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Although models of word meanings based on distributional semantics have proved effective in predict-

ing human judgments of similarity among individual concepts, it is less clear whether or how such mod-

els might be extended to account for judgments of similarity among relations between concepts. Here

we combine an individual-differences approach with computational modeling to predict human judg-

ments of similarity among word pairs instantiating a variety of abstract semantic relations (e.g., contrast,

cause–effect, part–whole). A measure of cognitive capacity predicted individual differences in the abil-

ity to discriminate among distinct relations. The human pattern of relational similarity judgments, both

at the group level and for individual participants, was best predicted by a model that takes representa-

tions of word meanings based on distributional semantics as its inputs and uses them to learn an explicit

representation of relations. These findings indicate that although the meanings of abstract semantic rela-

tions are not directly coded in the meanings of individual words, important aspects of relational similar-

ity can be derived from distributional semantics.
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The ability to consider the relations between entities, rather than

solely the features of individual entities, is a central characteristic

of human thought. For example, words not only have individual

meanings, but also exhibit systematic relations to one another

(e.g., rich–poor exemplifies the relation contrast, joke–laughter

exemplifies the relation cause–effect). Human intuitions regarding

semantic relations exhibit several complexities. Much like object

categories (Rosch, 1975); examples of semantic relations form

typicality gradients rather than simply being “all or none” (Chaf-

fin, 1992; Chaffin & Herrmann, 1988a; Popov et al., 2020). For

example, hot–cold is considered a better example of the contrast

relation than is warm–cool (Jurgens et al., 2012). In addition, a

single pair of words can instantiate multiple relations to some

degree. For example, friend–enemy exemplifies the relation con-

trast, but also to some degree the relation similar (leading to a

potential blended concept, “frenemy”). These graded aspects of

human judgments, which suggest that the cognitive and neural rep-

resentations of semantic relations may be distributed in nature

(Chiang et al., 2020), pose problems for models of analogical rea-

soning that treat relations as atomistic links between symbols (For-

bus et al., 2017).

In order to develop models of how relations can be learned

and used to make inferences, it is highly desirable to start

from inputs that have been created by data-driven methods,

rather than simply using the intuitions of researchers. A prom-

ising approach for automatically creating representations of

word meanings (the natural building blocks for semantic rela-

tions) is distributional semantics, the general label for the use

of machine-learning models to derive semantic vectors for

words by analyzing their statistical distribution in very large

text corpora (Bhatia et al., 2019). In the present study we

explore models of relational similarity founded on inputs pro-

duced by one prominent model of distributional semantics,

Word2vec (Mikolov, Sutskever, et al., 2013). For any word,

Word2vec generates a vector representing its meaning in a

300-dimensional semantic space. Word2vec and similar models

of distributional semantics have been successful in predicting

behavioral judgments of lexical similarity or association (Hill

et al., 2015; Hofmann et al., 2018; Pereira et al., 2016; Richie

& Bhatia, 2020) and neural responses to word meanings (Huth

et al., 2016; Pereira et al., 2018; Zhang et al., 2020); as well
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as high-level inferences such as assessments of probability

(Bhatia, 2017).

The potential for using semantic vectors based on Word2vec to

account for relational judgments has also been explored, though

with mixed success. One basic approach is to define the generic

relation between two concepts as the difference vector between

them (e.g., the relation hot–cold is defined by the difference

between the semantic vectors for hot and cold). The relation is

thus defined only implicitly, without any explicit representation as

a concept in its own right (e.g., opposite). Difference vectors have

been used to solve semantically close analogy problems (Mikolov,

Sutskever, et al., 2013; Mikolov, Yih, et al., 2013; Zhila et al.,

2013) and to predict neural patterns associated with some asym-

metrical semantic relations between words embedded in continuous

text (Zhang et al., 2020). However, models based on difference

vectors fail to reliably solve more complex analogy problems

(Peterson et al., 2020; Linzen, 2016); or to accurately predict neu-

ral responses to semantic relations presented as analogy problems

(Chiang et al., 2020). More generally, implicit representations of

relations have difficulty accounting for priming effects based on

semantic relations (Estes & Jones, 2006; 2009; Jones et al., 2017;

Popov et al., 2017).

Judgments of Relational Similarity

A key obstacle to evaluating models of relational similarity is a lack

of systematic data on human judgments. Here we report human judg-

ments of similarity between semantic relations (i.e., judgments involv-

ing multiple pairs of words), which have been shown to strongly

predict human performance on a number of relational reasoning tasks

including relation exemplar generation frequency, analogical verifica-

tion accuracy and response time, and confusability of word pairs in ep-

isodic memory judgments (i.e., relational luring in associative

memory; Popov et al., 2020). Here we use relational similarity data to

evaluate alternative theoretical measures of relational similarity ulti-

mately based on distributional semantics. Rather than assuming that

people are uniform in their ability to differentiate semantic relations,

we also sought to measure cognitive abilities that may lead to individ-

ual differences in relational judgments.

Predicting relational similarity poses methodological as well as

theoretical challenges. The effective representation of a relation

for any word pair may be context-sensitive to some degree, and

therefore may vary depending on the order in which pairs are pre-

sented for comparison. In addition, the number of potential pair-

wise comparisons becomes prohibitive when the total number of

pairs grows modestly large. Such problems can be alleviated by

using a multiarrangement task, a method for efficiently eliciting

similarity judgments for large sets of items (Kriegeskorte & Mur,

2012). The method involves comparisons among a set of items

presented together, thus reducing order effects that may arise with

pairwise comparisons. The multiarrangement method, which can

be viewed as an inverse of standard multidimensional scaling

(Shepard, 1962), has previously been applied successfully to judg-

ments of object similarity (Jozwik et al., 2017; Kriegeskorte &

Mur, 2012; Mur et al., 2013). In order to assess potential individ-

ual differences in the ability to discriminate among relations, we

also administered a version of the Ravens Advanced Progressive

Matrices (RPM; Arthur et al., 1999); a measure of cognitive

capacity, and the Semantic Similarities Test (SST; Stamenkovi�c et

al., 2019, 2020), a measure of semantic knowledge.

In two experiments, data from human judgments of relational

similarity were used to test three alternative computational models,

all founded on lexical representations derived by Word2vec. These

models instantiate different assumptions about how relations are

represented and compared. Further, data estimating individual dif-

ferences in cognitive capacity were used to examine variability in

model predictions of judgments of relational similarity across indi-

vidual participants. For each model we generated a set of predicted

dissimilarities among relation instances that can be compared to

dissimilarities derived from human judgments, an approach termed

Representational Similarity Analysis, or RSA (Kriegeskorte et al.,

2008). To the extent that model-generated dissimilarities approxi-

mate human-generated dissimilarities, that model’s representation

of semantic relations is descriptive of human semantic cognition.

