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1. Introduction

This paper is devoted to the problem of constructing ma-
trix valued interval observers for fundamental matrices of time-
varying linear systems with unknown coefficient matrices, and
to demonstrating the usefulness of these constructions for feed-
back stabilization under sampling and for observer design. Time-
varying systems can be difficult to study because in general, no
explicit formulas for fundamental solutions (i.e., state transition
matrices) can be obtained and because they can be difficult to
estimate when the vector fields defining the systems are un-
certain. An added difficulty arises when one must find globally
asymptotically stabilizing feedback controls when only sampled
state measurements are available. While sampling problems can
be expressed as delay compensation problems (such as those
of [1,2]) with time-varying sawtooth shaped delay functions, de-
ay compensation methods generally require exact knowledge, or
lose approximations, of vector fields defining the given system,
r can lead to bounds on the allowable delays (and so also
ounds on the allowable sampling rates) that may be too small
or applications. See [3–6], and [7] for motivation for analyzing
he effects of sampling in control systems.

To help us address these challenges, this paper presents a
ew construction of functions that are expressed in terms of
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fundamental solutions and which upper and lower bound the
entries of the state transition matrix of a linear system whose
bounded vector field is uncertain, where the inequalities are com-
ponentwise. Since the fundamental solutions in the bounds are
those of time-varying systems with known vector fields (which
can in turn be computed using a dynamical extension), this helps
overcome the challenge of estimating the effects of uncertain
vector fields. We apply this result to construct robust stabilizing
controls for linear systems that have discrete measurements. Our
control formula is the one in [8, Chapter 2, Section 2.9], which is
ased on the controllability Gramian and which is applied in [8]
o systems whose state is available for continuous measurement.
y contrast, here we apply the approach from [8] to systems
hose state variables are only available for measurement at
iscrete instants. This makes it possible for us to cover situations
n which the sup norm of an uncertainty in the dynamics or the
ample rates are arbitrarily large, which we believe is a novel
nd significant contribution. Our proofs are based on comparison
ystems which share common features with interval observers
as defined, e.g., in [9,10], and [11]), but our approach is outside
the scope of earlier interval observer methods that did not take
sampling and unknown vector fields into account.

Our main strategy entails novel applications of properties of
positive systems and Metzler matrices. Although positive systems
have been used in aerospace engineering, mathematical biology,
and other fields, we believe that our work is the first one to
use them for sample data feedback stabilization when there are
uncertain vector fields, and where the inter-sample intervals or
sup norms of the uncertainty can be arbitrarily large. This paper
improves on our preliminary conference version [12] by allow-
ing time-varying coefficients and additional uncertainties in the

vector fields defining the system that were not considered in [12]
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in the B coefficient that multiplies the controls) and by applying
ur fundamental solution estimation approach to discrete time
ystems and to design new observers [13], using novel appli-
ations of the Gramian matrix. This contrasts with [12], which
as confined to cases where the known part of the coefficient
atrix was constant and which did not include observer designs
r discrete time systems or the uncertainty δB below.
After providing the required definitions and notation, we pro-

vide our main feedback stabilization theorem in Section 3. In
Section 4, we state our new estimation theorems, which are
of independent interest because they help address challenges
of estimating fundamental matrices for uncertain dynamics, and
which we use to prove our main stabilization theorem in Sec-
tion 5. In Section 6, we provide a discrete time analog of our
stabilization theorem, whose proof uses discrete time versions of
our theorems on estimating fundamental solutions for uncertain
dynamics. In Section 7, we use our approach to provide new ob-
server designs. We illustrate potential advantages of our approach
in Section 8, and we close in Section 9 with a summary of our
ontributions and our suggestions for future research.

. Definitions and notation

We use the following definitions and notation throughout this
aper, where the dimensions of our systems are arbitrary unless
e indicate otherwise. The notation will be simplified when no
onfusion could arise given the context, and all matrices in this
aper are assumed to have only real entries. A square matrix is
alled Metzler provided all of its off-diagonal entries are nonneg-
tive. A matrix is called nonnegative provided all of its entries are
onnegative. A square matrix is called Schur stable provided all
f its eigenvalues have norm strictly less than one. For vectors
1 = (v1,1 .... v1,n)⊤ and V2 = (v2,1 .... v2,n)⊤, we write V1 < V2
rovided for all i ∈ {1, . . . , n}, v1,i < v2,i; and V1 ≤ V2 provided
or all i ∈ {1, . . . , n}, v1,i ≤ v2,i. We use analogous notation
or matrices. Let ∥ · ∥ denote the standard Euclidean 2-norm of
ectors and matrices. We also use the notation |M|∞ = [∥mij∥∞]

henM = [mij] is a bounded matrix valued function, where ∥f ∥∞

or a function f is the usual sup norm, and which we denote by
M| when M is a constant matrix, so |M| = [|mij|].

We set G+
= [max{gij, 0}] and G−

= G+
− G. Notice for

ater use that if M1 and M2 are matrices of the same size and
1 ≤ M2, then the ordering properties M+

1 ≤ M+

2 and M−

2 ≤ M−

1
nd satisfied; the preceding two properties follow by separately
onsidering the possible signs of the (i, j) entries of M+

1 , M+

2 , M−

1 ,
nd M−

2 for all pairs (i, j). Let I be the identity matrix of any
imension, and 0 denote the matrix of any dimensions whose
ntries are all zero. Two square matrices M1 and M2 of the same
ize are called similar provided there is an invertible matrix P so
hat M1 = P−1M2P . For any continuous function F : [0,+∞) →
n×n, the fundamental (or state transition) matrix solution ΦF is
efined to be the unique matrix valued function satisfying
∂ΦF
∂t (t, t0) = F(t)ΦF (t, t0), ΦF (t0, t0) = I (1)

for all real t0 and t . We use basic properties of input-to-state
stability (or ISS, which we also use to mean input-to-state stable),
e.g., from [14], and we set Z≥0 = {0, 1, 2, . . .}.

3. Stabilization theorem

We study systems of the form

Ẋ(t) =
(
M(t) − δ1(t)

)
X(t) +

(
B(t) + δB(t)

)
U(t) + δ2(t), (2)

with X valued in Rn, the control U valued in Rp, M : [0,+∞) →
n×n and B : [0,+∞) → Rn×p being continuous matrix valued

functions, and δ : [0,+∞) → Rn×n, δ : [0,+∞) → Rn×p, and
1 B

2

δ2 : [0,+∞) → Rn being piecewise continuous locally bounded
functions. The output measurement Y is defined by Y (t) = X(ti)
for all t ∈ [ti, ti+1), where t0 = 0 and the ti’s are times when
new state measurements become available, and we define σ :

[0,+∞) → [0,+∞) by σ (t) = ti for all t ∈ [ti, ti+1). We assume
the following conditions (but see Remark 2 for non-Metzler cases
and a discussion of the class of time-varying systems that can be
transformed into the form (2)):

Assumption 1. There are known constant matrices δ ≥ 0 and
δB ≥ 0 such that for all t ≥ 0, we have

≤ δ1(t) ≤ δ and |δB(t)| ≤ δ̄B. (3)

Also, the matrix M(t) is Metzler for each t ≥ 0, M and B both
have some period p0 > 0, and there are known positive constants
η and ν such that η ≤ ti+1 − ti ≤ ν for all i ≥ 0 and such that
with the choice

S = {(r, s) ∈ R2
: r ∈ [0, p0], η ≤ s − r ≤ ν}, (4)

the system ż(t) = M(t)z(t)+ B(t)u(t) is controllable on [σ , τ ] for
all (σ , τ ) ∈ S. □

We then use the functions and matrices

ξ (r, s) =
ΦM+δ

(r,s)+ΦM−δ
(r,s)

2 −ΦM (r, s),
ξ (r, s) =

ΦM−δ
(r,s)−ΦM+δ

(r,s)
2 , S(r) = B(r)B⊤(r),

and χ (r, s) =
∫ s
r ΦM (r, ℓ)S(ℓ)Φ⊤

M (r, ℓ)dℓ.

(5)

Then our controllability assumption from Assumption 1 is equiv-
alent to the existence of the inverse χ−1(r, s) for all (r, s) ∈ S ,
e.g., by [15, Theorem 5]. Then, for all (r, s) ∈ S , and with

Jδ(r, s) =

(s − r)e(|M|∞+|δ|)(s−r)δB|B⊤
|∞e|M⊤

|∞(s−r)
|χ−1(r, s)|,

(6)

the following matrices are well defined:

F c(r, s) =
∫ s
r

[
ξ (s, ℓ)

(
S(ℓ)Φ⊤

M (r, ℓ)χ−1(r, s)
)−

− ξ (s, ℓ)
(
S(ℓ)Φ⊤

M (r, ℓ)χ−1(r, s)
)+] dℓ

+ ξ (s, r) + Jδ(r, s)
F c(r, s) =

∫ s
r

[
ξ (s, ℓ)

(
S(ℓ)Φ⊤

M (r, ℓ)χ−1(r, s)
)−

− ξ (s, ℓ)
(
S(ℓ)Φ⊤

M (r, ℓ)χ−1(r, s)
)+] dℓ

+ ξ (s, r) − Jδ(r, s)

(7)

Using the preceding definitions, and the entrywise supremum no-
tation supv∈S G(v) = [supv∈S Gij(v)] for matrix valued functions
G(v) = [Gij(v)], our stabilization theorem is:

Theorem 1. Let (2) satisfy Assumption 1, and choose p0, ν, η,
and S to satisfy the requirements from Assumption 1. Then (2), in
closed-loop with the control defined by

U(t) = −B⊤(t)Φ⊤

M (ti, t)χ−1(ti, ti+1)X(ti) (8)

for all ∈ [ti, ti+1) and i ≥ 0, is ISS with respect to δ2(t) if

Γ = max
(r,s)∈S

[
F+

c (r, s) F−
c (r, s)

F−
c (r, s) F+

c (r, s)

]
(9)

is Schur stable. □

Before presenting our fundamental matrix estimation theo-
rems (and then our proof of Theorem 1, in Section 5), we provide
comments on the novelty and value of Theorem 1.

