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Abstract In this paper, we propose Contextual Guided Segmentation (CGS) frame-
work for video instance segmentation in three passes. In the first pass, i.e. preview
segmentation, we propose Instance Re-Identification Flow to estimate main prop-
erties of each instance (i.e., human/non-human, rigid/deformable, known/unknown
category) by propagating its preview mask to other frames. In the second pass, i.e.
contextual segmentation, we introduce multiple contextual segmentation schemes.
For human instance, we develop skeleton-guided segmentation in a frame along with
object flow to correct and refine the result across frames. For non-human instance,
if the instance has a wide variation in appearance and belongs to known categories
(which can be inferred from the initial mask), we adopt instance segmentation. If
the non-human instance is nearly rigid, we train FCNs on synthesized images from
the first frame of a video sequence. In the final pass, i.e. guided segmentation, we
develop a novel fined-grained segmentation method on non-rectangular regions of
interest (ROIs). The natural-shaped ROI is generated by applying guided attention
from the neighbor frames of the current one to reduce the ambiguity in the segmen-
tation of different overlapping instances. Forward mask propagation is followed by
backward mask propagation to further restore missing instance fragments due to re-
appeared instances, fast motion, occlusion, or heavy deformation. Finally, instances
in each frame are merged based on their depth values, together with human and non-
human object interaction and rare instance priority. Experiments conducted on the
DAVIS Test-Challenge dataset demonstrate the effectiveness of our proposed frame-
work. We achieved the 3rd consistently in the DAVIS Challenges 2017-2019 with
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Fig. 1 Examples of results obtained by our proposed method. From left to right: the first video frame with
the ground-truth label followed by results of our method on next frames.

75.4%, 72.4%, and 78.4% in terms of global score, region similarity, and contour
accuracy, respectively.

Keywords Semi-supervised learning · Video object segmentation · Contextual
segmentation · Guided segmentation.

1 Introduction

Object segmentation is considered a labeling problem aiming to separate foreground
from background regions. Video instance segmentation, which is higher-level and
more challenging than object segmentation, aims to label each video frame pixel to
instances or the background region and then assign consistent IDs to these instances
over the video sequence. Object/instance segmentation in videos is beneficial in a
wide range of practical applications, i.e., autonomous vehicle [1], action recogni-
tion [21], video summarization [30], object tracking [66], scene understanding [70],
and video annotation [28].

This paper focuses on semi-supervised video instance segmentation [46], which
targets certain instances whose ground-truth mask for the first video frame is given.
DAVIS Challenge [46] promotes the development of this task. The benchmark dataset
of this challenge consists of many pitfalls such as rapid motion, distractors, smaller
objects, fine structures, occlusions, large deformations, complex object interactions,
and so on. Figure 1 shows some exemplary results of our proposed method on the
DAVIS Test-Challenge dataset [46].

To address the challenges of the given problem, tracking and re-identification
methods are adopted and jointly integrated into segmentation models to keep the con-
sistency of targeted instances over the entire video sequence [17,22,31,32]. However,
existing works usually fail to follow and segment targeted instances due to cannot
cover all various contexts in the video. We argue that context information is essential
for semantic segmentation to reduce ambiguous instances and obtain robust results.
Therefore, this work aims to leverage the context information to improve the per-
formance of video instance segmentation. Inspired by the idea of ”you should look
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twice” [42, 43] in the task of object detection, we propose a three-pass guided seg-
mentation framework, namely Contextual Guided Segmentation (CGS), to tackle the
problem of semi-supervised video instance segmentation. Our proposed method con-
sists of two key ideas as below.

First, we exploit variation in the video and propose various contextual segmenta-
tion strategies adapting to contexts, i.e. the category and visual properties of an in-
stance. To select the appropriate scheme, we propose a novel Instance Re-Identification
Flow (IRIF) to propagate the initial mask of an instance to other frames and ana-
lyze the visual properties of segmented regions. Multiple contextual segmentation
schemes are also introduced to adapt the contextual properties of each instance.
For human instances, we develop skeleton-guided segmentation. For non-human in-
stances, we train FCNs from our synthesized dataset for nearly-rigid instances with
similar background scenes. Instance segmentation detectors are utilized to handle de-
formable non-human instances in known categories. Results from our IRIF are treated
as the baseline scheme for other cases.

