh z|(X)) to be
the functor sending 7 € Cohyy|(X) to the Pro-system ((iy)«i;,F)

(¢) Combining (a) and (b) we obtain a functor

tate: Cohjy(U) — Ind“Pro®(Coh,z|(X)).

Remark 6.8. One can check that the functor tate of Definition 6.7(c) factors through
Tate® (Cohz(X)) C Ind”Pro®(Cohy(X)). Indeed, for every F e Cohjy|nu (U) we
have a 4-term exact sequence

ker(pro(F) — tate(F)) < pro(F) — tate(F) — j.j*F/F.
The kernel on the left hand side is equivalent to ker(F — j.j*F) € Cohz(X), hence
the quotient of pro(F) by this object lies again in Pro®(Cohz(X)). The object on
the right hand side j.j*F/F lies in Ind*(Cohz(X)). This allows us to represent

tate(F) as an extension of an admissible Ind-object by an admissible Pro object.
Hence, tate(F) has a lattice, i.e. is an elementary Tate object.

neN:

Definition 6.7 contains the condition that the inclusion UNW — W is affine. It
is important to note the following two observations.

Lemma 6.9. We have the following:
(a) Let W, W' — X be closed subschemes of a separated Noetherian scheme
X, satisfying |W| = |W’|. For an open subscheme U C X we have that
W NU <= W is affine if and only if W NU — W’ is affine.

26In Lemma 6.9 (a) we show that this is condition only depends on the underlying closed
subspace |[W|.
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(b) Let W — X be a closed immersion into a separated Noetherian scheme X,
and U C X an open subscheme with closed complement denoted by |Z|. If
|Z| C |W|, and dim Z = dim W — 1 = 0, then the inclusion W NU < W is
affine.

Proof. Assertion (a) follows from the fact that a scheme is affine if and only if the
underlying reduced scheme is affine (which is a consequence of Chevalley’s theorem,
see [Con07]). To verify (b), we observe that Z = {z1,..., 2} is a discrete subset
consisting of closed points (since it is of dimension 0), and we may therefore replace
W without loss of generality by Spec(Ow,,, X - -+ X Ow,z, ). Then, the complement
WNU = W\ Z agrees with the discrete subset {n,...,n,}, where each »; is
a generic point of the one-dimensional scheme W. Since each of the inclusions
{n:} — X is affine, the same is true for

WU =[]{n}— X,
i=1

since a finite coproduct of affine schemes is affine. O

We call these functors realization functors, since they associate to a coherent
sheaf on U = X'\ Z a Tate object in Cohz(X). For our purposes it will be necessary
to have similar functors for perfect complezes on U at our disposal. This is achieved
by the following definition. We denote the derived co-category of pseudo-coherent
complexes of sheaves (resp. complexes of quasi-coherent sheaves) on a scheme X
by DCoh(X) (resp. DQCoh(X)).

Definition 6.10 (Calkin realization). Let X, U, Z be quasi-compact and quasi-
separated schemes, with j: Z < X a closed embedding, and U = X \ Z.
(a) We denote by

ind: Perf(X) — Ind(Perfz(X)) = DQCohz(X)

the functor given by F +— fib(F — j.j*F).
(b) Let calk: Perf(U) — Calk(Perfz(X)) be the functor induced by ind:

Perf(U) ~ (Perf(X)/ Perf z(X))™ = (Ind(Perfz(X))/ Perfz (X)) .

(¢) The functors ind and calk have a version for the stable co-categories of
pseudo-coherent complexes of sheaves:

ind: DCoh(X) — Ind(DCoh (X)),

and
calk: DCoh(U) — Calk(DCohz(X)).

Lemma 6.11. Let X, U, and j: Z — X be as in Definition 6.10. Let X — W
be a morphism of schemes. For an affine flat morphism f: V — W we denote the
base changes X xw V, U xw V, and Z xw V by Xy, Uy, and Zy,. We then have
a commutative diagram

DCoh(U) 2% Calk(DCohz (X))

] L

DCoh(Uy) &5 Calk(DCohy, (Xv)).
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Proof. The assumptions on f imply that we have a commuting square

Perf(X) —2Ls Ind(Perfz (X))

] s

Perf(Xy) 2% Ind(Perfz, (Xv)).

By quotienting and taking idempotent, we obtain the commuting square of the
lemma. (I

The Tate and Calkin realization for coherent sheaves (respectively pseudo-coher-
ent complexes) are related by the composition of the natural exact functors

Tate(Cohy (X)) & Calk(Cohz(X)) =z Calk(DCohz(X)).

Lemma 6.12. Let X be Noetherian, and Z, U, and W satisfy the conditions of
Definition 6.7. We have a commuting square

Cohyyy | (U) % Tate(Cohjz (X))

<1>l l‘I’Q[—l]

DCohyyyjmu (U) <5 Calk(DCohyz((X))

of oo-categories, where ®: Cohjy |y (U) — DCohjynu(U) denotes the canonical
functor.

Proof. According to Definition 6.10 we have that, for every pseudo-coherent com-
plex F on X with set-theoretic support in |W/|,

calk(j*F) = fib(F — j.j*F).

Since j is proper and affine by assumption, we have that for 7 € Coh(X) the
expression j,j*F has vanishing higher cohomology groups. In particular, calk(j*F)
can be represented by the admissible Ind-object j.j*F/F[—1]. By Remark 6.8, this
admissible Ind-object represents the Calkin object corresponding to the Tate object
tate(F). The general case, i.e. of a coherent sheaf on U which does not extend to
X, follows by passing to idempotent completions.

The discussion above gives rise to the top square in the commutative diagram
below, where ®: Cohy|qy (U) — DCohjyny (U) denotes the canonical functor to
the derived category, and ¢ is the exact functor of Theorem 6.1:

Cohyyy | (U) ~2% Tate(Coh,z)(X))

idl lq

Cohyynp (U7) —2+ Calk(Cohy 7 (X))

(bl alk[1l l\l}

DCohjyy e (U) s Calk(DCohy 7 (X)),

where ¢ is the functor obtained by sending F € Cohpyny(U) to j*}'/ﬁ
€ Calk(DCohz|(X)), where Fis a pseudo-coherent subsheaf of j,F, such that
j*ﬁ = F. The outer square yields the required commutative diagram. O
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For X a Noetherian scheme, and & a saturated flag of closed subschemes we
denote by X" the scheme obtained by applying Definition 3.12 of X (™) for A = k.
We now construct a sequence of Tate realization functors

tate: COhZ(])( Xl ]) — Tate(COhZJ[,j_]l] (X[j_l])).

Lemma 6.9(b) implies that the crucial affineness condition of Definition 6.7 is sat-
isfied in this now case for dimension reasons. Composition of these exact functors
yields a well-defined exact functor

tate™: Coh(X[™) — n-Tate(Cohg, (X)).
The proposition below can also be obtained from [BGW16c].

Proposition 6.13. The functor m,tate™ agrees with the (n-Tate object valued)
Beilinson-Parshin adéles Fx ..

Proof. The functors ind and pro of Definition 6.7 mirror localization and comple-
tion with respect to the scheme X. In particular, we see for F € Coh(W) that
T s taten(./—") = Ex7£ l:l

Composing n-Tate with pushforward 7: Cohgz,(X) — Coh(Speck) = Vecty(k),
we obtain an exact functor Coh(X[™) — n-Tate(k).