Remark 1. A key aspect of Theorem 1 is that one can check
whether Γ is Schur stable because the matrices (7) are expressed
in terms of known functions, while the state transition matrix of
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−δ1(t) cannot be found because δ1 is an unknown uncertainty.
he periodicity in Assumption 1 makes it possible to express the
aximum in the Γ formula over the compact set S (where the
aximum exists by the continuity of the entries of the matrix in

9) as functions of (r, s) ∈ S), and then the eigenvalues of Γ can
be computed numerically to check the Schur stability condition,
e.g., using the command Eigenvalues in Mathematica. More-
over, in the important special case where M and B are constant,
ΦM is a matrix exponential, so in that case we can express
F̄+

c (r, s) and F−
c (r, s) as functions of s − r . Then the maximum

f the matrix in (9) can be computed over the interval [η, ν]. This
ncludes the special case where the sample times are ti = iν for
ll i ∈ Z0, in which case we can take η = ν. Although fundamental
olutions for the known matrices M and M ± δ̄ are used in
the formula for the control and in (9), they can be computed
from solving matrix valued differential equations, e.g., using the
method from [16]. In fact, as noted in [16], we can compute
ΦA(t, s) for any piecewise continuous locally bounded square
matrix valued function A by writing ΦA(t, s) = αA(t)βA(s) where
αA and βA are the unique solutions of the matrix differential
equations

α̇A(t) = A(t)αA(t) and β̇A(s) = −βA(s)A(s) (10)

that satisfy αA(0) = βA(0) = I . When δ2(t) is the zero function,
our proof of Theorem 1 will imply that the origin of the closed-
oop system from Theorem 1 is a globally exponentially stable
quilibrium on Rn. For methods to compute F c and F c when M
nd B are constant, see [17, p. 34]. □

emark 2. For any system of the form

˙(t) = M0(t)x(t) + B(t)U(t) (11)

hat is controllable on [σ , τ ] for all (σ , τ ) ∈ S with state space
n with bounded continuous matrix valued coefficients M0(t) and
(t) have the same period, we can find a matrix ∆̄M ∈ Rn×n

uch that for any continuous time-varying matrix valued function
M (t) that satisfies |∆M (t)| ≤ ∆̄M for all t ≥ 0, the system

˙ (t) = (M0(t) +∆M (t))X(t) + B(t)U(t) (12)

s also controllable on these intervals. This follows from the
ontinuity of fundamental solutions for systems as functions of
he entries of the matrix defining the system and standard char-
cterizations of controllability, e.g., from [15, Chapter 3]. In the
receding situation, we can write M0(t) +∆M (t) = M(t) − δ1(t),
here M(t) = M0(t) + (∆M (t))+ and δ1(t) = (∆M (t))−. If, in
ddition, M0(t) is Metzler for all t ≥ 0, then this defines a

class of time-varying systems (2) that satisfy the requirements of
Assumption 1 with δ̄ = ∆̄M , because 0 ≤ (∆M (t))− ≤ (∆M (t))+ +

∆M (t))− = |∆M (t)| ≤ ∆̄M for all t ≥ 0. See, e.g., [15, Theorem 5]
or easily checked sufficient conditions for controllability of (11),
ased on using the invertibility of the Gramian.
Moreover, we can often use a preliminary change of coor-

inates to ensure that the vector field in the drift term has
he required Metzler property. For instance, for any controllable
air (A0, B0) of constant matrices for which all eigenvalues of A0
re real, we can transform a linear system of the form ẋ(t) =

0x(t) + B0U0(t) into a new system ż(t) = M0z(t) + BU(t) that is
ontrollable and for which M0 is Metzler. This is done by choosing
0 = PaA0P−1

a , B = PaB0, and z = Pax, where Pa is chosen so that
0 is the Jordan canonical form of A0, which makes M0 Metzler.
ee also Section 7.2 where systems satisfying the requirements of
ssumption 1 are useful for observer design.
By using Theorem 3 from Section 4.2, we can generalize The-

rem 1 to cases where the matrices M(t) are not Metzler, but
here they are similar to Metzler matrices, by first using a change
f coordinates to transform (2). The control (8) is the control
3

rom [8, Chapter 2, Section 2.9]. One can find matrices δ∗ such
hat Γ is Schur stable when

≤ δ ≤ δ∗ and |δB| ≤ δ∗, (13)

ecause ξ and ξ are continuous and equal zero when δ = 0. This
facilitates verifying the assumptions of Theorem 1. □

4. Estimation of fundamental matrices

This section provides our theorems on estimating fundamental
matrices. In Section 5, we show how these estimation theorems
can be used to prove our Theorem 1, and we use them for
observer designs in Section 7.

4.1. Metzler case

First, we address the problem of estimating fundamental so-
lutions, when there is a known Metzler valued term in the vector
field defining the dynamics; see Section 4.2 for a method for re-
axing this Metzler requirement to cases where the corresponding
atrix only needs to be similar to a Metzler matrix at each time
. Throughout this subsection, we assume that the given function
satisfies:

ssumption 2. The function ∆ : [0,+∞) → Rn×n is piecewise
ontinuous, and there is a known constant nonnegative matrix
∆ ∈ Rn×n such that 0 ≤ ∆(t) ≤ ∆ holds for all t ≥ 0. □

In Appendix A.2, we prove:

heorem 2. Let M : [0,+∞) → Rn×n be a matrix valued function
uch thatM(t) is Metzler for all t ≥ 0, and∆ be a function satisfying
ssumption 2. Choose the functions

ΦM,∆(r, s) =
ΦM−∆

(r,s)+ΦM+∆
(r,s)

2 and
ΦM,∆(r, s) = ΦM(r, s) +

ΦM−∆
(r,s)−ΦM+∆

(r,s)
2 .

(14)

hen the inequalities

M,∆(t, t0) ≤ ΦM−∆(t, t0) ≤ ΦM,∆(t, t0) (15)

old for all t ≥ t0 and t0 ≥ 0. □

emark 3. We believe that the preceding result is new, even
n the special case where M is constant, in which case the
undamental solutions in the formulas (14) have the form

M±∆(r, s) = e(M±∆)(r−s). (16)

or cases where M is time-varying, the Metzler requirements
from Theorem 2 are satisfied if M has the form M(t) = M0 +

δM(t), when the constant Metzler matrix M0 has positive off-
diagonal entries, and when the sup norm of δM is small enough.
Another significant special case is when ∆ and M are both con-
stant, i.e., ∆(t) = ∆c for all t ≥ 0, in which case ΦM−∆(t, t0) =

e(M−∆c )(t−t0). □

Remark 4. A different approach to estimating fundamental solu-
tions of uncertain matrices is as follows. For any square matrices
A and B having the same dimension, the inequalityeA+B

− eA
 ≤ ∥B∥esupℓ∈[0,1] ∥A+ℓB∥ (17)

is satisfied; this follows by applying the Mean Value Theorem to
the function f (ℓ) = eA+ℓB on [0, 1]. Taking ∆ = ∆c , it follows
from (17) that in the special case where M is constant and ∆ is
a constant matrix ∆c , we have

∥ΦM−∆(t, t0) −ΦM(t, t0)∥
(t−t0) supℓ∈[−1,1] ∥M+ℓ∆c∥ (18)
≤ (t − t0)∥∆c∥e
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hen t ≥ t0 ≥ 0. By contrast, in the special case where M and
are constant matrices, (15) gives

(t − t0) ≤ ΦM−∆(t, t0) −ΦM(t, t0) ≤ ϱ(t − t0) (19)

here

ϱ(ℓ) =
e(M−∆c )ℓ−eMℓ

+e(M+∆c )ℓ−eMℓ

2 and
ϱ(ℓ) =

e(M−∆c )ℓ−eMℓ
+eMℓ

−e(M+∆c )ℓ

2

(20)

hich gives (18), because of (17). The main advantage of using
Theorem 2 in this time invariant case (instead of using the esti-
mates that can be obtained directly from (17)) is that it produces
estimates for each entry of ΦM−∆(t, t0); see Section 8 for an
example that illustrates this advantage of using our approach
from Theorem 2. □

