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The human ability to flexibly reason using analogies with domain-general content depends on mechanisms

for identifying relations between concepts, and for mapping concepts and their relations across analogs.

Building on a recent model of how semantic relations can be learned from nonrelational word embeddings,

we present a new computational model of mapping between two analogs. The model adopts a Bayesian

framework for probabilistic graph matching, operating on semantic relation networks constructed from

distributed representations of individual concepts and of relations between concepts. Through comparisons

of model predictions with human performance in a novel mapping task requiring integration of multiple

relations, as well as in several classic studies, we demonstrate that the model accounts for a broad range of

phenomena involving analogical mapping by both adults and children. We also show the potential for

extending the model to deal with analog retrieval. Our approach demonstrates that human-like analogical

mapping can emerge from comparison mechanisms applied to rich semantic representations of individual

concepts and relations.
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Human thinking is based not only on a vast pool of individual

concepts, but also on relations between concepts. An explicit

relation connects multiple entities, each of which fills a specific

role (e.g., the relation hit has two roles, which might be instantiated

by “hammer hits nail”). Relations greatly extend the potential to go

beyond similarity of individual entities to find resemblances

between situations based on analogy, a form of reasoning routinely

used in everyday communication. Thus “hammer hits nail” is

analogous to “meteor hits planet”: a meteor plays the same role

as a hammer, and a planet the same role as a nail, even though the

corresponding entities are very dissimilar. As a more colorful

example, a newspaper article describing the difficulty of using a

vaccine reservation website during the coronavirus disease

(COVID-19) pandemic quoted a user’s complaint that, “This web-

site is as dumb as a box of hammers, and as useful as a paper teapot”

(Lopez, 2021). Such analogical metaphors call attention to impor-

tant connections between dissimilar concepts so as to highlight core

similarities in a creative way. Analogy plays an important role in

many creative human activities, including scientific discovery

(Dunbar & Klahr, 2012), engineering design (Chan & Schunn,

2015), mathematics education (Richland et al., 2007), and metaphor

comprehension (Holyoak, 2019; Holyoak & Stamenković, 2018).

For reviews of relational processing in humans, see Gentner (2010),

Halford et al. (2010), and Holyoak (2012); and for a review of its

neural substrate see Holyoak and Monti (2021).

In general, analogical reasoning serves to transfer knowledge

from a familiar and better-understood source analog to a more novel

target analog. Analogical reasoning can be decomposed into multi-

ple subprocesses (Holyoak et al., 1994): retrieval of one or more

relevant source analogs given a target, mapping to identify system-

atic correspondences between elements of a source and target,

inference to generate new conjectures about the target based on

its mapping with the source, and schema induction to form a more

abstract representation capturing commonalities shared by the

source and target. These subprocesses are interrelated, with mapping

considered to be the pivotal process (Gentner, 1983). Mapping may

play a role in retrieval, as mapping a target analog to multiple

potential source analogs stored in memory can help identify one or

more that seem promising; and the correspondences computed by

mapping support subsequent inference and schema induction.

Because of its centrality to analogical reasoning, the present paper

focuses on the process of mapping between two analogs. We also

consider the possible role that mapping may play in analog retrieval.

Computational Approaches to Analogy

Computational models of analogy have been developed in both

artificial intelligence (AI) and cognitive science over more than half
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a century (for a recent review and critical analysis, see Mitchell,

2021). These models differ in many ways, both in terms of basic

assumptions about the constraints that define a “good” analogy for

humans, and in the detailed algorithms that accomplish analogical

reasoning. For our present purposes, two broad approaches can be

distinguished. The first approach, which can be termed representa-

tion matching, combines mental representations of structured

knowledge about each analog with a matching process that com-

putes some form of relational similarity, yielding a set of corre-

spondences between the elements of the two analogs. The structured

knowledge about an analog is typically assumed to approximate the

content of propositions expressed in predicate calculus; for example,

the instantiated relation “hammer hits nail” might be coded as hit

(hammer, nail). This type of representation requires a symbol to

specify the relation R, a separate representation of its arguments

(roles) a1, a2 : : : an, and a set of bindings between relation and

arguments (thereby distinguishing “hammer hits nail” from “nail

hits hammer”; Halford, Wilson, et al., 1998). Multiple propositions

can be linked by shared arguments [Kintsch, 1988; e.g., hit (ham-

mer, nail), enter (nail, wall)], or by higher-order relations (Gentner,

1983) that take one or more propositions as arguments [e.g., cause

(hit (hammer, nail), enter (nail, wall))]. Many analogy models have

represented analogs using classical symbolic representations that

directly correspond to predicate-calculus notation (Falkenhainer

et al., 1989; Forbus et al., 1995, 2017; Holyoak & Thagard,

1989; Keane & Brayshaw, 1988; Thagard et al., 1990; Winston,

1980); others have adopted specialized neural codes (e.g., tensor

products or neural synchrony) that can capture both the structure and

information content of propositions (Doumas et al., 2008; Halford,

Bain, et al., 1998; Hummel & Holyoak, 1997, 2003).

Taking structured representations of individual analogs as inputs,

representation-matching models use some form of similarity-based

algorithm to identify correspondences. For models based on explicit

symbolic representations (e.g., Falkenhainer et al., 1989; Holyoak &

Thagard, 1989; Winston, 1980), analogical mapping can be viewed

as a form of graph matching, where each individual analog is

encoded as a structured graph with labeled nodes and edges.

Mapping involves the creation of matches between elements of

source and target propositions at multiple hierarchical levels (e.g.,

matches between objects, between relations, and between proposi-

tions). Classical symbolic representations code relations as atomic

elements, which do not capture degrees of similarity (e.g., the

symbol for the relation harm is no more similar to that for injure

than that for heal). To avoid combinatorial explosion (which would

arise if any element could match any other), matching of relations is

typically restricted to those that are identical or closely connected in

a predefined taxonomy via common superordinates (e.g., Forbus

et al., 1995; Thagard et al., 1990; Winston, 1980). These restrictions

limit the flexibility of classical symbolic models (Hofstadter &

Mitchell, 1994). Models that express propositional content in

distributed neural codes allow greater flexibility in matching rela-

tions that are similar but not identical, and can also find plausible

matches between predicates with different numbers of arguments

(e.g., matching a large animal to the larger of two animals;

Hummel & Holyoak, 1997).

Analogymodels in the broad tradition of representation matching,

such as the Structure Mapping Engine (SME; Falkenhainer et al.,

1989), which is based on classical symbolic representations;

Structured Tensor Analogical Reasoning (STAR; Halford,

Bain, et al., 1998), which is based on tensor products; and Learning

and Inference with Schemas and Analogies (LISA; Hummel &

Holyoak, 1997, 2003), and the closely-related Discovery Of Rela-

tions by Analogy (DORA; Doumas et al., 2008), which are based on

neural synchrony, capture many important aspects of human ana-

logical reasoning. Despite their important differences, all of these

models conceive of analogical reasoning in terms of a comparison

process applied to complex knowledge representations designed to

capture the structure of predicates and their associated bindings of

entities into roles. These models, like humans, operate in a domain-

general manner. They are able to solve analogies taken from stories

and problems with open-ended semantic content, such as the

Rutherford–Bohr analogy between planetary motion and atomic

structure, or a story about military tactics that suggests an analogous

solution to a medical problem (Gick & Holyoak, 1980). Also like

humans, these models do not require extensive direct training on

analogy problems in the target domain, and can yield what is termed

“zero-shot learning”: generalization to a new type of problem

without prior examples of that type.

But despite their notable achievements, models based on

representation matching have been handicapped by the lack of a

domain-general, automated process for generating the symbolic

representations required as their inputs. In principle, these repre-

sentations are viewed as the products of perception (for visual

analogies) or of language comprehension (for analogies between

texts). But in the absence of full computational models of how either

perception or comprehension might yield structured knowledge

representations, the inputs to analogy models have typically been

hand-coded. At a theoretical level, this limitation leads to the danger

of excessive “tailorability” (Forbus et al., 2017): modelers may

assume the existence of input representations that dovetail with their

favored matching algorithm (e.g., positing “helpful” invariant fea-

tures, identical relations, or higher-order propositions). Within

circumscribed domains, significant progress has been made in

automating the formation of representations suitable as inputs to

SME (e.g., Forbus et al., 2017; Lovett & Forbus, 2017); and the

DORA model is able to learn predicate-argument structures that

provide inputs to LISA (Doumas et al., 2008, in press). Nonetheless,

representation-matching models have yet to demonstrate the ability to

form structured inputs that enable analogical reasoning for open-

ended domains based on perceptual or linguistic inputs. At a practical

level, without automated procedures for forming the requisite repre-

sentations, it is prohibitively labor-intensive to hand-code large

datasets so as to enable analogical reasoning by machines.

The second major approach to computational modeling of anal-

ogy, which can be termed end-to-end learning, is a direct application

of the type of deep learning that is at the current forefront of AI. This

approach, which avoids hand-coding altogether, builds on deep

neural networks that support training from raw input stimuli (e.g.,

image pixels, or words in a text) to a final task in an end-to-end

manner. Learning in these networks is typically guided by mini-

mizing errors in performing a particular task. This approach has

moved beyond tasks involving pattern recognition (such as object

classification), for which deep learning has achieved great success,

to reasoning tasks. From this perspective, analogy is viewed as a task

for which a deep neural network can be trained end-to-end by

providing massive data consisting of analogy problems.

This approach has been applied with some success to solving

visual analogies, notably problems inspired by Raven’s Progressive
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Matrices (RPM; Raven, 1938), a variant of formal analogy problems

based on matrices formed from geometric patterns. After extensive

training with RPM-like problems, deep neural networks have

achieved human-level performance on test problems with similar

basic structure (Hill et al., 2019; Santoro et al., 2018; Zhang et al.,

2019). Rather than aiming to create explicit relational representa-

tions that approximate predicate calculus, end-to-end learning forms

representations consisting of complex conjunctions of features

distributed across a multilayer network. There is no separable

process of assessing the similarity of the two analogs. Rather,

deep learning creates representational layers culminating in a final

decision layer that selects or generates the best analogical comple-

tion. That is, learned representations of analogs are directly linked to

the task structure in which they are used.

End-to-end learning models represent the current highwater mark

in automated analogical inference, as hand-coding of inputs is

entirely avoided. However, these AI systems appear quite implau-

sible if interpreted as psychological models. First, their success

depends on datasets of massive numbers of RPM-like problems

(e.g., 1.42 million problems in the Procedurally GeneratedMatrices;

PGM dataset, Barrett et al., 2018; and 70,000 problems in the

Relational and Analogical Visual rEasoNing; RAVEN dataset,

Zhang et al., 2019). For example, Zhang et al. (2019) used

21,000 training problems from the RAVEN dataset, and 300,000

from the PGM dataset. This dependency on direct training in a

reasoning task using big data makes the end-to-end learning

approach fundamentally different from human analogical reasoning.

When the RPM task is administered to a person, “training” is limited

to general task instructions. Because the task is intended to provide a

measure of fluid intelligence—the ability to manipulate novel

information in working memory (Snow et al., 1984)—extensive

pretraining on RPM problems defeats the entire purpose of the test.

Second, the generalization ability of current end-to-end learning

models is limited to test problems that are very similar in content and

structure to the training problems. If the content of analogy problems

deviates even modestly from that used in the training examples,

generalization falls well short of human performance (e.g., Ichien,

Liu, et al., 2021). The end-to-end approach thus fails to account for

the human ability to achieve zero-shot learning by analogical

transfer. Arguably, this shortcoming is directly related to the fact

that end-to-end deep learning does not create explicit relational

representations (Doumas et al., in press).

Eduction of Relations

In the present paper we describe a novel computational model of

analogical mapping that addresses the basic question of how

inputs to the reasoning process can be generated. Our model is

in the tradition of representation matching (making central use of

graph matching), but differs from previous proposals in its

approach to relation representation. Our approach is not rooted

in the logic of predicate calculus, but rather in the seminal theories

of human intelligence formulated a century ago. Consider a simple

verbal analogy in the proportional format (A:B :: C:D) often used

on intelligence tests, for example, hot : cold :: love : hate. We can

think of the A:B pair as the source and C:D as the target. The first

thing to note is that the problem statement does not specify any

relations. Rather, as Charles Spearman observed, the initial step in

solving the analogy is to perform what he termed the eduction of

relations: in his own (rather awkward) words, “The mentally

presenting of any two or more characters (simple or complex)

tends to evoke the knowing of relation between them” (Spearman,

1923, p. 63; italics in original). That is, the reasoner must first

mentally “fill in the blanks” in the problem as posed, by retrieving

or computing the relation between A and B, and that between C and

D. Once these relations have been educed, the reasoner can

perform a second basic step, the eduction of correlates: assessing

the similarity of the A:B and C:D relations to determine whether

they are analogous.