Modeling Relational Dissimilarity

To represent meanings of individual words, each model we

tested uses word embeddings produced by Word2vec (Mikolov,

Sutskever, et al., 2013). Two of the models we tested derive dis-

similarity predictions directly from Word2vec vectors for the

individual words in a pair. These two models differ in their

assumptions about how (or whether) the relation between the two

words is represented. Under Word2vec-concat, the meaning of the

words within a pair is a simple aggregate of the semantic vectors

of the two individual words. We use f A to denote the semantic

vector for a word A, and use f A f B½ � to denote the concatenated

vector that captures the meaning of a word pair consisting of words

A and B. The dissimilarity DW2V�concat, between two word pairs,

A:B versus C:D, is computed by the cosine distance between the

two concatenated vectors (top panel in Figure 1):

DW2V�concat ¼ cosð½fA fB�, ½fC fD�Þ: (1)

This model is nonrelational, instead capturing semantic dissimilar-

ity across pairs based solely on the meanings of the individual

words. Word2vec-concat serves to identify patterns of dissimilar-

ity based on lexical semantics, separate from any representation of

the relation between the two words within each pair, and hence

can be viewed as a baseline model for comparison to models that

actually compute relations.

Under Word2vec-diff, the relation between two words is

defined in a generic fashion as the difference between the semantic

vectors of each word within a pair, f A � f B for the word pair A:B.

Dissimilarity of relations, DW2V�diff , is assessed by the cosine dis-

tance between the difference vectors for two word pairs (middle

panel in Figure 1):

DW2V�diff ¼ cosð fA � fB, fC � fDÞ: (2)

This model codes relations only implicitly (i.e., as a difference

vector computed from individual words).

The third computational model, Bayesian Analogy with Rela-

tional Transformations, or BART (Lu et al., 2012, 2019), assumes

that specific semantic relations between words are coded as dis-

tributed representations over a set of abstract relations. The BART

Model takes concatenated pairs of Word2vec vectors as input, and

uses supervised learning with both positive and negative examples
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to acquire representations of individual semantic relations. After

learning, BART calculates a relation vector consisting of the pos-

terior probability that a word pair instantiates each of the learned

relations.

The BART model uses a three-stage process to learn semantic

relations. In its first stage, the model uses difference-ranking oper-

ations to partially align relationally important features. The model

generates a ranked feature vector based on the same difference val-

ues as the raw feature vector, but ordering those values according

to their magnitude. Augmenting the raw semantic features with

ranked features addresses the issue that across instances different

semantic dimensions may be relevant to a relation. This first stage

culminates in the generation of a 1,200-dimension augmented fea-

ture vector for each word pair, consisting of the concatenation of

raw and ranked feature vectors for each word in the pair (second

layer from bottom in Figure 2).

In the second stage, BART uses logistic regression with elastic

net regularization and the difference vectors as input to select a

subset of important features f s (creating the 3rd layer from bottom

in Figure 2) and estimates the associated coefficients b. In the third

stage, BART uses Bayesian logistic regression with the selected

features of word pairs f s in training examples to estimate weight

distributions w for representing a particular relation R by assuming

that selected features and weights are independent. We can apply

Bayes rule as:

P wjf s,Rð Þ / P Rjf s,wð ÞP wð Þ: (3)

The first likelihood term is defined by a logistic function on the

weights w and the features f s selected in the second stage,

ð1þ e�wT
fsÞ�1

. The second prior term is the prior distribution of

the weights w defined as a multivariate normal distribution, N(l0,

r0), with a mean vector l0 consisting of the coefficients b (esti-

mated in the second stage of logistic regression) applied to fea-

tures of the first entity, and �b (i.e., a contrast prior) applied to

features of the second entity.

We trained BART using a dataset of over 3,200 word pairs

exemplifying abstract semantic relations (Jurgens et al., 2012).

Each word pair in this dataset is an instance of one of 79 specific

relations, in turn categorized into one of ten general relation types

according to a taxonomy of abstract semantic relations (Bejar et

al., 1991). For each of the 79 relations, BART is trained with 20

positive examples of word pairs instantiating the relation to be

learned, and 69–74 negative examples including the most proto-

typical word pairs instantiating relations belonging to a different

relation type from the relation to be learned.

For the present simulations, we added a focused training step (similar

to that employed in Ponti et al., 2018) to update the representation of

two fundamental relation types: similar and contrast. These relation

types include variants of synonyms and antonyms, which are typically

taught to children in elementary school (Common Core State Standards

Figure 1

Schematic Illustration of Model-Generated Predictions of Human Dissimilarity Judgments Among Semantic

Relations

old:young

Human dissimilarity judgments

big:small

Stimulus word pairs

old:young

big:small

old young

big small cos( , )

old young

big small

-

-

cos( , )

old young

big small

R1

R2

R3

…

cos( , )

Word2vec-concat

Word2vec-diff

BART

Note. For any two word pairs (e.g., old:young and big:small), three models are used to predict their dissimilarity based on the

cosine distance between vectors representing each individual word pair, using 300-dimensional Word2vec word embeddings as

inputs to each model (left). Word2vec-concat (top) concatenates the vectors representing individual words in each pair;

Word2vec-diff (middle) defines the relation of each word pair as their difference vector; and BART (bottom) generates a new

relation vector for each word pair based on previously learned relations. Human dissimilarity judgments were estimated based on

on-screen distances between word pairs arranged in a multiarrangement task (right). See the online article for the color version of

this figure.
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Initiative, 2020). In this focused training, BART repeats the third stage

of learning using a constrained set of negative examples. To update rep-

resentations of similar relations, we constrained the set of negative

examples to 40 word pairs instantiating contrast relations, and vice

versa to update representations of contrast relations.

BART uses its pool of 79 learned relations to create a distrib-

uted representation of the relation(s) between two paired words.

The posterior probabilities calculated for all known relations form

a relation vector, with each element indicating how likely a word

pair instantiates a particular relation. For the purpose of modeling

human similarity judgments, we calculated BART’s relational rep-

resentation of a word pair by introducing a nonlinear power trans-

formation with the power parameter a, set at 5. This nonlinear

power transformation serves to emphasize the contributions of

those relations with higher posterior probabilities. Cosine distan-

ces based on these transformed vectors are used to compute the

BART-generated relational dissimilarity DBART between word

pairs (bottom panel in Figure 1):

DBART ¼ cos Ra
AB,R

a
CD

� �

: (4)

We used the models described above to calculate predicted dis-

similarities between relational word pairs using Word2vec-concat

(Eq. 1), Word2vec-diff (Eq. 2), and BART (Eq. 4), respectively.