Definition 6.14. Let X be a Noetherian k-scheme, and £ a saturated flag of closed
subschemes. For every k-algebra A we denote by Coh’ (X)) the full subcategory of
Coh(X (”)), consisting of coherent sheaves which are pulled back along the canonical
map s: X(™ — X" Denoting by

(—)a: n-Tate(k) — n-Tate(A)

the exact functor induced by —®y A: Vecty(k) — Py(A), we have a unique A-linear
functor

(7, o tate™) 4: Coh”(X (™) — n-Tate(A),
such that the following diagram commutes:

71'* tate™

Coh(X M) ———— n-Tate(k)
l(_)A
Co h"(X(”) e Tate(A)

Proposition 6.15. We denote by VB (W) the exact category of free vector bun-
dles on a scheme W. Let X be a finite type, separated k-scheme of dimension
n, and let £ be a saturated flag of closed subschemes. For every k-algebra A, the
diagram

(74 tate™) a

VB (X ™) —— n-Tate(A)

s*l lQ[n]

74 calk™

Perf(X (™)~ —— Calk™(Perf(A))

s commutative.
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Proof. For A = k this follows from applying the comparison of Lemma 6.12 iter-
atively. The general case follows from the base change invariance of the Calkin
realization (Lemma 6.11), and Definition 6.14 of the functor (. o tate™)4 by base
change. |

We are now ready to prove that the spectral Contou-Carrére symbol 034})5 can

be represented as the composition 7, o 8210(‘ .
XaA-€a

Proof of Theorem 6.5. Proposition 6.15 established a compatibility between the
Tate and Calkin realization: m, calk™ ~ g(m, tate™)4[—n]. Applying the non-connec-
tive algebraic K-theory functor K_ to this equivalence, we obtain two equivalent
maps

(54) Kﬂ* calk” = Kq(ﬂ'* taten) 4 [—n] * KX(") — KCalk"(Pcrf(A)) ~ ¥"Ka.

Here, we made use of the fact that non-connective algebraic K-theory is cofinally
invariant, i.e. cannot distinguish between an exact category and its idempotent
completion. In particular,

Kvp,(xm) = Kypxm) = Kxm.

By Proposition 6.13, and by the definition of (7, tate™) 4 by base change (Definition

Index™

6.14 ), we see that the second map of (54) agrees with Ky ) — Ky 1ate(a) —
>"K 4. Hence, this map agrees with the spectral Contou-Carrére symbol, by Defi-
nition 5.14. To conclude the proof we have to compare the first map with the n-fold

composition of the boundary map Ky (n) LN YKX 4 (Zo)a I 7K 4. Definition
6.10 implies that for every triple (X,U, Z) we have a commutative cube of stable
oo-categories

Perf(U)
/ |

Perfz(X) ———— Perf(X) Jcalk

0 Calk(Perfz(X))
7 J — ’

Perf z(X) ———— Ind(Perf 7 (X)),

where the top square comes from the localization sequence of the closed embedding,
and the lower square corresponds to the short exact sequence of stable co-categories

Perfz(X) — Ind(Perfz (X)) — Calk(Perfz(X)).

Since the top and bottom face are localization sequences, applying K_ yields a
commutative cube with top and bottom face being bi-cartesian. In particular, we
obtain a commutative triangle relating the boundary maps of the bottom and top
face:

8
Kperty — XKx 2z

M

Kealk(Pertz (x))-

Applying this comparison n times, we see that K cax» is equivalent to w9, 0+ -0
or. O



730 OLIVER BRAUNLING ET AL.

7. RECIPROCITY

Let X be a proper integral curve over a field k. We write X for its set of closed
points. For every commutative k-algebra A, z € X, and a pair of units in the ring
of A-valued rational functions

fr9 € AX)" = (k(X) @ A)”
the Contou-Carrere symbol gives an element (f, g), of A*.

Theorem 7.1 (Weil, Anderson—Pablos Romo, Beilinson-Bloch-Esnault). The prod-
uct below is well-defined and satisfies

xeXo

This reciprocity law has been proven by Weil for A = k, it was generalized to the
case of artinian rings A by Anderson-Pablos Romo [APR04], and to general A by
Beilinson-Bloch-Esnault [BBE02, §3.4]. Recently, Pal has shown in [P4l10] that,
for artinian rings, the relative version of Weil reciprocity follows from the absolute
case (A = k) after a change of fields.

This section is concerned with an extension of this result to varieties of arbitrary
dimension (and arbitrary rings A). The absolute case (A = k) is due to Kato
[Kat86] (however, the case of surfaces was pioneered by Parshin). Recent work of
Osipov—Zhu [OZ16] established a Contou-Carrére reciprocity law for surfaces and
artinian rings.

Fix an integer 0 < i < n. As before, A denotes a k-algebra over a field k.
The main player is an n-dimensional, integral, separated k-scheme of finite type X,
together with an almost saturated flag

(55) C:(X:ZnDZfH»lDZZleZO),

of closed integral subvarieties, satisfying dim Z; = j. If i = 0, we assume that Z;
is proper over k.

For every closed equiheighted i-dimensional subset Z, satisfying Z;11 D Z D
Z;_1 we obtain a saturated flag £z. Note that we denote saturated flags by the
letter ¢ for the sake of visual distinctness.

In order to formulate the reciprocity law, we need to construct an analogue of
the ring of A-valued rational functions A(X) on a curve X. This ring A;(X) should
be naturally associated to the data (X, () and the k-algebra A. Further, for each
Z as above, we require a specialization homomorphism

Ac(X) 5 Axe,.

The latter is required to make sense of the factors of the product

H (an-'-yfn)§z'

Zi41DZDZ;—1

Definition 7.2. We define the following:

(a) Let X be a separated n-dimensional k-scheme of finite type, A a k-algebra,
and ¢ an almost complete flag in X. For each Z;;1 D Z D Z;_1 with Z
of pure dimension i and not necessarily irreducible, we denote the ring of
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regular functions on the scheme (Co L)""*"1oLo (CoL)¥ (X4, (£2)a) by
A 7(X). We define the ring A,(X) to be the direct limit

Ag(X) = 11_) AC,Z(X)a
Zi 1CZCZi41
where Z is a closed subset of pure dimension 4 (not necessarily irreducible).
(b) For every Z as in (a), we denote the natural ring homomorphism A (X) —

Axe, by ic.

In the definition above we can apply the operations L and C because we may
replace the scheme by a suitable affine open neighbourhood.

After having introduced this colimit, we observe that the algebraic K-theory is
manageable for formal reasons. This will be used in the proof of our main result.

Remark 7.3. Since non-connective K-theory of rings commutes with filtered colim-
its (Theorem 7.2 of [TT90]) one has

Kay .= lim Kicolyr-i-toLo(Col)i (Xa,(¢2)a)-
Zi 1 CZCZi41
We are now ready to state the main result of this section, in a classical formula-
tion:

Theorem 7.4 (Reciprocity for Contou-Carrére symbols). Let X be an integral
separated n-dimensional k-scheme of finite type, and let A be a commutative k-
algebra. Let ¢ be an almost saturated flag as in (55). For every (n + 1)-tuple
fo,-- o, fn € AC(X)X we have that the product below is well-defined and satisfies the
identity
H (an"'afn)Ez:]-v
Zi412ZDZi
where Z is integral and of dimension i.