For verbal problems, Spearman’s concept of “relation” refers to

the semantic relation between concepts denoted by words. Semantic

relations are more than mere associations; for example, hot : cold ::

love : adore consists of two word pairs that are each strongly

associated via a salient relation, but the problem does not form a

valid analogy because the A:B and C:D relations mismatch. At the

same time, semantic relations do not necessarily correspond in a

direct way to “predicates” as typically incorporated into analogy

models. The canonical examples of relations as predicates center on

verbs (and other linking words), as in hit (hammer, nail). But at the

level of semantic relations, one can represent “hammer hits nail” by

identifying relations for the three pairs of content words: hammer :

hit, hit : nail, hammer : nail. Verbs, like nouns, denote concepts that

enter into pairwise semantic relations—they are not the semantic

relations themselves. In the present paper we will refer to verbs and

similar linking words as “predicates” when we wish to distinguish

such words from semantic relations.

Proportional analogies were once a focus of psychological work

on analogy (e.g., Sternberg, 1977), but fell into disfavor. More

recent models in the tradition of representation matching have

bypassed proportional analogies on the grounds they are too

simplistic—they apparently require just the matching of single

relations, rather than finding a rich mapping between systems of

relations (Gentner, 1983). In fact, proportional analogies do not

require the reasoner to perform a mapping process at all: the format

directly specifies the correspondences (A→ C, B→ D), and validity

depends solely on the similarity of the educed A:B and C:D

relations. Yet paradoxically, these “simplistic” analogies pose a

basic problem for the sophisticated computational models that can

deal with analogies between stories and word problems. The

computational models of recent decades require relation-centered

propositions as inputs—which is exactly what proportional analo-

gies do not provide. Models that have addressed proportional

analogies have simply assumed that relations between word pairs

are prestored in long-term memory, ready to be retrieved (e.g.,

Morrison et al., 2004). For a simple case such as hot : cold :: love :

hate, it is indeed plausible that people have prestored the relevant

relation, opposite-of. But people can also solve analogies based on

less familiar relations, as inmask : face :: alias : name. In such cases

reasoners may not have considered the relations between the word

pairs prior to receiving the analogy problem. Rather, relations must

be educed from representations of the concepts being related. A

model that accomplishes the eduction of relations between paired

concepts would at least partially address the problem of how

relational representations of analogs can be formed by an autono-

mous reasoner, reducing the need for hand-coding by the modeler.

However, modeling the eduction of relations presupposes finding an

answer to a yet more basic question: How are semantic relations

acquired in the first place?

T
h
is
d
o
cu
m
en
t
is
co
p
y
ri
g
h
te
d
b
y
th
e
A
m
er
ic
an

P
sy
ch
o
lo
g
ic
al

A
ss
o
ci
at
io
n
o
r
o
n
e
o
f
it
s
al
li
ed

p
u
b
li
sh
er
s.

T
h
is
ar
ti
cl
e
is
in
te
n
d
ed

so
le
ly

fo
r
th
e
p
er
so
n
al

u
se

o
f
th
e
in
d
iv
id
u
al

u
se
r
an
d
is
n
o
t
to

b
e
d
is
se
m
in
at
ed

b
ro
ad
ly
.

PROBABILISTIC ANALOGICAL MAPPING 3

Template Version: 23 December 2021 ▪ 7:11 pm IST REV-2021-0152_format_final ▪ 28 January 2022 ▪ 9:40 pm IST



Plan of the Paper

In the remainder of this paper we present and test a new model of

analogical mapping over a range of verbal reasoning tasks varying in

complexity. The model operates on semantic relation networks—

graphs in which feature vectors capture the rich semantics both of

individual concepts (nodes in graphs) and of pairwise relations

between concepts (edges). The proposed mapping model serves as a

module in a broader system, making use of the outputs of additional

modules that address the acquisition and eduction of relations, as

well as text processing. In the spirit of other recent computational

models of human cognition (e.g., Battleday et al., 2020), we build on

work integrating developments in deep learning with theoretical

ideas from cognitive science.

The inputs to the mapping model are two sets of concepts,

respectively selected from the source and target analogs. For

analogies based on texts, we explore the potential for using AI

algorithms for natural language processing (NLP) to aid in selection

of key concepts. The model adopts rich semantic representations

(embeddings) for individual concepts, partially automates the crea-

tion of skeletal relational structure for analogs, and then applies

Bayesian probabilistic inference to find correspondences between

key concepts in each analog by maximizing the similarity between

two analogs under the constraint of favoring isomorphic mappings.

Mapping in the proposed model depends on semantic relations of

the sort considered by Spearman (1923), but does not require, nor

directly operate on, complex hierarchies of propositions. The model

is domain-general, and does not require explicit training in solving

analogy problems within any particular domain. The aim is to

capture the power of representation matching to produce zero-

shot learning by analogy, while at the same time pursuing a central

goal of end-to-end learning: to automate the creation of representa-

tions that provide the proximal inputs to analogical mapping.

Because the overall model is modular in nature, some compo-

nents could readily be altered or replaced. In dealing with issues

related to text processing, we make use of NLP algorithms that have

proven helpful in work to date, but these are clearly imperfect and

not intended to be definitive. The module that creates vector

representations of word meaning might be replaced by some other

machine-learning algorithm. The module we use to create vector

representations of relation meanings is also subject to revision. Here

we compare one model (an extension of our own earlier work) with

an alternative baseline model, as well as with additional variants

created by systematic ablations (see Supplemental Information).

The central contribution of the present paper is the proposed

mapping module, which takes vector representations of concepts

and relations as inputs and yields analogical correspondences as

outputs. This mapping model would operate in essentially the same

manner if the modules that create its inputs were varied.

The scope of the model as presented here is limited to verbal

analogies (although a similar approach may be applicable to visual

analogies; Ichien, Liu, et al., 2021). We believe the mapping model

could in principle be instantiated in a neural network; however, to

maximize its generality we provide a Bayesian formulation based on

probabilistic inference. We will first describe the creation of inputs

to the mappingmodel: vector representations of individual concepts,

and of semantic relations between concepts. We then focus on the

mapping model itself. We apply the model to a novel analogy task

that requires the eduction and integration of multiple semantic

relations, as well as to a series of classic experiments drawn

from the analogy literature. In addition to analogical mapping,

we consider how the model could be applied to the problem of

analog retrieval. Our treatment of psychological phenomena is

selective, emphasizing basic findings regarding human judgments

of preferred mappings between analogs, and propensities to retrieve

different types of source analogs in response to a given target analog.

Forming Representations of Word Meanings and

Semantic Relations

A general system for analogical mapping that takes verbal inputs

must accomplish four component tasks: (a) creating representations

of word meanings; (b) learning and then recognizing semantic

relations between words; (c) integrating representations of word

meanings and semantic relations to code complete analogs; and (d)

comparing analogs to generate a set of correspondences between

them. Figure 1 schematizes a set of individual models that operate as

modules to support and perform analogical mapping, applied to a

simple example. The first two tasks are accomplished by versions of

existing models; the latter two tasks are performed by a new model

introduced in the present paper.

Creating Representations of Word Semantic Meanings

Using Word2vec

As the first step toward automating analogical mapping, we adopt

semantic representations of individual words generated by a

machine-learning model, Word2vec (Mikolov et al., 2013). Word2-

vec and similar models based on distributional semantics, such as

Global Vectors (GloVe; Pennington et al., 2014) and Bidirectional

Encoder Representations from Transformers (BERT; Devlin et al.,

2019), have proved successful in predicting behavioral judgments of

lexical similarity or association (Hill et al., 2015; Hofmann et al.,

2018; Pereira et al., 2016; Richie & Bhatia, 2021), neural responses

to word and relation meanings (Huth et al., 2016; Pereira et al.,

2018; Zhang et al., 2020), and high-level inferences including

assessments of probability (Bhatia, 2017; Bhatia et al., 2019) and

semantic verification (Bhatia & Richie, in press). In the simulations

reported here, the semantic meanings of individual concepts are

represented by 300-dimensional embeddings created by Word2vec

after training on a corpus of articles drawn from Google News.

Creating Representations of Relations Between Concepts

Using Bayesian Analogy With Relational

Transformations

The second major component of the overall system is a model that

acquires representations of the semantic relations between concept

words. In keeping with the use of embeddings to represent individual

word meanings, we represent relations as vectors. Once representa-

tions of semantic relations have been created, then in principle it

becomes possible to solve proportional verbal analogies by comput-

ing the similarity of the A:B relation to the C:D relation by some

generic measure, such as cosine similarity. Word2vec itself has been

applied to four-term verbal analogies by computing the cosine

distance between difference vectors forA:B andC:D pairs, a measure

we refer to as Word2vec-diff (Zhila et al., 2013; for a different

distributional approach based specifically on relation terms, see
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Turney, 2008, 2013). Although direct application of Word2vec

achieved some success for analogies based on semantically-close

concepts, it fails to reliably solve problems based on more dissimilar

concepts (Linzen, 2016; Peterson et al., 2020). In the present paper

we use Word2vec-diff as a baseline model, in which relations are

coded in a generic fashion simply as difference vectors.

To move beyond generic difference vectors, Word2vec vectors for

pairs of individual words can be used as inputs to learn representations

of relations in a transformed semantic relation space. Bayesian

Analogy with Relational Transformations (BART; Chen et al.,

2017; Lu et al., 2012; Lu, Wu, et al., 2019), using supervised training

with concatenated word pairs coded by Word2vec embeddings, can

learn to estimate the probability that any pair of words instantiates any

abstract semantic relation drawn from a pool of such relations. This

pool includes 135 abstract relation categories, such as category ( fruit :

apple), similar (house : home), contrast (hot : cold), part-whole

( finger : hand), and case relation (read : book). Semantic relations

betweenwords are then coded byBART as distributed representations

over its set of learned abstract relations. After learning, BART

calculates a relation vector consisting of the posterior probability

that a word pair instantiates each of the learned relations.

Learning in BART

The basic operation of the BART model (described in detail by

Lu, Wu, et al., 2019) is illustrated in Figure 2. BART uses a three-

stage process to learn semantic relations from nonrelational inputs

consisting of positive and negative examples of each target relation

(typically about 20 positive and 70 negative examples). The initial

input (bottom layer of the network sketched in Figure 2, left)

consists of a concatenated vector of length 600 representing a

pair of words (where each word in a pair is coded by a 300-

dimension Word2vec embedding). In its first stage, the model

augments this raw feature vector by (a) computing the difference

in the value of each feature between the two words in a pair, (b)

ordering these differences by magnitude, and (c) creating 600

additional features consisting of the raw features reordered accord-

ing to difference magnitudes. These ranked features will differ for

each word pair used in training. Augmenting the raw semantic

features with ranked features partially mitigates the problem that

across instances, different semantic features may be relevant to a

relation (e.g., love : hate involves features related to emotion,

whereas rich : poor involves features related to wealth); and worse,

the features of word embeddings are typically “entangled” (i.e.,

individual features are not readily interpretable). Difference ranking

places features that generate differences of similar magnitude (and

hence are relatively likely to serve similar semantic functions) into

correspondence, without assuming any prior knowledge about

which individual features are relevant to any relation for any

particular word pair. This first stage culminates in the generation

of a 1,200-dimension augmented feature vector for each word pair,

consisting of the concatenation of raw and ranked feature vectors for

each word in the pair (second layer from bottom in Figure 2, left).

