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New Bounds for State Transition Matrices

Frédéric Mazenc and Michael Malisoff -, Senior Member, IEEE

Absiract—We address the problem of constructing
matrix-valued interval observers for estimating state tran-
sition matrices for time-varying systems. We provide less
conservative estimators than those in recent literature. We
cover continuous- and discrete-time linear systems, under
Metzler or nonnegativity conditions on the coefficient matri-
ces. We show how to satisfy our Metzler conditions after
simple changes of coordinates. We illustrate our method
using a feedback stabilized underwater marine robotic
dynamics with unknown control gains.

Index Terms—Linear systems, estimation.

[. INTRODUCTION

ONTROL theory for time-varying systems is complicated

by the fact that it calls for replacing the matrix expo-
nential by fundamental (i.e., state transition) matrices that are
usually not available in explicit closed form. This problem is
made even more difficult for time-varying linear systems that
contain time-varying uncertainty in their coefficient matrices.
This challenge arises even if the system is time invariant, e.g.,
for LTI systems ¥ = Ax + Bu with globally asymptotically
stabilizing feedback controls # = Kx for constant matri-
ces A, B, and K. This is because implementations naturally
lead to uncertain controls gains, so for piecewise continuous
bounded functions g, the control acting on the system will
be u = (K + ék(f))x, which produces

= (Ad + Ag(D))x (1)

with Aqg = A+ BK and Ag = Bdg. Since Ak is unknown, the
exponential representation x(f) = eAcl"x(O) for solutions of the
unperturbed system x = A.x does not apply to (1). Instead, a
natural approach to addressing this problem is to use bounds
on Ag to estimate solutions of (1).

This motivated [9] and [10], which derived matrix-valued
interval observers for fundamental matrices of time-varying
linear systems with unknown coefficient matrices, and used
the observers in feedback control and observer designs. More
precisely, for matrix-valued functions M : [0, +00) — R™*"
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and A : [0, +00) — R™" whose entries are bounded and
piecewise continuous and such that M(f) is Metzler and 0 <
A(f) < A hold entrywise for all f > 0 for a known matrix
A, [10] proved that the state transition matrix ®p_a of

X(1) = [M(1) — A@®IX () (2

is such that

(3

Dy 5(t,5) < Py_at,s) < By x(t,5)
for all s > 0 and f = s, where

@y _x(t,5) — Dy x(t, )
2

Dy x(t,5) + Dy, w(1,5)
) ;

see our definitions and notation below.

Many systems can be transformed into the form (2) after
a change of variables; see [10, Remark 2]. For instance, if
A in (1) is Metzler, and if each entry Ag;; of the matrix
Ag = [Ag;] is known to be bounded by some constant A,; >
0, then we obtain (2) with the choices M = Ay + A4 and
A(f) = Ay — Ag(t), where A, is the constant matrix [A;]
for all i and j. The Metzler requirement on A can be met
by a change of coordinates that transforms A, into its Jordan
canonical form when all of its eigenvalues are real.

This motivates the important question of whether tighter
bounds than (3) be determined. Its interest comes from the
fact that the tighter the bounds are, the better the control laws
or observers or stability analyses are which use them. In many
cases, tighter bounds of this type can indeed by found. To
understand why, let us consider the special case of (2) where
M(t) — A is Metzler for all ¢ > 0. Then

Dy x(t,5) = Py(t,5) +

and @y, x(1,5) =

(C))

(&)

when t = s > 0; this monotonicity property follows, e.g.,
by the proof of [6, Lemma 2], with its matrix exponentials
replaced by transition matrices. Since ®p_a (f, 5) = Oy (2, 5)
when A =0 and ®py_a(f, 5) = @y, x(f,5) when A = A, (5)
are the best possible bounds for ®p_a(f, 5). They are tighter
than the bounds in (3) when ®p(f,s5) < %(dDMJrK(r, s) +
®,, %(t,s)); see Section II-C below for an illustration where
(5) provides tighter bounds than (3).