Second, to segment an instance in a region of interest (ROI), we propose novel
guided fined-grained segmentation based on attention for performance improvement.
We transform a regular rectangular ROI to a non-rectangular ROI by blending atten-
tion inferred from neighbor frames to eliminate complex background inside the ROI.
We also propose bi-directional propagation strategies to construct adaptive attention
for guided segmentation. Forward propagation strategy can correct missing segmen-
tation due to dense objects in a ROI. Meanwhile, a backward propagation strategy
can recover missing instances due to fast motion, occlusion, or heavy deformation.

The DAVIS Challenges 2017-2019 results indicate that our method is competitive
among the top-performing submissions. Our early results were preliminarily listed on
DAVIS 2017 Challenge [25], DAVIS 2018 Challenge [59], and DAVIS 2019 Chal-
lenge [58]. In this paper, we provide the full details of our proposed framework. Our
contributions are as follows.

– We propose Contextual Guided Segmentation (CGS) framework with three seg-
mentation passes to exploit various contexts in video instance segmentation. Our
proposed method achieved the 3rdth ranking consistently in the DAVIS Chal-
lenges 2017-2019.

– We propose Instance Re-Identification Flow (IRIF) to extract contextual proper-
ties of each instance by propagating its preview mask from the current frame to
coming frames.

– We introduce multiple contextual segmentation schemes to adapt the contextual
properties of each instance.

– We propose bi-directional propagation strategies for guided fined-grained seg-
mentation in non-rectangular ROIs. Our proposed guided segmentation outper-
forms the standard segmentation, which is mostly applied in rectangular ROIs.

– To blend instance masks into a unique result, we introduce a merging process
based on their depth values together with human and non-human object interac-
tion and rare instance priority.

– We construct Wonderland Data to increase the number of training data for one-
shot learning. Our proposed augmentation approach also can be utilized for dif-
ferent problems.
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The remainder of this paper is organized as follows. In Section 2, we briefly
review the related work. Next, our proposed methods are presented in Section 3.
Experimental results are then reported and discussed in Section 4. Finally, Section 5
concludes and paves the way for future work.

2 Related Work

2.1 One-Shot Learning

Data augmentation is essential to deal with one-shot learning [2], which aims to train
a deep network with only a given first video frame. Caelles et al. [2] introduced the
first simple data augmentation strategy such as random crop, random scale, vertical
flip, random changes in brightness, saturation, and contrast of the given first frame.
Khoreva et al. [22] later introduce Lucid Dreaming [22] to synthesize the foreground
changes by rigid and non-rigid transformation with a small extent, and synthesize the
background changes using affine deformations with limited appearance variations.
The given first frame with ground truth is augmented with Lucid Dreaming to gen-
erate more training data with different viewpoints, leading to much improvement of
training networks. Hence, augmented data by Lucid Dreaming, called Lucid Data, has
become common for one-shot learning. However, Lucid Data cannot deal with differ-
ent backgrounds caused by objects’ motion or camera view changes. Guo et al. [17]
changed the background of the first video frame by images with pure background
crawled randomly from the Internet by Google, namely Online Data. However, On-
line Data is unstable because of randomly crawled from the Internet without consid-
ering the content of the video. Meanwhile, our Wonderland Data is filtered out from
large-scale scene data to choose the most similar scenes with the video.

Khoreva et al. [22] trained appearance-based and motion-based models with Lu-
cid Data [22]. Shaban et al. [54] learned video segments by bootstrapping them from
temporally consistent object proposals, which are first spatially trained on Lucid
Data [22] and then incorporated a semi-Markov pixel-level motion model to form
spatio-temporal object proposals. Luiten et al. [38] first trained DeepLab3+ [8] on a
combination of standard datasets and then fine-tuned the network on Lucid Data [22]
of each video to form a strong network to segment instance inside ROI. Li et al. [31]
trained online re-identification network, which is the original Region Proposal Net-
work of Mask R-CNN, and a recurrent mask propagation network on Lucid Data [22].
Xu [71] proposed a spatio-temporal CNN in which the spatial segmentation branch
is fine-tuned online on Lucid Data of each sequence while the temporal coherence
branch is trained offline on the entire dataset. Models are not only fine-tuned offline
on Lucid Data [22] of the first frame but also can be updated online while processing
the video [62]. Mask R-CNN is fine-tuned on Lucid Data [74] or Online Data [17] to
adapt proposals to the video.
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2.2 Temporal Connection Mining

