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Event-Triggered Prediction-Based Delay
Compensation Approach

Frédéric Mazenc , Michael Malisoff , Senior Member, IEEE , and Corina Barbalata, Member, IEEE

Abstract—We provide a new event-triggered delay com-
pensation approach for linear systems with arbitrarily long
constant input delays. Our prediction map is express-
ible as a solution of a discrete time system. Our method
ensures input-to-state stability. We also provide an analog
under measurement delays, where the prediction map is
expressible as a solution of a continuous-discrete system.
Significant novel features are our combined use of matrices
of absolute values and our prediction based event triggers,
instead of Euclidean norms, and the fact that the predic-
tor dynamics always has the same dimension as that of the
original system. Our marine robotic example illustrates an
advantage of using our new methods.

Index Terms—Event-triggered, delay, prediction.

I. INTRODUCTION

E
VENT-TRIGGERED control provides the basis for con-
siderable significant ongoing research, owing to the need

to take communication constraints into account; see [1]
and [5]. One important focus in event-triggered control the-
ory is delay compensation. Chain predictors have been used to
compensate for arbitrarily long input delays in event-triggered
systems, using a dynamic extension whose dimension grows
linearly with the length of the delay [8]. Standard event trig-
gers use standard Euclidean norms to measure deviations of
the current state from a reference state.
By contrast, recent synergies of event triggering, chain

predictors, and interval observers [3] were based on replac-
ing the usual Euclidean norm by vectors of absolute values;
see [8]–[11], which illustrate the benefits of this replacement.
Although (as indicated, e.g., in [2]) chain predictors elim-
inate the need for the distributed terms arising in standard
delay compensating predictors by enlarging the dimension of
the dynamic extension to compensate for longer delays, it is
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beneficial to bypass the need for distributed terms without
having the dimension of the dynamic extension increase for
longer delays. This motivates this letter, where we use a new
predictive approach to compensate for arbitrarily long con-
stant input delays, where the predictor can be expressed as a
solution of a discrete time system. The predictor is a dynamic
extension having the same dimension as the given system,
regardless of the size of the input delay. We also provide an
analog for output delays, whose predictor map is a solution
of a continuous-discrete system. This contrasts with notable
works such as [15], whose pole conditions are not needed
here.

We use standard notation, which we simplify when no con-
fusion would arise. The dimensions of our Euclidean spaces
are arbitrary, unless we indicate otherwise. Our inequalities
involving matrices of the same size are to be understood as
being entrywise, i.e., if M = [mij] and N = [nij], then M ≤ N
means mij ≤ nij for all i and j and similarly for <. Set
Z0 = {0, 1, 2, . . .} and N = Z0\{0}. Given G = [gij] ∈ R

r×s,
we set |G| = [|gij|], i.e., the entries of |G| are the abso-
lute values of the corresponding entries of G. We also set
G+ = [max{gij, 0}] and G− = G+ − G. For a matrix valued
function G(r) = [gij(r)] and an interval J in G’s domain on
which all of its entries gij are bounded real valued functions,
we set supr∈J |G(r)| = [ supr∈J |gij(r)|], i.e., the supremum is
entrywise. A square matrix is called Metzler provided all of
its off-diagonal entries are nonnegative. We let ‖ · ‖ denote
the standard Euclidean norm of matrices, ‖h‖S denote the
sup norm in this norm for functions h over a subset S of
the domain of h, 0 be the matrix whose entries are all zeros,
and I denote the identity matrix. We use the standard defini-
tions of input-to-state stability (or ISS, which we also use to
abbreviate input-to-state stable) from [14].

II. SYSTEM WITH DELAY IN THE INPUT

A. Studied System

We consider the system

ẋ(t) = Ax(t)+ Bu(t − τ)+ δ(t) (1)

with x valued in R
n, the control u valued in R

p, τ > 0
being a constant, constant matrices A ∈ R

n×n and B ∈ R
n×p,

and each component of δ being piecewise continuous. We
use two assumptions (but see Remark 1 for sufficient con-
ditions under which Assumption 1 holds after a change of
variables).