This motivates this letter. We revisit [9] and [10] by provid-
ing two results. First, in Section II, and in both continuous-
and discrete-time cases, we obtain tighter bounds than those
of [9] and [10], by decomposing the disturbances A in (2)
into two parts A; and Aj such that M(f) + Aq(f) is Metzler
for all £ = 0 and A = A — Aj. Second, in Section III, we
present a family of matrices that are similar to full Metzler
matrices, making it possible to obtain bounds of the type (5)

Dy x(1,5) < Py _a(t,5) < Dyt s)
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when ‘A is sufficiently small. This follows from the fact that if
a matrix M is full Metzler, then M — A is Metzler when A is
sufficiently small. This result completes [8], whose conditions
ensure that a matrix of dimension 3 is similar to a full Metzler
matrix. We illustrate this benefit in Section IV, using a marine
robotic dynamics that is perturbed by uncertain control gains,
where we find novel bounds for the transition matrix of the
perturbed coefficient matrix.

The notation will be simplified when no confusion could
arise given the context, and all matrices in this letter are
assumed to have only real entries. We set Z>g = {0, 1, ...}
and N = Z-0\{0}. We use [ to denote the identity matrix,
0 to denote the zero matrix, and 1 to denote the matrix
whose entries are all 1’s, for any dimensions. A square
matrix is called Metzler provided its off-diagonal entries are
all nonnegative. A matrix is called nonpositive (resp., posi-
tive) provided all its entries are nonpositive (resp., positive).
A square matrix is called full Metzler provided all its off-
diagonal entries are positive. For vectors Vi = (vy g --- vl‘n)T
and Vo = (v21 --- Ug‘n)T, we write Vi < V; provided that
viji < vp; fori = 1,...,n; and Vi < V, provided for
v <w;fori=1,...,n. We use analogous componentwise
inequalities for matrices.

Square matrices My and M> of the same size are called
similar provided there is an invertible matrix P so that M; =
P~'M,P.

For any matrix-valued function F : [0, +00) — R™"
whose entries are locally bounded and piecewise continuous,
the fundamental (or state transition) matrix solution ®r is
defined to be the unique matrix-valued function satisfying

8:%0‘, to) = F(OPr(t, to), Pr(to,fo) =1 (6)
for all #p > 0 and f > fp. Note for later use that this uniqueness
property gives ®@prp-1 = R®xR~! for all invertible n x n
matrices R [10].

Il. BOUNDS FOR FUNDAMENTAL MATRICES

We derive our bounds for fundamental matrices of both
continuous- and discrete-time systems, and we illustrate how
they can produce tighter bounds than those in the literature.

A. Continuous-Time system
Let us consider the system
x(t) = [M(1) — AD)x() )

where M : [0, 400) — R"™" and A : [0, +00) — R™" are
locally bounded and piecewise continuous functions. Assume
the following (but see Remark 1 for extensions where the signs
of the additive uncertainties on M have no restrictions).
Assumption 1: The matrix M(f) is Metzler for all ¢ > 0.
Assumption 2: There is a known matrix A > 0 such that

0<A( <A (8)

for all t = 0.

We let m;; denote the entry of M in its ith row and jth
column for all i and j. Similarly, §; ; (resp. 8i j) is the ij entry
of A (resp. Z). We define the function A| = [5,-1 J] by:

8ij(n), ifi=jorif
810 = mi(t) —3;; > 0 ©
0, otherwise

We also define the function A (f) = A(t) — A (). Let A=
[3};1 be defined by

8, ifi=jorif
31(1) = mii(t) —8;; > 0 (10)
0, otherwise

and A is defined by A; = A — Aj. Our first theorem is:
Theorem 1: Let Assumptions 1-2 be satisfied. Then, for all
fp = 0 and ¢ > fy, the inequalities