We will deduce this result in Subsection 7.2 from an abstract reciprocity law for
compositions of boundary maps (see Corollary 7.11). The reciprocity relation will
be generalized to the existence of a null-homotopy for a certain map of spectra. We
refer to such a construction as spectrification (following Beilinson).

7.1. Abstract reciprocity laws.

7.1.1. Notation. In Appendix B.1 we explain a mild generalization of a construc-
tion due to Efimov, which allows one to complete a stable co-category C at a full
subcategory S. The resulting category is denoted by Cg. This is a categorical ana-
logue of completion in commutative algebra. We refer the reader to the appendix
of Efimov’s [Efil0] for more details.

Definition 7.5. Let C be a stable co-category as in Paragraph B.2.1.
(a) A chain of localizing subcategories Sg C Sy C ..., will be referred to as a
flag in C.
(b) We denote S; by Cp;.
(c) We denote Cg- by Cm.
(d) We write C(;) = (C/S;)™.
(e) We write Cy = (C@/Si)ic.
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(f) Given a flag on C as above, we define the iterated removal-completion op-
eration by

ic

Caom = (Cammiy)s/(5n) g73)"
with Cy = C.
Let X be a scheme. Given a flag of closed subschemes in X,
E=(X=2Z,DZy-1D D Zy),

we obtain a flag of localizing subcategories Sy, ..., S, —1 of Perf(X) by defining S;
to be Perfz, (X). The following example is a special case of Proposition B.8 in the
appendix.

Example 7.6. Let X be affine n-space A™ = Specklty,...,t,], and £ the flag given
by Z; = Speck[t1,...,t;]. We then have C(o/n\) = Perf(Speck((t1)) ... ((tn))).

7.1.2. Reciprocity laws. In the following we denote by C a stable co-category, and
consider a chain Sg,Sy,...,S, of localizing subcategories (as considered above).
We will be concerned with the composition of boundary maps, connecting the non-
connective K-theory spectra of various stable co-categories constructed from C with
the help of the localizing subcategories.

Let C be a stable co-category together with a localizing subcategory S. With re-
spect to the terminology introduced in Definition B.5 we have short exact sequences
of stable oco-categories

S‘—)C—»C(S) andS‘—>C§—>C(AS)
and canonical functors
F G
(56) C— Cg and C(s) — C(/\S)

Furthermore, these short exact sequences and functors belong to a commutative
diagram:

S C§ HC(/\S)

On the level of algebraic K-theory, the localization sequences yields a boundary
map

d
QK@ — Kg.

Theorem 7.7 (Abstract Weil reciprocity). Let C be a stable co-category together
with a localizing subcategory S. We assume the existence of an exact functor C 5 D,
where D denotes as well a stable co-category. We denote the inclusion S — C by
a, and the restriction c|s by b:
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Under these assumptions the map QXKc g — Kp defined as the composition bodoG

boG
QKC(S) — Kp

‘| T

QKC@ i) Kg
is homotopic to the zero map.

Proof. We have a commutative diagram:

QKC(S) a—) Kg

B

Kc
‘®

Commutativity of the diagram above follows from the naturality of boundary maps
in algebraic K-theory (applied to (57)). This implies
bodoG ~coaod: QK — Kp.

We may therefore focus on establishing the null-homotopy of the map a o 9. We
have a commuting diagram of spectra, with the square being bi-cartesian:

QKC(S) —0
la
bd Kg L) Kc
b c
Kp

Commutativity of the square implies a o 0 >~ 0. g

Example 7.8 (Weil reciprocity). Let X be a proper, integral curve over a field k,
we set C = Perf(X), and for every reduced 0-dimensional closed subscheme Z (not
assumed to be irreducible) we let S be Perf|z(X). We then have C(gy = Perf(X\ Z).
Using the (derived) pushforward functor to the base field 7, : Perf(X) — Perf(k),
Theorem 7.7 implies now that the canonical map

T, 0: QKX\Z — Ky
is homotopic to zero. The field of rational functions k(X) arises as the direct
limit k(X) ligz Ox\z, in particular we have Kjx) = @Z Kx\z, by virtue

of Theorem 7.2 in [TT90]. Since we have a functor from the direct limit of oo-
categories Perf(X) ® to Perf(Ax), by virtue of Theorem B.11(a), we obtain the

commutative diagram in the stable oco-category of spectra on the left:

T 00 T O=1
QKk(X) —}Kk KQ(k(X))—>K1(k;)

] |

QKAX Kg(Ax)
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Passing to homotopy groups, we obtain the commutative diagram of abelian groups
on the right. Thus, we see that HzGXo m0{f, g} = HzGXo N2y /k(f9)e = 1, for
all pairs of invertible rational functions on X.

Similarly one could use this result to prove reciprocity for Contou-Carrere sym-
bols, relative to any k-algebra A. We will give more details at the end of this
section, when discussing the proof of reciprocity for higher-dimensional varieties.

Theorem 7.9 (Abstract Parshin reciprocity). We denote by C a stable co-category,
and by Sg C S1 C C a length 2 chain of localizing subcategories. The construction

of (56) applied to (Sl)@ C C(O yields a functor G C o C(o 5 which belongs

to a commutative diagram

such that the composition of the top row is equivalent to the zero map.

Proof. As in the proof of Abstract Weil reciprocity, the existence of the commuta-
tive diagram follows directly from the naturality of boundary maps. We therefore
turn to proving the existence of a null-homotopy for the composition of the top
row. Similar to the proof of Theorem 7.7 we show that this composition factors
through the juxtaposition of two subsequent maps in an exact sequence of spectra
(thus is homotopic to 0). This is achieved by the commuting diagram below on the
left:

Kc. ———0 0—>KCA

(0)(1) [oja]
[ | ’
QK CA a

Kc - L) QK @

on = ©’ id
[?] PR a O — | — K¢~
~ 9 / / (o]
Kc
0] OKe . ————-> KC[O] .

(0)

provided we can establish the existence of the dashed map. To explain the diagram,
note that almost all of the maps appearing in the commutative diagram above are
boundary sequences for localization sequences in algebraic K-theory, the exception
being a: QK(O)M — QKc@ which is induced by the inclusion of the localizing

subcategory

a: C(O)[l] — C[O].

A suitable candidate for the dashed map is given by the K-theory boundary
morphism of the exact sequence of stable co-categories Cjg) — C[o] —» C(o) Natu-
rality of boundary maps implies the existence of a commutative diagram with exact
rows as depicted above on the right. Most of the arrows in the cubical diagram are
not labelled. The respective maps are well-defined by the fact that the rows are
localization sequences in K-theory. The morphism @ is induced by the inclusion of

the localizing subcategory C[ Al = (S1)g, = Cg, C[o] (see also Definition B.5).
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The front square of the commuting cube amounts to the existence of the com-
muting triangle containing the dashed map above. This concludes the proof. (Il

Let us explain how this result implies Parshin’s reciprocity statement for surfaces.