Assumption 1: There is a matrix K ∈ R
p×n such that the

matrix H = A+ BK is Hurwitz and Metzler.
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Assumption 2: There is a known piecewise continuous
function δ : [0,+∞) → [0,+∞)n such that

|δ(t)| ≤ δ(t) (2)

for all t ≥ 0.
Under Assumption 1, there are a constant p > 0 and a vector

V ∈ R
n such that V > 0 and such that the inequality

V⊤H ≤ −pV⊤ (3)

holds (e.g., by [4, Lemma 2.3, p.41]). We use the function

ω(s) = eAs +

∫ s

0

eAℓdℓBK. (4)

We can then fix a small enough constant ν > 0 such that ω(s)
is nonsingular for all s ∈ [0, ν] and such that the matrix

Ŵ1 = sup
r∈[0,ν]

∣

∣

∣
ω(r)−1 − I

∣

∣

∣
(5)

is such that the inequality

− pV⊤ + V⊤|BK|Ŵ1 < 0 (6)

is satisfied. The existence of such a constant ν is a consequence
of the facts that p > 0, V > 0, and ω(0) = I.

Remark 1: Assumption 1 can be satisfied for systems ẋ =
A0x + B0u after a change of coordinates, when (A0, B0) is a
controllable pair. This is done by first finding a matrix K0 such
that A0+B0K0 is Hurwitz with distinct real eigenvalues, then
choosing a matrix P such that P−1(A0 + B0K0)P is diagonal,
and then choosing A = P−1A0P, B = P−1B0, and K = K0P,
to obtain an H that is Hurwitz and Metzler.

B. Main Result

Our event-triggered control will use the matrices

λ = sup
m∈[0,ν]

∣

∣

∣
ω(m)−1

∣

∣

∣
and Ŵ2 = νλe|A|ν |BK|e|A|τ (7)

with ν defined above and the simplifying notation

ξi = eAτ x(ti − τ)+

∫ ti−τ

ti−2τ

eA(ti−τ−m)Bu(m)dm. (8)

Given any constant T ≥ ν + τ and K from the previous
subsection, we propose the event triggered control

{

u(t) = 0 if t ∈ [−2τ, ν)
u(t − τ) = Kξi if t ∈ [ti, ti+1) and i ≥ 1,

(9)

where the sequence ti is defined by these three conditions:


















(i) t0 = 0,
(ii) t1 = ν + τ, and
(iii) for each i ≥ 1, the value ti+1 is defined by
ti+1 = sup{b ∈ [ti, ti + T) : |zi(s)− x(ti)|

≤ Ŵ1|zi(s)| + Ŵ2

∫ s

s−ν−τ
δ(ℓ)dℓ for all s ∈ [ti, b]}

(10)

where zi is the solution of the initial value problem

żi(t) = Azi(t)+ BKξi, zi(ti) = x(ti) (11)

for each i ≥ 1 (so u(t − τ) = 0 if t ∈ [−τ, t1)). We prove:
Theorem 1: The system (1) with u and the sequence {ti}

defined in (9)-(11) is ISS with respect to δ. Also, ti+1− ti ≥ ν
for all i ≥ 0.

Remark 2: The control u and triggering times ti can be
computed in the following recursive way. The formulas (9)
with i = 1 define the control on [0, t2), where t2 is defined as
follows: Either t2 is the supremum of times b ≥ t1 for which

|z1(s)− x(t1)| ≤ Ŵ1|z1(s)| + Ŵ2

∫ s

s−ν−τ

δ(ℓ)dℓ (12)

holds for all s ∈ [t1, b] if this supremum lies in [t1, t1+T), or
t2 = t1 + T otherwise. Then we use (8) to define ξ2 to define

Fig. 1. Implementing Control from Theorem 1, Illustrating Control
Values on Time Intervals and Feasibility of Method.

the control values on [t2, t3), where t3 is found in the same
way that we found t2 except with the index i increased by 1.
Continuing inductively defines all triggering times ti and the
control values for all times t ≥ 0. Using the test inequalities

|zi(s)− x(ti)| ≤ Ŵ1|zi(s)| + Ŵ2

∫ s

s−ν−τ

δ(ℓ)dℓ (Ti)

and the constant values Bi = sup{b ∈ [ti, ti +
T) : (Ti) holds for all s ∈ [ti, b]}, our recursive algorithm is
summarized in this table, which explains how to choose ti+1
after having chosen ti for each i ≥ 0 in the two cases:

This implies that ti+1 − ti ∈ [0, T] for all i ≥ 1. This dif-
fers significantly from standard triggers, which use Euclidean
norms instead of the vectors of absolute values.

Remark 3: Our proof of Theorem 1 will show how con-
dition (iii) is needed to allow cases where δ is not the zero
function. It is used to compare solutions of the zi dynam-
ics (11) and the x dynamics. We use the values zi(s) in the
triggering conditions instead of x(s) to eliminate the need to
know future δ(t) values when determining future triggering
times. Moreover, by using the values zi(s) of the dynamic
extensions (11) instead of x(s) in the event trigger condition
in (iii), we eliminate the need to continuously measure the
state x(t) to determine future triggering times.