(DM—KZ (t, fo) — (DM—I—EZ (t, to)

®y_x, (1, 10) +

2
< Ou_alt,ip) < 2HEE0) er Qs & 10) )
are satisfied.
Proof: Let us introduce the matrix
_ | M® = A1) Ax(®)
Q) = [Az(f) M) — Al(r)]’ (12)

which is Metzler for all t = 0, because M (f) — A (f) is Metzler
and A>(f) = 0 for all f = 0. Also, with the choices

S _ [ MO A2
Q) = I:Kz M(r)] and
M@y —-Ay 0
Qo = [ o M@ - ] (13)
the inequalities
Q1 < 2@ =20 (14)
hold for all £ > 0. Also, using the choice
I 1
= [7;5 ;75], (15)
ARG
we have
pl=pl (16)
Also, one can readily check that
uQOpu!
_[M@®) - 210 - 220 0 a7
—10 M) — Ar() + A2(D)
and
= _1_[M@®-A; 0
pQOp = [0 M(1) +Zz] (1)

hold for all ¢ = 0. From (14), (17) and (18), we deduce that
Q@

_1| M) — Ai() — Aax() O

=w [0 M) — A1) + Az(r)]“
[ M@®—-A, 0

SH [0 M) +Kg]‘“' (1%

Since (1), Q (1) and Q(f) are Metzler, the reasoning that gave
(5) gives
Do(t, fn)

< 1| Pu-a(tto) O
=K [0 Dpr_ar 44, 10) |H
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@, = (1) 0O
—1 M—ﬂz » M)
< 20
=p [o Dy, (8, ro)]*”’ 0)
for all #p = 0 and ¢ = 1y, where
&, < (tt) O
Dq(t tg) = | M4 21
for all > tp. These equalities are equivalent to
Dy—a+PM—A+A, Dyr—n1 484, —DPu—a
Qg < ¢M—a|+§2—¢M—A d’M—a+‘§M—a|+aZ
2 2
¢M—EZ+QM+KZ ¢M+Eg_®M—Kg
(22)

=<
= | OmsE,—%u-%,

)
Py, +PuiE,
) )

Comparing the upper left and upper right blocks in (22) gives

Dpr_a(t, o) + Py_a44,(t, fo)
@)z, (t.10) < SR

- Py 7, 10) + Py 5, (1)
- 2
0> — Dpr_A 40,1, 102) — Op_alt, o)
- @y, (1 10) — Py %, (¢, 10)
- 2
for all f > #p. Adding these inequalities yields (11). |
Remark 1: The nonnegativeness of A in Assumption 2 is
not restrictive at all. Indeed, if we know constant matrices
As; < 0 and A; = 0 such that A; < A(f) < A; for all
t > 0, then (7) can be rewritten as x(f) = [M,(f) — A, (H)1x()
with M, (f) = M(t) — A; and A.(f) = A() — A, and M, (t)
is Metzler (if M(f) is Metzler) and 0 < A,(f) < A with
AN = Aj— A, > 0 for all t. Hence, when the inequalities
As < A(f) < Ajhold for all £ > 0 and A; < 0, we can always
find a new decomposition for M — A as the difference between
a Metzler and a nonnegative matrix for which Assumptions 1-
2 hold. For simplicity, we use Assumption 2. Let us add that
any square matrix can be decomposed as the sum of a Metzler
matrix and a nonpositive matrix. The smaller the nonpositive
matrix is in the decomposition, the closer to the fundamen-
tal solutions are the bounds obtained from Theorem 1. Thus,
to obtain useful bounds, it may be worthwhile to first trans-
form a system through a time-varying change of coordinates
to get a new system for which, roughly speaking, a small
function A, (f) can be obtained. See [7] for such a change of
coordinates.

and (23)

(24)