Example 7.10 (Parshin reciprocity). Let Y be an integral separated excellent
surface. We denote by C the stable co-category Perf(Y"). For a fixed closed point = €
Y, we obtain a localizing subcategory Sg = Perf(,1(Y’). Moreover, for every integral
curve C, with € C, we have a localizing subcategory S; = Perf|¢((Y'). Theorem

B.11(a) implies that C@ & Perf(Ay,cz), and a direct limit of the co-categories

C@ ) yields Perf(Frac(@)). Hence, by Theorem 7.9, we have a commutative
diagram of K-theory groups

Kg(Frac((?K\m)) — K1 (Oyz/my,)

| _—

K3(Ay2 ),

in which the top map is trivial. Here Ay, denotes the ring of adeles for chains,

Y D C D {z}, where C can be an arbitrary irreducible curve containing z. In
X

particular, we see that for every triple fo, f1, fo € Frac(@) we have the identity

H(anflva)mGC =1,

Cox
where the product is indexed by integral closed curves containing x.

Combining Theorems 7.7 and 7.9, we obtain an abstract analogue of Kato reci-
procity. In the next subsection we will use this result to deduce a reciprocity law
for Contou-Carrere symbols.

Corollary 7.11 (Abstract Kato reciprocity). Let C be a stable co-category. We fix
positive integers ¢ and n, and assume that we have a chain of localizing subcategories
S; CC, indexed by 0 < j <n —1.

(a) Ifi =0, suppose that we have a commutative diagram

SOL)Sl

Nk

D

)

where D denotes a stable co-category. Then, the morphism Q”KC(O)U/?U

Kp defined as the following composition
G o b
QnKC(o)(lﬁfn QnKC(oﬁ?) — KCIOJ — Kp
is null-homotopic. Here, G: C(g) — C@ denotes the functor of (56) applied
to So C C, and

G — C

(@’ Codm) 7 Cany
denotes the induced functor, obtained by applying the functorial construc-

tion (—)(17:1) to G.
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(b) Ifi # 0, then the following composition
G(HTPU am
QnKC e Qan . — Kc
(0,i—1) (i) (i1,n—1) (0,n—1) [0]
is null-homotopic. Here, G: C,—— = — C denotes the functor of (56)

(Oz 1)(¢)
applied to the localizing subcategory (S;), —— C C— 6iT) , and

(0,s—1)

Gtz Ceinmeriamy — Semmy)

denotes the induced functor, obtained by applying the functorial construc-

tion (— )(Z+1n 1 to G.

Proof. The first assertion follows directly from Theorem 7.7, when setting C = Sy,
and S = Sy.

We will now turn to the proof of the second assertion. For j < ¢ — 1 we denote
by

(58) 8 Q]JrchA — QjKC

©.Nli+1] (0,7—1)[4]

the boundary morphism in K-theory, associated to the short exact sequence

(59) Cenu 7 Coomun ~ C@au

of stable co-categories. Analogously, we have the boundary maps
e et i

(60) 9;: KC@?)@)[MJ —+ 0 Kcaﬁfnm’

and for j >i+41
e YAaa! ¥
(61) 9;: €2 Kc(rﬁxi)(m)mu — 0 Kc(rﬁwxiﬂnm'
We want to show that the composition of these boundary maps satisfies dy o -« - o
Op—1 ~ 0. In fact, Theorem 7.9 implies that 9;_1 o 9; ~ 0. To see this one chooses

the C in loc. cit. to be the stable co-category C —— , S =C——,.. and

( ,i—2)[i+1]° (07172)[7.71]7
S1=C—

(0,1—2)[1]
Example 7.12 (Kato reciprocity). Let X be an integral separated excellent scheme

of pure dimension n. Let ( denote an almost saturated flag of closed integral
subschemes

C:(XDZ”_1D"'DZH_lDZZ‘_lD"'DZO),

indexed by j # ¢, with dimZ; = j. If 7 = 0, we assume that Z; is proper over
a field k. For every (not necessarily irreducible) reduced closed subscheme Z; of
pure dimension ¢, and Z;;1 D Z D Z;_1 we obtain a natural chain of localizing
subcategories S; := Perf|z,| on C = Perf(X). Abstract Kato reciprocity (Corollary
7.11) now implies the existence of a commutative diagram

QHKFX,C L} Kp,

—Q®Fy (AX@J(
4 a"L

O"Kay.cs

where we let D = Perf(k) for ¢ = 0, and Perfz, (X) otherwise. As before, this
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implies that for an (n + 1)-tuple of invertible elements of Fx ¢, we have

H (foa"'afn)fz:L

Zi4+1DZDZ;1

where Z is integral and of dimension 1.

7.2. Reciprocity for Contou-Carreére symbols. In the following we fix a sep-
arated, reduced k-scheme X of finite type and dimension n, a k-algebra A, and an
integer ¢. As in Example 7.12, ¢ denotes an almost saturated flag of closed integral
subschemes
C:(X:)Zn_1 DI DZi+1 DZi 1D DZO),

indexed by 0 < j < n with j # 4, and satisfying dim Z; = j. The condition of
being almost saturated stipulates that up to the choice of Z;11 D Z; D Z;_1, the
flag cannot be further extended. If i = 0, we assume that Z; is proper over a field
k.

Alluding to the notation of abstract Kato reciprocity (Corollary 7.11), we define

C = Perf(Xa), S; = Perf|(z,),/(Xa),

where Z; = Z is a not necessarily irreducible closed subset of pure dimension i,
satisfying Zi-i—l DZDZi.

Lemma 7.13. Using the notation introduced earlier, we have the following equiv-
alences.

(@) C gy = Perf((Col)" ™ol o (Col)'(Xa,(£2)a)) (see Defi-
nition 7.2). In particular, taking the colimit of the diagram of these stable
oo-categories indezed by all possible Z, we obtain Perf(A.(X)).

(b) For each Z;y1 D Z D Z;—1 we denote by &z the corresponding complete
flag. Then we have C((ﬁ{—\n = Perf(Axe,)-

Proof. The second assertion is a direct consequence of Theorem B.11(c). The first
assertion is proven by similar means as the results in Subsection B.2.2: as in loc. cit.
one proceeds by induction, where the i-th step (due to the absence of completion)
has to be treated separately (using Lemma B.9 instead of Corollary B.10). O

Using the equivalences of stable co-categories, provided by Lemma 7.13, abstract
Kato reciprocity implies the following corollary.

Corollary 7.14 (Spectral Contou-Carrere reciprocity). The following composition

O"K i g, i g
Ag,Z(X) AX‘EZ A
is null-homotopic (see Definition 7.2). Taking the filtered colimit over Z, we obtain
the composition

. A
hrnaX,EZ

MQnKAC,Z(X) —C> thnKAx,sz _— KA
Z Z

which is also null-homotopic.

Proof. Using Remark 7.3 one obtains the second commuting triangle from the first
(including the null-homotopy), by taking a colimit ranging over the collection of all
possible Z;11 D Z D Z;_1. At the beginning of this subsection, we have already
defined a chain of localizing subcategories S; on C = Perf(X 4), which allows us to
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evoke abstract Kato reciprocity (Corollary 7.11). We only need to verify that one
of the conditions (a) or (b) holds, in order to apply this result. If i = 0, then Z; is
proper over k by assumption. By virtue of Lemma 3.15 we obtain a pushforward
functor

. 81 = Perf( 5y, (X4) — Perf(4),

which yields the required commutative diagram

Perf(ZO)A (XA)(—> Perf(Z1)A (Xa)

T I

Perf(A).