4.2. More general case

Although Theorem 2 only applies when M(t) is Metzler for
each t , we can relax this Metzler requirement to cover a broader
family of matrices that are similar to Metzler matrices at each
time t . The price to pay for this generalization is that the upper
and lower bounding functions have more complicated forms.
In the special case where M is constant, this generalization is
motivated in part by the fact that Jordan canonical forms of
matrices with real eigenvalues are Metzler. Using the theorem
from this subsection, we can also relax the Metzler condition
from Assumption 1 so that we only require M to be similar to
a Metzler matrix at each time t ≥ 0. In Appendix A.3, we prove
the following:

Theorem 3. Let A : [0,+∞) → Rn×n be a matrix valued
function that admits an invertible matrix P ∈ Rn×n and a matrix
valued function F : [0,+∞) → Rn×n such that F (t) is Metzler for
each t ≥ 0 and such that PA(t)P−1

= F (t) for each t ≥ 0. Let
the piecewise continuous function ρ : [0,+∞) → Rn×n and the
matrices ρ ∈ Rn×n and ρ ∈ Rn×n be such that

≤ ρ(t) ≤ ρ (21)

or all t ≥ 0. Choose the functions

Φ£ (r, s) =
(P−1)

+

2

(
ΦM−ς̃ (r, s) +ΦM+ς̃ (r, s)

)
P+

− (P−1)− (ΦM (r, s) + F(r, s)) P+

− (P−1)+ (ΦM (r, s) + F(r, s)) P−

+
(P−1)

−

2

(
ΦM−ς̃ (r, s) +ΦM+ς̃ (r, s)

)
P−

Φ∗(r, s) = (P−1)+ (ΦM (r, s) + F(r, s)) P+

−
(P−1)

−

2

(
ΦM−ς̃ (r, s) +ΦM+ς̃ (r, s)

)
P+

−
(P−1)

+

2

(
ΦM−ς̃ (r, s) +ΦM+ς̃ (r, s)

)
P−

+ (P−1)− (ΦM (r, s) + F(r, s)) P−

(22)

here

(r, s) =
ΦM−ς̃ (r,s)−ΦM+ς̃ (r,s)

2 (23)

nd
˜ =[
P+ρ − P−ρ

]
(P−1)+ −

[
P+ρ − P−ρ

]
(P−1)−

)+[
P+ρ − P−ρ

]
(P−1)+ +

[
P+ρ − P−ρ

]
(P−1)−

(24)

nd

(t) = F (t) +

([
P+ρ − P−ρ

]
(P−1)+

+
[
P−ρ − P+ρ

]
(P−1)−

)+ (25)
4

for all t ≥ 0. Then the inequalities

∗(t, t0) ≤ ΦA+ρ(t, t0) ≤ Φ£ (t, t0) (26)

old for all t ≥ t0 and t0 ≥ 0. □

. Proof of Theorem 1

This section uses Theorem 2 to prove Theorem 1. The proof
onsists of three main parts. In the first part, we derive the
ynamics for the discrete time variables xk = X(tk), which is a
ample data system that corresponds to the closed loop system
rom Theorem 1. In the second part, we prove an ISS estimate
or this discrete time system that is based on our Schur stability
ssumption on (9) from the theorem. In the last part, we use the
SS property for the discrete time system to obtain the required
SS property for the system from the conclusion of Theorem 1.

First Step: Deriving the Discrete Time System. Let i ≥ 0 be an
nteger. By applying the method of variation of parameters to the
ystem (2) on the interval [ti, t] (e.g., [15, Formula (C.26)]), with
∈ [ti, ti+1], we get

(t) = ΦM−δ1 (t, ti)X(ti)
+
∫ t
ti
ΦM−δ1 (t, ℓ)B

♯(ℓ)U(ℓ)dℓ

+
∫ t
ti
ΦM−δ1 (t, ℓ)δ2(ℓ)dℓ,

(27)

here B♯(ℓ) = B(ℓ) + δB(ℓ).
Then the semigroup property of fundamental solutions gives

M (t, ti)ΦM (ti, ℓ) = ΦM (t, ℓ) and therefore also

(t) =
∫ t
ti
ΦM−δ1 (t, ℓ)δ2(ℓ)dℓ{

ΦM (t, ti)
[
X(ti) +

∫ t
ti
ΦM (ti, ℓ)B♯(ℓ)U(ℓ)dℓ

]}
[ΦM−δ1 (t, ti) −ΦM (t, ti)]X(ti)∫ t

ti
[ΦM−δ1 (t, ℓ) −ΦM (t, ℓ)]B♯(ℓ)U(ℓ)dℓ.

(28)

lso, the feedback (8) gives

(t) =
∫ t
ti
ΦM−δ1 (t, ℓ)δ2(ℓ)dℓ+ D(t, ti) + H(t, ti)

+ [ΦM−δ1 (t, ti) −ΦM (t, ti)]X(ti)
+
∫ t
ti
[ΦM (t, ℓ) −ΦM−δ1 (t, ℓ)]S

♯

ℓdℓX(ti)

=

[
−
∫ t
ti
ΦD(t, ℓ)S

♯

ℓdℓ+ΦD(t, ti)
]
X(ti)

+
∫ t
ti
ΦM−δ1 (t, ℓ)δ2(ℓ)dℓ+ D(t, ti)

+H(t, ti),

(29)

here D(t, ti) is the quantity in curly braces in (28),
♯

ℓ = S(ℓ) (ΦM (σ (ℓ), ℓ))⊤ χ−1
i , (30)

(t, ti) =∫ t
ti
ΦD(t, ℓ)δB(ℓ)B⊤(ℓ)Φ⊤

M (ti, ℓ)dℓχ−1
i X(ti),

(31)

nd

D(a, b) = ΦM−δ1 (a, b) −ΦM (a, b), (32)

nd where χi = χ (ti, ti+1). Moreover, our control (8) gives

(ti+1, ti) =

M (ti+1, ti)
[
X(ti) +

∫ ti+1
ti

ΦM (ti, ℓ)B(ℓ)U(ℓ)dℓ

+
∫ ti+1
ti

ΦM (ti, ℓ)δB(ℓ)U(ℓ)dℓ
]

−
∫ ti+1
ti

ΦM (ti+1, ℓ)δ
♯

B(ℓ)Φ
⊤

M (ti, ℓ)dℓχ−1
i X(ti)

(33)

here δ♯B(ℓ) = δB(ℓ)B⊤(ℓ).
Specializing (29) to the case where t = ti+1 therefore gives

(ti+1) = W (i)X(ti)∫ ti+1 (34)

+ ti

ΦM−δ1 (ti+1, ℓ)δ2(ℓ)dℓ,
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here

(i) = ΦD(ti+1, ti) −
∫ ti+1
ti

ΦD(ti+1, ℓ)S
♯

ℓdℓ
−
∫ ti+1
ti

ΦM−δ1 (ti+1, ℓ)δ
♯

B(ℓ)Φ
⊤

M (σ (ℓ), ℓ)dℓχ−1
i ,

(35)

here the last term in (35) was obtained by adding (31) and (33).
Eq. (34) defines the desired closed loop discrete time system.

Second Step: Stability Analysis for Discrete Time System (34).
Theorem 2 ensures that for all a ≥ b, we have

ξ (a, b) ≤ ΦD(a, b) ≤ ξ (a, b), (36)

here ξ and ξ are defined in (5). We deduce that, for any integer
i ≥ 0, we have

ξ (ti+1, ℓ)
(
S(ℓ)(ΦM (σ (ℓ), ℓ))⊤χ−1

i

)+
≤ ΦD(ti+1, ℓ)

(
S(ℓ)(ΦM (σ (ℓ), ℓ))⊤χ−1

i

)+
≤ ξ (ti+1, ℓ)

(
S(ℓ)(ΦM (σ (ℓ), ℓ))⊤χ−1

i

)+ (37)

nd

(ti+1, ℓ)
(
S(ℓ)(ΦM (σ (ℓ), ℓ))⊤χ−1

i

)−
≤ ΦD(ti+1, ℓ)

(
S(ℓ)(ΦM (σ (ℓ), ℓ))⊤χ−1

i

)−
≤ ξ (ti+1, ℓ)

(
S(ℓ)(ΦM (σ (ℓ), ℓ))⊤χ−1

i

)− (38)

or all ℓ ∈ (ti, ti+1). By multiplying (38) through by −1 and then
dding the result to (37), we get

(ti+1, ℓ)(S
♯

ℓ)
+

− ξ (ti+1, ℓ)(S
♯

ℓ)
−

ΦD(ti+1, ℓ)S
♯

ℓ ≤ ξ (ti+1, ℓ)(S
♯

ℓ)
+

− ξ (ti+1, ℓ)(S
♯

ℓ)
−

(39)

for all ℓ ∈ (ti, ti+1), where we used the fact that S♯ℓ = (S♯ℓ)
+
−(S♯ℓ)

−.
Also, by noting that

|Φ⊤

Q (t, s)| ≤ e|Q⊤
|∞|t−s| and |ΦQ (t, s)| ≤ e|Q |∞|t−s| (40)

hold for any bounded piecewise continuous matrix valued func-
tion Q : [0,+∞) → Rn×n and all s ≥ 0 and t ≥ 0 (e.g., because of
the Peano–Baker formula from [15, Appendix C]), we obtain the
bound

|ΦM−δ1 (ti+1, ℓ)δ
♯

B(ℓ)Φ
⊤

M (σ (ℓ), ℓ)χ−1
i |

≤ e(|M|∞+|δ1|∞)(ti+1−ti)δB|B⊤
|∞e|M⊤

|∞(ti+1−ti)|χ−1
i |

(41)

or all ℓ ∈ [ti, ti+1]. We deduce from (36) that

F c(ti, ti+1) ≤ W (i) ≤ F c(ti, ti+1), (42)

where (41) was used to bound the last term in (35) and to obtain
he expression for the function Jδ that we used in (6) and our
ormulas (7) for F c and F c .