This approach aims to perform instance tracking, propagation, and re-identification,
where each instance is detected and re-identified through frames [32]. Li et al. [32]
iteratively propagated masks via flow warping and re-identified instances via adap-
tive matching to retrieve missing ones. Luiten et al. [38] first segmented multiple
object proposals in the entire video and then selected and linked these proposals
over time using a re-identification feature embedding vector for each proposal. Re-
identification feature embedding vectors are computed using a triplet-loss based re-
identification embedding network. Li et al. [31] jointed re-identification and attention-
based recurrent temporal propagation into a unified framework to retrieve missing
objects despite their large appearance changes. Guo et al. [17] first extracted possible
mask proposals in each frame and then joined tracking and re-identification to filter
and rank proposals to merge the highest confident proposals. Xu et al. [74] adapted
a multiple hypotheses tracking method to build up a bounding box proposal tracking
tree for different objects, then propagate masks, and finally merged mask proposals
from the tracking tree. Wang et al. [66] used fully convolutional Siamese trackers to
produce class-agnostic binary segmentation masks of the target objects. Voigtlaen-
der et al. [61] used a semantic pixel-wise embedding together with a global and a
local matching mechanism to transfer information from the first frame and from the
previous frame of the video to the current frame, which is used as internal guid-
ance for segmentation. Jonathon et al. [39] used a Siamese architecture to detect and
track multiple objects and then performed segmentation inside the detected bounding
boxes. Tran et al. [57] propagated masks with reference to multiple extra samples
through a memory reference pool.

2.3 End-to-End Temporal Learning

This approach directly learns temporal information in a video through deep learning
architectures such as LSTM, guided-attention, or memory networks. Some methods
combine feature maps from different video frames by correlation matching [61] or
non-local matching [44]. Guo et al. [16] integrated STM [44] into DeepLabv3+ [8]
to concatenate low-level features in mask decoder. Andreas et al. [48] implemented a
memory network to add semantic information about the target object from a previous
frame to the refinement stage, complementing the predictions provided by the target
appearance model. Zhang et al. [78] developed a spatial constraint module that takes
the previous prediction to generate a spatial prior for the current frame, helping to
disambiguate appearance confusion and eliminate false predictions. Fiaz et al. [15]
introduced a guided feature learning without model update algorithm for directional
deep appearance learning. Liu et al. [35] integrated multilevel backbone into memory
network to generate higher spatial resolution features. Le et al. [64] leveraged existing
memory-based models and enhanced their capability by adding pre-processing and
post-processing steps. Xie et al. [69] integrated depth maps from a video sequence
into STM [44] to alleviate the ambiguity of objects with similar appearances. Seong
et al. [53] developed a kernelized memory network and used the Hide-and-Seek strat-



6 Trung-Nghia Le et al.

Video Frame Multi-Instance MaskInstance Masks

Contextual 
Segmentation

Preview 
Segmentation

Guided 
Segmentation

Instance 
Merging

Fig. 2 Overview of our Contextual Guided Segmentation (CGS) framework.

egy training to handle occlusions and segment boundary extraction. Yang et al. [77]
combined collaborative foreground-background integration with multi-scale match-
ing to be robust to various object scales.

3 Proposed Method

3.1 Overview

Figure 2 illustrates CGS with three passes: preview segmentation for context evalua-
tion, contextual segmentation, guided segmentation based on propagation. In partic-
ular, In the first pass, we propose Instance Re-Identification Flow (IRIF) to generate
the preview mask sequence and extract different contextual properties from each in-
stance. In the second pass, we introduce multiple segmentation schemes correspond-
ing to extracted properties. In the third pass, we develop fined-grained segmentation
based on guided propagation. We remark that each instance is processed indepen-
dently over frames of a video sequence. Finally, instance masks are then blended
with reference to depth information, human and non-human instance interaction, and
rare instance priority.

3.2 Preview Segmentation

Figure 3 illustrates the flow chart of Instance Re-Identification Flow (IRIF) for pre-
view segmentation. The segmentation performed on the current frame is based on the
history information of the previous frames. The segmentation result of the current
frame is further fed to the process of the coming frame.