In its second stage, BART applies logistic regression with elastic

net regularization to difference vectors for all features, selecting a

subset of features in the second layer that are most statistically

important in predicting the relation being trained (yielding the third

layer from bottom in Figure 2, left), and estimating the associated
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Figure 1

An Illustration of Analogical Reasoning Based on Semantic Mapping, Using Category Triplets as an Example

Note. From left: Word embeddings (provided by Word2vec) are obtained to represent the semantic meaning for each concept

(keyword); relation vectors (fromBART) are obtained to represent semantic relations instantiated for pairs of concepts. Shades in

the blocks represent different values in vectors. Middle: Unaligned semantic relation networks, in which nodes are individual

concepts and edges are semantic relations between concept pairs, are created for each analog. Word embeddings (illustrated as

gray blocks) are assigned as node attributes and relation vectors (illustrated as blue blocks) are assigned as edge attributes. Right:

Aligned semantic relation networks are generated by performing probabilistic analogical mapping (with PAM) to find mappings

between the concepts in source and target that maximize the combined similarity based on keywords and relations. BART =

Bayesian Analogy with Relational Transformations; PAM = Probabilistic Analogical Mapping. See the online article for the

color version of this figure.
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coefficients. In its third stage, BART uses Bayesian logistic regres-

sion to estimate the weight distribution representing the target

relation R based on the selected features of word pairs for all

training examples. This regression includes a contrast prior derived

from the second stage (i.e., for each feature included in Stage 3, the

initial coefficient for the first word in a pair is set equal to that

estimated in Stage 2, and the initial coefficient for the second word is

set to the negative of that value).

Relation Vectors in BART

As illustrated in Figure 2 (right), BART effectively rerepresents

the relation between two specific concepts as a vector in a new

semantic space (for a related approach see Roads & Love, 2021),

thereby educing the relation between any pair of words. The specific

relation between any two words is thus coded as a distributed

representation. This representation is disentangled in that each

element in the relation vector corresponds to the posterior probabil-

ity that a particular meaningful relation holds between the concepts.

BART’s distributed representations enable the model to generalize

to new word pairs that may be linked by relations on which the

model had not been specifically trained. By comparing the similarity

between relation vectors (assessed by cosine distance), semantic

relation representations derived by BART have been used to solve

verbal analogies in A:B :: C:D format (Lu, Wu, et al., 2019), to

predict human judgments of relation typicality and similarity

(Ichien, Lu, et al., 2021), and to predict patterns of similarity in

neural responses to relations during analogical reasoning (Chiang

et al., 2021).

For the present project, we trained BART by combining two

datasets of semantic relations. The first dataset included 79 specific

relations from a taxonomy of 10 abstract semantic relations (Bejar

et al., 1991; Jurgens et al., 2012), each with at least 20 word pairs

instantiating the same relation. The second dataset (Popov et al.,

2017) provided 56 additional specific relations, each with 12–25

word pairs instantiating the same relation. For each of 135 relations,

BART learns to select semantic features fL′ and infer the weight

distributions w associated with semantic features for each relation

from training data (fL′ , RL) using variational Bayesian methods, as

summarized in the previous section. After learning, BART can

estimate how likely a word pair 〈 f1, f2〉 instantiates a particular

relation Ri using the computation,

PðRi = 1j f 1, f 2Þ =

ð
PðRi = 1jf 1, f 2,wÞPðwjfL′,RLÞdw: (1)

BART then calculates the posterior probability that the word pair

instantiates each of the relations in its pool of 270 learned relations,

resulting in a distributed representation as a relation vector between

two words,Relð f 1, f 2Þ = hPðR1 = 1j f 1, f 2Þ,PðR2 = 1j f 1, f 2Þ, : : : ,

PðRk = 1j f 1, f 2Þi. In addition, BART automatically forms repre-

sentations for the converse of each trained relation. For example, after

learning relation representations for the category-instance relation,

BART can generate representations for the instance-category relation

by swapping the weights attached to features of the two words in a

pair. Hence, BART relation vectors include 270 dimensions, each

encoding the posterior probability of a word pair instantiating a

relation in a repertoire of 270 relations.

Ichien, Lu, et al. (2021) found that in modeling human judgments

of relational similarity, BART’s predictions are improved by apply-

ing a nonlinear power transformation (with the power parameter of

five) to the relation vector. This transformation emphasizes the

contributions of those relations with higher posterior probabilities in

the similarity calculation (“winners take most”). In modeling map-

ping of Category triplets (Simulation 1), a parameter search con-

firmed that a power of five yielded the best fit. According, all BART

vectors used in simulations reported here include this power

transformation.
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Figure 2

Creating Relation Representations Using BART

Note. Left: Schematic illustration of BARTmodel architecture for relation representation. The bottom layer of the BARTmodel is a concatenated input vector

based on the two words in a pair; the top layer indicates the set of learned relations (ellipses indicate additional relations beyond the three illustrated here). After

learning, the semantic relation between any two words is represented as a vector of the posterior probabilities of each learned relation; the relation vector (Rel)

linking love and hate is shown on the top as an illustration. Right: Semantic relations formed by BART generate a transformed (and disentangled) space in which

pairs instantiating similar sets of relations tend to show similar patterns in relation vectors, and hence are located close to one another in the relation space.

BART = Bayesian Analogy with Relational Transformations See the online article for the color version of this figure.
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Role Vectors in BART

Analogical mapping goes beyond judgments of relation similarity

in that a coherent mapping requires not only that individual matched

relations be similar to one another, but also that elements play

corresponding roles across multiple relations (i.e., mapping is

sensitive to the bindings of concepts into relational roles). It is

clear that humans are sensitive to semantic roles in relation proces-

sing. For example, people not only recognize that mammal : dog

instantiates the relation category-instance, but also that mammal

plays the first role (category) rather than the second role (instance).

Hence, role information is linked to relation representations, as

assumed by some previous computational models of analogy (e.g.,

Hummel & Holyoak, 1997). In addition to evaluating an overall

relation, humans are able to evaluate how well entities fill specific

roles in that relation (Popov et al., 2020). Markman and Stilwell

(2001) provided a taxonomy of categories that explicitly distin-

guishes between relational and role-governed categories. A study by

Goldwater et al. (2011, Experiment 3) demonstrated that learning a

novel relational structure (instantiated as a novel verb; e.g., learning

that to cakemeans “to make a cake”) licenses learning of novel roles

(e.g., a caker is “someone who cakes”). This path of acquisition is

consistent with how BART acquires roles: relations are learned first,

then roles are extracted from the learned relations. (In contrast, the

DORA model of Doumas et al., 2008, makes the opposite assump-

tion, that individual roles are acquired first and then combined to

form multiplace predicates.) Although people sometimes detect

role-based categories without explicit instruction (Goldwater et al.,

2016), category labels and analogical comparisons increase general

sensitivity to role-based categories (Goldwater & Markman, 2011).

Moreover, objects occupying the same role in a relation (e.g.,

predator) come to be viewed as more similar to each other overall

(Jones & Love, 2007).

In order to represent bindings of concepts to roles in semantic

relations, which is required to compute systematic mappings, the

version of BART used in the present paper introduces a new

extension: the model includes learned representations of the

relational roles played by individual concepts. BART relation

vectors were augmented with role vectors indicating the probabil-

ity that the first word in a pair fills the first role of the relation.

(Because the relevant probabilities must sum to one across the two

words in a pair, it is sufficient to explicitly represent the probability

for only the first word.) These role vectors were created using the

same training data that was used to train relations in BART. The

first word in each word pair instantiating a relation was treated as a

positive example, and the second word was treated as a negative

example.

Role learning operates on top of BART’s relation learning.

Weighted feature inputs are generated by the elementwise product,

w ∘ f, of the semantic features f selected by BART and its learned

relation weights w in its third stage connecting the top two layers

in Figure 2. Taking weighted feature vectors derived from BART

as the inputs, the model’s Bayesian logistic regression algorithm is

reapplied to learn weight distributions ω for role representations

from training data< fL
0,RL >. After learning, the role-based

weight distributions of ω are used to estimate the posterior

probability that the first word f1 in a pair plays the first role in

the ith relation:

Pðri = 1jw ∘ f 1Þ

=

ð
Pðri = 1jw ∘ f 1,ωÞPðωjw ∘ fL

0
;RL Þdω:

(2)

In the remainder of the paper we use the term “relation vector” as

shorthand for BART’s concatenation of relational and role vectors.

The final relation vectors used in the work reported here consisted of

540 dimensions: 270 posterior probabilities of a word pair instanti-

ating each of the 270 relations BART has acquired, concatenated

with 270 posterior probabilities that the first word in the pair plays

the first role for each of the 270 relations. (Performance comparisons

with models based on reduced vectors are provided in Supplemental

Information.)

Probabilistic Analogical Mapping

Using representations of individual concepts generated byWord2-

vec and semantic relations between pairs of concepts generated by

BART, we have developed a model to accomplish the third and

fourth tasks noted above: forming representations of entire analogs

and then computing a mapping between them. A general model of

analogical mapping that takes two complex analogs as inputs must

capture the human ability to integrate multiple relations (Gentner,

1983; Halford, Bain, et al., 1998). In the example shown in Figure 1,

an ordered sequence of three category concepts (weapon : gun : rifle)

is mapped to a set of scrambled concepts from a different domain

(dog, beagle, and mammal). When the source and target analogs

involve multiple pairwise relations, as in this example, inherent

mapping ambiguities may arise. For example, weapon : gun consid-

ered alone couldmap to eithermammal : dog or dog : beagle, because

all of these pairs instantiate the superordinate-of relation. As we will

show in an experiment reported below, humans can reliably solve

such analogy problems; a comparable requirement to integrate

multiple relations arises in many other relational reasoning para-

digms, such as transitive inference (Halford, Bain, et al., 1998; Waltz

et al., 1999). To resolve ambiguity in local mappings, a reliable

analogy model must assess relation similarities and integrate across

relations based on mapping constraints.

To compute mappings between concepts in analogies involving

multiple relations, we have developed a domain-general model of

Probabilistic Analogical Mapping (PAM). The model combines

graph matching based on an algorithm that performs constraint

satisfaction [similar in spirit to comparison models such as Holyoak&

Thagard’s, 1989, Analogical Constraint Mapping Engine (ACME),

Goldstone’s, 1994, Similarity as Interactive Activation and Mapping

(SIAM) and Goldstone & Rogosky’s 2002, ABSURDIST] with

vector representations of both concepts and relations. PAM operates

on semantic relation networks, a type of graph structure in which

nodes represent individual concepts and edges represent semantic

relations between concepts. (Note that in addition to nouns, “con-

cepts” may include verbs, adjectives, and other words that typically

serve as predicates.) The semantic relation networks created for each

analog (Figure 1, middle) have the form of attributed graphs (in the

terminology of graph matching; Gold & Rangarajan, 1996), because

nodes and edges are assigned numerical attributes, capturing the

semantic meanings of individual concepts and their pairwise relations.

The attribute for each node is the Word2vec embedding of a key

concept word, and the attribute for each edge is the corresponding
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relation/role vector generated by BART (i.e., concepts and relations

are represented in separate feature spaces). Once key concepts have

been specified, semantic relation networks representing individual

analogs are created in an automated fashion, without hand-coding of

either concept meanings or semantic relations.

Mapping Based on Semantic Relation Networks

Using the semantic relation networks created for the source and

target analog, PAM performs analogical mapping using a probabi-

listic approach (Gold & Rangarajan, 1996). Source and target

analogs can be represented as two graphs of semantic relation

networks, g and g′, respectively. A semantic relation network for

the source analog is defined as an attributed graph <N, E, A> where

each nodeN and each edge E is assigned an attribute A. As applied to

verbal analogies, nodes are words for individual concepts and edges

are semantic relations between words. Let i and j be indices of nodes

in the graph. Aii indicates the semantic attribute of the ith concept,

and Aij indicates the relation attribute of the edge between the ith

concept and the jth concept. The target analog can be represented as

graph g′with i′ and j′ as indices of nodes in the graph.Mii′ = 1 if the

ith concept node in the source analog maps to the i′th node in the

target analog, and Mii′ = 0 if the two concepts are not mapped. The

goal of the model is to estimate the probabilistic mapping matrix m,

consisting of elements denoting the probability that the ith node in

the source analog maps to the i′th node in the target analog, mii′ =

P(Mii′= 1). Using a Bayesian approach, given two semantic relation

networks, PAM aims to infer a mapping m between concepts in the

two analogs so as to maximize its posterior probability with the

constraints ∀i
P

i′mii′ = 1, ∀i′
P

imii′ = 1:

Pðmjg, g′Þ ∝ Pðg, g′jmÞPðmÞ: (3)

The likelihood term Pðg, g′jmÞ is determined by the semantic

similarity between concepts and relations weighted by mapping

probability. We define the log-likelihood as

logðPðg, g′jmÞÞ =
X
i

X
j≠i

X
i′

X
j′≠i′

mii′mjj′SðAij,Ai′j′Þ

+ α
X
i

X
i′

mii′SðAii,Ai′i′Þ,
(4)

where S(Aij, Ai′j′) represents the normalized relation similarity

between edge attributes of the relation instantiated by the ith and

jth concepts in one analog and that instantiated by the i′th and j′th

concepts in the other analog, with the constraints of
P

i′,j′ S(Aij,Ai′j′)=

1 and
P

i,j S (Aij, Ai′j′) = 1. S(Aii, Ai′i′) represents the normalized

similarity between node attributes of individual concepts (i.e.,

similarity between the ith concept in one analog and the i′th concept

in the other analog).