In order to prove our ISS property for (34), we first use our
ounds (42) to study the system

Z(ti+1) = W (i)Z(ti) (43)

that corresponds to the δ2 = 0 case in (34). By rewriting (43)
as Z(ti+1) = (W (i)+ − W (i)−)Z(ti), we conclude that for any
solution Z(ti) of (43), the function Ξ (ti) = [(Z(ti))⊤, (−Z(ti))⊤]

⊤

is a solution of{
ζ (ti+1) = W (i)+ζ (ti) + W (i)−ψ(ti)
ψ(ti+1) = W (i)−ζ (ti) + W (i)+ψ(ti).

(44)

Moreover, (44) is a positive system (which can be checked by
induction, using the fact that W (i)+ and W (i)− are nonnegative
matrices for each index i).

Next, let [(ζp(ti))⊤, (ψp(ti))⊤]
⊤ and [(ζn(ti))⊤, (ψn(ti))⊤]

⊤ de-
note the solutions of (44) with initial conditions(
ζp(t0)

)
=

(
Z(t0)+

−

)
(45)
ψp(t0) Z(t0)

5

and(
ζn(t0)
ψn(t0)

)
=

(
Z(t0)−
Z(t0)+

)
(46)

respectively. By the positivity of the system (44), these two solu-
tions are nonnegative valued. Then, noticing that

Ξ (t0) =

(
Z(t0)+ − Z(t0)−

Z(t0)− − Z(t0)+

)

=

(
ζp(t0)

ψp(t0)

)
−

(
ζn(t0)

ψn(t0)

)
,

(47)

we deduce from the uniqueness of solutions property for the
discrete time system (44) that

Ξ (ti) =

(
ζp(ti)
ψp(ti)

)
−

(
ζn(ti)
ψn(ti)

)
(48)

for all i ≥ 0.
Next consider the system{
ζ (ti+1) = F+

c (ti, ti+1)ζ (ti) + F−
c (ti, ti+1)ψ(ti)

ψ(ti+1) = F−
c (ti, ti+1)ζ (ti) + F+

c (ti, ti+1)ψ(ti),
(49)

and let [(ζ p(ti))⊤, (ψp(ti))⊤]
⊤ and [(ζ n(ti))⊤, (ψn(ti))⊤]

⊤ denote
the solutions of (49) satisfying

ζ p(t0)

ψp(t0)

)
=

(
Z(t0)+

Z(t0)−

)
and

ζ n(t0)

ψn(t0)

)
=

(
Z(t0)−

Z(t0)+

) (50)

espectively. By (42) and the order preserving properties from
ection 2, we have

(i)+ ≤ F̄+

c (ti, ti+1) and W (i)− ≤ F−

c (ti, ti+1), (51)

o by the comparison principle, we have

≤

(
ζp(ti)
ψp(ti)

)
≤

(
ζ p(ti)
ψp(ti)

)
and

0 ≤

(
ζn(ti)
ψn(ti)

)
≤

(
ζ n(ti)
ψn(ti)

) (52)

or all i ≥ 0; this follows by noting that the initial conditions in
he right sides of (45)–(46) agree with those of the right sides
of (52), and that (51) implies that the states with the bars are
growing faster. As an immediate consequence,

−Γ i

(
ζ n(t0)
ψn(t0)

)
≤ −

(
ζ n(ti)
ψn(ti)

)
≤ Ξ (ti)

≤

(
ζ p(ti)
ψp(ti)

)
≤ Γ i

(
ζ p(t0)
ψp(t0)

) (53)

for all i ≥ 0, where Γ is the Schur stable matrix from (9),
nd where we used (48), (52), and the periodicity assumption in
ssumption 1 (which gives F̄c(r + kp0, s + kp0) = F̄c(r, s) and
c(r + kp0, s+ kp0) = F c(r, s) for all integers k ≥ 0 and all r ≥ 0

and s ≥ r). Consequently,

−Γ i

(
Z(t0)−
Z(t0)+

)
≤

(
Z(ti)

−Z(ti)

)
≤ Γ i

(
Z(t0)+
Z(t0)−

)
, (54)

by our choice of Ξ . Thus,

−[I, 0]Γ i

(
Z(t0)−
Z(t0)+

)
≤ Z(ti)

≤ [I, 0]Γ i

(
Z(t0)+

−

)
.

(55)
Z(t0)
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y our assumption that Γ is Schur stable, this implies exponential
stability of (43), hence the desired ISS property of (34), by the
oundedness of δ1 (which can be shown, e.g., by showing that the
trict Lyapunov function for (43) that can be constructed from [18,
heorem 5.13] is an ISS Lyapunov function for (34)).
Third Step: ISS Conclusion of Theorem 1. We can find a constant

c̄ > 0 such that all solutions of the closed loop system from the
statement of Theorem 1 satisfy

X(t)∥ ≤ c̄ (∥X(σ (t))∥ + sup{∥δ2(ℓ)∥ : 0 ≤ ℓ ≤ t}) (56)

or all t ≥ 0. We can express c̄ in terms of the bounds δ̄,
δ̄B, and ν from Assumption 1, as follows. Using the fact that
∥Φ⊤

M (σ (t), t)∥ ≤ e∥M∥∞ν for all t ≥ 0 (e.g., using properties
of transition matrices from [15, Appendix C]), we can use the
structure of the system (2) to get

Ẋ(t)∥ ≤ ∥M − δ1∥∞ ∥ ∥X(t)∥ + ∥δ2(t)∥
∥B + δB∥∞∥B∥∞e∥M∥∞ν sup

(r,s)∈S
∥χ−1(r, s)∥ ∥X(σ (t))∥

or all t ≥ 0. Then we can apply the Fundamental Theorem of
alculus to the solution X on the interval [σ (t), t] to get

X(t)∥ ≤

M − δ1∥∞

∫ t
σ (t) ∥X(ℓ)∥dℓ+ ν sup

ℓ∈[0,t]
∥δ2(ℓ)∥+

(
1+

∥B + δB∥∞∥B∥∞e∥M∥∞ν sup
(r,s)∈S

∥χ−1(r, s)∥
)

∥X(σ (t))∥.

hen applying Gronwall’s inequality to the preceding inequality
n the interval [σ (t), t] and recalling our bounds δ̄ and δ̄B on δ1
nd δB from (3) allows us to choose

¯ = e(∥M∥∞+∥δ̄∥∞)ν max
{
ν,

(
1+

(∥B∥∞ + ∥δ̄B∥∞)∥B∥∞e∥M∥∞ν sup
(r,s)∈S

∥χ−1(r, s)∥
)}

.

e can combine (56) with the ISS conclusion from the second
tep to obtain the ISS property of the closed loop system from
he theorem. This proves Theorem 1.

emark 5. The last part of the preceding proof shows how bigger
alues of δ̄ and δ̄B can lead to bigger c̄ values, and therefore to
arger bounds on the right side of the final ISS estimate. Since
he formula for c̄ also depends on the upper bound ν on the
ample intervals, this can also provide guidance on how to choose
ample times that lead to a suitable upper bound ν on the sample
eriods, by choosing ν so that c̄ lies in a suitable range to ensure
atisfactory performance in terms of a small enough upper bound
n the right side of the bound for the state.

. Discrete time analogs

.1. Stability theorem

Using discrete time analogs of Theorems 1 and 2, it is possible
o prove asymptotic stability conditions for systems of the form

i+1 = (M −∆i)Xi (57)

ith M ≥ 0, and with the matrices ∆i admitting a matrix ∆ ≥ 0
uch that 0 ≤ ∆i ≤ ∆ for all i. Although

−∆ ≤ M −∆i ≤ M (58)

holds for all i, the inequalities (58) cannot be used to study the
tability of (57) when some entries of M − ∆̄ are negative. On
he other hand, we have the following theorem, whose proof in
ppendix A.4 uses discrete time analogs of our continuous time
heorems from the preceding sections:
6

heorem 4. Let

S j =
(M+∆)j+(M−∆)j

2 and
S j = M j

+
(M−∆)j−(M+∆)j

2

(59)

for all i ≥ 0. Assume that

lim
j→+∞

S j = 0 and lim
j→+∞

S j = 0. (60)

Then the system (57) is globally asymptotically stable to the origin
on Rn. □

6.2. Illustration

To illustrate the preceding theorem let

M =

[
0 1

2
1
2 0

]
and ∆i =

[
δ1,i 0
0 δ2,i

]
, (61)

and assume that there is a constant δ̄ > 0 such that 0 ≤ δk,i ≤ δ

for k = 1, 2 and all i ≥ 0. Then Lemma A.1 from Appendix A.1
with n = 1 gives

M +∆ = P−1
[ 1

2 + δ 0
0 δ −

1
2

]
P, (62)

where ∆̄ = δ̄I ,

P =

[
1 1

−1 1

]
, and (63)

M −∆ = P−1
[ 1

2 − δ 0
0 −δ −

1
2

]
P. (64)

Hence, with the choices

δ̄
♯

j =
( 12 +δ)j

2 and µ̄♯j =
(δ− 1

2 )
j

2 , (65)

he functions from (59) are

S j = P−1

[
δ̄
♯

j + (−1)jµ̄♯j 0
0 µ̄

♯

j + (−1)jδ̄♯j

]
P (66)

and

S j = M j
+ P−1

[
(−1)jµ̄♯j − δ̄

♯

j 0
0 (−1)jδ̄♯j − µ̄

♯

j

]
P

= P−1

[
( 12 )

j
+ (−1)jµ̄♯j − δ̄

♯

j 0
0

(
−

1
2

)j
+ (−1)jδ̄♯j − µ̄

♯

j

]
P,

(67)

by Lemma A.1 from Appendix A.1 with α = 0 and β = 1/2.
ence, if δ < 1/2, then (60) will hold, which will ensure global

asymptotic stability of the system.