If i > 1, there is nothing to check. This concludes the proof of the first assertion.
The second assertion also follows by applying abstract Kato reciprocity (Corol-
lary 7.11). For j # i one defines S; as before, and in degree i one sets S; =
lig 5 Perfz, (X 4), where Z ranges over all closed subsets which are of pure dimen-
sion ¢ and satisfy Z;_1 C Z C Z;41. |

Proof of Theorem 7.4. Let fo,..., fn be a commuting (n + 1)-tuple of units in
the ring A.(X). This corresponds to a map LT — %°(BA¢(X)*). The
right hand side can be expressed as a colimit by definition of the ring A.(X) (see
Definition 7.2). Because the torus is compact, the map factors through a map
YT — NP (BA¢ z(X)*) for some Z.

The ring A¢ z(X) splits into a product over the irreducible components of Z =
Uj—; Wy. Therefore, spectral Contou-Carrére reciprocity 7.14 yields a commutative
diagram

m n = 0 0
i1 V'Ka,, x0) —= WKy, x) — Ka

| 4.

QnKAx,sZ,A'
Passing to homotopy groups, and applying the resulting maps to the object repre-
sented by the Steinberg symbol {fy,..., f»} (i.e. a higher commutator by Propo-
sition 4.28), we obtain the identity

[T 70 for- o fud = [[on s Fidew, = 1.
i=1 i=1
This concludes the proof. O

APPENDIX A. CATEGORICAL AND HOMOTOPICAL FRAMEWORK

A.1. co-categories. We briefly review the main ideas from the theory of co-cate-
gories that are repeatedly used in our work. For a more detailed overview, we refer
the reader to Groth’s survey [Grol0].
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A.1.1. Spaces are co-Groupoids. The only topological spaces that play a role for
us are those which are homotopy equivalent to a CW-complex. The term space
(regardless of pointed or unpointed) will always refer to topological spaces of this
type. Since every space X is weakly equivalent to the geometric realization of the
simplicial set of singular simplices S, (X ), we could equivalently work with simplicial
sets.

We now remind the reader of a hierarchy on the homotopy category of (un-
pointed) spaces.

- A homotopy O-type is an unpointed space homotopy equivalent to a discrete
topological space,

- a homotopy 1-type is an unpointed space with vanishing higher homotopy
groups,

- a homotopy n-type is an unpointed space X with 7 (X) =0 for k > n+ 1.

The category of homotopy O-types is equivalent to the category of sets. The
category of homotopy 1-types is closely related to the category of (small) groupoids
G. To a groupoid G, one simply assigns the geometric realization of its nerve |[NG|.
Vice versa, given an unpointed topological space X, we have the Poincaré groupoid
m<1(X). Its set of objects is the set of points in X. A morphism from = € X to
y € X is a homotopy class of paths connecting = and y.

The natural map of groupoids G — 7<1(|NG|) is not a strict isomorphism.
However, it is an equivalence of groupoids. Using this fact, one can show that the
above functors induce an equivalence between the 2-category of groupoids and the
2-category of homotopy 1-types. This motivates the following slogan of modern
homotopy category:

The collection of homotopy n-types forms the (n + 1)-category of
n-groupotids. Unpointed spaces correspond to oo-groupoids.

A.1.2. Simplicial sets and co-categories. Intuitively speaking, an co-category C is
a category enriched in oco-groupoids (i.e. unpointed spaces). Hence, for every
pair of objects X,Y € C we have a space of morphisms Hom¢(X,Y'). Since this
space will only matter up to homotopy, composition should not be expected to be
defined strictly, but only up to a homotopy, which itself is well-defined up to higher
homotopies of all orders. It is difficult to extract a meaningful definition from this
heuristic description, but its value should not be underestimated. To a large extent
it is possible to work with co-categories as a blackbox, as long as one accepts that
there is a well-behaved calculus of homotopy coherent commutative diagrams.

In the rigorous setting of quasi-categories (see e.g. Lurie’s [Lurb]), one defines
oo-categories as simplicial sets satisfying a mild technical condition. This definition
is motivated by the classical construction of nerves of categories. Recall that for a
classical category C we define its nerve NC to be the simplicial set with objects as 0-
simplices, morphisms as 1-simplices, composable pairs of morphisms as 2-simplices,
etc. Grothendieck observed that one can reconstruct a category from its nerve (even
up to isomorphism of categories, see e.g. [Lurb]). A simplicial set is the nerve of a
category, if and only if it satisfies a collection of strict horn-filling conditions, the
most important one of which is explained below.
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The set of 2-simplices of NC can be understood as the set of commuting triangles
as depicted below on the left:

Y Y Y
SN N N
x— 9 Lz X Z X" Lz

The horn-filling condition in this particular case amounts to stating that every
diagram as depicted above in the middle can be completed to a commuting triangle
as above. For a classical category this can always be achieved in precisely one way.

Even if one does not know the definition of an oco-category, one could try to
guess what the nerve of an oo-category should be. Accepting the above slogan
that, whatever co-categories are, we want to have a good calculus of commutative
diagrams, we arrive as a definition for the set of 2-simplices in the nerve at the set of
commuting triangles as depicted above on the right. There are two interesting new
features. First of all we cannot say that h is the composition of f and g. Rather, h
is one of possibly many compositions of f and g. The invisible 2-cell of the triangle
above should be thought of as a homotopy connecting both sides. It turns out that
if we no longer require horns to be filled uniquely, this is sufficient to characterize
nerves of oo-categories. This is precisely how quasicategories are defined by Joyal
and in [Lurb].

What separates the subcategory of classical categories from its complement in
quasicategories is the existence of a strict composition operation for morphisms. In
oo-categories, composition is only well-defined up to a contractible space of choices.
It is this little bit of extra homotopical glue, which makes the theory of co-categories
so flexible.

As a natural consequence of this liberality, the only possible notion of commu-
tative diagrams is automatically homotopy coherent in a strong sense.

If I, is a simplicial set, then an I,-indexed commutative diagram in an oo-
category C is a map of simplicial sets I, — C. A commutative square

X—Y

| ]

Z — W

for example is a map of simplicial sets (A!)?2 — C, sending the O-simplices of the
square (A')? to the objects X,Y, Z, W.

A.2. Stable oco-categories. We refer the reader to [Lura, Ch. 1] for a more de-
tailed account. Every oo-category C has an associated homotopy category Ho(C),
where the set of morphisms is defined to be the set of connected components
Homyo(c) (X,Y) = mogHomc(X,Y). A stable oo-category has a natural triangu-
lated structure on its homotopy category. Examples include the stable co-category
of spectra, and other enhancements of triangulated categories (for example pre-
triangulated dg-categories).