Remark 4: It is tempting to surmise from (8)-(9) that the
control u is not available in explicit form, because substitut-
ing (9) into (8) produces ξi on both sides of (8). However, this
is not the case, because for each i ≥ 1, we can write ξi as the
state of the discrete time system

ξi = eAτ x(ti − τ)

+ eAti

[ i−1
∑

j=J(i,τ )

∫ tj+1

tj

e−AmdmBKξj

+

∫ tJ(i,τ )

ti−τ

e−AmdmBKξJ(i,τ )−1

]

(13)

with the initial state ξ0 = eAτ x(−τ), where J(i, τ ) is the small-
est integer j such that tj ≥ ti − τ (so J(i, τ ) ≤ i), and with
the notational convention that the sum in (13) is not present
if J(i, τ ) = i. The preceding allow us to write the control u
from (9) in closed form. Also, by induction on i, ξi does not
depend on event times tj for any values j > i, and it also
does not depend on any values x(ℓ) at times ℓ ≥ ti− τ . Since
u(t− τ) = Kξi is the constant control value that we use in (1)
for all times t ∈ [ti, ti+1) for each i ≥ 1, this ensures the
implementability of our control; see Fig. 1.

C. Proof of Theorem 1

The proof has two parts. In the first part, we prove the
lower bound condition infi{ti+1 − ti} ≥ ν, to rule out Zeno’s
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phenomenon (which would have allowed infinitely many trig-
gering times on an interval of finite length). In the second part,
we use interval observers to prove the ISS assertion.
1) Ruling Out Zeno’s Phenomenon: Consider any i ≥ 1.

Then substituting (8) into (11) gives

żi(t) = Azi(t)+ BK

[

eAτ x(ti − τ)

+

∫ ti−τ

ti−2τ

eA(ti−τ−m)Bu(m)dm

]

(14)

for all t ≥ ti, and (1) and variation of parameters give

x(t) = eAτ x(t − τ)+

∫ t−τ

t−2τ

eA(t−ℓ−τ)Bu(ℓ)dℓ

+

∫ t

t−τ

eA(t−ℓ)δ(ℓ)dℓ (15)

for all t ≥ τ . As an immediate consequence,

żi(t) = Azi(t)+ BK

[

x(ti)−

∫ ti

ti−τ

eA(ti−ℓ)δ(ℓ)dℓ

]

(16)

for all t ≥ ti. Since x(ti) = zi(ti), it follows that

żi(t) = Azi(t)+ BKzi(ti)+ δ♯(t) (17)

for all t ≥ ti. where

δ♯(t) = −BK

∫ ti

ti−τ

eA(ti−m)δ(m)dm. (18)

By applying variation of parameters to (17) on the interval
[ti, t] for any t ∈ [ti, ti + ν] with the choice (18), we get

zi(t) = ω(t − ti)zi(ti)+

∫ t

ti

eA(t−ℓ)δ♯(ℓ)dℓ (19)

where ω was defined in (4). As an immediate consequence,

zi(ti) = ω(t − ti)
−1zi(t)− ω(t − ti)

−1

∫ t

ti

eA(t−ℓ)δ♯(ℓ)dℓ (20)

for all t ∈ [ti, ti + ν]. It follows that

|zi(t)− zi(ti)| ≤

∣

∣

∣
I − ω(t − ti)

−1
∣

∣

∣
|zi(t)|

+

∣

∣

∣

∣

ω(t − ti)
−1

∫ t

ti

eA(t−ℓ)δ♯(ℓ)dℓ

∣

∣

∣

∣

≤ Ŵ1|zi(t)| +

∣

∣

∣

∣

ω(t − ti)
−1

∫ t

ti

eA(t−ℓ)δ♯(ℓ)dℓ

∣

∣

∣

∣

(21)

for all t ∈ [ti, ti + ν]. By our choice of δ♯, we deduce that

|zi(t)− zi(ti)| ≤ Ŵ1|zi(t)|

+ λ

∫ t

ti

∣

∣

∣
eA(t−ℓ)

∣

∣

∣

∣

∣

∣

∣

BK

∫ ti

ti−τ

eA(ti−m)δ(m)dm

∣

∣

∣

∣

dℓ (22)

and so also

|zi(t)− zi(ti)| ≤ Ŵ1|zi(t)| + νλe|A|ν |BK|e|A|τ
∫ t

t−ν−τ

|δ(m)|dm,

(23)

where we used the fact that |eAr| ≤ e|A‖r| for all real values r
(which follows from the Maclaurin series representation of the
matrix exponential and subadditivity of the matrix norm) and
the fact that t − ν − τ ≤ ti − τ ≤ ti ≤ t for all t ∈ [ti, ti + ν].
Thus, since (11) gives x(ti) = zi(ti), (23) gives

|zi(t)− x(ti)| ≤ Ŵ1|zi(t)| + Ŵ2

∫ t

t−ν−τ

|δ(m)|dm (24)

for all t ∈ [ti, ti + ν]. We conclude that ti+1 − ti ≥ ν.
2) Stability Analysis: We perform a stability analysis of (1)

with u and (ti) defined by (9)-(10). We consider any i ≥ 1.