We remark that in this component, we consider two types of instance, i.e. human
and non-human, to treat each instance in different ways. Given the first frame with its
ground truth label, we extract the bounding box for each instance and then perform
human/non-human classification for all instances using Mask R-CNN [18].

3.2.1 Instance Localization and Tracking

For each video frame, we localize and track instances in a re-identification manner.
Note that we expand the bounding box to 10% to well capture the whole area of
the object instances. For human objects, we employ person search [68] by detecting
person by using Faster R-CNN and then extracting person re-identification feature for
all detected person region. On the other hand, DeepFlow [67] and Deformable Part
Models (DPM) [14] are utilized to detect and track non-human objects.
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Fig. 3 The flowchart of Instance Re-Identification Flow (IRIF) component. The segmentation performed
on the current frame is based on the history information of the previous frames. The segmentation result
of the current frame is further fed to the process of the coming frame.

3.2.2 Adaptive Online Learning for Instance Segmentation

For each instance, to identify each pixel as foreground (instance) or background, we
utilize multiple binary SVM classifiers [6] which is learned from the appearance of
the previous n frames with sampling step size δ, where n and δ are set as 8 and 2,
respectively. Note that our multiple binary SVM classifiers are implemented for his-
tory reference with several unary instances, e.g., saliency [36], CNN features [23],
location of the bounding box, and color, to segment each instance within its tracked
bounding box in each frame. We only update the SVM model if the size of one in-
stance significantly changes. We then utilize GrabCut [49] for each instance to sepa-
rate it from the background. After this step, each pixel is assigned with the instance
ID.

Specifically for human instance, in case the instance is missing and re-appears in
the next couple of frames, we adopt the state-of-the-art image parser, Pyramid Scene
Parsing (PSPNet) [81] with the pre-trained model on PASCAL VOC dataset [13]. The
re-identification results from PSPNet are blended into our segmentation outcomes.

3.2.3 Contextual Property Extraction

This component aims to determine the context of an instance so that we can apply an
appropriate segmentation scheme for that instance. The context can be any observable
properties that may affect the strategy to extract the mask of an instance in frames
efficiently. In this work, we consider the following three attributes of an instance as
its context: human or non-human, known or unknown category, rigid or deformable.

The category of an instance, such as person, car, dog, etc., can be directly inferred
from its initial mask using pre-trained Mask R-CNN [18] on the MS-COCO dataset.

To evaluate if an instance is rigid or deformable, we analyze the preview sequence
of instance masks in the first nPreview frames. If there exists a homography matrix
to transform the instance from the first frame to another frame for most frames in the
first nPreview frames, we consider the instance to be rigid.
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Fig. 4 Skeleton-guided segmentation for unusual pose.

3.3 Contextual Segmentation

Each instance is segmented in different appropriate ways in this contextual seg-
mentation, adapting to its extracted contextual properties (i.e., human/non-human,
rigid/deformable, known/unknown category).

3.3.1 Human Instance Segmentation

We employ Mask R-CNN [18], pre-trained on the MS-COCO dataset [34], to extract
human segments. However, the results of Mask R-CNN may be affected by occlusion
or unusual human pose.

To overcome this issue, we develop skeleton-guided segmentation. We use the
skeletons from OpenPose [4] for reference to control and refine human instance seg-
mentation. For a human instance with an unusual pose that Mask R-CNN cannot
recognize, we dilate the skeleton to obtain a skeleton-guided region, i.e. an image
with only the region containing the complete human instance. We then apply Mask
R-CNN on a skeleton-guided region. By eliminating unrelated content, Mask R-CNN
has a higher chance to extract human instance segment correctly (see Fig. 4). To pre-
serve the inter-frame mask consistency, we use object flow [60] to correct and refine
the result across frames.

3.3.2 Rigid Non-Human Instance Segmentation

For this type of instance, our objective is to accurately extract such instances from
different backgrounds in the same scene category with the initial frame. Our method
to process each instance is as follows. First, we synthesize images from the first frame
of a video sequence, resulting in Wonderland Data. Second, to segment instances
inside bounding boxes, we train DeepLab2 [7] and OSVOS [2] on our synthesized
Wonderland Data.