The normalization of similarities were implemented using a

bistochastic normalization procedure developed by Cour et al.

(2006). The goal of this normalization procedure is to selectively

weight the influences of particular concepts and relations on map-

ping. Intuitively, this normalization operation decreases the influ-

ence of concepts (nodes) and relations (edges) that are not

discriminative (e.g., those showing indistinguishable similarity to

many concepts/relations in the other analog), and correspondingly

increases the influence of discriminative concepts and relations

(those showing high similarity scores to a small number of con-

cepts/relations but low similarity scores to other concepts/relations

in the other analog). All similarity scores were calculated using

cosine similarity. The parameter α in Equation 4 is a weighting

parameter that controls the relative importance of lexical similarity

(nodes) versus relation similarity (edges) on mapping, with higher

values indicative of greater emphasis on entity-based lexical simi-

larity in comparison to relation similarity. The α parameter allows

PAM to capture psychological evidence that a variety of factors can

alter human sensitivity to relation versus entity-based similarity

(Goldstone et al., 1991; Markman & Gentner, 1993; Vendetti et al.,

2014). The fundamental assumption is that concepts (nodes) and

relations (edges) constitute two separable pools of semantic infor-

mation (entity-based and relation-based) that jointly drive judg-

ments of similarity between analogs.

The prior term in Equation 3 captures generic constraints that

higher prior probability is assigned to deterministic mappings with

the constraints ∀i
P

i′mii′ = 1, ∀i′
P

i mii′ = 1, and is defined with a

parameter β to control the strength of the prior as,

PðmÞ = e
1
β

P
i

P
i′
mii′ log mii′

: (5)

To implement the inference in Equation 3, we employ a graduated

assignment algorithm (Gold & Rangarajan, 1996), variants of which

have been applied to matching problems in computer vision (Lu &

Yuille, 2005; Menke & Yang, 2020). The algorithm incorporates

soft assignments in graph matching. A deterministic one-to-one

correspondence constraint requires that a node in one graph must

match to one node in the other graph and vice versa, with the

mapping valuesm either 0 or 1. The graduated assignment algorithm

relaxes this constraint by allowing probabilistic mapping values that

lie in the continuous range [0, 1]. Thematching algorithmminimizes

the energy function (equivalent to maximizing the posterior proba-

bility defined in Equation 3) with respect to the matching matrix:

E½m� = −
X
i, i′, j, j′

mii′mjj′SðAij,Ai′j′Þ − α
X
i, i′

mii′SðAii,Ai′i′Þ

−
1

β

X
i

X
i′

mii′logmii′,

s:t: ∀i
X
i′

mii′ = 1,∀i′
X
i

mii′ = 1,

(6)

where α controls the relative weights between lexical similarity of

concepts (node attributes) and relational similarity (edge attri-

butes). β is a control parameter used to slowly push the values of

mapping variables toward either 0 or 1 by applying the softmax

function through iterations. An annealing operation with normal-

ization is implemented to gradually increase β over iterations to

approximate the one-to-one constraint. In the implementation

code, we used a fixed number of iterations (500) for all simula-

tions, which was reliably sufficient to ensure stable mapping

solutions for simulation problems in the present paper. Table 1

provides pseudo-code for the probabilistic mapping algorithm.

The soft constraints incorporated in PAM are closely related to

those specified in the multiconstraint theory of analogical mapping,

which was first instantiated in the Analogical Constraint Mapping

Engine (ACME; Holyoak & Thagard, 1989, 1995). Mappings

between similar concepts are favored based on greater semantic
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similarity of node attributes, and mappings of similar relations are

favored based on greater relational similarity of edge attributes.

Nodes and edges can have varying importance weights, reflecting

greater attention to elements important for the analogist’s goals. The

preference to move mapping variables toward 0 or 1 with normali-

zation implements a soft assignment of one-to-one mappings

between concepts across analogs (favoring isomorphic mappings).

Incorporating Relation Constraints Provided by Texts

A longstanding (though unrealized) goal for models of analogy

has been to enable reasoning based on text inputs (e.g., Winston,

1980). When given text inputs (rather than analogies based simply

on sets of words), PAM makes use of constraints provided by

sentence structure. In forming semantic network graphs, PAM can

naturally accommodate relation constraints provided by textual

descriptions of analogs, by controlling the presence and absence

of relation links and their directionality. Because semantic relations

are in the general case nonsymmetric, any pair of nodes can be

linked by two edges with opposite directions (e.g., finger and hand

could be linked by an edge directed from the former to the latter

representing part-whole, and by an edge directed from the latter to

the former representing the converse relation whole-part). Depend-

ing on the reasoner’s knowledge about the analogs (as provided by

textual information about whether and how particular concepts are

related to one another), any concept pair in a graph can be connected

by zero, one (unidirectional), or two (bidirectional) edges. In the

simulations reported here, bidirectional links are constructed by

default when the analogs consist of a simple set of words (as in the

example depicted in Figure 1).

For more complex analogs presented as short texts, we explore

the use of NLP techniques to identify keywords (words used

frequently in the text, which correspond to core concepts) to serve

as nodes in each semantic relation graph. For present purposes, we

assume only very basic parsing of surface syntax to constrain

generation of links. Words that appear close together in a text

are more likely to be related in some significant way. As a simple

heuristic to limit the size of semantic relation networks, we form

links only between those keywords that co-occur within the same

sentence. Unidirectional links are used to capture the directionality

of subject-verb-object (noun-verb-noun) expressions. For example,

the semantic relation network representing the sentence dog chases

cat forms a triangle structure with three unidirectional edges to

capture the head-to-tail pairwise relations (dog → chase, chase →

cat, dog→ cat). This directionality constraint can be applied to any

noun-verb-noun structure in a text. We use this directionality

constraint for all simulations with text input in the present paper.

Though doubtless oversimplified, these heuristics provide a

preliminary procedure for using syntactic information conveyed

by natural language to guide the construction of semantic relation

networks (though some human intervention is still required). The

general approach we favor is to extract as much guidance as possible

from the surface syntax of text (without necessarily requiring the

generation of more abstract propositional representations). We

discuss NLP-assisted generation of semantic relation networks in

connection with Simulation 5.

Analogical Mapping With PAM

Experiment and Simulation 1: Solving Analogies Based

on Multiple Pairwise Relations

PAM is able to resolve mapping ambiguities because the model

maps concepts across analogs based on patterns of similarity among

multiple pairwise relations. Patterns of similarity depend on seman-

tic similarities between individual concepts (node attributes) and on

relation similarities (edge attributes). We first examined mapping

performance in humans and models for analogy problems in which

resolving a mapping ambiguity requires integrating multiple rela-

tions in each analog: finding mappings between triplets of concepts

that form an A:B:C category ordering, for example, weapon : gun:

rifle and mammal : dog: beagle (see the example in Figure 1). We

created 12 Category triplets, and used all possible pairs as analogy

problems to run a human experiment with a large sample size.

Participants

One thousand three hundred twenty-nine participants, Mage =

40.40, SDage = 11.98, age range = (18, 82); 711 female, 608 male,

six gender nonbinary, four gender withheld; minimum education

level of high-school graduation, located in the U.S., U.K., Ireland,

South Africa, or New Zealand, were recruited using Amazon

Mechanical Turk (MTurk; approved, including informed consent

procedures, by the Office of the Human Research Protection Pro-

gram for the University of California, Los Angeles). Of these, 49

participants reported being distracted while completing the task, and

their data were therefore excluded from analyses.

Materials and Procedure

Each participant completed two triplet analogy problems, one of

each of two types. For each problem participants were asked to

create a valid analogy by using their mouse to drag each of a set of
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Table 1

Pseudo-Code for Probabilistic Analogical Mapping (PAM)

Algorithm

Compute semantic similarity of nodes and relation similarity of edges
Apply bistochastic normalization to similarity matrix
β ← β0
m ← equal probability to match to all concepts
for iteration do

compute compatibility matrix based on node/edge similarities and mapping:
∀i ∈ G1, ∀i′∈ G2

Qii′←
P

i

P
j≠i

P
i′

P
j′≠i′mii′mjj′SðAij,Ai′j′Þ + α

P
i

P
i′mii′SðAii,Ai′i′Þ

update soft assignments:
∀i ∈ G1, ∀i′∈ G2

mii′← eβQii′

update mapping matrix m by normalizing across all rows:
∀i ∈ G1, ∀i′∈ G2

mii′←
mii′P
j
mji′

update mapping matrix m by normalizing across all columns:
∀i ∈ G1, ∀i′∈ G2

mii′←
mii′P
j′
mij′

β← β +
β0
10

end
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randomly ordered terms (e.g., mammal, beagle, and dog) to one of

the terms in an ordered set (e.g., clothing : sweater : turtleneck)

presented in a fixed position on the screen (see Figure 3A). One

problem was constructed out of two triplets in any order drawn from

a pool of 12 (132 possible triplet pairs), each instantiating an A:B:C

category ordering as in the example above (Category triplets). The

other problem was constructed out of two triplets drawn from a

different pool of 12 (another 132 possible triplet pairs), each

instantiating a part-whole relation conjoined with an object-location

relation (Part-Object-Location triplets). For example, a participant

might be asked to match each of fin, fish, and ocean to each of engine

: car : garage. The order of the two problems was counterbalanced

across participants, and the specific triplets forming each problem

were randomly assigned to each participant. By presenting each

participant with just one problem of each type, we minimized any

opportunity to learn the general structure of the problems (as our focus

was on initial analogical mapping, rather than schema induction). All

triplets are provided in Supplemental Information, Table S1.

Before solving the two experimental problems, the analogy task

was explained using two separate examples (involving different

relations than the experimental problems). The instructions specified

that an analogy is valid if the relations among the terms in each set

match each other. Figure 3A depicts an example trial of the triplet

mapping task as it would be performed by a human participant.

Triplet Simulations

We ran model simulations for all 132 analogy problems based on

Category triplets. We compared the PAM model to several control

models by varying relation representations and mapping algorithms.

The relation vector was defined either as the concatenation of role

and relation vectors created by BART (see Supplemental Informa-

tion for additional variants), or as the difference of the Word2vec

vectors for two words (Word2vec-diff), a standard procedure for

forming a generic representation of the semantic relation instantiated

by a pair of words (Zhila et al., 2013). The mapping algorithm was

either the PAM model based on probabilistic mapping, or an

alternative procedure based on exhaustive search of all possible

mappings to maximize relation similarity. The exhaustive search

algorithm represents the structure of a given triplet A:B:C as a

concatenation of three vectors representing the pairwise relations

between individual terms [A:B, B:C, A:C], and maps an unordered

triplet D, E, F to an ordered triplet A:B:C by finding the

concatenated vector for the unordered triplet that yields the highest
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Figure 3

Model and Human Results for Solving Triplet Analogies

Note. (A) Amapping trial with two triplets of words. Participant must move each of three unordered words in one triplet (column at left) below the

matching word in another triplet (top row) so as to form a valid analogy. (B) Simulation results (predicted proportion of triplet mappings entirely

correct) for Category triplets using four alternative models: coding relations by vectors derived fromWord2vec (difference vectors) or fromBART,

with mapping performed either by an exhaustive comparison of concatenated relation vectors or by the PAM algorithm. Human performance is

indicated by the dashed line. (C) Mapping accuracy for words in the three positions within a triplet for humans and for PAM with BART vectors,

separately for Category and Part-Object-Location triplets. Each datapoint for human performance is based on mean accuracy across individual

participants who completed a given problem. Error bars indicate ±1 standard error of human accuracy for each word position across individual

problems. BART = Bayesian Analogy with Relational Transformations; PAM = Probabilistic Analogical Mapping. See the online article for the

color version of this figure.
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cosine similarity to that of the concatenated vector for A:B:C. Note

that the exhaustive search algorithm is only practical for relatively

small analogy problems such as these triplet analogies, as the

number of possible mappings is of the order O(n!). For example,

if an analogy problem involves 10 concepts in each analog, an

exhaustive search of possible mappings would involve 3.6 million

possible orders. In contrast, PAM based on probabilistic graduated

assignment is much more efficient, with space complexity of O(n2).