By definition, a stable co-category C is pointed, i.e. there exists an initial and
final object o. Moreover, we assume the existence of finite limits and colimits, as
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well as that a commutative diagram

X Y
Z %4
is a pullback if and only if it is a pushout. The endofunctors ¥: C — C, and
Q:C—C,

(62) o

—

X—e QX —— e
o — 52X, o —— X,

are defined by virtue of the cocartesian, respectively cartesian squares above. As
a consequence of the definition of a stable co-category, > and 2 are inverse equiv-
alences. The induced functors on the homotopy category Ho(C) give rise to the
translation functors of the triangulated structure of Ho(C). The distinguished tri-
angles are the images of bi-cartesian squares of the form of Diagram (62) with
W = e. We denote the oo-category of stable oo-categories by Catog st

APPENDIX B. DERIVED COMPLETION OF SCHEMES AND CATEGORIES

“You complete me.” - J. Maguire

The study of derived completion goes back to work of Greenlees—May [GM92],
Dwyer—Greenlees [DGO02], and was embedded into the realm of derived algebraic
geometry by Lurie [Lur09a] and Gaitsgory—Rozenblyum [GR14]. We will mostly
follow Lurie [Lur09a, Ch. 4 & 5].

For every ring R, and an ideal I, we recall (see Subsection B.1) Lurie’s definition
of the derived completion fl}ier. This is a connective Eo-ring spectrum ([Lur09a,
§4.2]). If R is Noetherian, the derived completion is canonically equivalent to its
classical counterpart [Lur09a, Prop. 4.3.6]. However, for a non-Noetherian ring R,
the derived completion is genuinely different, which affects the stable co-category
of perfect complexes.

In Subsection B.2 we rephrase and generalize constructions of Efimov [Efil0]; we
show how perfect complexes on the derived completions can be understood by an
abstract construction on the level of stable co-categories.

We then use a calculation of Porta—Shaul-Yekutieli [PSY14] (see also [PSY15])
to conclude that E?er is in fact a classical ring, if I is weakly proregular in R
(see Definition B.3). This will allow us to remove derived rings from our work in
retrospect.

B.1. Derived completion. We fix a ring R and a finitely generated ideal 1. We
briefly review the notion of derived complete complexes of R-modules, as studied in
[Lur09a, §4.2]. A review of this material in the language of triangulated categories
is given in [The, Tag 091N]. We say that a complex of R-modules is I-complete, if
for every = € I the homotopy limit of the inverse system

lim[---— M 5 M 5 M|,



742 OLIVER BRAUNLING ET AL.

i.e. the fibre of

I M= ] M,

n>0 n>1
vanishes in the stable oo-category DMod(R). This is precisely the homotopical ana-
logue of the condition that a acts topologically nilpotently on M, i.e. [, I"M =
0. The resulting full subcategory of I-complete objects in DMod(R) will be de-
noted by DMod(R)-<°™P. Note that in [Lur09a] this subcategory is characterized
differently (cf. [Lur09a, Cor. 4.2.8 & 4.2.12]). For abstract reasons, the inclusion
DMod(R)!-comP C DMod(R) possesses a left adjoint (see [Lur09a, Lemma 4.2.2])

——der
()" DMod(R) — DMod(R)!-<m®,

which will be referred to as derived completion. By Remark 4.2.6 in loc. cit. this
is moreover a symmetric monoidal functor, hence we obtain an E.-ring spectrum
R?er; the derived completion of R at I.

B.2. Modification of stable oo-categories. Let X be a scheme, Z a closed
subscheme, which is defined by a locally finitely-generated sheaf of ideals. The
aforementioned derived completion operation allows one to define the derived for-
mal scheme X%er (see [Lur09a, Def. 5.1.1]). If X is Noetherian, it is canonically
equivalent to the formal completion X z. We denote by U the open complement
X\ Z. Recall that DQCoh(X) denotes the stable oco-category of complexes of quasi-
coherent sheaves on X. Pullback along the open immersion j: U — X induces a
localization

j*: DQCoh(X) — DQCoh(U).

The kernel, i.e. the full subcategory of complexes F satisfying j*F ~ 0, will be
denoted by DQCohz(X). Since j*F ~ 0 amounts to F|y =~ 0, it is sensible to refer
to such a complex of sheaves F as having set-theoretic support contained in |Z|.

The oo-category of compact objects in DQCohz(X) is given by Perfz(X), i.e.
perfect complexes on X with set-theoretic support contained in |Z|. Moreover,
DQCohz(X) is compactly generated, amounting to the relation DQCohz(X) =
Ind Perf 7 (X).

Besides passing to open subschemes (localization in terms of stable co-categories),
and restricting set-theoretic support (localizing subcategories), a third geometrically
relevant operation is given by considering complexes of sheaves on the formal com-
pletion X %cr.

Quasi-coherent sheaves on the formal completion X 7 are closely related to the
oo-category DQCohz(X). In fact, we have an agreement of the full subcategories
of almost connective complexes ([Lur09a, Thm. 5.1.9])

(63) DQCoh(X )2 = DQCoh (X )™ = (Ind Perf 5 (X)),

Our main interest lies in the category of perfect complexes Perf ()A(%er) on )?%er.
Unlike the case of a scheme, it is not sufficient to consider the full subcategory of
compact objects in DQCoh()?ger) (denoted by upper script “c”). As we have seen
earlier, DQCoh()A(%er)C >~ DQCohz(X)® = Perfz(X) only yields perfect complexes
with set-theoretic support contained in |Z|. In fact it is not very difficult to verify
that structure sheaf O on the formal scheme Spf k[[t]] is not compact.
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In the remainder of this subsection we will use the observations described here
to develop categorical analogues of the geometric operations given by the removal
of closed subschemes and completion.

B.2.1. Completion. Let C be an idempotent complete stable co-category, with a full
stable subcategory S, which is idempotent complete. We refer to such an S simply
as localizing subcategory of C. Inspired by (63) we make the following definition
for the completion of C at S. Proposition B.2 below compares this definition with
the derived completion of rings.

Definition B.1. The completion Cg is defined to be the idempotent closure of the
essential tmage
Im[C — IndS]

of the functor sending G € C to the presheaf?” F — Hom(F,G).

Note that, because the inclusion S C C preserves finite colimits by assumption,
the presheaf associated to F € C preserves colimits as well, and thus yields a
well-defined functor C — IndS.

Just like in Efimov’s [Efi10, p. 8], we think of Cg as a completion on the level of
Hom-spaces, not altering the class of objects. The result below can be also found
in [Efi10, Remark 5.3] for Noetherian rings.

Proposition B.2. If C = Perf(R), where R is a ring, and S = Perfy 1y (X) for
some ideal I C R, then Perf(R)g = Perf(ﬁ?er).

Proof. In the following we denote by V(I) C Spec R the closed subset corresponding
to the ideal I. We begin the proof by connecting the derived formal completion
}A{?er of Subsection B.1 with Perfy (;)(R). Theorem 5.1.9 and Proposition 5.1.17 in
[Lur09a] imply the existence of a commutative diagram

Perf(Rdr)—— DQCohy (1)(Spec R)
‘\ /

Perf(R)

of oo-categories. ~ Using that DQCohy (;)(Spec R) is compactly generated by
Perfy (;)(R), and the definition of Perf(R)g as the idempotent completion of the
essential image of the functor

Perf(R) — Ind Perfv([) (R) = DQCth(I)(SpeC }%)7

we obtain a commutative diagram

Perf(R{*" )~ Ind Perfy 1) (R)

T ﬁ\\\q J

Perf(R) ————— Perf(R)g,

where we use the universal property of idempotent completion to produce the
dashed arrow, together with the essential surjectivity of the lower horizontal func-
tor up to idempotent completion. In order to conclude the proof, it suffices to
show that we have an inclusion Perf(]%?er) C Perf(R)g of full subcategories of

Ind Perfy(;)(R). This follows from the fact that Perf (E?er) is compactly generated

27Recall that Ind(C) can be realized as the co-category of limit-preserving functors C°P — Sp.
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by the structure sheaf (or free module) O, which is contained in Perf(R)g by the
commuting diagram above. ([l

In the result below, we use the notion of weak proregularity, which was introduced
by Alonso—Jeremias—Lipman [ATJLLI7] and Schenzel [Sch03].