From (8)-(9) and (15), it follows that

u(t − τ) = K

[

x(ti)−

∫ ti

ti−τ

eA(ti−ℓ)δ(ℓ)dℓ

]

(25)

for all t ∈ [ti, ti+1). Hence, the system (1) is

ẋ(t) = Hx(t)+ BK[x(ti)− x(t)]+ δ̄♯(t) (26)

for all t ∈ [ti, ti+1), where δ̄♯ = δ♯ + δ with δ♯ as defined
by (18) as before. Then we define a comparison system by

{

ẋ(t) = Hx(t)+ (BK[x(ti)− x(t)])+ +
(

δ̄♯(t)
)+

ẋ(t) = Hx(t)− (BK[x(ti)− x(t)])− −
(

δ̄♯(t)
)− (27)

for all t ∈ [ti, ti+1) and i ≥ 1.
Consider solutions of (26)-(27) such that x(t1) ≤ x(t1) and

x(t1) ≤ x(t1). Since H is Metzler, it follows that

x(t) ≤ x(t) ≤ x(t) (28)

holds for all t ≥ t1; this follows by noting that X = x − x
and X = x − x are both solutions of a dynamics of the form
Ẋ(t) = MX(t)+G(t) for a Metzler M and a nonnegative valued
piecewise continuous G(t) and by then applying [6, Lemma 1].
Similarly, 0 ≤ x(t) and 0 ≤ −x(t) for all t ≥ t1. We deduce
that x(t)− x(t) ≤ x(t) ≤ x(t)− x(t) and so also

|x(t)| ≤ x(t)− x(t) for all t ≥ ν + τ. (29)

We next use the variable s and the function U that are
defined by s(t) = x(t)− x(t) and U(s) = V⊤s. From (27), we
get ṡ(t) = Hs(t)+|BK[x(ti)−x(t)]|+|δ̄♯(t)| for all t ∈ [ti, ti+1)
and i ≥ 1. Hence, by (3), the time derivative of U satisfies

U̇(t) ≤ −pV⊤s(t)+ V⊤|BK||x(ti)− x(t)| + V⊤
∣

∣δ̄♯(t)
∣

∣(30)

for all t ∈ [ti, ti+1). Also, by the structures of the dynamics (1)
and (11) and the fact that zi(ti) = x(ti), we have

‖zi(t)− x(t)‖ =

∣

∣

∣

∣

∣

∣

∣

∣

∫ t

ti

e(t−ℓ)Aδ(ℓ)dℓ

∣

∣

∣

∣

∣

∣

∣

∣

≤ e‖A‖TT‖δ‖[ti,t]

for all t ∈ [ti, ti+1), by applying variation of parameters to the
dynamics for x− zi. It follows from (18), (24), (29), (30), and
the fact that T ≥ τ that for all t ≥ t1, we have

U̇(t) ≤ −pV⊤s(t)+ δB(t)

+ V⊤|BK|

(

Ŵ1|x(t)| + Ŵ2

∫ t

t−ν−τ

δ(ℓ)dℓ

)

≤
(

−pV⊤ + V⊤|BK|Ŵ1

)

s(t)

+ V⊤|BK|

(

Ŵ2

∫ t

t−ν−τ

δ(ℓ)dℓ

)

+ δB(t) (31)

where δB(t) = (‖V⊤BK‖e‖A‖TT[2+‖Ŵ1‖]+‖V‖)‖δ‖[0,t], the
2 in the δB formula came from our using the bound |x(ti) −
x(t)| ≤ |zi(t)− x(ti)| + |zi(t)− x(t)| to bound the second right
side term in (30), and the Ŵ1 in the δB formula came from the
bound Ŵ1|zi(t)| ≤ Ŵ1|x(t)| + Ŵ1|x(t)− zi(t)|.