For simulations with PAM, a parameter search for α in Equation 4

found that a value of 0.1 yielded the highest mapping accuracy,

indicating that accurate mapping in the triplet task requires down-

weighing the contribution of entity-based lexical similarity.

Comparing Human and Model Performance

For each analogy problem with Category triplets, the mapping

response was counted as correct in an all-or-none manner: a

mapping response was coded as 1 only if all three words were

mapped correctly in a problem. Humans achieved mapping perfor-

mance with average accuracy of 0.74. As shown in Figure 3B, the

PAMmodel (PAMmapping algorithm coupled with BART) yielded

the highest mapping accuracy of the four alternative models (0.83),

exceeding mean performance of our MTurk participants. The two

models using Word2vec-diff relation vectors were clearly inade-

quate. As reported in Supplemental Information, Table S2, standard

PAM shows superior performance to further control models tested in

ablation simulations.

Perhaps surprisingly, the PAM model yielded higher accuracy

than the exhaustive search model with BART relation vectors (0.69).

The exhaustive search algorithm considers all pairwise relations

equally. However, due to the use of the balanced graph matching

algorithm (Cour et al., 2006), PAM selectively emphasizes those

edges that are more distinctive in their similarity pattern. For

example, if the relation between nodes i and j in one analog shows

high similarity to relations between many paired entities in the other

analog, then its relation similarity is not discriminative in signaling

the best mapping. In contrast, if the relation between nodes i and j in

one analog shows high similarity only to the relation between nodes

i′ and j′ in the other analog, and low similarity to relations between

other paired entities, then its relation similarity is more informative in

encouraging PAM to map i to i′ and j to j′. In general, informative

relations have a greater impact on mapping in PAM than do less

informative relations, whereas the exhaustive algorithm weights all

pairwise relations equally. Thus PAM is not simply a computation-

ally tractable approximation to the exhaustive search algorithm;

rather, PAM can lead to superior mapping performance for some

analogy problems. We did not examine the exhaustive algorithm in

the further simulations reported below, as it is computationally

expensive for larger problems and lacks any simple means of varying

the relative impact of different contributors to overall similarity.

For both problem types, PAM’s proportion correct was modestly

higher than that observed for the human data (0.83 vs. 0.74 for

Category triplets; 0.89 vs. 0.79 for Part-Object-Location triplets),

perhaps due to variable effort on the part of the MTurk participants.

In order to quantitatively compare predictions of PAM and the

model variants to human performance, we conducted item-level

analyses. We calculated the root-mean-square deviation (RMSD) of

model predictions from the corresponding human responses (all

responses scored as 1 for a fully correct mapping, .5 for a partially

correct mapping, and 0 for an incorrect mapping) on each individual

problem spanning both Category and Part-Object-Location triplets.

Lower RMSD values indicate a closer match to human performance.

The value of RMSD was lower for standard PAM (.22) than for

either a control model without relation representations (Nodes-only,

.38) or a control model with weak relation representations (Word2-

vec-diff with either mapping algorithm, .39). (For additional model

comparisons see Supplemental Information.)

PAM also makes novel predictions regarding the accuracy of

mappings at the level of individual word positions, which are

predicted to vary across the two triplet types that were tested. As

shown in Figure 3C, for Category triplets PAM predicts lowest

accuracy for the middle word position (the intermediate category),

whereas for Part-Object-Location triplets PAM predicts lowest

accuracy for the first word position (the part). (See Supplemental

Information for additional model comparisons.) Humans show a

similar pattern of mapping accuracy at the level of word position in

the different analogy problems. A two-way mixed analysis of

variance (ANOVA) for mean human accuracy across problems,

using triplet type (Category vs. Part-Object-Location) as a between-

problem factor, and word position (first vs. middle vs. last) as a

within-problem factor, revealed reliable main effects for triplet type,

F(1, 262)= 6.24, p = .013, and word position, F(2, 524) = 3.53, p =

.030, as well as a reliable interaction, F(2, 524) = 17.78, p < .001.

We followed up with six planned pairwise comparisons between

word positions within each triplet type. Using a Bonferroni correc-

tion for multiple comparisons, we found that for Category triplets,

participants were reliably less accurate in correctly mapping the

middle word position (the intermediate category) than the first word

position (the superordinate category), t(131) = 4.48, p < .001. The

accuracy difference between the middle and last word positions (the

subordinate category) fell short of significance after Bonferroni

correction, t(131) = 2.10, p = .207, as did that between the first

and last word positions, t(131) = 2.21, p = .162. For Part-Object-

Location triplets, participants were least accurate for the first word

position (the part): comparing first to middle word position (the

object), t(131) = 3.93; comparing first to last word position (the

location), t(131) = 5.01, both p’s < .001. Accuracy did not differ

between the middle and last word positions, t(131) = 1.57, p = .529.

Overall, this set of findings confirms that PAM coupled with

BART relation vectors is able to find systematic mappings by

inferring and then integrating multiple pairwise relations, yielding

mapping performance comparable to that of humans.

Simulation 2:Mapping Science Analogies andMetaphors

Analogies play an important role in both the development of

scientific theories (Holyoak & Thagard, 1995) and in interpreting

everyday metaphors (Lakoff & Johnson, 1980). It has generally

been assumed that mapping such complex systems of knowledge

depends directly on propositional representations, often using

higher-order relations that take entire propositions as arguments.

However, a study by Turney (2008) showed that people are able to

find reasonable mappings for a set of 20 science analogies and

analogical metaphors (Table 2) in which each analog has been

reduced to 5–9 concepts corresponding to keywords, without

accompanying texts (see Supplemental Information). These pro-

blems are all cross-domain, semantically-distant analogies, such as

the Rutherford–Bohr analogy for the atom, or that between a
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computer and a mind. The keywords are a mix of nouns and verbs.

For example, the source solar system is paired with the target atom,

each represented by seven keywords (solar system set: solar system,

sun, planet, mass, attracts, revolves, and gravity; atom set: atom,

nucleus, electron, charge, attracts, revolves, and electromagne-

tism). To take a second example, the source analog computer

includes nine keywords (computer, outputs, inputs, bug, processing,

erasing, write, read,memory), as does the target analogmind (mind,

muscles, senses,mistake, thinking, forgetting,memorize, remember,

memory). Turney showed that this set of analogies can be solved

reliably by a computational model, Latent Relation Mapping

Engine (LRME), that searches large text corpora for relation words

associated with each keyword, and then uses frequencies of co-

occurrence as an index of relational similarity. Turney also asked 22

human participants to mapwords between source and target analogs,

and assessed human performance in this mapping task for each

problem.

We applied PAM to this dataset of 10 science analogy problems

and 10 analogical metaphors. In Simulation 2, PAM formed seman-

tic relation networks for each analog, with node attributes coded as

Word2vec vectors for each word, and edge attributes coded as

BART vectors for all pairwise relations. It is important to note that

none of the word pairs in these materials had been used to train the

BART model. This simulation thus provides a strong test of

generalization for relation identification, based on the distributed

representations of relations created by BART, and relies heavily on

the model’s ability to educe relations between concepts.

Figure 4 depicts human and PAM mapping accuracy for each

problem. Across the 20 analogies, the PAMmodel achieved a mean

accuracy of 85% in identifying correct correspondences of key-

words between two analogs, approaching the 88% accuracy

observed in Turney (2008) experiment with adult human partici-

pants (though less than the 92% accuracy achieved by Turney’s

LRME model). Trends for individual problems showed higher

mapping accuracy for PAM over humans for 10 problems, humans

over PAM for nine, with one tie. For the computer/mind analogy,

PAM yielded correct mappings between all corresponding words

across the two analogs (computer tomind, outputs tomuscles, inputs

to senses, bug to mistake, etc.).

Several model variants were also tested (see Supplemental

Information). Given that the analogs used in Simulation 2 are based

solely on keywords, without any support from structured text, it is

reasonable to consider whether performance of the full PAM model

was driven solely by the semantics of the keywords themselves. In

general, PAM’s performance was fairly similar across model var-

iants. However, overall accuracy was reduced if edge similarity was

excluded (Nodes-only, 77%), or if Word2vec-diff was used instead

of BART to create relation vectors (Word2vec-diff, 77%). Hence

PAM’s performance depended in part on BART’s relation vectors.

The standard PAM model correctly predicts lower mapping accu-

racy for the 10 science analogy problems (0.79) than for the 10

analogical metaphor problems (0.90), consistent with the difference

observed for humans (0.85 for science analogy problems and 0.91

for analogical metaphor problems). The model variant without

relations (Nodes-only) did not show this difference (.78 accuracy

for science analogy problems and .77 for analogical metaphor

problems). Accuracy remained high (0.85) for the BART-role

variant, in which the edge vectors included only the role component.

Recall that for each relation in BART’s vector, the role component is

jointly determined by the relation and by semantic features of the

keyword playing the first role of the relation. Thus although relation

information played a significant role in PAM’s performance, seman-

tic features of keywords were certainly influential.

Simulation 3: Pragmatic Influences on Mapping

Some analogies pose mapping ambiguities that cannot be

resolved simply by integrating the available relations, because

the relations themselves support multiple potential mappings about

equally. For example, when people were asked to draw analogies

between the actors in the first Gulf War (in 1991) and those inWorld

War II, the American President George H.W. Bush paired with U.S.

was sometimes mapped to Franklin Roosevelt and the U.S., and

sometimes to Winston Churchill and Great Britain (as all three pairs

instantiate the relation “wartime leader of nation”; Spellman &

Holyoak, 1992). Individual participants tended to choose one or the

other of the two mappings that were pairwise consistent, with a

significant number choosing each. Pairs were almost always mapped

consistently (i.e., people seldom mapped Bush to Roosevelt but the

U.S. to Great Britain).

Although people clearly prefer isomorphic (one-to-one) map-

pings, they must cope with naturalistic situations of this sort that

have considerable relational overlap (as well as similarities between

individual objects), but that are not in fact isomorphic. In such cases

people sometimes give responses that violate a strict one-to-one

constraint (e.g., about 7% of participants mapped the U.S. of the
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Table 2

Science Analogies and Analogical Metaphors Dataset (20 Source/Target Pairs) Developed by

Turney (2008)

Science analogies Analogical metaphors

A1. solar system/atom (7) M1. war/argument (7)
A2. water flow/heat transfer (8) M2. buying an item/accepting a belief (7)
A3. water waves/sound waves (8) M3. grounds for a building/reasons for a theory (6)
A4. combustion/respiration (8) M4. physical travel/problem solving (7)
A5. sound waves/light waves (7) M5. money/time (6)
A6. terrestrial motion/planetary motion (7) M6. seeds/ideas (7)
A7. agricultural breeding/natural selection (7) M7. machine/mind (7)
A8. billiard balls/heat due to molecular motion (8) M8. holding object/understanding idea (5)
A9. computer/mind (9) M9. path following/argument understanding (8)
A10. slot machine/bacterial mutation (5) M10. seeing/understanding (6)

Note. Number of keywords for each problem appears in parentheses.
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Gulf War era onto both the U.S. of World War II and also Great

Britain). In several experiments using nonisomorphic analogies, a

minority of participants produced one-to-many or (more often)

many-to-one mappings (Krawczyk et al., 2004; Spellman &

Holyoak, 1992, 1996). Such findings are consistent with mapping

models such as PAM (also ACME, Holyoak & Thagard, 1989, and

LISA, Hummel & Holyoak, 1997) that treat isomorphism as a soft

constraint, rather than a strict filter on possible mappings.

Particularly when analogs are in fact nonisomorphic, a preferred

mapping may be determined by pragmatic factors, notably the

reasoner’s goal in using the analogy (Holyoak, 1985). In PAM,

prior beliefs about probable analogical correspondences, and pre-

ferences for correspondences based on goal-related elements, can be

represented by varying attention weights (Nosofsky, 1986) on

relevant nodes and edges (reflecting relative attention to different

components of analogs). In Simulation 3, PAM was applied to a set

of nonisomorphic story analogies used in a study by Spellman and

Holyoak (1996, Experiment 2). Each analog was a science-fiction-

style description of multiple countries. The countries on each of two

planets (forming the source and target analogs) were linked by

various economic and/or military alliances, such that the country

Barebrute on one planet could be mapped to either the country

Hungerall on the second planet based on a shared economic relation

(summarized by the predicate aid-economic), or to Millpower based

on a shared military relation (aid-military; see schematic description

in Figure 5). In these stories, similarities were balanced so that the

mapping for Barebrute was ambiguous, as country Barebrute on

Planet 1 had equal similarity to the countries Hungerall and Mill-

power on Planet 2. In the human experiment, manipulations of

participants’ processing goals guided their preferred mappings:

stressing the importance of either economic factors or Hungerall

encouraged the Barebrute—>Hungerall mapping relative to the

Barebrute—>Millpower mapping, whereas stressing either military

factors or Millpower encouraged the Barebrute—>Millpower map-

ping relative to the Barebrute—>Hungerall mapping.