For all three models, the dissimilarity between any two word pairs

is computed by the cosine distance between the vectors represent-

ing each word pair (see Figure 1). These models are well matched

in that each takes the same word embeddings as inputs and uses

the same cosine calculation to predict dissimilarities, based respec-

tively on lexical similarity only (Word2vec-concat), generic rela-

tion similarity (Word2vec-diff), and learned semantic relations

(BART).

Method

We performed two experiments to assess similarity judgments

for word pairs instantiating abstract relations. The two experiments

used word pairs exemplifying different relations; otherwise the

procedures and data analyses were identical. Accordingly, we will

report the two experiments together.

Participants

In Experiment 1, 95 participants (Mage = 20.15 years, SDage =

4.69; age range = [18–59]; 71 female, 24 male) were recruited

from the Department of Psychology subject pool at the University

of California, Los Angeles (UCLA). In Experiment 2, 94 different

participants (Mage = 20.60 years, SDage = 2.85; age range =

[18–37]; 71 female, 23 male) were recruited from the same pool.

Sample sizes were comparable to those used in previous studies

that have assessed individual differences in relational reasoning

(Stamenkovi�c et al., 2019, 2020; Vendetti et al., 2014). In both

experiments, all participants were self-reported fluent English speakers.

All participants were 18 years of age or older and provided verbal

informed consent and were compensated with course credit. Experi-

mental protocols for both experiments were approved by the UCLA

Institutional Review Board.

Stimuli

For both experiments, all stimuli were word pairs taken from a

set of norms (Jurgens et al., 2012) based on a taxonomy of abstract

semantic relations (Bejar et al., 1991). Word pairs in this dataset

express one of 79 specific relations, each falling into one of 10

general types of relations. The multiarrangement task in Experi-

ment 1 used 27 word pairs, with three pairs chosen from each of

three specific subrelations of three different general relation types

(similar, contrast, and cause–purpose; see Table 1). Word pairs

drawn from different subrelations of the same general type (e.g.,

car:auto instantiates synonymy and rake:fork instantiates attribute

similarity, two subrelations of the relation type similar) are differ-

entiated on the basis of relatively subtle relational differences.

These stimuli were selected based on prior research in which these

word pairs were used in an analogy task, where human participants

Figure 2

Schematic Illustration of BART Model of Relation Learning

R1 R2 R3 …

Note. The bottom layer represents the concatenated input vector based on the two words

in a pair; the top layer indicates the set of learned relations.The ellipses are meant to com-

municate a continuation of further learned relations beyond a third learned relation, which

is denoted by "R3" (i.e., R4, R5, and so on to RN). BART = Bayesian Analogy with

Relational Transformations.
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reliably judged word pairs instantiating the same specific subrela-

tion as constituting valid analogies and word pairs instantiating

different relation types as constituting invalid analogies (Chiang et

al., 2020). Experiment 2 used a different set of 27 word pairs,

instantiating different relations than those examined in Experiment

1. Each set of three word pairs instantiated one of nine specific

subrelations, consisting of three subrelations within three general

types: class inclusion, part–whole, and space–time (see Table 2).

Notably, each of the word pairs used in Experiment 2 consisted of

noun–noun word pairs so as to control for any effects attributable

to syntactic word class. In both experiments word pairs were

drawn from among the most prototypical examples in the norms

for the relevant subrelation.

Procedure

The basic procedure was identical for the two experiments. We

acquired human similarity judgments of semantic relations by ask-

ing participants to perform a multiarrangement task. On each trial,

participants were presented with a set of word pairs on a computer

screen. Participants were asked to first identify the relation

between words in each pair silently to themselves, and to then use

a mouse to arrange word pairs in a two-dimensional circular space

according to the similarity of their relations. Participants were

told, “word pairs that involve similar relations should be placed

close together,” “word pairs that involve very different relations

should be placed far apart,” and “the distance between two word

pairs should represent how different their relations are” (see Figure

3). Estimates of similarity were based on the relative on-screen

distances between word pairs as arranged by participants on each

trial. Estimates of pairwise judgments collected on the first trial

were scaled to have a root mean square of 1, and these estimates

were used to populate a participant’s Relational Dissimilarity

Matrix (RDM). Pairwise judgments collected on subsequent trials

were then used to update those estimates. These pairwise judg-

ments were calculated by scaling the on-screen distances between

items arranged on the most recent trial so that their root mean

square matched the root mean square of the current estimates of

the corresponding pairwise judgments in a participant’s RDM.

The updated estimates were weighted averages of the current esti-

mates and the rescaled pairwise judgments collected on the most

recent trial. Once a participant’s RDM was fully populated with

estimates of pairwise judgments between each item in the stimuli

set, estimates provided by this RDM were used to predict on-

screen distances between items arranged on subsequent trials.

These estimates were further updated using deviations between

predicted on-screen distances and observed on-screen distances

collected on the most recent trial.

On a given trial, participants were presented with a maximum

of 20 word pairs. The multiarrangement task adaptively selects

stimuli to present on each trial. On the first trial, participants

arranged a pseudorandom subset of 20 items from the entire set of

27 items. On subsequent trials, participants arranged a subset of 20

or fewer items selected based on item pairs with the weakest simi-

larity evidence (Kriegeskorte & Mur, 2012). We limited session

length to 20 minutes to avoid excessive fatigue.

We investigated whether relation judgments are systematically

influenced by individual differences in cognitive capacity (espe-

cially working memory and inhibitory control) and/or semantic

knowledge. To assess cognitive capacity, we administered a short

version of the Ravens Advanced Progressive Matrices test (RPM;

Arthur et al., 1999) adapted for computer administration using

Matlab software. Participants were presented with a 3 3 3 grid of

items with the item in the bottom right corner missing. They were

asked to use the pattern instantiated by the presented items to

select the most appropriate item to fill that bottom right corner

Table 1

Full Set of Word Pairs Used in Experiment 1, Organized by Relation Type (Table Headings) and

Subrelation (Table Subheadings)

Similar

Synonymy Attribute similarity Change

car:auto � 8.27 (5.04) rake:fork � 7.91 (4.43) discount:price � 8.00 (3.75)
kid:child � 7.74 (4.58) sword:knife � 8.09 (5.10) dim:light � 9.73 (6.69)
big:large � 7.40 (3.85) stairs:ladder � 8.04 (4.00) raise:salary � 8.21 (4.63)