B. Discrete-Time system
We consider the discrete-time system
X1 = (M — Ap)Xi

where My € R™*" and Ay € R™*" for k € Z>p. Assume:
Assumption 3: For all k € Z>, we have M; > 0.
Assumption 4: There is a matrix A > 0 such that for all
k € Z, the inequalities

0<Ar<A

(25)

(26)

are satisfied. _ _
We let & ;; (resp. §; ;) denote the entry of Ay (resp. A) in its
ith row and jth column for all i and j. We also use

Eijp=Mj10i — Aj_14) - - (Mip1 — Ajn))(M; — Ay) (27)

for all i € Zxo and j € N, where in (27) and some of what
follows, we place parentheses around the (i, j) (which are used
to indicate a range of indices that are used in the product of
matrices on the right side) to distinguish it from the subscripts
without parentheses that indicate entries in the ith row and jth
column of a matrix. We also define the entries ‘Sll,i J of the

matrix A} = [8 ; ] for all k € Z>o by

1 a‘k, s
5k,i‘j = IO i

where my ; j is the entry of My in row i and column j. Similarly,
we define A} = [EL,'J-] for all k € Zxq by

ifmk‘id—ﬁidzo

otherwise, (28)

L E,'J, ifmk,;‘j—guzo

Bkij = lO, otherwise. 29)
Similarly, we define the sequences
Ly v (30)

= —2 —2 —
Rijy = Mj—14i+ A1) Mip1 + A )M + A)), (31)
and
- — — —
Sy = Mj—14i — A1) - M — A DM — 4Ap). (32)

Our main result in the discrete-time case is then as follows.
Theorem 2: For all i € Z>p and all j € N, the inequalities

—_ —1.  Sap—Ri
(Mj-14i = Bj_yy) - i = B + T2
R+ S
<Egj < w (33)
are satisfied.
Proof: We use the matrices A? = Ay — A},
_[M—ap Af
Qr = A2 M- Al | (34)
r —
Q= | M A, 35)
L Ak Mk
r —1
Mi—Z&; 0
and 2, = — |. 36
=" o M, — A}c] ¢
Then Q; > 0, £, > 0, Q; > 0, and
Q<U<U (37)

hold for all k € Zxp.
We also use the matrices (15) and the j-fold products

KGj) = Qotyi - Q1R Bij) = Lot Qi1 s
(38)
Gijy = Mj—14i = By_y ) - (M; = &), (39)
and e = [g(m Og(xxﬂ ] “0)
Then we deduce from the inequalities (37) that
K(ij) = KGij) = ¥KGij) (1)

for all i € Zx¢ and j € N. One can also readily check that

-1 _ | Eip O :I
i = . (42)
(i.0) [0 Si.j)
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where S(; ; is the j-fold product of matrices

2
S = Mj1yi— A} 1+ A7 1)

- (Migr — Ay + AL DM — A + AD
43)
— B S;n O
and pic - I:O(M) E(' ‘):I (44)
ij

with R; j, and S(;j, defined respectively in (31) and (32) and
p defined in (15). Consequently, the inequalities

~1|Eqp O

<u 5% %] @)
0 R
are satisfied. They can be rewritten as:
E(iJ)‘E"S(iJ) —E(f,f};rswa
L =
Kip = —Ei jy+Si.jy Eij4+Sip
) p)
Rij+Sij —Sap+Rap
= i 2 N 46
= | BuptRip  Rap+Sap (46)
p) p)

Comparing the upper left and upper right blocks in (46) gives
! ~y < Eip +S6h

(Mj_14i—Aj_1) - (Mi —A;) < )
- Riij) + Siij) @n
2
and
G = —Eij) + Saj) 5 S — Rij) “8)
2 2
for all 7 and j. By adding (47)-(48), we obtain (33). |

C. Comparison

Through a simple example, we show that the bounds from
Theorem 1 can be better than those of the inequalities (3).