Wonderland Data Generation: Differently from existing work, we exploit var-
ious contextual properties from instances. After that, multiple segmentation schemes
are performed for each instance, adapting to its extracted contextual properties. In-
spire by Lucid Data [22], we introduce new augmented data, namely Wonderland
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Fig. 5 Wonderland Data generation.

Original Video Frame Wonderland DataLucid Data

Fig. 6 Augmented data generated by different methods. From left to right: the original video frames with
overlaid ground-truth, followed by corresponding Lucid Data [22] and our proposed Wonderland Data in
this order.

Data. To generate visual variations of the initial mask, we apply both affine and non-
rigid deformations, together with illumination changes, on the mask. We also replace
the background with most similar scenes filtered out from a large-scale Places365
dataset [82] to preserve the semantics of the image. In this way, we can increase
more training samples than Lucid Data (10,000 images for each video, in comparing
with 2,500 images of Lucid Data) to deal with one-shot learning.

Figure 5 illustrates our proposed Wonderland Data generation. In this work, from
a pair of an input image and a mask, we generate 10, 000 different pairs of synthesized
images and masks. The Wonderland Data is published on our website1. We collect
scene photos from the training set of the Places365 dataset [82], which has about
8 million images divided into 365 scene categories. We manually discard artificial
scenes, use only 22 natural scene categories with 592k images. For each image, we
extract a feature at the last layer of DenseNet-161 [20], which was pre-trained on the
Places365 dataset [82]. This feature is used to build a hierarchical k-mean search for

1https://sites.google.com/view/ltnghia/research/vos

https://sites.google.com/view/ltnghia/research/vos
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Fig. 7 The flowchart of our network training process.

each category independently. We assume that each node has M images, and a leaf
node has maximum L images. To cluster images at a node, we propose to use K-
mean algorithm with K = min(M\L, T ). In this work, we empirically set L = 200
and T = 200 to speed up clustering.

We classify an input image into the corresponding category, using the pre-trained
DenseNet-161 on the Places365 challenge dataset. We also extract a channel feature
at the last layer of the same network. After that, we search leaf nodes by comparing
the Euclidean distance between the feature of an input image and the center of clus-
ters. To search N images, we randomly choose 80% number of images of the nearest
leaf node and 70%, 60%, 50%, etc. number of images of next leaf nodes, respectively.

We also extract the object mask from the input image, then transform the object
and searched scenes independently, similarly to [22]. In more detail, we use affine
transformation (e.g., translation, rotation, and scale) and non-rigid deformations, to-
gether with illumination changes. Figure 6 shows examples of Lucid Data and our
Wonderland Data.

Network Training: Figure 7 our training process, including domain-based train-
ing and object-based training. In domain-based training, we fine-tune pre-trained
networks (i.e. DeepLab2 [7] pre-trained on COCO-Stuff dataset [3] and OSVOS [2]
pre-trained on ImageNet dataset [50]) on the DAVIS training data for domain trans-
formation. In object-based training: we fine-tune networks on the ground-truth mask
of each instance of each video. We remark that we use only the first frame of videos
and apply the proposed Wonderland Data generation method for these images.

3.3.3 Deformable Non-Human Instance Segmentation

For this instance type, we categorize instances into two groups, namely, known and
unknown categories. For the known categories, i.e., already listed in MS-COCO
dataset [34], we simply adopt Mask R-CNN to retrieve the instance segments. We
directly obtain the preview results from our IRIF component for the unknown cate-
gories since it can handle arbitrary object categories.

3.4 Guided Segmentation

Traditional Fully Convolutional Networks (FCNs) consider the entire rectangular re-
gion of interest (ROI) as the input to segment objects inside the ROI. This can lead
to incorrect boundary segmentation due to the complex background and concave hull



Title Suppressed Due to Excessive Length 11

a) Juggle clip a) Demolition clip

Fig. 8 Visualization of guided non-rectangular ROI.
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Fig. 9 Visualization of forward and backward propagation.

of the object. To overcome this limitation, we aim to transform a rectangular ROI
to a non-rectangular ROI across the object boundary to eliminate the complex back-
ground inside the ROI (see Fig. 8). In particular, we utilize referral information from
extra frames to identify the shape of the instance of interest inside the ROI of the
current frame. We propose to apply guided attention to construct the non-rectangular
ROI and then perform fine-grained segmentation on this guided non-rectangular ROI.