Contrast

Contrary Directional Pseudoantonym

old:young � 10.57 (5.66) east:west � 10.27 (5.05) right:bad � 16.57 (9.20)
big:small � 10.27 (5.40) front:back � 9.52 (4.60) good:wrong � 16.64 (9.23)
black:white � 11.06 (5.38) north:south � 9.73 (5.05) majority:small � 9.99 (4.83)

Cause–purpose

Cause:effect Cause:compensatory action Action/activity:goal

joke:laughter � 7.91 (3.82) hunger:eat � 8.28 (4.15) flee:escape � 7.83 (4.46)
injury:pain � 8.69 (4.77) tiredness:rest � 7.86 (3.49) study:learn � 7.83 (3.49)
accident:damage � 8.49 (6.02) sadness:cry � 8.06 (3.65) work:earn � 8.03 (3.67)

Note. Values next to each word pair indicate the mean number of times that a participant judged that word
pair in an experimental session, and values in parentheses are standard deviations.
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from a set of eight options. Prior research has shown that superior

performance on this test is correlated with performance on tests of

analogical reasoning (Gray & Holyoak, 2020; Kubricht et al.,

2017; Vendetti et al., 2014). We hypothesized that the RPM mea-

sure would be associated with the degree to which people are able

to differentiate word pairs that instantiate distinct relations.

In addition to cognitive capacity, the ability to differentiate among

semantic relations may vary with knowledge of semantic relations.

As a measure of semantic knowledge, we administered the SST.

This test was designed to be similar to the similarities subscale of

the Weschler Adult Intelligence Scale-III (WAIS), and is correlated

with the vocabulary subtest (Stamenkovi�c et al., 2019). Participants

are presented with 20 pairs of verbal concepts and asked to describe

how the concepts in each pair are similar. The concept pairs span a

broad range of similarities: some are fairly specific (e.g., bird–air-

plane, which both fly), some are more general (e.g., tavern–church,

which are both public buildings), and some are more metaphorical

(e.g., marriage–alloy, which are both bonds between elements).

Prior research has shown that scores on the SST correlate positively

with metaphor comprehension (Stamenkovi�c et al., 2019, 2020).

In Experiment 1, all participants completed the three tasks in

the following order: the multiarrangement task, RPM, and SST. In

Experiment 2, participants completed the three tasks in one of the

following three orders: multiarrangement task, RPM, and SST;

RPM, SST, and multiarrangement task; SST, multiarrangement

task, and RPM.

Results

Overall Patterns of Relation Dissimilarity

In Experiment 1, 95 participants completed a mean of 19.69 tri-

als (SD = 9.70, range = [2–55]) on the multiarrangement task. Due

to program failures, only 88 participants completed the SST, and

90 participants completed the RPM. In Experiment 2, 94 partici-

pants completed a mean of 20.59 trials on the multiarrangement

task (SD = 12.20, range = [2–64]). Again, due to program failures,

only 93 participants completed the SST, and 92 participants com-

pleted the RPM. In each experiment all but one participant pro-

vided pairwise similarity judgments for all 27 word pairs (351

pairwise comparisons), with the exception providing judgments

for 86% of the pairwise combinations.

Figure 4 (top) displays the observed and predicted patterns of

dissimilarity judgments for Experiment 1. Human judgments (left-

most panel) are shown as an RDM across the 27 items. This visual

display shows that the patterns of similarity judgments were quali-

tatively different across the three relation types. The human dis-

similarity matrix clearly indicates that human judgments

differentiate each of the three broad types. The degree of differen-

tiation among subrelations appears to be more subtle.

To assess the reliability of these apparent differences in similar-

ity patterns across relation types, we computed two discrimination

indices: (a) within-subrelation distance as the mean dissimilarity

between word pairs instantiating the same subrelation, and (b)

cross-subrelation/within-type distance as the mean dissimilarity

between word pairs instantiating different subrelations but within

the same relation type. We then conducted a two-way repeated

measures ANOVA using discrimination index (within-subrelation

vs. cross-subrelation/within-relation type) and subrelation as

within-subject factors. Because we found a significant interaction

between discrimination index and subrelation, F(8, 752) = 25.34,

p , .001, we followed up with pairwise comparisons of discrimi-

nation indices for each type, using a Bonferroni-adjusted alpha-

level of .005. As summarized in the top nine rows of Table 3, the

two discrimination indices were significantly different for all three

similar subrelations and for all three contrast subrelations. Of the

three cause-purpose subrelations, cause:effect and cause:compen-

satory action showed reliable differences, whereas action/activity:

Table 2

Full Set of Word Pairs Used in Experiment 2, Organized by Relation Type (Table Headings) and

Subrelation (Table Subheadings)

Class inclusion

Taxonomic Functional Plural collective

weapon:spear � 8.48 (4.39) tool:hammer � 8.84 (4.67) snacks:chips � 9.66 (5.00)
tree:oak � 9.34 (5.30) utensil:spoon � 8.84 (4.72) cutlery:forks � 8.73 (3.87)
animal:pig � 8.8 (4.52) instrument:violin � 8.35 (3.96) furniture:chairs � 8.31 (3.99)

Part–whole

Mass:portion Item:topological part Object:stuff

hour:seconds � 8.24 (4.42) hotel:lobby � 8.46 (3.99) omelette:eggs � 17.36 (13.02)
feet:inches � 8.29 (4.44) hill:top � 8.89 (4.75) ocean:water � 17.02 (13.04)
week:day � 8.61 (4.34) airplane:cockpit � 8.44 (4.12) wall:bricks � 11.88 (10.04)

Space–time

Location:process/product Contiguity Time:associated item

factory:goods � 8.52 (4.07) bank:river � 8.76 (5.00) childhood:toys � 7.89 (4.36)
mill:flour � 8.96 (4.57) shore:lake � 8.86 (5.22) girlhood:dolls � 7.54 (3.55)
mine:coal � 8.86 (4.91) ditch:road � 8.23 (4.4) infancy:pacifier � 7.67 (3.72)

Note. Values next to each word pair indicate the mean number of times that a participant judged that word
pair in an experimental session, and values in parentheses are standard deviations.
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goal did not. These analyses indicate that relational similarity

judgments were generally sensitive to specific subrelations for the

relation types used in Experiment 1.

Figure 4 (bottom) displays the observed and predicted patterns

of dissimilarity judgments for Experiment 2. This visual display

shows that the patterns of similarity judgments for human judg-

ments (leftmost panel) were qualitatively different across the three

relation types. The relation type class inclusion (top) forms a dis-

tinct category, but its three subrelations are not clearly differenti-

ated. The relation type part–whole appears to form a weaker

category, with clearly differentiated subrelations (diagonal).