PAM was provided with a set of concepts for each analog. As

shown in Figure 5, the source analog included nine concepts

(Afflu, Barebrute, Compak, rich, poor, strong, weak, aid-

economic, aid-military), and the target analog included 10 con-

cepts (Grainwell, Hungerall, Millpower, Mightless, rich, poor,

strong, weak, aid-economic, aid-military). Note that the predi-

cates aid-economic and aid-military were included as nodes. The

Word2vec vector for country was assigned to all the imaginary

countries used in both analogs (hence node similarity could not

discriminate among the possible mappings for any country). To

simulate the pragmatic impact of goals on mapping the ambigu-

ous country (Barebrute), attention weights were increased on the

relations relevant to a particular goal. In the condition stressing

the importance of Hungerall, all pairwise relations involving

Hungerall, including its relation to Grainwell via aid-economic,

were assigned attention weights. In the condition stressing eco-

nomic factors, the relation between Grainwell and rich was also

emphasized. Complementary sets of relations were assigned

attention weights to model the conditions emphasizing the coun-

try Millpower or military factors.

During each simulation run, PAM sampled the value of its

attention weight from a uniform distribution within the range of

[1, 1.1]. The left panel in Figure 6 shows the proportion of trials on

which humans selected Hungerall or else Millpower as the preferred

mapping for the ambiguous country Barebrute across different

conditions. The right panel in Figure 6 shows the probability that

PAM selected each preferred mapping (obtained by averaging 1,000
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Figure 4

Model and Human Performance for Solving 10 Science Analogies and 10 Analogical Metaphors in a Dataset

Developed by Turney (2008)

Note. Numbers correspond to analogies listed in Table 2 (ordered from highest to lowest human accuracy within each type).

Each problem includes 5–9 keywords in source and target analogs (numbers are provided in Table 2). Mapping accuracy is

defined as the proportion of keywords correctly mapped. See the online article for the color version of this figure.
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samples of attention weights for each experimental condition). In the

simulation of the control condition (equal emphasis), PAM predicts

that the ambiguous country Barebrute will be mapped to Hungerall

and Millpower with equal probability. Although PAM does not

include an explicit decision mechanism for dealing with such

ambiguous mappings, it would be reasonable to expect that a

reasoner would either provide both correspondences or report

just one of the two (chosen randomly). In Spellman and

Holyoak’s (1996) experiment, about half of human participants

in the control condition mapped both Hungerall and Millpower to

Barebrute, so many-to-one mappings are certainly observed.

When attention weights are used to emphasize particular goals,

PAM predicts the qualitative shift in the preferred mapping for

Barebrute. Given emphasis on Hungerall or economic factors,

Barebrute is more likely mapped to Hungerall; given emphasis

onMillpower or military factors, Barebrute is more likely mapped to

Millpower. It is also noteworthy that PAM captures an asymmetry in

the impact of goals on mapping. Both in the human data and in

PAM’s predictions, the impact of emphasis on Hungerall or eco-

nomic factors yields a smaller shift in mappings relative to an

emphasis onMillpower or military factors. This asymmetry emerges

even though PAM models the economic and military goals using

exactly symmetrical shifts in attention weights.

This asymmetry arises from subtle differences in the semantic

similarities among keywords (nodes), which are inherited from the

Word2vec embeddings that encode semantic meanings of individual

concepts: economic shows more similar semantic associations to

several alternative keywords (poor, rich, weak, strong) than does

military. These semantic differences render the military-related

keywords more distinctive (resulting in less ambiguous mappings),

and hence more resistant to displacement when competing with

economic-based mappings than vice versa. When model variants

were examined, this asymmetry disappeared in the variant that

excluded node similarities (BART edges-only), confirming that

keyword similarities drove the effect (see Supplemental Informa-

tion). Edge similarities were certainly critical to the overall perfor-

mance of the model, as the variant that omitted edge similarities

(Nodes-only) was completely unable to capture the pattern of human

mapping judgments. The Word2vec-diff model was unable to run at

all because of issues arising from the identical node vectors (for the

word country) assigned to all the imaginary countries. Only the full

PAM model, which fully integrates rich semantics of concepts and

relations into the mapping process, can account for the fine-grained

aspects of human judgments.

Simulation 4: Modeling the Relational

Shift in Cognitive Development

Developmental research has shown that children’s ability to reason

and solve problems by analogy generally improves with age
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Figure 5

Semantic Relation Networks for Story Analogs From Spellman and Holyoak (1996, Experiment 2)

Figure 6

Human Responses (Spellman & Holyoak, 1996, Experiment 2) and PAM Predictions in Simulation 3

Note. Data indicate the probability of mapping the ambiguous country Barebrute to either Hungerall (based on similar economic relations) or Millpower

(based on similar military relations) for different experimental conditions. PAM= Probabilistic AnalogicalMapping. See the online article for the color version

of this figure.
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(Holyoak et al., 1984). Over the course of cognitive development,

children undergo a relational shift (Gentner & Rattermann,

1991) from a primary focus on direct similarity of objects toward

greater reliance on relational information. As noted previously,

a variety of factors are known to globally shift the balance

between the impact of semantic similarity of individual concepts

versus relational similarity on comparison judgments. Relational

similarity tends to be more potent when overall relational similarity

across analogs is relatively high (Goldstone et al., 1991), when the

objects in visual analogs are sparse rather than rich (Gentner &

Rattermann, 1991; Markman & Gentner, 1993), and when partici-

pants are given more time to make their judgments (Goldstone &

Medin, 1994). From the perspective of PAM such global factors,

including the relational shift, can potentially be captured by variations

in the parameter α in Equation 6.

As a test of whether PAMcan account for developmental changes in

analogy performance, we simulated findings from a classic develop-

mental study by Gentner and Toupin (1986). In this study children

used toys to enact interactions among three animal characters, using

actions familiar to young children (e.g., playing). The experimenter

guided the children to act out the events in the source story, and then

asked them to repeat the same events using different characters in a

target analog. Using variants of the same basic stories, a 2 × 2 design

was created to manipulate systematicity of the source analog and

compatibility
1 of the mappings between source and target characters.

In one example, the source text was a short passage describing

interactions among a seal, penguin, and dog. The introduction to

the systematic version stated that the seal was jealous and did not want

his friend the penguin to play with anyone else. The story ended by

stating the moral that it is wrong to be jealous and better to have more

friends. In the nonsystematic version the introduction described the

seal as “strong” rather than “jealous,” and the moral was omitted. The

body of the story was identical in the two versions, describing how the

penguin played with the dog, angering the seal, but how the dog

eventually saved the seal from danger. Thus in the systematic version

the seal’s jealousy had an intuitive connection to his anger and

behavior, which the nonsystematic version lacked. Gentner and

Toupin (1986) hypothesized that the systematic version was richer

in higher-order relations (in particular, the relation cause, presumed to

hold between propositions).

The target analog also involved three animal characters. In the

high compatibility condition three animals, each similar to one of the

source characters, played corresponding roles: <seal, penguin,

dog> maps to <walrus, seagull, cat>. High compatibility between

relational roles and object similarity makes mapping straightfor-

ward. In the low compatibility condition the same animals were

assigned to different roles, creating cross mappings between roles

and object similarity: <seal, penguin, dog> maps to <seagull, cat,

walrus>. Such cross mappings, in which the tendency to match

relational roles competes with a preference to match similar objects,

create difficulty for children and even for adults (Markman &

Gentner, 1993). Finally, in the medium compatibility condition

the three animals to be mapped were <lion, giraffe, camel>, which

have no particular similarity to animals in the other analog. The

medium compatibility condition was thus neutral with respect to

mappings between relational roles and animals.

Gentner and Toupin (1986) tested groups of younger (4–6 years)

and older (8–10 years) children, scoring each child on accuracy in

reenacting the story using the target characters. Children in both

groups performed best when the source was systematic and the

character mapping was highly compatible. Accuracy was impaired

when the source was nonsystematic and when compatibility was

low. The overall advantage of the systematic analogs was attributed

to the presence of higher-order (causal) relations that participate in

the mapping. For the younger children, systematicity was less

beneficial overall than it was for the older children, and the

detrimental impact of cross mappings (low compatibility) was

greater. These findings were interpreted in terms of a relational

shift, such that the older children were less influenced by object

similarity and guided more by relational information (especially

higher-order relations).

The PAM simulation provides a qualitative approximation to the

experiment with children (using mapping accuracy as an estimate of

accuracy in story reenactment). Simulations were based on eight

different sets of animal triplets used in the experiment (see Supple-

mental Information for materials and also additional model compar-

isons). The keyword concepts used as input to PAMwere drawn from

the introduction to the stories: three animals and the verb play. These

keywords were shared across the systematic and unsystematic con-

ditions. The only difference between the inputs for the two versions

was that the systematic version included the adjective jealous as a

keyword, whereas the substituted adjective strongwas not included as

a keyword for the unsystematic version. Jealous was selected as a

keyword because it occurs twice in the systematic version (both in the

introduction and the concluding moral), whereas strong occurs only

once in the unsystematic version. This selection was confirmed by

running two different NLP algorithms on the stories (a program

developed by Tixier et al., 2016, and the MATLAB TextRank

keyword extraction function). Both algorithms identified jealous

but not strong as a keyword. More generally, we hypothesize that

high systematicity reflects greater text coherence (Kintsch, 1988), for

which keyword extraction provides a simple proxy. Notably, PAM

was not providedwith any information about higher-order relations for

either the systematic or unsystematic versions.

To distinguish the syntactic subject and object roles in noun-verb-

noun sentences, PAM uses unidirectional edges. In this simulation,

given a sentence stating that one animal plays with another (e.g.,

seal plays penguin), the forward edge only was created for the three

constituent pairwise relations (seal : play, play : penguin, seal :

penguin). These single forward edges capture the directionality of

the syntactic subject and object roles associated with the verb. For

example, given the source analog seal plays penguin, PAMwill give

a higher mapping score for the potential target analog walrus plays

seagull than for the cross-mapped source analog seagull plays

walrus, yielding a positive effect of compatibility.

Wemanipulated the parameter α in Equation 6, which controls the

impact of lexical similarity (nodes) in mapping. PAM compared

mapping performance when lexical similarity was given a high

weight (Figure 7A, top, α = 2) to performance when this weight was

lower (Figure 7B, top, α = 1). Greater weight on node attributes

increases the impact on analogical mapping of similarity between

animals in the source and target relative to the impact of semantic
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1 The variable we refer to as “compatibility” (of object and relational
similarity) was termed “transparency” by Gentner and Toupin (1986). For
methodological reasons, in their experiment the characters were varied in the
source rather than target, which creates the same 2 × 2 design used in our
simulation.
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relations (edge attributes), simulating the lesser sensitivity to rela-

tion similarity for preschool children. As shown in Figure 7, the

PAM simulation captures important trends in development of ability

in analogical reasoning: the overall benefit of both source systema-

ticity and mapping compatibility, the interaction between these two

factors, as well as greater sensitivity to systematicity for older

children. PAM’s simulation demonstrates that the impact of sys-

tematicity on analogical mapping, at least in the study by Gentner

and Toupin (1986), can be explained without requiring any assump-

tions about the use of higher-order relations.

With respect to the relational shift, theorists have suggested that

the developmental increase in focus on relations may reflect some

mix of increased relational knowledge and maturation of important

executive processes, notably working memory and inhibitory control

(Morrison et al., 2011; Richland et al., 2006). To model changes in

reasoning abilities of the 4–6-year-old versus 8–10-year-old chil-

dren, PAM holds constant both knowledge of relations (with no

higher-order relations being used at either age) and the basic mapping

algorithm. Instead, PAM simply manipulates its parameter α, con-

trolling the relative influence of relation versus object similarity on

mapping. PAM thus instantiates the hypothesis that with increasing

age, children come to preferentially place greater weight on relations

when reasoning by analogy. This account is consistent with more

recent proposals about the development of analogical reasoning,

which attribute some performance differences among children to

learned (possibly culturally-dependent) preferences for relations

versus objects, rather than differences in either prior knowledge

or processing ability (Carstensen et al., 2019; Kuwabara & Smith,

2012; Richland et al., 2010; also see Kroupin & Carey, 2022). More

generally, the relational shift is very likely the product of multiple

types of developmental changes.