7. Observer designs

We next illustrate the usefulness of our continuous time tran-
sition matrix estimation and Gramian approaches, in the context
of new observer designs. First we provide a finite time observer,
based on our Gramian approach but not using our estimation
methods. This finite time observer has the advantage of being
a fixed time one, meaning, the convergence of the observer to
the true state value occurs at a time that is independent of the
initial state. Then we provide a new asymptotic observer for
more general systems, using a convergence proof that is based
on both transition matrix estimation and the Gramian. The proof
of the convergence property for this asymptotic observer makes
essential use of the arguments from the proof of Theorem 1
and the result from Theorem 2. Therefore, through its uses of
the Gramian in our first observer design (which is an essential
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ngredient from Theorem 1) and the results from Theorems 1–2,
his section is strongly connected to, and helps illustrate the value
f, the earlier sections.
For simplicity, we assume in this section that the coefficient

atrices are constant and that the sample intervals ti+1 − ti are
f a constant positive length ν, but analogous arguments produce
esults for unevenly spaced sample times ti as in the previous
ections and for time-varying coefficient matrices, by replacing
atrix exponentials by transition matrices in the relevant places.

n both of our observer designs, we will use the matrix valued
unctions

(S) =

(∫ ν
0 eS

⊤ℓC⊤CeSℓdℓ
)−1

(68)

or suitable functions S, where the existence of the inverse will
ollow from the observability of (S, C) for matrices S that we
pecify later (again by [15, Theorem 5, p.109]).

.1. Finite time observer

We consider the system{
ẋ(t) = Ax(t) + f (y(t), u(t))
y(t) = Cx(t) (69)

here x is valued in Rn, f is locally Lipschitz, u is valued in Rp,
nd y is valued in Rq. We assume that this system is forward
omplete, and we introduce a sequence ti = iν with ν > 0 being
given constant. See, e.g., [19,20], and [21] (which did not use
ramian approaches and also did not use estimators for transition
atrices) for the importance of systems with nonlinearities of

he form we have in (69) for modeling the vibration of elastic
embranes, pendulums, and single-link robotic manipulators.
ur objective is to construct a finite time observer for this system,
nder this standard assumption:

ssumption 3. The pair (A, C) is observable. □

We also use the matrix valued function R : R → Rn×q defined
y

(ℓ) = eAℓG(A)eA
⊤ℓC⊤ (70)

or all ℓ ∈ R, where G was defined in (68).
Let us propose the observer that is defined by

˙̂x(t) = Ax̂(t) + f (y(t), u(t))
+ R(t − ti)

[
y(t) − CeA(t−ti)x̂(ti) − Cẑ(t)

]
˙̂(t) = Aẑ(t) + f (y(t), u(t)), ẑ(ti) = 0

(71)

or all t ∈ [ti, ti+1) and i ≥ 0, where the solutions of the x̂
ynamics are defined by solving the first equation of (71) on
t0, t1) = [0, ν) with the initial state x̂(0) = 0, then solving it
n [t1, t2) with the initial state x̂(t1) = x̂(t−1 ), and then repeating
his process on subsequent intervals [ti, ti+1) for i ≥ 2. We prove:

heorem 5. Let Assumption 3 hold. Then for each solution x(t) of
69), the corresponding solution x̂(t) of the observer (71) is such that
ˆ(t) = x(t) for all t ≥ ν. □

roof. By applying variation of parameters to the dynamics in
69), we deduce that

(t) = CeA(t−ti)x(ti) + C
∫ t
ti
eA(t−ℓ)f (y(ℓ), u(ℓ))dℓ. (72)

ince ẑ(ti) = 0, it follows that y(t) = CeA(t−ti)x(ti) + Cẑ(t), so

˙̂(t) = Ax̂(t) + f (y(t), u(t))
A(t−ti)

(73)

+ R(t − ti)Ce [x(ti) − x̂(ti)].

7

Here and in the sequel, all equalities and inequalities are for all
t ∈ [ti, ti+1) and i ≥ 0, unless otherwise indicated. Let x̃(t) =

(t) − x̂(t). Then

˙̃(t) = Ax̃(t) − R(t − ti)CeA(t−ti)x̃(ti). (74)

y integrating this system, we deduce that

˜(t) =

eA(t−ti) −
∫ t
ti
eA(t−ℓ)R(ℓ− ti)CeA(ℓ−ti)dℓ

]
x̃(ti).

(75)

hus, in particular, the equality

˜(ti+1) =

eAν −
∫ ti+ν
ti

eA(ti+1−ℓ)R(ℓ− ti)CeA(ℓ−ti)dℓ
]
x̃(ti)

(76)

olds. Consequently,

˜(ti+1) = eAν
[
I −

∫ ν
0 e−AℓR(ℓ)CeAℓdℓ

]
x̃(ti)

eAν
[
I −

∫ ν
0 e−AℓeAℓG(A)eA

⊤ℓC⊤CeAℓdℓ
]
x̃(ti),

(77)

here the last inequality is a consequence of the definition (70)
f R. We deduce that

˜(ti+1) = eAν
[
I −

∫ ν
0 G(A)eA

⊤ℓC⊤CeAℓdℓ
]
x̃(ti)

= 0
(78)

hus, in particular, x̃(ν) = 0. From (74), we deduce that x̃(t) = 0
or all t ≥ ν. This concludes the proof. □

.2. Observer for time-varying systems

We next consider the more general class of systems{
ξ̇ (t) = [A −∆(t)]ξ (t) + f (Y (t), u(t))
Y (t) = Cξ (t) (79)

here ξ is valued in Rn, u is valued in Rp, and Y is valued in Rq.
e assume that f is locally Lipschitz, that this system is forward

omplete, and that Assumption 3 is satisfied, where A, ∆, and f
re assumed to be known.
Before presenting our observer design, we introduce the fol-

owing dynamic extension whose purpose is to remove the term
(Y (t), u(t)) in (79):

˙
⋆(t) = [A −∆(t)]ξ⋆(t) + f (Y (t), u(t))

+ L[Y (t) − Cξ⋆(t)].
(80)

he term L[Y (t) − Cξ⋆(t)] is here only to introduce a degree of
reedom. Then, with the choice, x(t) = ξ⋆(t) − ξ (t), we obtain{
ẋ(t) = [M −∆(t)]x(t)
y(t) = Cx(t) (81)

ith M = A − LC . In terms of our notation (68), we assume the
ollowing, where the existence of the inverse in (83) follows from
he observability of (A, C) as before:

ssumption 4. The pair (A, C) is observable, the origin of (81) is
lobally uniformly asymptotically stable, and M is Metzler. Also,
here is a matrix ∆̄ such that

≤ ∆(t) ≤ ∆ (82)

or all t ≥ 0. Finally, with the choices

β(s) =
e(M−∆)s

+e(M+∆)s
−2eMs

2 ,

e(M−∆)s
−e(M+∆)s Mℓ M⊤ℓ ⊤

(83)

β(s) = 2 , H(ℓ) = e G(M)e C ,
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nd

Gc(r) = β(r) −
∫ r
0

[
β(ν − ℓ)

(
H(ℓ)CeMℓ

)+
−β(ν − ℓ)

(
H(ℓ)CeMℓ

)−] dℓ
c(r) = β(r) −

∫ r
0

[
β(ν − ℓ)

(
H(ℓ)CeMℓ

)+
−β(ν − ℓ)

(
H(ℓ)CeMℓ

)−] dℓ,
(84)

he matrix

=

[
Gc(ν)+ Gc(ν)

−

Gc(ν)
− Gc(ν)+

]
(85)

s Schur stable. □

Our condition on (81) in Assumption 4 holds if∆ is sufficiently
mall and M is Hurwitz and Metzler. In this case, bounds ∆̄ on
the allowable functions ∆(t) can be found using quadratic Lya-
punov functions. For instance, we can solve the Riccati equation
P∗M + M⊤P∗ = −I for a positive definite matrix P∗, and then
the time derivative of the quadratic Lyapunov function v(x) =
⊤P∗x along solutions of ẋ(t) = [M − ∆(t)]x(t) satisfies v̇ ≤

∥x(t)∥2
− 2x⊤(t)P∗∆(t)x(t), and then can choose ∆̄ so that all

f its entries are strictly less than 1/(2n∥P∗∥), because that will
nsure that ∥P∗∥ ∥∆(t)∥ < 1

2 when ∆ satisfies (82). Here the n in
he denominator of the upper bound on the entries of ∆̄ arises
rom the need to convert a condition on Euclidean 2-norms of
(t) into a condition of the form (82) on the entries of ∆(t). We
efine our observer by

˙̂(t) = [M −∆(t)]x̂(t)
+H(t − ti)[y(t) − CeM(t−ti)x̂(ti)]

(86)

or all t ∈ [ti, ti+1) and i ≥ 0, where H is from (83), and
he solutions of (86) are defined analogously to those of the x̂
ynamics in (71). We then have the following theorem:

heorem 6. Let Assumption 4 hold. Then for each solution x(t)
f (81) and the corresponding solution x̂(t) of the observer (86), we
ave limt→+∞(x(t) − x̂(t)) = 0. □

Proof. Since x(t) = ΦM−∆(t, ti)x(ti) for all t ≥ ti, we have

˙̂x(t) = [M −∆(t)]x̂(t)
+H(t − ti)[CΦM−∆(t, ti)x(ti) − CeM(t−ti)x̂(ti)].