Using (6), we can find a constant µ > 0 such that

U̇(t) ≤ −µU(s(t))+ β1‖δ‖[0,t] for all t ≥ t1, where (32)

β1 = ‖V‖
(

T
∣

∣

∣

∣BK|Ŵ2

∣

∣

∣

∣+ (2+ ‖Ŵ1‖)‖BK‖e‖A‖T T + 1
)

. (33)

It follows from integrating (32) that for all t ≥ t1, we have

U(s(t)) ≤ e−µ(t−t1)U(s(t1))+

∫ t

t1

e−µ(t−m)β1‖δ‖[0,m]dm

≤ e−µ(t−t1)U(s(t1))+
β1

µ
‖δ‖[0,t]. (34)

Since V > 0, the last inequality allows us to conclude that
there are constants βi > 0 for i = 2, 3 such that

‖s(t)‖ ≤ β2e−µ(t−t1)‖s(t1)‖ + β3‖δ‖[0,t] (35)
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for all t ≥ t1. From (29), we deduce that

‖x(t)‖ ≤ β2e−µ(t−t1)‖x(t1)− x(t1)‖ + β3‖δ‖[0,t]

Since we can assume that x(t1) ≤ 2x(t1)
+ and x(t1) ≥

−2x(t1)
−, this gives

‖x(t)‖ ≤ 2β2e−µ(t−t1)‖x(t1)‖ + β3‖δ‖[0,t] (36)

for all t ≥ t1. Also, (1) gives ‖x(t)‖ ≤ ‖x(0)‖e‖A‖(2t1−t) +
t1e‖A‖t1‖δ‖[0,t] for all t ∈ [0, t1], which we can add to (36) to
get the desired ISS estimate.

III. SYSTEM WITH A DELAY IN THE MEASUREMENTS

A. Studied System

We next consider the system
{

ẋ(t) = Ax(t)+ Bu(t)+ δ(t)
y(t) = Cx(t − τ)

(37)

where x is valued in R
n, the known function u is valued in

R
p and will be specified, C ∈ R

q×n is known, y is valued
in R

q, τ > 0 is a constant delay, and the unknown func-
tion δ has piecewise continuous components. In addition to
Assumptions 1 and 2, we now assume:

Assumption 3: The pair (A, C) is observable.
Note that Assumption 3 implies that with the choice

C1 = Ce−Aτ , (38)

the pair (A, C1) is observable for all measurement delays
τ > 0. We let ν, p, V , Ŵ1, ω and λ be as defined in Section II.

B. Preliminary Step: Finite Time Observer

The following finite time observer differs from works such
as [7] and is more amenable to event-triggered control:

Lemma 1: With the preceding notation and under
Assumptions 1-3, and in terms of the matrix an functions

E =

∫ 0

−τ

eA⊤ℓC⊤1C1eAℓdℓ, (39)

y£(t) = E
−1

∫ t

t−τ

eA⊤(m−t)C⊤1

[

y(m)

+ C1

∫ t

m−τ

eA(m−ℓ)Bu(ℓ)dℓ

]

dm, (40)

and

δ£(t) = −E
−1

∫ t

t−τ

eA⊤(m−t)C⊤1C1

∫ t

m−τ

eA(m−ℓ)δ(ℓ)dℓdm, (41)

we have

y£(t) = x(t)+ δ£(t) (42)

for all t ≥ 2τ for all solutions of the system (37).
Proof: The matrix (39) is invertible because (A, C1) is

observable; see, e.g., [13, Sec. 3.5]. Next notice that

x(t − τ) = e−Aτ x(t)−

∫ t

t−τ

eA(t−ℓ−τ)Bu(ℓ)dℓ

−

∫ t

t−τ

eA(t−ℓ−τ)δ(ℓ)dℓ for all t ≥ τ, (43)

by applying variation of parameters to (37). Hence,

y(t) = Ce−Aτ x(t)− C

∫ t

t−τ

eA(t−ℓ−τ)Bu(ℓ)dℓ

− C

∫ t

t−τ

eA(t−ℓ−τ)δ(ℓ)dℓ (44)

for all t ≥ τ . We next use the function

y⋆(t) = y(t)+ C

∫ t

t−τ

eA(t−ℓ−τ)Bu(ℓ)dℓ (45)

for all t ≥ τ . The function (45) is available for measurement,
because y and its integral term are known. Moreover,

y⋆(t) = C1x(t)+ δ1(t) (46)

with C1 defined in (38) and

δ1(t) = −C

∫ t

t−τ

eA(t−ℓ−τ)δ(ℓ)dℓ (47)

is available for all t ≥ τ . By applying variation of parame-
ters to (37) on [m, t] and then substituting the result into the
relation y⋆(m)− δ1(m) = C1x(m) from (46), we get