Definition B.3. Let R be a ring, and f € R an element. We denote by K (R, f)
the Koszul complex [R —'/ R], concentrated in degrees —1 and 0. For a tuple f =
(fos-- ., fn) we define the Koszul complex as K (R, f) = Qi K(R, fi). An ideal
I C R is said to be weakly proregular, if there exist generators (fo,. .., fn), such that
for all integers k, the inverse system of cohomology groups (Hk (K(R, (fE, ..., ffl))))z
is pro-zero, i.e. equivalent to the zero object in the category of pro-abelian groups.

Every ideal I in a Noetherian ring is weakly proregular. Moreover, the notion of
weak proregularity is evidently invariant under flat base change. Hence, if R is a
Noetherian k-algebra, and A is an arbitrary k-algebra, then the ideal 14 = I®, A C
R4 = R®y A is weakly proregular.

Proposition B.4. If I is weakly proregular in R (see Definition B.3), then }A%‘}CY =
R;. In particular, we see that, for a Noetherian k-algebra R, an ideal I, and an

——der —

arbitrary k-algebra A, we have (Ra);, = (Ra);,-

Proof. To prove this assertion we cite the main result of Porta—Shaul-Yekutieli
[PSY14, Thm. 4.2]. They prove that for every perfect generator M € Perfy (1) (A),

o~

the so-called double centralizer is equivalent to the classical formal completion A.
The double centralizer of M is defined as follows. First one introduces the Fi-
algebra B = Endg(M). The Ej-algebra Endg(M) is by definition the double cen-
tralizer of M.

We relate R$°" to the double centralizer by observing that by definition its
underlying F;-ring agrees with the endomorphism algebra of the image of R in

Perf(R)V/(T):

ﬁ?cr = EndPerf(R)

(R).

The map Perf(R) — Ind Perfy (1) (R) is given by sending a module N to the presheaf
Homg(—, N) on Perfy ) (R). Since M is a generator, we have Ind Perfy (;)(R) =
DMod(Endg(M)°P) = DMod(B°P). In particular, we see that the R-module R is
sent to Hompg(M, R) = MY € DMod(B)°P. Thus, we have

Endger (M) 22 End g (M).

The right hand side is by definition the double centralizer of M, and therefore,
by loc. cit. agrees with the classical completion R. In particular, since this is a
discrete E;-ring, this argument specifies the E-structure as well. ]

v

Since the Yoneda embedding of S is fully faithful, one obtains that S embeds
fully faithfully into the formal completion Cg.

Definition B.5. Let S C T C C be a chain of localizing subcategories of C. Then,
we denote by
(a) Tg C Cg the localizing subcategory given by the idempotent closure of the
essential image Im[T — Cg], and by
(b) T(s) the idempotent completion of the essential image Im[T — C/S].
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As dictated by geometric intuition, completion of C at S, followed by completion
at T, yields an oo-category equivalent to Cg. Similarly, the completion of X at
Z should be canonically equivalent to the completion of U at Z, if U is any open
subscheme containing Z. This is the content of the next lemma, see also [Efil0,
Thm. 4.1(iii)]:

Lemma B.6.

(a) Using the notation of Definition B.5, the natural map Cg = (C§)"F§ is an

equivalence.

(b) Let S, T be localizing subcategories of C such that for X € S andY € T we
have Homc(X,Y) 22 0. We denote by D the idempotent completion of C/S.
Then we have Dg = Cx.

Proof.

(a) By definition, the right hand side agrees with the essential image (up to

idempotent completion)

Im[Cg — IndTg]'® = Im[Im[C — IndS]** — Ind(Im[T — IndS]*)]*.

The latter is equivalent to the essential image (up to idempotent comple-
tion) Im[C — IndS]*®, which agrees with Cg by definition.

(b) At first we want to show that for X € S and an arbitrary object ¥ € C
we have that the natural morphism of spaces of morphisms Hom¢(X,Y) —
Homc,r(X,Y) is an equivalence. It suffices to show this for Homg,(c) (X, Y)
— Homyo(c/1)(X,Y) by virtue of Whitehead’s Lemma. This is a map of
abelian groups, and hence we need to verify surjectivity and injectivity. A
morphism X —f Y in C/T can be represented by a zigzag X — Y’ + Y,
with the right hand arrow having fibre F'in T. Since we have a distinguished
triangle

Homc (X, F) — Homc(X,Y’) — Homc(X,Y) — YHomc(X, F)
and Homc (X, F) 2 0, since F' € T, we see that Homc(X,Y) 2 Homc(X,Y”).
A similar argument can be used to show injectivity. This shows that we
have a commutative diagram of stable co-categories

C

L™

C/T —— IndS.
This implies that the essential images of the right-pointing functors agree,

and therefore shows Cg = (C/T)g.
g

Definition B.7. For a localizing subcategory S C C we denote by C B the idem-
potent completion of the localization Cg/S of Cg at S.
This localization should be imagined as the oo-category of perfect complexes

on a punctured formal neighbourhood. For X = Spec R an affine scheme, and
Z = V(I) a closed subset, let S = Perfz(X) C Perf(X). We have Perf(X) 5 =

()
Perf(Spec R$* \ V(1)).
See Efimov’s [Efil0, Thm. 6.1] for a global analogue of the following statement.
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Proposition B.8. Let X be an excellent reduced scheme. Then the flag of localizing
subcategories Sq, ..., S,_1 tnduced by

EX=7Z,D7Z,.1D D Zy,
where we define S; = Perf z,(X), satisfies

Perf(X)(m) = Perf(Fx ¢),

where F'x ¢ was defined in Definition 3.9, and we use the notation of Definition 7.5.
Assume moreover that X is an excellent, reduced k-scheme, where k is a field. For
every commutative k-algebra A we have a natural equivalence

Perf(XA)((ﬁ) — Perf(Ax ¢),

where Ax ¢ =2 Ax,(§,0x,).

The proof will be given in the next paragraph. Reasoning inductively, we will
break the lemma down into several steps of independent interest.

B.2.2. Higher local fields via categorical completion. Recall Proposition B.2: for R a
ring, and an ideal I C R, the functor Perf(R) — Perf;(R9) induces an equivalence

(64) Perf(R%Cr) — Perf(R) Perfy (1) (R)"

The following Lemma uses the notion of equiheighted ideals, and localization at
equiheighted ideals, which were discussed in Definition 3.6.