Finally, space-time (bottom) does not appear to form a unitary

cluster as a relation type, though its respective subrelations are

well differentiated individually.

To assess the reliability of these apparent differences in similar-

ity patterns across relation types, we ran similar analyses as for

Experiment 1. In order to evaluate the differentiation among sub-

relations, we conducted a two-way repeated measures ANOVA

using discrimination index (within-subrelation vs. cross-subrela-

tion/within-relation type) and subrelation as within-subject factors.

Again, we found a significant interaction between discrimination

index and subrelation, F(8, 744) = 137.79, p , .001, so we fol-

lowed up with pairwise comparisons of discrimination indices for

each type, using a Bonferroni-adjusted alpha-level of .005 to cor-

rect for multiple comparisons. As summarized in the bottom nine

rows of Table 3, for class inclusion, none of the mean cross-

subrelation/within type distances were significantly different from

the mean within-subrelation distances, indicating lack of differen-

tiation among subrelations. In contrast, the two discrimination

indices differed reliably for part–whole and for space–time. These

findings indicate that human judgments of relational similarity in

Experiment 2 were sensitive to specific subrelations within

part–whole and space–time relation types, but not within the class

inclusion relation type.

Individual Differences in Relation Discriminability

We also performed analyses to determine whether individual

differences in cognitive capacity (as assessed by the RPM) and

semantic knowledge (as assessed by the SST) were associated

with participants’ sensitivity to differences among relations. For

each experiment, two independent raters scored the SST based on

the criteria summarized in (Stamenkovi�c et al., 2019). We assessed

the reliability of these raters’ scores by testing the average intra-

class correlation coefficient across scores using a two-way random

model for Experiment 1 (ICC = .866, F(87, 87) = 9.472,

p , .001, 95% CI [.708, .929]) and for Experiment 2 (ICC = .923,

F(93, 93) = 13.396, p, .001, 95% CI [.884, .949]). Given the reli-

ability of these scores across both experiments, for each dataset

we used the average SST score across the two raters in the follow-

ing analyses. Descriptive statistics for both RPM and SST per-

formance for Experiments 1 and 2 are provided in Table 4.

Figure 3

Example Trial of the Multiarrangement Task Used to Generate a Semantic Space

for Relations

Note. See the online article for the color version of this figure.
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In order to estimate individual differences in sensitivity to broad

distinctions between relation types, we computed a relation type

discriminability index for each participant using the following

steps. First, we found each participant’s cross-type distance by cal-

culating the mean distance for pairwise comparisons between

word pairs instantiating different general relation types (e.g., old:

young instantiates the relation type contrast, whereas car:auto

instantiates the relation type similar). Second, we found each par-

ticipant’s within-type distance by calculating the mean distance

for pairwise comparisons between word pairs instantiating the

same general relation type (e.g., old:young and east:west both

instantiate the relation type contrast). Third, we computed each

Table 3

Results of Paired-Sample T-Tests Comparing Within-Subrelation Dissimilarity (M and Standard Deviation Reported Under Mw and

SDw, Respectively) With Cross-Subrelation/Within-Relation Type Dissimilarity (M and Standard Deviation Reported Under Mc and

SDc, Respectively)

Type Subrelation Mw SDw Mc SDc df t p 95% CI Cohen’s D

Similar Synonymy 0.039 0.015 0.048 0.008 94 6.18 ,.001 [0.006, 0.011] 0.63
Attribute similarity 0.028 0.016 0.048 0.008 94 13.34 ,.001 [0.017, 0.023] 1.37
Change 0.042 0.012 0.052 0.008 94 8.40 ,.001 [0.008, 0.012] 0.86

Contrast Contrary 0.029 0.014 0.034 0.011 94 6.12 ,.001 [0.004, 0.007] 0.63
Directional 0.021 0.012 0.036 0.012 94 12.72 ,.001 [0.012, 0.017] 1.31
Pseudo-antonym 0.030 0.013 0.037 0.011 94 7.27 ,.001 [0.005, 0.010] 0.75

Cause-purpose Cause:effect 0.029 0.014 0.035 0.011 94 6.58 ,.001 [0.004, 0.008] 0.68
Cause:compensatory action 0.025 0.016 0.035 0.011 94 7.29 ,.001 [0.007, 0.012] 0.75
Action/activity:goal 0.038 0.013 0.039 0.011 94 0.39 .701 [�0.002, 0.003] n/a

Class inclusion Taxonomic 0.036 0.017 0.035 0.015 93 �1.41 .161 [�0.003, 0] n/a
Functional 0.031 0.017 0.033 0.014 93 2.02 .046 [0, 0.003] n/a
Plural collective 0.032 0.015 0.033 0.015 93 1.04 .300 [0, 0.002] n/a

Part-whole Mass: portion 0.017 0.013 0.051 0.010 93 21.47 ,.001 [0.031, 0.037] 2.22
Item:topological part 0.039 0.015 0.051 0.008 93 7.32 ,.001 [0.009, 0.015] 0.76
Object:stuff 0.040 0.017 0.049 0.009 93 5.85 ,.001 [0.006, 0.012] 0.58

Space-time Location: process/product 0.033 0.017 0.053 0.005 93 11.08 ,.001 [0.017, 0.025] 1.14
Contiguity 0.026 0.016 0.055 0.057 93 16.23 ,.001 [0.025, 0.032] 1.67
Time: associated item 0.016 0.013 0.055 0.007 93 25.06 ,.001 [0.036, 0.042] 2.58

Note. Top nine rows show results from Experiment 1, and bottom nine rows show results from Experiment 2.

Figure 4

Dissimilarity Matrices (RDMs) Representing Human Judgments and Model-Generated Predictions

weapon:spear

tree:oak

animal:pig

tool:hammer

utensil:spoon

instrument:violin

snacks:chips

cutlery:forks

furniture:chairs

hour:seconds

feet:inches

week:day

hotel:lobby

hill:top

airplane:cockpit

omelette:eggs

ocean:water

wall:bricks

factory:goods

mill:flour

mine:coal

bank:river

shore:lake

ditch:road

childhood:toys

girlhood:dolls

infancy:pacifier

taxonomic

functional

plural collective

mass:portion

item:topological part

object:stuff

location:process/product

contiguity

time:associated item

synonymy

attribute similarity

change

contrary

directional

pseudoantonym

cause:effect

cause:compensatory action

action/activity:goal

Human BART Word2vec-diff Word2vec-concat

car:auto

kid:child

big:large

rake:fork

word:knife

stairs:ladder

discount:price

dim:light

raise:salary

old:young

big:small

black:white

east:west

front:back

north:south

right:bad

good:wrong

majority:small

joke:laughter

injury:pain

accident:damage

hunter:eat

tiredness:rest

sadness:cry

flee:escape

study:learn

work:earn

Experiment 1

Experiment 2

m
o

re d
issim

ilar 
less d

issim
ilar 

Note. Top: Experiment 1; bottom: Experiment 2. Each row and column represents a word pair, and each cell represents the pair-

wise dissimilarity between the word pair represented by that cell’s row and the word pair represented by that cell’s column.