(87)

Here and in the sequel, all equalities and inequalities are for all
t ∈ [ti, ti+1) and i ≥ 0, unless otherwise indicated. Thus

˙̂x(t) = [M −∆(t)]x̂(t)
+H(t − ti)CeM(t−ti)[x(ti) − x̂(ti)]
+H(t − ti)C

[
ΦM−∆(t, ti) − eM(t−ti)

]
x(ti).

(88)

As an immediate consequence of (81) and (88), the variable x̃(t) =

x(t) − x̂(t) satisfies the following:

˙̃x(t) = [M −∆(t)]x̃(t) − H(t − ti)CeM(t−ti)x̃(ti)
−H(t − ti)C

[
ΦM−∆(t, ti) − eM(t−ti)

]
x(ti).

(89)

Applying variation of parameters to (89) gives

x̃(t) = ΦM−∆(t, ti)x̃(ti)
+
∫ t
ti
ΦM−∆(t, ℓ)

[
−H(ℓ− ti)CeM(ℓ−ti)x̃(ti)

−H(ℓ− ti)CE(ℓ, ti)x(ti)] dℓ
= [ΦM−∆(t, ti)

−
∫ t
ti
ΦM−∆(t, ℓ)H(ℓ− ti)CeM(ℓ−ti)dℓ

]
x̃(ti)∫ t

(90)
− ti
ΦM−∆(t, ℓ)H(ℓ− ti)CE(ℓ, ti)dℓx(ti)

8

nd so also
˜(t) = [ΦM (t, ti)

−
∫ t
ti
ΦM (t, ℓ)H(ℓ− ti)CeM(ℓ−ti)dℓ

]
x̃(ti)

+ [E(t, ti)
−
∫ t
ti
E(t, ℓ)H(ℓ− ti)CeM(ℓ−ti)dℓ

]
x̃(ti)

−
∫ t
ti
ΦM−∆(t, ℓ)H(ℓ− ti)CE(ℓ, ti)dℓx(ti),

(91)

where E(r, s) = ΦM−∆(r, s)−eM(r−s) for all r ≥ 0 and s ≥ 0. Thus,
in particular,

x̃(ti+1) =
[
ΦM−∆(ti+1, ti) − eMν

−
∫ ti+1
ti

E(ti+1, ℓ)H(ℓ− ti)CeM(ℓ−ti)dℓ
]
x̃(ti)

−
∫ ti+1
ti

ΦM−∆(ti+1, ℓ)H(ℓ− ti)CE(ℓ, ti)dℓx(ti)

+eMν
[
I −

∫ ti+1
ti

eM(ti−ℓ)H(ℓ− ti)CeM(ℓ−ti)dℓ
]
x̃(ti).

(92)

From the definition of H in (83), it follows that

x̃(ti+1) = eMν {I
−
∫ ti+1
ti

G(M)eM
⊤(ℓ−ti)C⊤CeM(ℓ−ti)dℓ

}
x̃(ti)

+
[
ΦM−∆(ti+1, ti) − eMν

−
∫ ti+1
ti

E(ti+1, ℓ)H(ℓ− ti)CeM(ℓ−ti)dℓ
]
x̃(ti)

−
∫ ti+1
ti

ΦM−∆(ti+1, ℓ)H(ℓ− ti)CE(ℓ, ti)dℓx(ti).

(93)

From the definition of G in (68), we obtain

x̃(ti+1) = G(ti)x̃(ti) + H(ti)x(ti) (94)

with the choices
G(ti) = E(ti+1, ti)

−
∫ ti+1
ti

E(ti+1, ℓ)H(ℓ− ti)CeM(ℓ−ti)dℓ
H(ti) = −

∫ ti+1
ti

ΦM−∆(ti+1, ℓ)H(ℓ− ti)CE(ℓ, ti)dℓ,
(95)

since the quantity in curly braces in (93) is zero.
We next study the discrete time system

ς (ti+1) = G(ti)ς (ti). (96)

In terms of our notation from Assumption 4, we then have

β(ti+1 − ℓ) ≤ E(ti+1, ℓ) ≤ β(ti+1 − ℓ), (97)

y Theorem 2. This gives

(ti+1 − ℓ)
(
H(ℓ− ti)CeM(ℓ−ti)

)+
≤ E(ti+1, ℓ)

(
H(ℓ− ti)CeM(ℓ−ti)

)+
≤ β(ti+1 − ℓ)

(
H(ℓ− ti)CeM(ℓ−ti)

)+ (98)

nd

(ti+1 − ℓ)
(
H(ℓ− ti)CeM(ℓ−ti)

)−
≤ E(ti+1, ℓ)

(
H(ℓ− ti)CeM(ℓ−ti)

)−
≤ β(ti+1 − ℓ)

(
H(ℓ− ti)CeM(ℓ−ti)

)−
.

(99)

herefore

(ti+1 − ℓ)
(
H(ℓ− ti)CeM(ℓ−ti)

)+
−β(ti+1 − ℓ)

(
H(ℓ− ti)CeM(ℓ−ti)

)−
≤ E(ti+1, ℓ)H(ℓ− ti)CeM(ℓ−ti)

≤ β(ti+1 − ℓ)
(
H(ℓ− ti)CeM(ℓ−ti)

)+
β(ti+1 − ℓ)

(
H(ℓ− ti)CeM(ℓ−ti)

)−
.

(100)

Hence, with our choice of G from (95), and with our choices
of Gc and Gc from Assumption 4, we have

Gc(ν) ≤ G(ti) ≤ Gc(ν). (101)

Therefore, the last part of our proof of Theorem 1 implies that
the discrete time system (96) is exponentially stable if the matrix
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we defined in (85) is Schur stable. Since the origin of (81) is
globally uniformly asymptotically stable, we also deduce from
the proof of Theorem 1 that the solutions of (94) exponentially
converge to the origin, which gives the desired result, by the
reasoning from the third step of the proof of Theorem 1. □

8. Application

In the important special case where δ2 and δB in (2) are 0,
the proof of Theorem 1 implies that its closed loop system with
the control (8) is uniformly globally exponentially stable to 0 on
Rn when (9) is Schur stable. On the other hand, we show in this
section how to use (17) to get an alternative sufficient condition
that ensures this exponential stability. We show that our Schur
stability requirement from Theorem 1 is less restrictive than the
condition that would come from only using (17), by proving that
the Schur condition is satisfied under larger bounds δ̄ on δ1 than
the largest bound that we could allow if we instead only used
(17). This will illustrate an advantage of using our Schur stability
condition. Although we assume in this section that δ̄B = 0 and
δ2 = 0 and that ti = iν for all i ≥ 0 and that δ1 is a constant
matrix δ̄, similar reasoning applies for time varying δ1’s, as well
as for ISS cases with nonzero δ2’s.