C1eA(m−t)x(t) = y⋆(m)− δ1(m)+ C1

∫ t

m

eA(m−ℓ)Bu(ℓ)dℓ

+ C1

∫ t

m

eA(m−ℓ)δ(ℓ)dℓ (48)

for all m ∈ [t − τ, t] and t ≥ τ . It follows that

eA⊤(m−t)C♯eA(m−t)x(t)

= eA⊤(m−t)C⊤1y⋆(m)− eA⊤(m−t)C⊤1δ1(m)

+ eA⊤(m−t)C♯

∫ t

m

eA(m−ℓ)Bu(ℓ)dℓ

+ eA⊤(m−t)C♯

∫ t

m

eA(m−ℓ)δ(ℓ)dℓ, (49)

where C♯ = C⊤1C1. By integrating both sides of (49) over all
m ∈ [t − τ, t] for a fixed value of t and then left multiplying
the result by E−1, it follows that for all t ≥ 2τ , we get

x(t) = E
−1

∫ t

t−τ

eA⊤(m−t)C⊤1y⋆(m)dm

+ E
−1

∫ t

t−τ

eA⊤(m−t)C♯

∫ t

m

eA(m−ℓ)Bu(ℓ)dℓdm

− E
−1

∫ t

t−τ

eA⊤(m−t)C⊤1δ1(m)dm

+ E
−1

∫ t

t−τ

eA⊤(m−t)C♯

∫ t

m

eA(m−ℓ)δ(ℓ)dℓdm. (50)

From the definition (45) of y⋆(m) and (38), we deduce that

x(t) = E
−1

∫ t

t−τ

eA⊤(m−t)C⊤1y(m)dm

+ E
−1

∫ t

t−τ

eA⊤(m−t)C⊤1C

∫ m

m−τ

eA(m−ℓ−τ)Bu(ℓ)dℓdm

+ E
−1

∫ t

t−τ

eA⊤(m−t)C♯

∫ t

m

eA(m−ℓ)Bu(ℓ)dℓdm

− E
−1

∫ t

t−τ

eA⊤(m−t)C⊤1δ1(m)dm

+ E
−1

∫ t

t−τ

eA⊤(m−t)C♯

∫ t

m

eA(m−ℓ)δ(ℓ)dℓdm

= E
−1

∫ t

t−τ

eA⊤(m−t)C⊤1y(m)dm

+ E
−1

∫ t

t−τ

eA⊤(m−t)C♯

∫ t

m−τ

eA(m−ℓ)Bu(ℓ)dℓdm

− E
−1

∫ t

t−τ

eA⊤(m−t)C⊤1δ1(m)dm

+ E
−1

∫ t

t−τ

eA⊤(m−t)C♯

∫ t

m

eA(m−ℓ)δ(ℓ)dℓdm (51)
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for all t ≥ 2τ , which we can combine with the formula (47)
for δ1 to obtain the final decomposition (42).

C. Main Result

In terms of the function y£ from (40) and the matrix

Ŵ3 = λe|A|νντ |BK||E−1|e|A
⊤|τ |C⊤1C1|e

2τ |A| (52)

and the other notation from the previous sections, we define
the control u by

{

u(t) = 0 if t ∈ [−2τ, t1)
u(t) = Ky£(ti) if t ∈ [ti, ti+1) and i ≥ 1,

(53)

where the sequence of event trigger times ti are defined by


















(i) t0 = 0,
(ii) t1 = ν + 2τ, and
(iii) for each i ≥ 1, ti+1 is defined by
ti+1 = sup{b ∈ [ti, ti + T) : |zi(s)− x(ti)|

≤ Ŵ1|zi(s)| + Ŵ3

∫ s

s−ν−2τ δ(ℓ)dℓ for all s ∈ [ti, b]}

(54)

where zi is the solution of the initial value problem

żi(t) = Azi(t)+ BKy£(ti), zi(ti) = x(ti) (55)

for each i ≥ 1, and where we now require our constant T to
be such that T ≥ ν + 2τ . We prove:

Theorem 2: Let Assumptions 1-3 hold. Then, the
system (37) with u and (ti) defined in (53)-(55) is ISS
with respect to δ. Also, ti+1 − ti ≥ ν for all i ≥ 0.

Remark 5: The reasoning from Remarks 1-3 also applies
to Theorem 2, except with Ŵ2 replaced by Ŵ3, and τ replaced
by 2τ in the lower bound of integration in (iii) from (10). In
particular, ti+1 − ti ∈ [0, T] for all i ≥ 1.