Diagonal cells represent the pairwise dissimilarity between a word pair and itself, which is assumed to be 0. Warmer colors indi-

cate greater dissimilarity, while cooler colors indicate less dissimilarity. BART = Bayesian Analogy with Relational

Transformations; RDM = Relational Dissimilarity Matrix. See the online article for the color version of this figure.
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participant’s discriminability index by dividing that participant’s

cross-type distance by their within-type distance. This relation

type discriminability index reflects how well a participant discri-

minated between relation types in their similarity judgments. An

index of 1 indicates complete lack of discriminability between

word pairs instantiating different relation types and those instanti-

ating the same relation type, whereas higher indices indicate judg-

ments of greater similarity between word pairs instantiating the

same relation type than between word pairs instantiating different

relation types. Descriptive statistics for this type discriminability

index for Experiments 1 and 2 are provided in Table 4.

The patterns of individual differences for this type discriminability

index are summarized in Table 5. In Experiment 1, the discriminability

indices for relation types were significantly correlated with RPM

scores (r = .364, p , .001) and also with SST scores (r = .372, p ,

.001). We then assessed the extent that RPM and SST scores each

uniquely explained variation in discriminability indices by computing

partial correlations to partition out overlapping variance. These partial

correlations were statistically significant for both RPM scores (r =

.236, p = .028) and for SST scores (r = .236, p = .028). In Experiment

2, discriminability indices for relation types were significantly corre-

lated with RPM scores (r = .410, p , .001) and also with SST scores

(r = .286, p = .005). The partial correlation between these indices and

RPM scores after residualizing out SST scores (r = .337, p = .001)

was statistically significant, but that between these indices and SST

scores after residualizing out RPM scores (r = .096, p = .365) was not.

These analyses reveal a consistent association between the discrimina-

tion of general relation types with cognitive capacity, and a less con-

sistent link with semantic knowledge.

In order to estimate each participant’s sensitivity to more fine-

grained distinctions between specific subrelations within general rela-

tion types, we also computed a subrelation discriminability index using

the following steps. First, we found each participant’s cross-subrelation

distance by calculating the mean distance for pairwise comparisons

between word pairs instantiating different subrelations within the same

general relation type (e.g., old:young instantiates the subrelation con-

trary, and east:west instantiates the subrelation directional, where both

instantiate the relation type contrast). Second, we found each partici-

pant’s within-subrelation distance by calculating the mean distance for

pairwise comparisons between word pairs instantiating the same subre-

lation (e.g., old:young and black:white both instantiate the subrelation

contrary). Third, we computed each participant’s subrelation discrimi-

nability index by dividing each participant’s cross-subrelation distance

by their within-subrelation distance. This subrelation discriminability

index reflects how well a participant was able to discriminate between

specific subrelations within a relation Type in their similarity judg-

ments. An index of 1 would indicate a complete lack of discriminabil-

ity between word pairs instantiating different subrelations and those

instantiating the same subrelation, whereas higher indices indicate

judgments of greater similarity between word pairs instantiating the

same subrelation than between word pairs instantiating different subre-

lations. Descriptive statistics for this subrelation discriminability index

for Experiments 1 and 2 are provided in Table 4.

The patterns of individual differences for this subrelation dis-

criminability index are summarized in Table 5 For reference, Ta-

ble 5 also includes the intercorrelations between the Type and

subrelation discriminability indices for both experiments. In

Experiment 1, these fine-grained discriminability indices for sub-

relations showed a significant correlation with RPM scores (r =

.367, p , .001), and also with SST scores (r = .251, p = .018). A

partial correlation between these indices and RPM scores after

residualizing out SST scores was statistically significant (r = .291,

p = .006), but that between these indices and SST scores after resi-

dualizing out RPM scores was not (r = .090, p = .408).

In Experiment 2, these fine-grained discriminability indices for

subrelations showed a significant correlation with RPM scores (r =

Table 5

Pearson Correlations Between Participant RPM and SST Scores and Type and Subrelation Discriminability Indices Computed from

Dissimilarity Judgments in Experiments 1 and 2

Exp. Discriminability index Measure

Bivariate correlations Partial correlations

r p 95% CI r p 95% CI

1 Type RPM .364 ,.001 [.14, .53] .236 .028 [.03, .42]
SST .372 ,.001 [.20, .53] .236 .028 [.03, .42]

Subrelation RPM .367 ,.001 [.18, .50] .291 .006 [.10, .45]
SST .251 .018 [.05, .41] .090 .408 [�.12, .26]

Type Index 3 Subrelation Index .416 ,.001 [.19, .55]
2 Type RPM .410 ,.001 [.25, .55] .337 .001 [.14, .50]

SST .286 .005 [.10, .46] .096 .365 [�.12, .31]
Subrelation RPM .353 ,.001 [.17, .51] .257 .014 [.10, .41]

SST .310 .003 [.09, .50] .163 .123 [�.06, .37]
Type Index 3 Subrelation Index .612 ,.001 [.50, .73]

Note. Partial correlations between RPM scores and discriminability indices residualize out SST score, and partial correlations between SST scores and
discriminability indices residualize out RPM score. RPM = Ravens Advanced Progressive Matrices; SST = Semantic Similarities Test.

Table 4

Descriptive Statistics for Individual Difference Measures

Exp. Measure n M SD Range

1 RPM 90 0.66 0.24 [0.08–1]
SST 88 30.35 3.67 [21–36.5]
Type discriminability index 95 1.53 0.34 [1.00–2.6]
Subrelation discriminability index 95 1.35 0.29 [0.96–2.74]

2 RPM 92 0.61 0.24 [0.08–1.00]
SST 93 28.08 4.52 [14.50–37.00]
Type discriminability index 94 1.36 0.33 [0.95–2.33]
Subrelation discriminability index 94 1.77 0.72 [0.97–4.54]

Note. RPM = Ravens Advanced Progressive Matrices; SST = Semantic
Similarities Test.
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.353, p = .001), and also with SST scores (r = .310, p = .003). A

partial correlation between these indices and RPM scores after

residualizing out SST scores was statistically significant (r = .257,

p = .014), but that between these indices and SST scores after resi-

dualizing out RPM scores was not (r = .163, p = .123). These con-

vergent results indicate that there is a reliable association between

the discrimination of specific subrelations within relation types

with cognitive capacity, but not with semantic knowledge.