Consider the dynamics (2) with

M = B = I ∈ R2×2 and δ =

[
0 δ∗
δ∗ 0

]
∈ R2×2 (102)

or a constant δ∗ ∈ (0, 2). This gives S = I , and the function χ
rom (5) is

(r, s) =
∫ s−r
0 e−2ℓdℓI =

1
2 (1 − e−2(s−r))I. (103)

Also, since e(M±δ̄)ℓ
= eMℓe±δ̄ℓ, we have

(M+δ)ℓ
=

[
e(1+δ∗)ℓ+e(1−δ∗)ℓ

2
e(1+δ∗)ℓ−e(1−δ∗)ℓ

2
e(1+δ∗)ℓ−e(1−δ∗)ℓ

2
e(1+δ∗)ℓ+e(1−δ∗)ℓ

2

]
(104)

and

e(M−δ)ℓ
=

[
e(1−δ∗)ℓ+e(1+δ∗)ℓ

2
e(1−δ∗)ℓ−e(1+δ∗)ℓ

2
e(1−δ∗)ℓ−e(1+δ∗)ℓ

2
e(1−δ∗)ℓ+e(1+δ∗)ℓ

2

]
. (105)

Consequently, ξ and ξ from (5) are

ξ (r, s) = er−s(cosh(δ∗(r − s)) − 1)I

and ξ (r, s) = −er−s sinh(δ∗(r − s))
[
0 1
1 0

]
,

(106)

nd the bounding functions from (7) are

F c(r, s) = eL∗ (cosh(δ∗L∗) − 1) I

+
2

1−e−2L∗

∫ L∗
0 eL∗−2ℓ sinh(δ∗(L∗ − ℓ))dℓ

[
0 1
1 0

]
and F c(r, s) = −eL∗ sinh(δ∗L∗)

[
0 1
1 0

]
2

1−e−2L∗

∫ L∗
0 eL∗−2ℓ

[cosh(δ∗(L∗ − ℓ)) − 1]dℓ I,

(107)

where L∗ = s − r , because in this case, (Se−M⊤ℓχ−1)− is the zero
matrix. Since cosh(s) ≥ 1 and sinh(s) ≥ 0 for all s ≥ 0, we
conclude that in this example, we have F̄+

c = F̄c and F−
c = −F c

at all pairs (r, s) where L∗ > 0. Then with the preceding F̄+
c

nd F−
c , the closed loop system from Theorem 1 will be globally

exponentially stable to 0 on Rn provided that the Γ from (9) is
Schur stable.

Next, observe that in this case, the functions (35) are

W (i) = −
∫ ti+1
ti

ΦD(ti+1, ℓ)e−ℓ+σ (ℓ)dℓ 2
1−e−2ν I (108)
+ ΦD(ti+1, ti),
9

here ΦD(t, ℓ) = ΦM−δ1 (t, ℓ) − ΦM (t, ℓ) as before. Then, in this
articular case where δ1 = δ̄ and δB = 0, we obtain

W (i) = e(ti+1−ti)(I−δ̄) − e(ti+1−ti)I

2
1−e−2ν

∫ ti+1
ti

[
e(ti+1−ℓ)(I−δ̄)

− e(ti+1−ℓ)I
]
eti−ℓdℓ

(109)

nd therefore also

(i) = eν(I−δ̄) − eνI
2

1−e−2ν

∫ ν
0

[
e(ν−ℓ)(I−δ̄) − e(ν−ℓ)I

]
e−ℓdℓI.

(110)

herefore, we deduce from (17) that

∥W (i)∥ ≤ ν♯
∫ ν
0 (ν − ℓ)∥δ̄∥e(ν−ℓ)(1+∥δ̄∥)e−ℓdℓ

+ ν∥δ̄∥eν(1+∥δ̄∥)

= ν♯∥δ̄∥
∫ ν
0 (ν − ℓ)eν(1+∥δ̄∥)−ℓ(2+∥δ̄∥)dℓ

+ ν∥δ̄∥eν(1+∥δ̄∥)

= ν♯∥δ̄∥eν(1+∥δ̄∥)
[
ν
∫ ν
0 e−ℓ(2+∥δ̄∥)dℓ

−
∫ ν
0 ℓe

−ℓ(2+∥δ̄∥)dℓ
]

+ ν∥δ̄∥eν(1+∥δ̄∥)

and so also

∥W (i)∥ = ν♯∥δ̄∥eν(1+∥δ̄∥)
[
ν 1−e−ν(2+∥δ̄∥)

2+∥δ̄∥

+
e−ν(2+∥δ̄∥)ν

2+∥δ̄∥

+
−1+e−ν(2+∥δ̄∥)

(2+∥δ̄∥)2

]
+ ν∥δ̄∥eν(1+∥δ̄∥)

= ν♯∥δ̄∥eν(1+∥δ̄∥)
(

ν

2+∥δ̄∥

+
−1+e−ν(2+∥δ̄∥)

(2+∥δ̄∥)2

)
+ ν∥δ̄∥eν(1+∥δ̄∥),

where ν♯ =
2

1−e−2ν . This provides the condition

∥W (i)∥ ≤
2δ∗eν(1+δ∗)

(1−e−2ν )(2+δ∗)

(
ν +

e−ν(2+δ∗)−1
2+δ∗

)
+ νδ∗eν(1+δ∗).

(111)

Hence, by using (17), we conclude that the closed loop system
from Theorem 1 satisfies the desired exponential stability prop-
erty if the right side of (111) is in (0, 1), by the second part of our
proof of Theorem 1. This is more restrictive than our Schur stabil-
ity condition from Theorem 1, because for instance, if δ∗ = 0.36
and ν = 0.72 in the preceding example, then simple Mathematica
calculations imply that the eigenvalues of the matrix Γ in (9)
are {0.969621,−0.767802, 0.246164,−0.170381} (which means
hat the Schur stability requirement is satisfied) but that the right
ide of (111) is 1.0879. If instead we have δ∗ = 1 and ν =

.36, then Γ has eigenvalues {0.95009,−0.688578, 0.292117,
0.178081} but the right side of (111) is 1.11283. It follows that
heorem 1 gives a better stability condition than the one that we
ould have obtained by only applying (17).
In Figs. 1–2, we graphically illustrate the preceding result,

sing plots that we generated using the Mathematica program. In
ig. 1, we show the spectral radius (i.e., the largest of the absolute
alues of the four eigenvalues) of the matrix Γ from Theorem 1,
s a function of the disturbance parameter δ∗ and sample rate
, for the choices from the preceding example. It illustrates a
ange of δ∗ and ν values for which the eigenvalues of Γ remain in
−1, 1) to satisfy our Schur stability requirement from Theorem 1.
n Fig. 2, we plot the norms ∥x(t)∥ of closed loop solutions
btained from applying Theorem 1 to the preceding example with
∗ = 0.36 and ν = 0.72. Fig. 2 shows rapid convergence of the
olutions to zero, and the effects of the sampling in our control
which produces cusps in the plots of the norms at sample times),
nd so also illustrates Theorem 1.
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Fig. 1. Spectral radius Σ(Γ ) of Γ as function of disturbance parameter δ∗ and
sample rate ν, illustrating range of δ∗ and ν values for which our Schur condition
on Γ is satisfied.

Fig. 2. Norm of state of closed loop system from Theorem 1 for example from
ection 8, δ∗ = 0.36, ν = 0.72, Control (8), and Initial States (1, 1) (Red),
1.5, 1) (Black), (2, 1) (Blue), (2.5, 1) (Green), and (3, 1) (Purple), showing rapid
convergence to 0. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

9. Conclusions

We provided new results on feedback stabilization for dynam-
ics with sampling and uncertainty. We allowed additive uncer-
tainty on the right side of the systems, in addition to uncertainty
in both vector fields defining our time-varying linear systems.
Our methods combined positive systems approaches with new
matrix inequalities that estimate fundamental solutions for time-
varying linear systems that contain uncertain coefficient matrices.
Our matrix inequality estimations are of independent interest, be-
cause of the difficulty in estimating fundamental matrix solutions
for time-varying linear systems that contain uncertainties in their
coefficients. Our example illustrated the potential advantages of
our new stabilization approach. In our future work, we aim to
extend our work to nonlinear input delayed systems having right
sides that include Metzler matrices.
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Appendix

A.1. Key Lemmas

We first provide two lemmas that we used in our proofs of our
transition matrix estimation theorems. The first one will use the
fact that for the matrix

P =

[
I I

−I I

]
∈ R(2n)×(2n), (A.1)

we have

P−1
=

[ I
2 −

I
2

I
2

I
2

]
. (A.2)

he following then follows from simple calculations:

emma A.1. For all matrices α ∈ Rn×n and β ∈ Rn×n, we have[
α β

β α

]
P−1

=

[
α + β 0

0 α − β

]
. (A.3)

Also,

P−1
[
γ 0
0 ρ

]
P =

[
γ+ρ

2
γ−ρ

2
γ−ρ

2
γ+ρ

2

]
(A.4)

holds for all matrices γ ∈ Rn×n and ρ ∈ Rn×n. □

We also use the following consequence of the uniqueness of
solutions property for (1) with F = R, which is shown by
checking that H(t, t0) = LΦA(t, t0)L−1 satisfies H(t0, t0) = I and
∂
∂tH(t, t0) = RH(t, t0) for all t ≥ 0 and t0 ≥ 0:

emma A.2. Let A : [0,+∞) → Rn×n. Let L ∈ Rn×n be an
invertible matrix and let R = LAL−1. Then

ΦR(t, t0) = LΦA(t, t0)L−1 (A.5)

for all t0 ∈ [0,+∞) and t ∈ [0,+∞). □

A.2. Proof Of Theorem 2

We consider M(t) and ∆(t) such that M(t) is Metzler for all
t ≥ 0 and such that there is a ∆̄ satisfying the requirements of
Theorem 2. Let

Ω(t) =

[
M(t) ∆(t)
∆(t) M(t)

]
, Ω(t) =

[
M(t) ∆(t)
∆(t) M(t)

]
(A.6)

and Ω(t) =

[
M(t) 0
0 M(t)

]
. (A.7)

Then Ω(t) ≤ Ω(t) ≤ Ω(t). Here and in the sequel, inequalities
and equalities should be understood to hold for all t ≥ 0 unless
therwise indicated. It follows from the comparison lemma that

Ω (t, t0) ≤ ΦΩ (t, t0) ≤ ΦΩ (t, t0). (A.8)

ccording to Lemma A.1,

(t) = P−1
[
M(t) +∆(t) 0

0 M(t) −∆(t)

]
P (A.9)

and

Ω(t) = P−1
[
M(t) +∆(t) 0

0 M(t) −∆(t)

]
P. (A.10)

Then, from (A.8) and Lemma A.2, we have

ΦΩ (t, t0) ≤ P−1

[
ΦM+∆(t, t0) 0

0 ΦM−∆(t, t0)

]
P

≤ P−1

[
ΦM+∆(t, t0) 0

]
P.