Simulation 5: Mapping Richer Text Representations

PAM can potentially map more complex analogies presented as

texts. As an initial effort, we applied the model to find mappings

between a source story and target problem introduced by Gick and

Holyoak (1980) and widely used in psychological research on ana-

logical problem solving. The source story (The General) describes

how a general sends small groups of soldiers down multiple roads to

capture a fortress located in the center of a country; the target (radiation

problem) describes a doctor attempting to use a kind of ray to destroy

an inoperable stomach tumor without damaging healthy tissue. The

analogous convergence solution to the radiation problem is to use

multiple weak rays directed at the tumor (Duncker, 1945). The two

analogs are not isomorphic, and not all concepts have clear mappings.
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Figure 7

PAM Simulation of Character Mapping by Children of Different Ages (Top) and Children’s

Accuracy in Reenacting Stories (Bottom; Reprinted by Permission from Gentner & Toupin,

1986)

Note. A, top: Mapping accuracy with node attributes weighted with α = 2; bottom, data for 4–6-year-

old children. B, top: Mapping accuracy with node attributes weighted with α = 1; bottom, data for

8–10-year-old children. PAM = Probabilistic Analogical Mapping. See the online article for the color

version of this figure.
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The texts for the two analogs (Supplemental Information,

Table S7) consisted of 13 sentences constituting the problem

statement for The General and seven sentences constituting the

radiation problem. Keywords and semantic relations were identified

using an NLP-assisted procedure. After replacing pronouns with

their antecedents, each text was passed through a customized text

preprocessing code with the following four steps: (a) the top 20 most

frequent words were selected; (b) the MATLAB TextRank keyword

extraction function was run to select nouns, adjectives, and verbs

included in the top 20 high-frequency word set; (c) theMATLAB bag-

of-n-gramsmodel with the window size of 2-gramwas used to identify

pairwise relations between the keywords; (d) noun–noun relations

were selected only when both nouns appeared in the same sentence.

The procedure for keyword extraction and pairwise relation prepro-

cessing yielded 14 keywords for The General story (country, dictator,

fortress, villages, commander, large, army, capture, roads, landmines,

attack, small, many, troops) and 10 keywords for the radiation

problem (doctor, tumor, patient, destroyed, ray, high, intensity,

destroy, healthy, tissue). To avoid extreme heteronyms, the word

general was replaced by commander and mines were replaced by

landmines. Given their near synonymy, troops was replaced by army

in forming pairwise relations. We then manually added an important

noun–verb–noun relation to each representation, “commander controls

army” and “doctor uses rays.”Although not directly stated in the texts,

both are obvious inferences. As in previous simulations, unidirectional

edges were used to code noun–verb–noun relations. The NLP-assisted

text preprocessing thus yielded the basic elements for representing the

analogs. Semantic relation networks were created for each analog,

with Word2vec embeddings providing node attributes for individual

keywords, and BART vectors providing edge attributes for semantic

relations between keywords.

Figure 8 shows the major correspondences between concepts that

PAM identified for the two analogs. Seven concepts have mappings

for which humans generally agree: army → ray, fortress → tumor,

commander→ doctor, country→ patient, large→ high, capture→

destroy, controls → uses). PAM identifies all seven of these major

mappings, and also maps attack to destroy. According to human

intuition, a few concepts in The General have no clear match in the

radiation problem (e.g., dictator, landmines, roads). Because PAM

aims to find mappings for all concepts, these poorly-matched

concepts end up in arbitrary pairings.

We performed additional simulations using variant models (see

Supplemental Information). In particular, we sought to confirm that

PAM’s mapping performance is not solely due to the structure of its

semantic relation networks, but also depends on the content of the

relation vectors. When relation vectors produced by BART were

replaced with Word2vec-diff vectors (while holding constant all

other operations in the mapping algorithm), only two of the seven

major correspondences between concepts were recovered. Accuracy

was also reduced when the full PAM model was ablated to include

only node similarities (Nodes-only, four correct correspondences) or

only edge attributes (BART edges-only, three correct). Thus PAM’s

performance critically depends on having effective representations

of semantic relations as edge attributes, and not solely on the form of

its semantic relation networks.

Simulations 6 and 7: Selection of Plausible

Source Analogs

As noted earlier, mapping is considered central to analogical

reasoning because it impacts other key processes, including the

initial retrieval of a potentially useful source analog. Memory

retrieval involves a process of comparing a cue to cases stored in

long-term memory; although it seems unlikely that a cue could be

mapped to every stored case, several models of analog retrieval have

proposed that some form of mapping can be performed on a smaller

set of “finalists” that pass some basic threshold of similarity (Forbus

et al., 1995; Hummel & Holyoak, 1997; Thagard et al., 1990).

Indeed, analog retrieval appears to be sensitive to the same basic

constraints as analogical mapping: similarity of individual concepts

and of relations, modulated by differential attention to goal-relevant

elements. However, retrieval and mapping are at least partially

dissociable. Gick and Holyoak (1980, 1983) showed that people

often fail to retrieve a potentially useful far analog, suggesting
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Figure 8

Semantic Relation Networks for The General Story and the Radiation Problem, With Mappings Created

by PAM That Link Major Concepts

Note. To avoid clutter some keywords are omitted. PAM = Probabilistic Analogical Mapping. See the online article

for the color version of this figure.
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retrieval is more difficult than mapping when the analogs are

semantically distant. Later studies confirmed this pattern

(Gentner et al., 1993; Holyoak & Koh, 1987; Keane, 1987; Ross,

1987, 1989; Seifert et al., 1986). Other studies found that people

produce far source analogs in response to a target more often when

the pragmatic context involves a goal of communicating ideas to

others (e.g., political argumentation; Blanchette & Dunbar, 2000,

2001). However, in the latter studies the relative number of near and

far potential analogs actually available in memory was unknown.

When relative availability is taken into account, studies using

naturalistic paradigms also find that analog retrieval is heavily

influenced by similarity of individual concepts (Trench &

Minervino, 2015). At the same time, experimental evidence indi-

cates that relational similarity also impacts retrieval (Wharton et al.,

1994, 1996).

Analog retrieval, of course, is simply one manifestation of the

normal operation of memory processes. The problem of finding a

“useful” source analog in response to a target analog can be

considered as a special case of a rational analysis of memory

(Anderson & Milson, 1989). Given a set of potential sources S

stored in memory, the probability that Si is the optimal candidate for

retrieval given some target2 analog Twill be proportional to the prior

probability that Si is optimal multiplied by the likelihood that Si is

optimal given T. The prior will favor source analogs that have been

useful in the past; hence highly familiar sources will tend to be

preferentially retrieved. A particularly well-established example is

the prevalent use by children of the “person” concept as a source in

making inferences about other animals and plants (Inagaki &

Hatano, 1987). Similarly, people understand new individuals by

spontaneously relating them to significant others, such as a parent or

close friend (Andersen et al., 1995).

Analogical access, like memory retrieval in general, is inherently

competitive. Studies have shown that for any cue, people are more

likely to retrieve a case from long-termmemory if it is the best match

available (based on similarity of both concepts and relations) than if

some other stored case provides a better match (Wharton et al., 1994,

1996). Retrieval involves competition between multiple potential

source analogs, whereas mapping focuses on a single source. Also,

during mapping information about both analogs can be actively

processed in working memory, enabling eduction of relations to

create or elaborate semantic relation networks. In contrast, source

analogs are necessarily dormant in long-term memory prior to being

retrieved.

In terms of PAM, encoding a source analog would involve storage

of all or part of a semantic relation graph. Storage of concepts and

relations will be inherently asymmetrical: concepts A andB (nodes in a

graph) may be stored without necessarily storing the relation A:B,

whereas A:B (the edge between A and B) can only be stored if A and B

are also stored. Since retrieval of far analogs will be relatively

dependent on shared relations, retrieval of far versus near analogs

will be disadvantaged to the extent important semantic relations in the

source were not fully encoded into memory. As this analysis predicts,

domain experts (who are more likely to focus on relevant relations

during both encoding and retrieval) are more successful than novices

in accessing remote source analogs based on relational similarity

(Goldwater et al., 2021; Novick, 1988; Novick & Holyoak, 1991).

Given that semantic relation networks have been stored in

long-term memory, PAM can be used to calculate a measure of

overall similarity—a “mapping score,” which is the log-likelihood

defined in Equation 4 using the maximum a posteriori estimate

of mapping m̂ inferred by the model. We term this measure the

G score:

G =

X
i

X
j≠i

X
i′

X
j′≠i′

m̂ii′m̂jj′SðAij,Ai′j′Þ

+ α
X
i

X
i′

m̂ii′SðAii,Ai′i′Þ: (7)

G provides an overall assessment of similarity based on both

concept similarity (node attributes) and relational similarity (edge

attributes). This mapping score can be used to rank alternative

source analogs in degree of fit to a target.3 Of course, it would be

computationally unrealistic to assume that analog retrieval is based

on a full-blown mapping process applied to all possible source

analogs stored in long-term memory. However, some heuristic

process based on concept similarity or on important relations

involved in analogs could be used to select a tractable number of

source analogs that exceed some initial threshold, after which the

mapping process could be used to select the source(s) that best fit the

target (cf. Forbus et al., 1995). Here we report two simulations that

assess PAM’s mapping score as a potential mechanism to guide

analog retrieval given a circumscribed set of alternatives.

Simulation 6 aimed to demonstrate that PAM can account for the

often-observed dissociation between the impact of concept similar-

ity on retrieval versus mapping. Keane (1987, Experiment 1)

examined retrieval of several variations of source analogs to the

radiation problem (see Simulation 5). The source analog was always

presented as a story, which was studied 1–3 days before presentation

of the target radiation problem. Keane found that 88% of partici-

pants retrieved a source analog from the same domain as the target (a

story about a surgeon treating a brain tumor), whereas only 12%

retrieved a source from a remote domain (a story about a general

capturing a fortress, very similar to that used by Gick & Holyoak,

1980). This difference in ease of access was dissociable from the

ease of post-access mapping and inference: the frequency of gener-

ating the convergence solution to the radiation problem once the

source analog was cued was high and equal (about 86%) regardless

of whether the source analog was from the same or a different

domain.

The source texts used by Keane (1987) were very similar to those

examined in Simulation 5, but shorter and simpler. For the military

story (far source analog) our text preprocessing program yielded six

keywords (commander, fortress, army, country, destroy, large); for

the medical story (near analog) the program yielded seven keywords

(surgeon, cancer, rays, brain, destroy, high, intensity). The
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2 Here we encounter an unfortunate conflict between the target/source
terminology of the analogy literature and the cue/target terminology of the
memory literature. In typical analog retrieval, a target analog serves as a
retrieval cue, and potential source analogs are available as “targets” stored in
long-termmemory.We will continue to use the term “target” in the sense of a
target analog.

3 Equation 7 can potentially be refined to deal with situations in which
semantic relation graphs for different analogs vary substantially in size (cf.
Marshall, 1995). In addition, a quantitative model would relativize retrieval
probability to reflect competition among alternative source analogs stored in
memory (Hummel & Holyoak, 1997). In the present simulations the analogs
are of similar size, and we only make qualitative predictions (aiming to
predict the rank order of retrieval probabilities for different possible source
analogs).
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radiation problem (target) yielded 10 keywords. We ran PAM the

same way as reported in Simulation 5. PAM found the correct

mapping of core concepts for both source stories: commander →

doctor, fortress → tumor and army → rays for the far source; and

surgeon → doctor, cancer → tumor and rays → rays for the near

source. However, the value of the G score was substantially higher

for the near source (2.216) than for the far source (1.665). Simula-

tion 6 thus captures the qualitative pattern of human performance:

higher probability of retrieving a near than far source, coupled with

equal (and high) success in mapping either to the target.

In Simulation 7 we examined PAM’s predictions for analog

retrieval using a larger dataset. Turney’s (2008) dataset of 20 science

analogies and analogical metaphors (used in Simulation 2) provides

a test of PAM’s ability to identify “good” source analogs for a given

target analog. The mapping score G can be used to rank order any

number of potential source analogs in degree of fit to a given target.