To provide a visualization of the difference between high and low

discriminability, Figure 5 presents multidimensional scaling (MDS)

solutions (Shepard, 1962) for the distance matrices of a participant in

Experiment 1 with both a low relation type and a low subrelation dis-

criminability index (left), and of a participant with both a high relation

type and a high subrelation discriminability index (right). The latter so-

lution shows a much greater degree of clustering into distinct relation

types as well as into subrelations.

Model Predictions

We assessed each of the three computational models of relation

similarity as predictors of mean human relational similarity ratings

(see Figure 1). Specifically, we computed the correlation between

the pairwise cosine distance between two word pairs predicted by

each model with human judgments in the resulting dissimilarity

matrix using the RSA approach (Kriegeskorte et al., 2008). Con-

firming the visual impression (relatively close match of pattern for

humans with BART in Figure 4, top), in Experiment 1 BART-gen-

erated predictions of relational similarity yielded the highest Pear-

son correlation with human judgments, followed by Word2vec-

concat, and then Word2vec-diff (Table 6, top three rows).

We went on to examine the unique variance in human relational

similarity judgments explained by our two relational models,

BART and Word2vec-diff, after controlling for the variance

explained by Word2vec-concat (which is based solely on lexical

similarity). We used semipartial correlations to examine the extent

that BART and Word2vec-diff explained the variance in human

similarity judgments, after residualizing out the variance in judg-

ments explained by Word2vec-concat and hence attributable

solely to lexical similarity. For Experiment 1, the resulting semi-

partial correlation was highly significant for BART (r = .439, p ,

.001), but yielded a small but significant negative correlation for

Word2vec-diff (r = �.157, p = .003). BART was also the strongest

predictor of human judgments in Experiment 2 (Table 6, bottom

three rows), for which the semipartial correlation was again highly

significant for BART (r = .571, p , .001), but not for Word2vec-

diff (r = �.002, p = .964). These analyses confirm that for both

data sets, BART provided a superior account of human relational simi-

larity judgments than did the competing computational models.

It could be argued that BART is favored over the competing models

because the test items used in the present study were a subset of those

used to train BART. However, BART’s training task is quite different

from that used in the present study. BART’s training task consists sim-

ply of learning individual subtypes based on labeled examples. In con-

trast, similarity judgments for word pairs require generating vectors for

individual word pairs across all 79 subtypes. Thus, BART was never

trained to make similarity judgments for any particular word pairs.

Nonetheless, we ran a cross-validation simulation in which we trained

BART after removing all the pairs used in the present study (see

Tables 1 and 2). When BART is trained on this reduced dataset, it still

provides a superior account of human judgments of relational similar-

ity relative to the competing relation model, Word2vec-diff. After con-

trolling for the variability in human similarity ratings accounted for by

raw semantic similarity (based on Word2vec-concat), the version of

BART with a reduced training set achieves a semipartial correlation of

.237 (p , .001) with human similarity ratings in Experiment 1 and

.400 (p, .001) with human similarity ratings in Experiment 2.

In order to assess the relative contributions of BART’s major com-

ponents in predicting human judgments of relational similarity, we

tested four additional control models. Each control model is a variant

of BART from which one individual component has been removed,

while holding all other components constant. In Control 1, the power

transformation that contributed to BART’s final estimation of

Figure 5

Visualization of Relation Similarities From Two Representative Participants in

Experiment 1

Low Discriminability High Discriminability

similar

contrast

cause-purpose

Note. Left: MDS solution for a participant with low discriminability indices (relation type dis-

criminability index = 1.02; subrelation discriminability index = .98). Right: solution for a partici-

pant with high discriminability indices (2.08 and 2.74, respectively). Each marker indicates a

single word pair. Marker outline color indicates word pair relation type, and marker shading indi-

cates subrelation within relation type. See the online article for the color version of this figure.
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relational similarity was removed. Without it, BART’s correlation

with human judgments drops from .57 to .35 in Experiment 1 and

from .79 to .41 in Experiment 2. In Control 2, the focused training step

(similar vs. contrast relations) was removed. Without it, BART’s per-

formance drops from .57 to .30 in Experiment 1 and from .79 to .77 in

Experiment 2. The particularly severe drop in performance in Experi-

ment 1 is to be expected, given that the stimuli used in that experiment

exemplified similar and contrast relations. Control 3 removed Bayesian

logistic regression, the third step of BART’s learning algorithm.

(Because focused training depends on Bayesian logistic regression,

Control 3 necessarily excluded that learning phase as well.) After

removing these components, BART’s performance drops from .57 to

.12 in Experiment 1 and from .79 to .51 in Experiment 2. Control 4

removed BART’s use of ranked features. Without these features,

BART’s performance drops from .57 to .14 in Experiment 1 and from

.79 to .64 in Experiment 2.

We also assessed the effectiveness of the three major models in

predicting individual differences among participants in their judg-

ments of relation dissimilarity. First, we computed correlations

between human judgments of relation dissimilarity and predictions

of relation dissimilarity generated by each of the three models

(BART, Word2vec-diff, and Word2vec-concat). Recall that in ana-

lyzing model predictions of overall relation dissimilarity, we com-

puted the correlation between model predictions and mean human

judgments. In contrast, the present analysis involved computing cor-

relations between model predictions and individual human judg-

ments, which resulted in a set of correlation coefficients across

individual participants. As in our analyses of overall relation

dissimilarity, we computed bivariate correlations between partici-

pant judgments and predictions from each of the three models, and

then computed semipartial correlations between participant judg-

ments and predictions from BART and Word2vec-diff, after control-

ling for predictions from Word2vec-concat. This analysis yielded

five correlation coefficients for each participant, representing the

degree to which each model predicted an individual’s judgments of

relation dissimilarity. Because RPM performance (i.e., the measure

of cognitive capacity) emerged as the stronger predictor of relation

discriminability in both Experiments 1 and 2, we examined the rela-

tionship between participant RPM scores and the degree of corre-

spondence between participant judgments and model predictions.