Remark 6: By reasoning analogously to the input delay
case in Remark 4, we can express the function y£ as a solu-
tion of a continuous-discrete system. To see how it can be
done, notice that differentiating the formula for y£ from (40),
and then substituting the formula u(t) = Ky£(ti) from (53),
implies that for each t ∈ [ti, ti+1) and i ≥ 1, we have

ẏ£(t) = E
−1C⊤1

[

y(t)+ C1eAt
M1(t)

]

− E
−1A⊤Ey£(t)+ BKy£(ti)

− E
−1e−A⊤τ C⊤1

[

y(t − τ)+ C1eA(t−τ)
M2(t)

]

, (56)

where for k = 1, 2, we use the definitions and formulas

Mk(t) =

∫ t

t−kτ

e−AℓBu(ℓ)dℓ

=

∫ t

ti

e−AℓdmBKy£(ti)+

i−1
∑

j=J(t−kτ)

∫ tj+1

tj

e−AmdmBKy£(tj)

+

∫ tJ(t−kτ)

t−kτ

e−AmdmBKy£(tJ(t−kτ)−1) (57)

if ti ≥ t − kτ with J(t − kτ) being the smallest j such that
tj ≥ t − kτ and with the notational convention that the sum
in (57) is not present if J(t − kτ) = i, and

Mk(t) =

∫ t

t−kτ

e−AℓdmBKy£(ti) (58)

if ti < t − kτ , and with the initial function

y£(ℓ) = E
−1

∫ t1

ν+τ

eA⊤(m−t1)C⊤1y(m)dm (59)

for all ℓ ∈ [0, t1]. The equations (56)-(59) show how (40) is
expressible as a solution of a continuous-discrete system.

D. Proof of Theorem 2

The proof has two parts. First, we prove the lower bound
condition infi{ti+1 − ti} ≥ ν, to rule out Zeno’s phenomenon.
Then, we use interval observers to prove the ISS assertion.

1) Ruling Out Zeno’s Phenomenon: To prove that Zeno’s
phenomenon does not occur, we fix an i ≥ 1, and we introduce
the function δ⋆ defined by δ⋆(t) = BKδ£(ti) for all t ≥ ti. Then
from the decomposition of y£ from (42) and zi(ti) = x(ti), the
dynamics in (55) satisfy żi(t) = Azi(t) + BKzi(ti) + δ⋆(t) for
all t ≥ ti. It follows that

zi(t) = ω(t − ti)zi(ti)+

∫ t

ti

eA(t−ℓ)δ⋆(ℓ)dℓ (60)

for all t ∈ [ti, ti + ν], and so also

zi(ti) = ω(t − ti)
−1zi(t)

− ω(t − ti)
−1

∫ t

ti

eA(t−ℓ)δ⋆(ℓ)dℓ, (61)

by the reasoning that gave (20). We deduce that

|zi(t)− zi(ti)| ≤

∣

∣

∣
ω(t − ti)

−1 − I

∣

∣

∣
|zi(t)

+

∣

∣

∣
ω(t − ti)

−1
∣

∣

∣

∫ t

ti

e|A|(t−ℓ)|δ⋆(ℓ)|dℓ. (62)

Thus, for all t ∈ [ti, ti + ν], we have

|zi(t)− zi(ti)| ≤ Ŵ1|zi(t)| + λe|A|ν
∫ t

ti

|δ⋆(ℓ)|dℓ. (63)

Setting C♯ = C⊤1C1 as before, it follows from our for-

mula (41) for δ£ that for all ℓ ∈ [ti, t], we have

|δ⋆(ℓ)| ≤ |BK|

∣

∣

∣

∣

E
−1

∫ ti

ti−τ

eA⊤(m−ti)C♯

∫ ti

m−τ

eA(m−ℓ)δ(ℓ)dℓdm

∣

∣

∣

∣

. (64)

Consequently, for all t ∈ [ti, ti + ν], we have
∫ t

ti

|δ⋆(ℓ)|dℓ

≤ (t − ti)τ |BK||E−1|e|A
⊤|τ |C♯|e2τ |A|

∫ ti

ti−2τ

|δ(ℓ)|dℓ

≤ ντ |BK||E−1|e|A
⊤|τ |C♯|e2τ |A|

∫ ti

ti−2τ

|δ(ℓ)|dℓ. (65)

Using the last inequality in (65) to bound the integral in (63),
it follows that for t ∈ [ti, ti + ν], we have

|zi(t)− zi(ti)| ≤ Ŵ1|zi(t)| + Ŵ3

∫ t

t−ν−2τ

|δ(m)|dm. (66)

Hence, ti+1 − ti ≥ ν, so Zeno’s phenomenon does not occur.