Lemma B.9. Let R be an excellent reduced k-algebra, and I C R a radical equi-
heighted ideal in R, of height 1. Moreover we assume that R is semi-local, i.e.
that the set of mazimal ideals Max(R) is finite (therefore defining a closed subset
of Spec R). Then, for every k-algebra A, we have a canonical equivalence of stable
oo-categories

Perfy (;,)(Spec((Ra)r)) = Perfy (r,)(Spec Ra \ Max(R)),

where (Ra)r) denotes the ring obtained by localizing R4 at the equiheighted ideal T
(see Definition 3.6). In particular, for the flag

SQ = PerfMax(R)A (RA) C Peer(IA)(RA)

the equivalence
Perf((Ra)1)p) = Perf(Ra) oy

using the notation of Definition 7.5.
Proof. Let U be the set of affine open subsets Spec Ry of Spec R, containing all
minimal prime ideals above I (i.e. containing the generic points of V(I) C Spec R).
Inclusion of subsets induces a partial ordering on &*®. By definition, the localization
(Ra)r can be expressed as the direct limit of rings (R4); & h_n}erMaff(RU)A. In
particular, we obtain

Perf((Ra)r) & lim Perf((Ry)a).
Ueuaff
The same statements are true with support condition, reading as

Perfy (r,)((Ra)1) = lim Perfy(r,)((Rv)a).
Uelfaif
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Let U be the set of all open subsets U C Spec R, containing all minimal prime
ideals above I. Since every open subset is a union of affine open subsets, U c U
is a final directed subset. Hence we have

lim Perfy(1,)((Ru)a) = lim Perfy 1) (Ua).
Ueut Uel

The following two observations conclude the proof:
(i) We have Spec R\ Max(R) € U.
(ii) All the transition maps in the inverse system computing @UGM Perfy (7,1(Ua)
are equivalences. In particular, we have

Perfy (;,)(Ua) = Perfy (;,)(Spec(Ra)1)
for each U € U.

Assertion (i) follows right from the definition of I: since the minimal prime ideals
above I are of height 1, they cannot contain any maximal ideals. Assertion (ii)
fails to hold if one does not impose the support condition. The latter ensures that,
for U CV eld with UNnV(I) =V NV(I), we have that restriction induces an
equivalence Perfy (;,)(Va) — Perfy (;,)(Ua). Since I has height 1 in R, the open
set V' (I)\ Max(R) consists precisely of the generic points of V(I). Therefore, every
U € U intersects V(I) in the same open subset V(I)\ Max(R). As we have just seen
this implies that all transition maps Perfy (;,)(Va) — Perfy (;,y(Ua) for U,V € U
are equivalences. The two assertions (i) and (ii) imply now that

Perfy (1,)(Spec(Ra)r) = Perf(Spec R4 \ Max(R)).

The second assertion of the Lemma is merely a reformulation, using the notation
introduced in Definition 7.5. O

Corollary B.10. Let R and A be a k-algebras, where R is assumed to be Noe-
therian. We denote by R4 the tensor product R ®y A. Let Iy C Iy C R be a
chain of equiheighted ideals, such that Iy induces an ideal of height 1 in R/I; (i.e.,
relative codimension is 1). Using the notation of Definition 7.5, we have a natural
equivalence

Perfy, 7., (Spec(@(lo))ﬂ) — Perf(Spec RA)(I/O\)[A]'

Proof. Using Lemma B.9 we obtain the vertical equivalence in the commutative
diagram of stable oco-categories below

Perf(Spec((ﬁZ)[O)fl)[h] = Perf(Spec RA)(/I\

J« / ]

Perf(Spec(Ra) 1,) (1) (1] -

According to Definition 7.5, the co-category in the bottom left corner agrees with
the localization

T

— der —~de .
(Perfv(ll)(SpecRAlo )/Perfv(jo)(SpecRAI0 ).

Hence, Proposition B.2 yields the diagonal functor

Perf(Spec éz\ﬁllo)(lo)[h] — Perf(Spec RA)(I/O\)[Il]'
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Choosing an inverse for the vertical functor (well-defined up to a contractible space
of choices), we obtain the required functor

Perf,, 7 (Spec(Ray,)7,) — Perf(Spec RA)(/I\O)[Il]'

O

Proof of Proposition B.8. We only give the proof of the second assertion, i.e. for X
a scheme over k. The first assertion is proven analogously. We may assume without
loss of generality that X is affine, since Zj is a finite union of closed points. Thus,
let R be a k-algebra, such that X = Spec R.

Recall from Definition 3.9 that Ax ¢ can be obtained by iteratively completing
and localizing R at a chain of equiheighted ideals Iy > I1 D --- D I,,_1, correspond-
ing to the closed subschemes Zy C -+ C Z,_1. We will use analogous notation for
the ring

Ax,g = (L [©] C)nRA
The asserted equivalence is a special case of the more general statement

(65) Perf(z,),((LoC)FRy) — Perf(X4) 5771y

which will be proven inductively. Equation (65) for & = 0 amounts to the definition
of S():

Perf(ZO)A (RA) = Perf(XA)[o] =So.
This will be the anchor point of our induction. We will prove that equation (65)
holds for k = m+1 if it holds for k¥ = m. Taking Ind-objects of both sides, and con-
sidering the (idempotent completion of the) essential image of Perf . ), (Ra) =
Perf(z,),...(Xa), we see that (up to idempotent completion)

Perf((Lo Q)™ Ra)gryp,,q = Im[Perf(z,,,,), (Ra) = IndPerf(z,,), (Lo )™ Ra),

here we use that for a stable co-category C endowed with a flag of localizing sub-

categories, the functor Cp;; — C(/o?)[z' ) is essentially surjective up to idempotent

completion. We have

Im[Perf(Xa)pm41) — Ind Perf(X4) , —= )] = Perf(Xa)

(0,m—1)[m] (0,;m—1)[m][m+1]’

by virtue of Definition B.1. Since we are completing perfect complexes on the affine
scheme Spec(L o C)™R4), Proposition B.2 gives rise to a canonical functor

Perf(C(L o C)™ Ra){m+1) — Perf((Lo C)mRA)[Tn\][mH > Perf(X4)——

] (0,m)[m+1)

which is an equivalence. Corollary B.10 yields an equivalence
Perf(Lo C(Lo C)™Ra) 1] = Perf(C(L o C)™ RA) (m)[m-+1]-

Pairing this with the functoriality of localizing at the m-th localizing subcategory,
we therefore obtain an equivalence

Perf((Lo C)™ " Ra) 1) — Perf(Ra)

©O.m)[m+1]’
of stable oco-categories. O

By similar techniques one proves the following;:

Theorem B.11. Let X be an excellent, reduced k-scheme of pure dimension n,
where k is a field, and A a k-algebra.
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(a) We denote by S; C Perf(X 4) the localizing subcategory given by the union
of the subcategories Perf 7, (X 4) with dim Z < j. Then we have
Perf(Ax (| X[, Ox )@ A) = Perf(XA)®~
(b) Let¢: X =2, DD Ziy1 D Zi—1 D -+ D Zp be an almost saturated flag
of equiheighted closed subschemes, satisfying dim Z; = j. Let Ty C |X|red
be the subset of reduced chains ng < m < --- < 0y, such that for j # i
we have that n; is a generic point of Z;. Then we have the equivalence
PeI‘f(AX (Tg, Ox)®kA) = Pel"f(XA)@.
Afterword B.12. Since the appearance of the preprint version of this paper on the
arXiv in 2014, things have not been at a standstill. Gorchinskiy and Osipov have
developed an alternative approach to a higher Contou-Carrere symbol in their series
of articles [GO15b], [GO15a]. Their methods are entirely different from ours. More-
over, Musicantov and Yom Din have independently derived a similar reciprocity law
[MYD17].
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