Merging the data sets from Experiments 1 and 2, we computed

bivariate correlations between RPM scores and each of the five cor-

relation coefficients described above, representing the degree that

each of the three models predicted individual participants’ dissimi-

larity judgments. The results of these analyses are summarized in

Table 7. RPM scores were correlated with bivariate correlation coef-

ficients between participant and BART dissimilarity ratings (r =

.249, p = .001), as well as with semipartial correlation coefficients

between participant and BART dissimilarity ratings after controlling

for Word2vec-concat dissimilarity ratings (r = .291, p , .001). In

contrast, no reliable relationships were obtained in corresponding

analyses correlating RPM scores with Word2vec-concat (r = �.037,

p = .617) or Word2vec-diff bivariate correlation coefficients (r =

�.042, p = .569), or with Word2vec-diff semipartial correlation

coefficients controlling for Word2vec-concat (r = �.008, p = .910).

These results converge to indicate that participants with higher

Table 7

Pearson Correlations Between RPM Scores and (a) Bivariate Correlation Coefficients Indicating

the Degree of Correspondence Between Individual Participant RDMs and Model Predictions (Left

Columns), and (b) Semipartial Correlation Coefficients Indicating the Degree of Correspondence

Between Individual Participant RDMs and Model Predictions, Controlling for Baseline Word2vec-

Concat Predictions (Right Columns)

Model

RPM 3 Bivariate Coefficients RPM 3 Semipartial Coefficients

r p 95% CI r p 95% CI

BART .249 ,.001 [.082, .395] .291 ,.001 [.153, .424]
Word2vec-diff �.042 .569 [�.175, .109] �.008 .910 [�.151, .134]
Word2vec-concat �.037 .617 [�.190, .114]

Note. BART = Bayesian Analogy with Relational Transformations; RPM = Ravens Advanced Progressive
Matrices; SST = Semantic Similarities Test; RDM= Relational Dissimilarity Matrix.

Table 6

Pearson Correlations Between Each Set of Model-Generated Dissimilarity Predictions and Human Judgments in Experiments 1 and 2

Exp. Model

Bivariate correlations Semipartial correlations

r p 95% CI r p 95% CI

1 BART .574 ,.001 [.482, .659] .439 ,.001 [.333, .545]
Word2vec-diff .037 .498 [�.098, .183] �.157 .003 [�.330, .027]
Word2vec-concat .387 ,.001 [.236, .520]

2 BART .786 ,.001 [.725, .832] .571 ,.001 [.484, .643]
Word2vec-diff .346 ,.001 [.182, .489] �.002 .964 [�.132, .120]
Word2vec-concat .602 ,.001 [.486, .696]

Note. Semipartial correlations between human judgments and BART and Word2vec-Diff Predictions control for baseline Word2vec-Concat predictions.
BART = Bayesian Analogy with Relational Transformations.
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scores on the RPM also generated relational dissimilarity ratings

that were better predicted by BART, but not by Word2vec-diff or

Word2vec-concat. That is, participants with superior cognitive

capacity produced more BART-like judgments of similarity between

semantic relations.

Discussion

By testing alternative computational models of relation dissimi-

larity, all founded on semantic representations of words derived

using the same model of distributional semantics (Word2vec), we

were able to distinguish between rival accounts of how humans

code semantic relations. Across two distinct data sets using six

general relation types, human judgments of relational similarity

were best predicted by BART, a model that assumes semantic rela-

tions are coded by distributed representations across a pool of

learned relations. This model made reliable predictions even after

statistically removing the predictive power of a baseline model

(Word2vec-concat) sensitive only to lexical similarity. Further, the

accuracy of BART’s predictions of relational similarity judgments

increased with a measure of cognitive capacity at the level of indi-

vidual participants. An alternative model (Word2vec-diff) that

assumes relations are coded solely by a generic function (the dif-

ference between the vectors for two words in a pair) was unable to

robustly predict human judgments. These results converge with

prior research that has revealed the limitations of efforts to explain

human judgments about abstract relations using an untransformed

semantic space (Linzen, 2016; Peterson et al., 2020). At the same

time, the success of BART in predicting human judgments of rela-

tion dissimilarity provides evidence that abstract semantic rela-

tions can indeed be learned from nonrelational inputs (semantic

vectors for individual words) created using the approach of distri-

butional semantics. These findings have the potential to advance

models of analogical reasoning by providing an objective basis for

learning relations from nonrelational inputs without any hand

coding.

The present results are particularly striking considering the

diverse similarity patterns observed across the three data sets we

examined. The data generated in Experiment 1 for three major

relation types (similar, contrast, cause–purpose) revealed a differ-

ent similarity structure than did the data from Experiment 2 for

three other relation types (class inclusion, part–whole, space-

–time). In Experiment 2, human judgments did not distinguish

between subrelations within the class inclusion relation type, and

did not show space–time to be a distinct and coherent relation cat-

egory. This apparent diversity in human judgments across different

relation types deserves further exploration. But despite this vari-

ability in human similarity judgments across relation types, for

each dataset BART yielded the best fit among the computational

models that were tested.

The present findings address a longstanding question concern-

ing the mental and neural representation of semantic relations:

whether relations are simply implicit (e.g., defined by the vector

distance between the representations of the entities being related,

as assumed by Word2vec-diff), or have explicit representations

based on the meanings of specific relations (Chaffin, 1992; Chaffin

& Hermann, 1988b; Popov et al., 2017, 2020). Several lines of

evidence now converge on the conclusion that semantic relations

are coded explicitly by a distributed code, as postulated by the

BART model. A distributed representation created by learning

from examples is able to account for human behavioral data both

for within-relation structure—the typicality gradient observed for

semantic relations (Chaffin & Herrmann, 1988a; Jurgens et al.,

2012; Lu et al., 2019; Popov et al., 2020)—and also for between-

relation structure—the pattern of similarity judgments across a

diverse set of relations, as shown here. In addition, the same basic

model can predict patterns of neural similarity at the item level

within a frontoparietal network for relations computed during a

verbal analogy task (Chiang et al., 2020). Finally, a model based

on a distributed code for relations can explain the emergence of

analogical reasoning from a basic process of relational comparison

(Lu et al., 2019).

The present behavioral findings also converge with neural evi-

dence that relational reasoning is heavily dependent on circuitry

(primarily in prefrontal cortex) that supports aspects of human

cognitive capacity, particularly working memory and inhibitory

control (Bunge et al., 2005; Cho et al., 2010; Knowlton et al.,

2012; for a review see Holyoak & Monti, 2020). The RPM, a ba-

sic measure of cognitive capacity, is a general predictor of rela-

tional reasoning (Gray & Holyoak, 2020; Kubricht et al., 2017;

Vendetti et al., 2014). Here we found that RPM scores predicted

both the degree to which people draw clear distinctions among

semantic relations, and also the degree to which the BART

Model predicts the similarity patterns observed for individual

participants.
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