3.4.1 Bi-directional Propagation

In particular, we propose bi-directional strategies to construct adaptive attention for
guided segmentation. Particularly, initial segments from neighbor frames are used
as references for segmentation at the current frame. Attention is computed in two
strategies sequentially, i.e., forward propagation and back-propagation, in specific
ways adapting the context. Forward propagation strategy, where attention is refer-
enced from initial segments of previous frames, can correct excessed segmentation
due to dense objects in a ROI (cf. Fig. 9a). Meanwhile, the back-propagation strat-
egy, where attention is referenced from initial segments of next frames, can recover
missing instances due to fast motion, occlusion, or heavy deformation (size changing
from tiny to large or vice versa) (cf. Fig. 9b).

3.4.2 Guided Non-Rectangular ROI Construction

To construct a guided non-rectangular ROI, we expand the mask of the interest in-
stance at neighbor frames and then transfer and combine them at the current frame.
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This guarantees that the ROI can cover the entire interest instance. We do not apply
mask propagation to avoid inaccurate flow warping as well as reducing the complex-
ity of computation. Then, we create a smooth transition region (by applying a blurred
mask to remove background) for the guided ROI to avoid a clear border between the
ROI and background. It is essential to make the segmentation method focus on the
interest instance and avoid inaccurate segmentation due to a clear border. We remark
that the range of boundary expansion and transition smooth is computed based on
the intensity of movement of the instance. Both propagation strategies are performed
adaptively if initial segments of the interest instance at the current frame are much
different (in appearance or size) from those at neighbor frames or the instance re-
appears. On the other hand, we only refine the interest instance at the current frame
to save the computational cost.

3.4.3 Fine-grained Segmentation

We use Deep Grabcut [72] and Mask R-CNN [18] for fine-grained segmentation in
guided non-rectangular ROIs. Inspired by Luiten et.al. [38], we train DeepLab3+ [8]
based on Xception-65 [10] backbone on MS-COCO [34] and Mapillary [40] datasets
to enhance the network generalization. For Mask R-CNN, we directly use a pre-
trained model on MS-COCO [34] dataset.

3.5 Refinement and Merging

Through preliminary results, we observe that the initial segmentation is not smooth
enough. Therefore, we refine instance masks to improve segmentation quality, using
rare instance attention and boundary snapping.

3.5.1 Rare-Instance Attention Refinement

We further refine the results by considering the rare instances. We observe that rare
objects are shrunk due to larger objects. To identify rare object instances, we com-
pute each object instance mask percentage in terms of area (provided in the first
frame). Instances with a size smaller than 5% the total size of tracking objects are
considered rare ones. We assume that a smaller object tends to be small in the whole
video. Next, we recover rare object instances by transferring the results produced by
the foreground probability obtained from the binary-SVM classifier on each object
instance.

3.5.2 Boundary Snapping Refinement

We also adopt boundary snapping [2] to further refine object shapes. In particular, we
extract the saliency [36] and the contour [76] from the video frame. The salient pixels
close to the contour are snapped.
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3.5.3 Topological Order Estimation for Instance Merging

It is essential to determine the topology relationship (in terms of z-order) between
multiple instances to sequentially combine corresponding masks of different instances
into the final result. We here merge instances based on human and non-human in-
stance interaction, depth values, and rare instance priority heuristics in this order as
follows:

– Human and non-human instance interaction: We define interaction heuristics
as follow: transportation instances (such as horse, bike, motor, surfboard, and
skateboard, etc.) are the farthest from the camera; human instance have the middle
distance to the camera; and small non-human instances which can be held, bring,
touch, etc. are the nearest from the camera. Interacted small non-human instances
are localized at the human hand’s position using OpenPose [4].

– Depth values: We first estimate pixel-wise depth values of the video frame, using
DCNF-FCSP [37], and then take the average value for each instance.

– Rare instance priority: We notice that rare instances are always the nearest ones
from the camera.