Consider the one dimensional system
X = [-1-AMX(®) (49)

where A is a piecewise continuous function that admits a
known constant A such that 0 < A(f) < A forall t = 0.
For this system, the inequalities (3) are
@, x(t,5) <P_1_a(t,5) <D_, x(t,5) (50)
for all £ = s > 0 with the following choices:
e(—1-B)(t—s) _ o(—148)(t—s)

2
1B (1—s) 4 o(—1-B)(t—s)

2

By the definitions of Aj and Aj, we have Aj(r) = A(f) and
Ay(f) = 0. Then Theorem 1 gives

@ x5 =+

D_, x(t,5) = (51)

e TR by 4D e (52)
for all 1 = 5. Then we observe that
(—1+K)m (—1=RA)m
e < E . (53)

2

for all m > 0 because this inequality is equivalent to

Am —Am
e e
Qi . i (54)
2
Similarly, for all m > 0, we have
(—1-Bym _ (—14+A) —
e+ Z . > £ " e (4Bm (55)

because (55) is also equivalent to (54). We conclude that the
bounds in (52) are tighter than those of (50).

Il. FuLL METZLER MATRICES

In this section, we exhibit important families of matrices
which are similar to full Metzler matrices. Starting from a
constant matrix M that is similar to full Metzler matrix F,
this will make it possible to use the methods of the previous
section to provide bounds on fundamental solutions for the
system X = (M + A(f))x after a change of coordinates when
the absolute values of the entries of the piecewise continuous
unknown matrix A are small enough. To see why, notice that if
F=0" 1MQ for some 1nvert1ble matrix Q, then the dynamics
of the new variable 7z = Q— xarez = (F+Q~ ]A(I)Q)z which
in conjunction with the methods from the previous section will
allow us to bound the state transition matrix for F+ Q_] ADHQ
when Q_IA(I)Q is treated as a (small) perturbation; see our
illustration below.

A. Block Triangular Matrices
This lemma is key to proving our first theorem of this
section, by providing full Metzler matrices F,, where Oy, wn,
denotes the n; x ny zero matrix for integers ny and ny:
Lemma 1: Consider the constant matrix

N = [d len] c R+ x(@+1)

ORX] P (56)

where d > 0, p = [p;;] € R™", p;;j > 0 for all i and j, and
d < pi1.1. Then, with the choices

— 2 e -
au[freg" E(pl'ljr'ézd) €P1,2 €P1,n
—d)  de’
é(}::_lez : é]:le" P12 Pi.n
£,
Fe=| 5 e P22 P2n | (57)
| H2 i Pa2 Prn
and
1 e 0
—€ 1 0
R=|0 01 (58)
0 0
for any constant € > 0, we have R, NR‘ = F,
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Proof: The result follows from a block multiplication of
matrices. In fact, using the fact that

- . -
1+e2  14e2 0 e 0
= = 0 ... 0
+e I+e
R-'=10 0 1 o 0 (59)
| 0 0 P
one can prove that the conclusion holds. |

Remark 2: One can easily extend Lemma 1 to matrices with
nonpositive diagonal entries. Indeed, if matrix M is similar to
a full Metzler matrix, then a matrix M + Al where X is any
real number is similar to a full Metzler matrix.

B. Diagonal Matrices With Distinct Diagonal Entries
Using Lemma 1, we prove the following, which we will

use below to estimate the effects of uncertainties on systems

whose coefficient matrices are not necessarily diagonal:
Theorem 3: Consider the diagonal matrix

D = diag{d,, ...,d;} e R™™ (60)

where d; > d;j when i < j. Then there are a matrix 8 € R™*™"
and a full Metzler matrix F such that 6D~ = F.

Proof: We can assume that d,,, > 0. Indeed, if this were not
satisfied, then we can first study D + vi, where v € R is such
that d,, + v > 0. We proceed by induction.

Induction Hypothesis: There is an invertible matrix L e
R such that Ldiag{dy, ..., d1})L~" = G, where G = [g;j] €
Rkxk jg positive. Moreover, g11 > dj41.