(A.11)
0 ΦM−∆(t, t0)
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ence, Lemma A.1 also gives

Ω (t, t0) =

[
ΦM(t, t0) 0

0 ΦM(t, t0)

]

≤

[
ΦM+∆(t,t0)+ΦM−∆(t,t0)

2
ΦM+∆(t,t0)−ΦM−∆(t,t0)

2
ΦM+∆(t,t0)−ΦM−∆(t,t0)

2
ΦM+∆(t,t0)+ΦM−∆(t,t0)

2

]
GM,∆(t, t0), where

(A.12)

M,∆(t, t0) =[
ΦM+∆

(t,t0)+ΦM−∆
(t,t0)

2
ΦM+∆

(t,t0)−ΦM−∆
(t,t0)

2
ΦM+∆

(t,t0)−ΦM−∆
(t,t0)

2
ΦM+∆

(t,t0)+ΦM−∆
(t,t0)

2

]
.

(A.13)

here we straightforwardly deduce from considering the upper
eft and then the upper right submatrices in (A.12) that

M(t, t0) ≤
ΦM+∆(t,t0)+ΦM−∆(t,t0)

2

≤
ΦM+∆

(t,t0)+ΦM−∆
(t,t0)

2

and
−ΦM+∆

(t,t0)+ΦM−∆
(t,t0)

2

≤
−ΦM+∆(t,t0)+ΦM−∆(t,t0)

2 ≤ 0

(A.14)

re satisfied. Adding the corresponding left, middle, and right
ides of the inequalities in (A.14) gives the desired conclusion of
he theorem.

.3. Proof Of Theorem 3

From (21), it follows that P+ρ ≤ P+ρ ≤ P+ρ and −P−ρ̄ ≤

P−ρ ≤ −P−ρ. We deduce from the formula Pρ = (Pρ)+ −

Pρ)− that P+ρ− P−ρ ≤ Pρ ≤ P+ρ− P−ρ is satisfied. Therefore,
e get

P+ρ − P−ρ
)
(P−1)+ ≤ Pρ(P−1)+

≤
(
P+ρ − P−ρ

)
(P−1)+

(A.15)

nd −
(
P+ρ − P−ρ

)
(P−1)−

≤ −Pρ(P−1)− ≤ −
(
P+ρ − P−ρ

)
(P−1)−.

(A.16)

y adding the inequalities in (A.15)–(A.16), we obtain

ς ≤ PρP−1
≤ ς, (A.17)

here ς and ς are defined as follows:

ς =
(
P+ρ − P−ρ

)
(P−1)+ −

(
P+ρ − P−ρ

)
(P−1)− and

=
(
P+ρ − P−ρ

)
(P−1)+ −

(
P+ρ − P−ρ

)
(P−1)−.

hen, since the formula (25) gives M = F + ς̄+, we get

P(A + ρ)P−1
= F + PρP−1

= M −∆ (A.18)

where M is from (25) and ∆ = ς+
−PρP−1. Then M(t) is Metzler

or all t ≥ 0, and (A.17) gives 0 ≤ ∆ ≤ ς+
− ς .

Next, Theorem 2 ensures that

ΦM (t, t0) +
ΦM−ς++ς (t,t0)−ΦM+ς+−ς (t,t0)

2

≤ ΦM−∆(t, t0) ≤
ΦM−ς++ς (t,t0)+ΦM+ς+−ς (t,t0)

2

(A.19)

or all t ≥ t0 ≥ 0. According to Lemma A.2, these inequalities in
ombination with (A.18) give

(t, t0) ≤ PΦA+ρ(t, t0)P−1
= ΦM−∆(t, t0) ≤ µ(t, t0)

for all t ≥ t0 ≥ 0, where

µ(r, s) =
ΦM−ς++ς (r,s)+ΦM+ς+−ς (r,s)

2 and
ΦM−ς++ς (r,s)−ΦM+ς+−ς (r,s)

(A.20)

(r, s) = ΦM (r, s) + 2 .

11
Consequently,

(P−1)+µ(t, t0) ≤ (P−1)+PΦA+ρ(t, t0)P−1

≤ (P−1)+µ(t, t0)
(A.21)

and

−(P−1)−µ(t, t0) ≤ −(P−1)−PΦA+ρ(t, t0)P−1

≤ −(P−1)−µ(t, t0).
(A.22)

Adding (A.21)–(A.22), we get

(P−1)+µ(t, t0) − (P−1)−µ(t, t0) ≤ ΦA+ρ(t, t0)P−1

≤ (P−1)+µ(t, t0) − (P−1)−µ(t, t0).

From these inequalities, we deduce that[
(P−1)+µ(t, t0) − (P−1)−µ(t, t0)

]
P+

≤ ΦA+ρ(t, t0)P−1P+

≤

[
(P−1)+µ(t, t0) − (P−1)−µ(t, t0)

]
P+

(A.23)

nd[
(P−1)+µ(t, t0) − (P−1)−µ(t, t0)

]
P−

−ΦA+ρ(t, t0)P−1P−

−

[
(P−1)+µ(t, t0) − (P−1)−µ(t, t0)

]
P−.

(A.24)

e conclude by adding (A.23)–(A.24), since ζ̃ = ζ̄+
− ζ .

A.4. Proof Of Theorem 4

This appendix provides a proof of Theorem 4. The proof is
based on discrete time analogs of our continuous time transition
matrix estimation theorems that are of independent interest, and
which we prove first. Consider matrices Mi ∈ Rn×n, ∆i ∈ Rn×n,
and ∆̄i ∈ Rn×n such that

Mi ≥ 0 and 0 ≤ ∆i ≤ ∆i (A.25)

for all i ∈ Z≥0. Let us find an upper and a lower bound for

Ei,j =

(Mj−1+i −∆j−1+i).....(Mi+1 −∆i+1)(Mi −∆i),
(A.26)

which is the state transition matrix for Xi+1 = (Mi − ∆i)Xi,
eaning Xj+i = Ei,jXi when j ≥ i with j ≥ 1. We use the matrices

Ωi =

[
Mi ∆i
∆i Mi

]
, Ω i =

[
Mi ∆i

∆i Mi

]
, (A.27)

and κj,i = Ωj−1+i.....Ωi+1Ωi, and κ j,i = Ω j−1+i.....Ω i+1Ω i.
According to Lemma A.1 from Appendix A.1,

Pκj,iP−1
=

[
Di,j 0
0 Ei,j

]
(A.28)

holds for all i and j, where P is the (2n)× (2n) block matrix with
each block being I ∈ Rn×n, Di,j = (Mj−1+i + ∆j−1+i).....(Mi+1 +

∆i+1)(Mi +∆i) and Ei,j defined in (A.26) and

Pκ j,iP−1
=

[
Di,j 0
0 E i,j

]
, (A.29)

where Di,j =

(Mj−1+i +∆j−1+i).....(Mi+1 +∆i+1)(Mi +∆i)
and E i,j =

Mj−1+i −∆j−1+i).....(Mi+1 −∆i+1)(Mi −∆i).

(A.30)

Notice that since ∆i ≥ 0 for all i, the inequalities

κ ≤ κ ≤ Ω .....Ω Ω (A.31)
j,i j,i j−1+i i+1 i
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re satisfied with

j,i =

[
Mj−1+i...Mi+1Mi 0

0 Mj−1+i...Mi+1Mi

]
. (A.32)

s an immediate consequence of (A.28), (A.29), and (A.31),

j,i ≤ P−1
[
Di,j 0
0 Ei,j

]
P ≤ P−1

[
Di,j 0
0 E i,j

]
P (A.33)

old. We deduce from Lemma A.1 that

κ j,i ≤

[
Di,j+Ei,j

2
Di,j−Ei,j

2
Di,j−Ei,j

2
Di,j+Ei,j

2

]
≤

[
Di,j+Ei,j

2
Di,j−Ei,j

2
Di,j−Ei,j

2
Di,j+Ei,j

2

]
,

hich we can combine with (A.25) to get

j−1+i...Mi+1Mi ≤
Di,j+Ei,j

2 ≤
Di,j+Ei,j

2

and Ei,j−Di,j
2 ≤

Ei,j−Di,j
2 ≤ 0

(A.34)

or all i and j. Adding these inequalities gives desired bounds

Mj−1+i...Mi+1Mi +
Ei,j−Di,j

2 ≤ Ei,j ≤
Di,j+Ei,j

2 . (A.35)

We now use the preceding observations to prove Theorem 4.
ote that the preceding analysis and the choices (59) of S j and S̄j
ive S j ≤ (M −∆j−1+i)......(M −∆i) ≤ S̄j for all j ≥ 1. Hence, the
heorem follows by the order preservation property of limits.
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