2) Stability: We have ẋ(t) = Ax(t)+ BKy£(ti)+ δ(t) for all
t ∈ [ti, ti+1) and i ≥ 1. We deduce from (42) that

ẋ(t) = Hx(t)+ BK(x(ti)− x(t))+ BKδ£(ti)+ δ(t) (67)

for all t ∈ [ti, ti+1). Then the remaining part of the proof is
similar to the second part of the proof of Theorem 1.

IV. ILLUSTRATION

We revisit a dynamics for the control of the depth and pitch
degrees-of-freedom (or DOF) of an autonomous underwater
vehicle that we studied in [11], e.g., the BlueROV2 vehicle,
which is widely used in environmental surveys such as the
study of corals. As in [11], we assume that the vehicle has
a Doppler Velocity Logger (or DVL) for estimating its veloc-
ity. The DVL commonly experiences bottom lock, making it
impractical to continuously change the control values. Hence,
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we show how Theorems 1-2 apply, and so cover measure-
ment delays which were beyond the scope of [11] or other
event-triggered studies of the dynamics.
As noted in [12, eq. (9.28)], after linearization and assuming

that the vehicle is neutrally buoyant, the linearized dynamics
for the depth plane are given by

(m− Xẇ(t))ẇ(t)− (mxg + Zq̇)q̇(t)

− Zww(t)− (mU + zq)q(t) = Zγs uZ

(mxg +Mẇ(t))ẇ(t)+ (Iyy −Mq̇)q̇(t)

− Mww(t)+ (mxgU −Mq)q(t)−Mθθ = MγsuM (68)

whose parameter values were experimentally computed and
presented in [12]. As in [11], we assume that the surge nomi-
nal velocity is U = 0.1m/s. The states x = [w, q]⊤ represent
the depth and pitch velocity, and the controls uZ and uM are
the force and moment required to produce motion of the vehi-
cle. Using the parameter values and controller from [12], the
system (68) becomes ẋ(t) = A0x(t)+ B0u with

A0 =

[

−0.17742 −0.3027
0.5394 −1.4685

]

and B0 =

[

−0.2063
−0.7629

]

. (69)

Choosing K0 such that A0+B0K0 has any two distinct negative
eigenvalues (e.g., using the command FeedbackGains in
the Mathematica program) and then applying a diagonalizing
similarity transformation to obtain the matrices A = P−1A0P,
B = P−1B0, and K = K0P as in Remark 1 above, we can
satisfy the assumptions of Theorem 1. Also, when (A, C) is
observable, the assumptions of Theorem 2 can be satisfied.
Hence, Theorems 1-2 from the previous sections provide a
useful alternative to results that could be obtained from [8],
by only requiring a 2-dimensional piecewise continuous pre-
dictor using the values ξi (which are needed to compensate
for the input delays) regardless of the input delay length
(instead of the chains of dynamical extensions that would
be required when using [8]), and also covering measurement
delays which were beyond the scope of event-triggered works
like [8] and [11].
In Figs. 2a and 2b, we show our MATLAB plots of the

closed loop solutions for the preceding system obtained from
applying Theorems 1 and 2, respectively. We chose τ = 0.1 s,
ν = 0.4077, K0 = [0.941, 0.637], P as in the preceding para-
graph, and C = [1, 1]P (i.e., only the sum of the components
of the states in the original variables is measured). The ele-
ments of Ŵ1 were 0.001, and both elements of V were 1. We
used p = 0.5, and a constant δ = [δ1, δ2]

⊤, with each δi

for i = 1, 2 found with the function rand(·) in MATLAB
which draws values from the open interval (0, 1). Since our
plots show desired convergence, they illustrate the value of
our method, in the special case of the BlueROV2 with input
or measurement delay.

V. CONCLUSION

We proposed new event-triggered controls for linear time-
invariant systems with a known arbitrarily long constant
delays. Key novel features included (a) our alternative event
triggers based on vectors of absolute values and (b) that our
predictor maps were expressible as solutions of a discrete
time system (under arbitrarily large constant input delays) or
as solutions of continuous-discrete dynamic extensions (under

Fig. 2. Simulation for (a) input and (b) measurement delays.

measurement delays), with each of these predictor systems
having its dimension equaling the dimension of the original
systems that we render ISS and no distributed terms. This is
a useful alternative to chain predictors whose dynamic exten-
sions become arbitrarily large in dimension for bigger delays.
Time-varying extensions are expected.
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