Step 1: The induction hypothesis is satisfied at the step 1
for k = 1, with L = 1, because d; > ds.

Step k + 1: Let us assume that the induction hypothesis is
satisfied at the step k for some choices of G and L. Then let

1 0
L, = [0 L] (61)
Then L,diag{dis1, - - .,d1}L]! = G,, where
d, 0
G, = [ 0"+‘ G]. (62)
By Lemma 1, the matrix G, is similar to
k+|]‘_|:281,l E(glilJEGZHI) €g12 €81k
— d)
E(gli:_jm) k+|l:_:£.€1,l 212 g1k
€
He=| 35 T 82,2 82,k
| T2 T 8k.2 gkk |
(63)

for any € > 0. The matrix H, is positive. Also, dy 7 < diy.
It follows that there is a constant € > 0 such that

di1 + €2gn
——— =>4 64
Tz G (64)
Hence, the induction assumption holds at step k + 1. |

Remark 3: The preceding theorem can be extended easily
to any diagonal matrix with distinct diagonal entries, because
then the matrix is similar to a matrix D = diag{dy, ..., d1}
such that d; > d; when i < j.

C. Diagonal Matrices With Repeated Diagonal Entries

Let us establish the following result.
Theorem 4: For any n € N, the matrix
D =diag{d),d>, ..., dy} € R™" (65)
for values di = d> is similar to the full Metzler matrix F =
dof + ﬁl;—‘ill where 1 cR"*" is the matrix whose entries are
all 1’'s. When n = 3 and d; < d>, D is not similar to a full
Metzler matrix.
Proof (First Part): Consider the case where d| >d,. Set

1 1 0 ... 0
1 -1 1
O=11 0o -1 o | eR™” (66)
: : : 1
_1 0 0 —1_

which is invertible (e.g., since any x € R” such that x' Q =0
would need to satisfy x; +...x, = 0 and x; — x;31 = 0 for

i=1,...,n—1 and so is x = 0). Then
1 0o ... 0
1 O 0
Qdiag{1,0,...,0} = (67)
R
and
1 O 0
1 O 0
10=n (68)
10 ... 0
It follows that Qdiag{1, O, ..., 00 = %1. Since
D = dyI + (d1 — d»)diag{1, 0, ...,0}, (69)
it now follows that QDQ~! = doI + d—';—dll. This concludes

the first part of the proof.

Second Part: We consider the case where n > 3 and
dy < d>.

The case d; = d3 is trivial because of (69). Therefore, let
us focus our attention to the case where d; < d>. Since D =
drl +(dr —d1)Dy with Dy = diag{—1, 0, ..., 0}, the matrix D
is similar to a full Metzler matrix if and only if D is similar
to a full Metzler matrix.

To show that D; is not similar to a full Metzler matrix,
let us proceed by contradiction. Suppose that there were an
invertible matrix R € R"™*" such that RDjR—! = F, where
F is full Metzler. Let ;o > 1 be a large enough constant such
that F + pf is positive. By the Perron—Frobenius theorem,
F + pI has a simple dominant eigenvalue. By similarity, the
characteristic polynomial of F + ul equals that of Dy + ul
and is given by (x — [ — 1D (x — ,u)”_], where n — 1 > 2.
In particular, p is the dominant eigenvalue and is not simple,
which yields a contradiction. This concludes the proof. |
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V. MARINE ROBOTIC APPLICATION

We revisit the dynamics from [12] for controlling the depth
and pitch degrees-of-freedom (or DOF) for an autonomous
underwater vehicle (or AUV), which was shown to be suit-
able for studying the BlueROV2 vehicle that is widely used
for environmental surveys such as the study of corals. As
in [12], we assume that the AUV is equipped with a Doppler
Velocity Logger (or DVL), which is used to estimate its veloc-
ity. For marine surveys close to the sea floor, the DVL can
experience bottom lock, making it impractical to ensure con-
sistent thrust controls or to continuously change the control
values. In [11] and [12], event-triggered controls (as defined,
e.g., in [3] and [4]) were designed for this model, to reduce
the numbers of time instances when the control values are
changed. Here, we study a complementary problem of incon-
sistent thrust controls by estimating the transition matrix of the
closed loop AUV dynamics when it is affected by unknown
control gains. We use Theorem 3.