4 Experimental Results

4.1 Dataset Benchmark and Metrics

We participated the DAVIS Challenges 2017-2019, Semi-Supervised Track2,3,4 and
evaluated our methods on the DAVIS Test-Challenge dataset. The dataset consists
of 150 sequences, totaling 10, 459 annotated frames and 376 instances. There are a
total of 30 video sequences for testing, and their ground truth not publicly available.
Submissions were made through the CodaLab site of the challenge5. This dataset
is challenging due to multiple object instances with more distractors, i.e., smaller
instances and fine structures, more occlusions, and fast motion.

For the evaluation metrics, per-instance measures are used as described in [45]:
Region Jaccard (J) and Boundary F measure (F). The overall measures are computed
as the mean between J and F, and both are averaged over all objects.

4.2 Results on DAVIS Challenges 2017-2019

4.2.1 DAVIS 2017 Challenge

Due to the time limit, we submitted the proposed IRIF component in the DAVIS 2017
Challenge and achieved 3rd place out of 22 team submissions in this challenge. As
shown in Table 1, our proposed IRIF achieves very promising results in the DAVIS

2https://davischallenge.org/challenge2017/index.html
3https://davischallenge.org/challenge2018/index.html
4https://davischallenge.org/challenge2019/index.html
5https://competitions.codalab.org/competitions/21650

https://davischallenge.org/challenge2017/index.html
https://davischallenge.org/challenge2018/index.html
https://davischallenge.org/challenge2019/index.html
https://competitions.codalab.org/competitions/21650
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Table 1 Top global ranking results in the DAVIS Challenges 2017-2019. The best results are marked in
boldface. Our results are marked in blue. We note that the teams without references do not have publica-
tion.

Rank Method/Team Year Global G Region J Boundary F
Mean ⇑ Mean ⇑ Recall ⇑ Decay ⇓ Mean ⇑ Recall ⇑ Decay ⇓

1 OSS [65] 2019 76.7 72.8 81.5 18.9 80.7 87.5 21.3
2 BoLTVOS+ [39] 2019 76.2 72.9 81.7 16.3 79.4 86.7 19.5
3 CGS [58] 2019 75.4 72.4 81.7 11.0 78.4 87.6 12.9
4 STM [44] 2019 75.2 72.6 80.9 21.0 77.7 85.0 24.1
5 PremVOS [38] 2018 74.7 71.0 79.5 19.0 78.4 86.7 20.8
6 DyeNet [31] 2018 73.8 71.9 79.4 19.8 75.8 83.0 20.3
7 Theodoruszq 2019 73.1 70.1 77.3 24.8 76.1 84.0 28.3
8 Panday 2019 71.3 67.7 74.8 24.7 75.0 81.2 27.5
9 DLTA [47] 2019 70.6 68.5 78.1 20.3 72.8 84.2 24.0
10 VS-ReID [32] 2017 69.9 67.9 74.6 25.5 71.9 79.1 24.1
11 CAVOS [73] 2018 69.7 66.9 74.1 23.1 72.5 80.3 25.9
12 ODG [17] 2018 69.5 67.5 77.0 15.0 71.5 82.2 18.5
13 PVOS [16] 2019 69.2 66.0 73.4 28.5 72.3 80.4 31.1
14 LucidTracker [22] 2017 67.8 65.1 72.5 27.7 70.6 79.8 30.2
15 Second Pass [59] 2018 66.3 64.1 75.0 11.7 68.6 80.7 13.5
16 First Pass [26] 2017 63.8 61.5 68.6 17.1 66.2 79.0 17.6
17 SPT [54] 2017 61.5 59.8 71.0 21.9 74.6 74.6 23.7
18 FAVOS [33] 2018 60.6 58.4 65.6 26.2 62.9 71.0 29.7
19 MPN [56] 2018 60.1 57.7 64.9 27.2 62.4 71.7 28.1
20 PALC [63] 2018 58.9 56.7 63.1 30.7 61.1 67.6 33.1
21 OnAVOS [62] 2017 57.7 54.8 60.8 60.5 67.2 67.2 34.7
22 SPN [9] 2017 56.9 54.8 60.7 34.4 59.1 66.7 36.1
23 HE-PSPNet [80] 2017 56.9 53.6 59.5 25.3 60.2 67.9 27.6
24 OSVOS-IOFT [41] 2017 55.8 53.8 60.1 37.7 57.8 62.1 42.9
25 TOP [55] 2017 54.8 51.6 56.3 26.8 57.9 64.8 28.8
26 Froma 2017 53.9 50.9 54.9 32.5 57.1 66.2 33.7

Fig. 10 Visualization results on the DAVIS Test-Challenge dataset. From top to bottom: the first video
frame with the ground-truth label followed by results of our proposed methods in preview segmenta-
tion [26], contextual segmentation [59], and guided segmentation [58]. The ground-truth of the certain
video frame is not publicly available. Our CGS results significantly track and segment the instances of
interest as annotated in the first frame.

2017 Challenge, namely, 0.615, 0.662, and 0.638 in terms of region similarity (Jac-
card index), contour accuracy (F-measure), and global score, respectively. Our results
highly indicate that our method is competitive among the state-of-the-art methods in
this dataset. Our method maintains the performance as frames evolve, as seen via the
best performance in terms of J decay and F decay among the leading submissions in
2017.
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Table 2 The performance of different components in our method on the DAVIS Test-Challenge dataset.
PS, CS, and GS stand for preview segmentation, contextual segmentation, and guided segmentation, re-
spectively.

Settings Global Score ⇑ Region J ⇑ Boundary F ⇑
PS CS GS
✓ 63.8 61.5 66.2
✓ ✓ 66.3 64.1 68.6
✓ ✓ ✓ 75.4 72.4 78.4

4.2.2 DAVIS 2018 Challenge

We also had another submission of CIS framework to the DAVIS 2018 Challenge
and achieved 6th place out of 41 team submissions in this challenge. Table 1 shows
that our CIS achieves promising results, namely, 64.1%, 68.6%, and 66.3% in terms
of region similarity (Jaccard index), contour accuracy (F-measure), and global score,
respectively. Our method also maintains the best stable performance in terms of J
decay and F decay among the leading submissions in 2018.

4.2.3 DAVIS 2019 Challenge

As shown in Table 1, we obtained very competitive results. Our proposed CGS achieved
0.724, 0.784, and 0.754 in terms of region similarity (J), contour accuracy (F), and
global score, respectively. Our method achieved the best performance in Decay and
Recall of all metrics consistently. Furthermore, we note that our CGS is in top 3 over
4 teams achieving 0.75 in terms of global score in all three years.

4.2.4 Ablation Study

Table 2 shows the results of our proposed framework with different settings. Our
proposed CGS (using all three passes) outperforms using only two passes [59] or
a pass [26]. This highlights the significant contribution of the second pass and the
third pass, which are the multiple contextual segmentation schemes, and guided in-
stance segmentation, respectively. Particularly, contextual segmentation can improve
the performance up to 2.5%. Meanwhile, guided segmentation improves contextual
segmentation up to 9.1% in the global score.

Figure 10 visualizes segmentation results. From top row to bottom row, we can
observe the first video frame and a triple of processed video frames of our proposed
methods in preview segmentation [26], contextual segmentation [59], and guided seg-
mentation [58]. Our final CGS results surpass the performance of others and success-
fully track and segment the key instances. Our framework can even handle camou-
flaged instances, small instances, and occluded instances.

5 Conclusion

In this paper, we propose the novel CGS framework for semi-supervised instance
segmentation in videos with three segmentation passes. In the first pass, we develop
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the novel IRIF for preview instance segmentation and extract contextual information.
In the second pass, we introduce multiple contextual segmentation schemes to deal
with different instance types, such as human/non-human rigid/non-rigid instances in
known/unknown object categories. In the final pass, we propose a novel guided fined-
grained segmentation based on attention to eliminate complex background inside the
region of interest for performance improvement.

Our proposed methods achieve competitive results among the leading submis-
sions in the DAVIS Challenges consistently, i.e. 3rd place, 6th place, and 3rd place
in 2017, 2018, and 2019, respectively. Our full framework CGS is in the top 3 over
4 teams achieving 0.75 in terms of global score in all three years. Our method also
maintains the best stable and recall performance among the leading submissions.

In the future, we plan to consider modeling the semantic relationship among ob-
ject instances in the segmentation process. We will also investigate Capsule-inspired [19,
51, 52, 79], and attention-inspired [5, 11, 12, 29] network architectures for better seg-
mentation performance. We also aim to extend our work to camouflage analysis [24,
27, 75] in the near future.
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