Assuming that the vehicle is neutrally buoyant, we can
linearize the dynamics in the depth plane to obtain [12]

(m — X)) W(t) — (mxg + Z4)q(1)
— Zyw(t) — (mU + 29)q(t) = Zyuz
and (mx, + My, (0))Ww(t) + (I, — M)§(t)

— Myw(f) + (mxgU — Mg)q(t) — Ma8 = My upy  (70)
whose parameters were obtained experimentally in [13]. Its
states are the depth and pitch velocity x = [w, ¢]', and its
control inputs uz and ups are the force and moment required to
produce motion of the vehicle, respectively, where we assume
that the surge nominal velocity is U = 0.1m/s. With the con-
troller and parameters from [12] and [13], the dynamics (70)
become x(f) = Ax(t) + Bu with

—0.3027] and B — [—0.2063]_ 1)

4 [017742
= —1.4685 —0.7629

0.5394

Our strategy for studying this system can be summarized
in several steps. First, we choose Ky such that A 4 BK( has
distinct negative real eigenvalues. Hence, using Remark 3,
we can find a matrix P such that F = P(A + BKp)P! is
a full Metzler matrix, by first diagonalizing A + BKy to obtain
the required structure (60). Next, we consider the case where
the control u = (Kp + Sk (f))x is perturbed by a piecewise
continuous bounded uncertainty §x(f) (representing uncertain
control gains) having known bounds. Then the new state
variable 7 = Px satisfies z = (F + PAg()P~ 1)z, where
Ax = Bdg. One can find constant matrices ¥k and k¥ such
that k < PAg(H)P~! <%, so the tight bounds

e (F+x)(t—s) < (DF—l—P AgP-! (t,s) < o F+E)(t—s) (72)
hold for all s > 0 and ¢ > s, provided F + k is still Metzler
(again by the monotonicity condition from [6, Lemma 2]). This
uses the fullness of the Metzler condition on F in an essential
way, because if F is a full Metzler matrix, then F 4« will be
Metzler provided all entries x are small enough.

To see how this can be done in the special case where we use
the choice Ky = [0.59, 0.23] from [11], notice that this choice
of Ky produces a matrix A+ BKy having eigenvalues —1.6203
and —0.322801. Using a diagonalizing matrix Ro for A+ BKp,
we can now apply Theorem 3 to D = 1.71+Ro(A+BKo)R 1=

diag{d>, d1} = diag{0.0796973, 1.3772}, which by the proof
of Theorem 3 (applied with n = 2 and € = 1) satisfies

| di+d  dj—d 1 1
fa-a dde
Then we can satisfy the preceding requirements with P =
ORy and F = #DA~' — 1.71. This gives the requirement

min{k; 5, k5 1} > d—ziﬂ on the off-diagonal elements of «,
to ensure that F 4 k is still Metzler and to obtain (72).

V. CONCLUSION

We provided new matrix-valued interval observers for
transition matrices for continuous-time and discrete-time
time-varying systems. We illustrated how they can be less
conservative than those that were provided by [9] and [10].
A key ingredient was our novel transformations of diagonal-
ized matrices into full Metzler matrices. Our estimations are of
independent interest, owing to the need to find nonconservative
interval observers for fundamental matrices under unknown
control gains. Also, as noted in [9], transition matrix estima-
tions are useful for stabilization and observer design [1], [2],
[5]. We aim to study how our new transition matrix estimates
may improve on the convergence rates for the stabilization and
observer results from [9] and [10].
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