To assess the ability of PAM to rank potential source analogs, in

Simulation 7 the 20 examples of analogies in Table 2 were used to

create a source selection task. For this simulation, we assume that the

semantic relation networks for all 20 source analogs have been

successfully stored in long-term memory, and that the semantic

relation for a given target analog serves as a retrieval cue. For

example, given atom (#1) as the target analog, we would expect

solar system to be selected as the best source analog among the 20

alternatives.

For this computational experiment, each target analog in turn was

mapped to all 20 source analogs, and PAM’s mapping score was

obtained for each potential source. For 17 out of the 20 targets, the

best match as computed by PAM was the intended source shown in

Table 2. For the three target analogs in which PAM’s mapping score

did not identify the expected source analog, the “errors” proved to be

very reasonable. The science analogy dataset includes target analogs

that are closely linked to multiple relevant sources. Specifically, two

of the science analogies involved gravity (#1 and #6 in Table 2), two

involved wave motion (#3 and #5), and two involved heat (#4 and

#8). PAM assessed the best match for planetary motion (#6) to be

solar system (#1), a source analog based on essentially the same

knowledge (with overlapping keywords). The best match for the

target sound waves (#3) was the source sound waves (#5, with

somewhat different keywords), and the best match for heat due to

molecular motion (#8) was the source combustion (#4). These

choices indicate that PAM favors retrieval of near over far analogs,

as do humans. In each of these cases PAM selected the intended

source shown in Table 2 (a far analog) as the next-best match. For

the target light waves (#5) the expected source (sound waves) was

selected as the best match, with the other available wave analog

(water waves, #3) ranked second. Figure 9 shows the entire distri-

bution of G scores across the 20 alternative source analogs for each

of four representative target analogs.

For each target analog, PAM’s measure of mapping quality thus

identified relationally-similar source analogs from semantically-

distant domains. The results of Simulation 7 indicate that when a

semantic relation network has been stored in long-term memory for

each analog in a set of potential source analogs, PAM can select a

useful source for a given target from among a larger pool of

candidates. Of course, if the semantic relation networks for source

analogs were poorly encoded or have been degraded by forgetting,

retrieval will be less sensitive to shared relations.

General Discussion

Summary and Implications

We have presented a novel Bayesian model of analogical map-

ping, PAM, which builds on advances in machine learning that

automate the generation of rich semantics for both concepts (by

Word2vec) and relations (by BART trained using Word2vec).

From these inputs, the model creates semantic relation networks

that capture the skeletal structure of complex analogs. PAM operates

on semantic relation networks to find mappings between key

concepts. The model automatically creates relation networks by

integrating fragmentary semantic knowledge about individual con-

cepts and the relations that link them, guided by textual constraints

when available.

PAM is able to solve analogies that require integration of multiple

relations in each analog (Simulation 1, based on data from a novel

mapping task), matching the pattern of human performance in

considerable detail. The model is also able to solve complex

analogical mappings based on sets of predefined keywords (Simu-

lation 2, based on Turney, 2008), and can account for the impact of

goals in resolving ambiguous mappings (Simulation 3, based on

Spellman & Holyoak, 1996). By varying the model’s global empha-

sis on lexical concept (node) versus relation (edge) similarity, it is

possible to account for the developmental shift in sensitivity to

relations; in addition, the model can capture the influence of text

coherence (systematicity) without assuming access to higher-order

propositions (Simulation 4, based on Gentner & Toupin, 1986). By

adding NLP-assisted preprocessing to extract key concepts from text

inputs, the model can solve analogies between nonisomorphic

problems posed in short texts (Simulation 5, based on Gick &

Holyoak, 1980). The model also provides a measure of global

similarity between analogs, which can be applied to support the

retrieval of plausible source analogs from memory, and accounts for

the partial dissociation between the impact of different types of

similarity on retrieval versus mapping (Simulation 6, based on

Keane, 1987; Simulation 7, based on Turney, 2008).

The use of semantic relation networks in analogical mapping is

consistent with empirical evidence that human memory and com-

prehension are reconstructive in nature, and heavily dependent on

prior semantic knowledge (Kintsch, 1988; Van Overschelde &

Healy, 2001). PAM captures the human ability to reason by analogy

in a domain-general manner, without requiring extensive training

with analogy problems in any particular domain. The model’s

success in accounting for a range of phenomena observed in studies

of human analogical mapping, as well as analog retrieval, illustrates

how distributed representations capturing rich semantics of concepts

and relations can effectively accomplish tasks that are usually

associated with symbolic reasoning (Carstensen & Frank, 2021;

Holyoak & Lu, 2021).

PAM represents the continuing evolution over the past four

decades of models of human analogical mapping based on represen-

tation matching. An early hypothesis was that mapping is based

solely on structure and not on content (Gentner, 1983); however,

empirical evidence led subsequent computational models to add

constraints based on semantic content and pragmatic factors (e.g.,

Forbus et al., 2017; Gentner et al., 1993; Holyoak, 1985; Holyoak &

Thagard, 1989). In PAM, not only individual concepts (nodes in a

semantic relation graph) but also semantic relations themselves

T
h
is
d
o
cu
m
en
t
is
co
p
y
ri
g
h
te
d
b
y
th
e
A
m
er
ic
an

P
sy
ch
o
lo
g
ic
al

A
ss
o
ci
at
io
n
o
r
o
n
e
o
f
it
s
al
li
ed

p
u
b
li
sh
er
s.

T
h
is
ar
ti
cl
e
is
in
te
n
d
ed

so
le
ly

fo
r
th
e
p
er
so
n
al

u
se

o
f
th
e
in
d
iv
id
u
al

u
se
r
an
d
is
n
o
t
to

b
e
d
is
se
m
in
at
ed

b
ro
ad
ly
.

PROBABILISTIC ANALOGICAL MAPPING 19

Template Version: 23 December 2021 ▪ 7:11 pm IST REV-2021-0152_format_final ▪ 28 January 2022 ▪ 9:40 pm IST



(edges) are defined by rich semantic vectors. As demonstrated in

comparisons between the performance of PAMusing relation vectors

generated by BART versus Word2vec-diff, mapping performance

can differ radically depending on semantic content even when the

form (structure) of the semantic relation networks being compared is

held constant (see model comparisons in Supplemental Information,

especially for Simulations 1 and 5). In general, for the simulations

reported here, PAM approaches human levels of performance only

when it operates on relation vectors provided by BART. The present

computational results are in accord with previous evidence that

BART, but not Word2vec-diff, generates semantic relation vectors

that can account for human patterns of relational similarity judgments

(Ichien, Lu, et al., 2021) as well as patterns of neural similarity

among relations observed during analogical reasoning (Chiang et al.,

2021). At the same time, Word2vec proved very effective in

providing semantic vectors for individual concepts (nodes), which

are also crucial for PAM’s performance. Perhaps most notably,

subtle variations in patterns of node similarity predicted a

previously-unexplained asymmetry in resolution of an ambiguous

mapping, observed in a study by Spellman and Holyoak (1996;

Simulation 3). Thus semantic content—of both concepts and

relations—is fundamental to human analogical mapping.

Like previous models in the tradition of representation matching,

PAM is able to capture the human ability to perform zero-shot

learning by analogical transfer. In the spirit of other recent work in

this tradition (Doumas et al., in press; Forbus et al., 2017), the model

makes progress (though still incomplete) toward achieving a key

aim emphasized by end-to-end models: automating the generation

of analog representations. PAM, coupled with Word2vec and

BART, enables semiautomated generation of the inputs to the

mapping module for analogies presented in verbal form, either as

sets of keywords or as short texts. When the inputs are texts, the

initial extraction of key concepts and their relations is aided by NLP

techniques that serve as proxies (albeit imperfect) for human text

comprehension. Given the limitations of the NLP techniques we

have so far explored, this process requires some human intervention.

But once the nodes and edges in semantic relation graphs have been

specified, the remainder of the mapping process is fully automated.

By building a mapping model on top of learning mechanisms

grounded in distributional semantics, we can draw closer to the
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Figure 9

Representative Examples, for Each of Four Target Analogs, of the Distribution of G Scores Across 20 Alternative Source Analogs

Note. Each panel shows scores for one target in Turney’s (2008) dataset; the horizontal axis indicates 20 possible source analogs (labels identified in Table 2).

A: respiration correctly and unambiguously maps to combustion; B: sound waves map to sound waves (very near analog) closely followed by water waves

(intended far analog); C: argument following correctly and unambiguously maps to path following; D: reasons for a theory maps correctly to grounds for a

building, followed closely by two alternative source analogs. See the online article for the color version of this figure.
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goal of being able to automate analogical reasoning for natural-

language inputs.

Forms of Relational Representation

The BART/PAM framework for learning relations and reasoning

with them exemplifies the general view that (at least for humans)

relational knowledge in acquired by a series of rerepresentations

(Penn et al., 2008). These successive representations of relational

knowledge lie on a continuum from highly implicit to increasingly

explicit (see Doumas & Hummel, 2012). Within the model pre-

sented in the present paper, four distinct representations that include

relational information can be distinguished. (a) Word embeddings

created by Word2vec take the form of densely distributed vectors

representing the meanings of individual concepts (words). Within

these embeddings, some features carry relational information, but in

an implicit and “entangled” manner (Moradshahi et al., 2021). To

take a hypothetical example, the embeddings for the words rich and

poor may each include features associated (in a probabilistic

manner) with such relational concepts as money, continuous quan-

tity, and relative extremity. (b) Given word pairs that form positive

and negative examples of a target relation, the learning mechanisms

in BART take advantage of statistical information coded by Word2-

vec features (coupled with derived features created by reordering

based on the magnitudes of feature differences between the words in

a pair) to generate a weight distribution over word features, thereby

predicting the posterior probability of the target relation (e.g.,

opposite). This weight distribution for a relation provides a new

implicit representation that captures the relative importance of

various word features in predicting the relation. (c) The computed

posterior probability that the target relation holds is then treated as a

representation of the degree to which a word pair satisfies the

relation, coded as the value of a disentangled “relation feature”

in a new representational space of relations. (d) BART forms an

explicit semantic-relation vector composed of values (i.e., posterior

probabilities) of the features corresponding to its learned relations.

As a disentangled and explicit (though distributed) representation,

this vector makes it possible to form PAM graphs in which the

specific relation between two words (edge attribute) is distinct from

the meanings of the individual keywords being related (node

attributes). Importantly, these successive relation representations

do not replace one another, but rather support complementary

cognitive abilities. Most notably, the weight distributions learned

by BART accomplish the eduction of relations for any word pair,

whereas the resulting semantic vectors allow analogical compar-

isons (the eduction of correlates).

Semantic relation vectors do not exhaust the forms in which

relational knowledge can be represented. These vectors are distinct

from verbs and other linking words that constitute multiplace

predicates in natural language—a yet more explicit form of relation

representation. The relation vector for a particular pair of words need

not correspond to a predicate; however, specific relation features

(individually or as a set) may be linked to corresponding predicates

(e.g., contrast features might be connected to the phrase “is opposite

of,” and part-whole features to “is a part of”). At the same time, most

verbs and other multiplace predicates (e.g., chase, kill, love, give)

probably do not directly correspond to features in a semantic relation

vector. Philosophers have distinguished between relations that are

internal—those that hold by nature of the terms they relate—versus

external (e.g., Clementz, 2014). Word embeddings tend to capture

generic information about concepts (Cimpian & Markman, 2008;

Graham et al., 2016)—properties that are intrinsic to the meaning of

the words (pansy is a type of flower) or highly typical (read is an

action performed on a book). Given that the semantic relations

learned by BART are extracted from generic feature representations

of their relata (i.e., word embeddings), these relations can be

construed as internal. Semantic relation vectors thus focus on

internal relations between generic word meanings, whereas predi-

cates of a natural language can refer to all types of relations. Thus a

model such as BART, which aims to learn semantic relation vectors,

has a different (though ultimately related) goal than does a model

such as DORA (Doumas et al., 2008), which focuses on learning

predicates.

Coding Sentential Information in Semantic

Relation Graphs

PAM operates on attributed graphs consisting of nodes represent-

ing individual concepts and edges representing the educed relations

between concepts (Spearman, 1923), rather than on structured

propositions as assumed by previous models of analogical mapping

in the tradition of representation matching. An important issue

concerns whether and how semantic relation networks can capture

the detailed structural information provided by sentences of natural

language (or by abstract propositions derived from sentences). An

obvious limitation of semantic relation vectors is that all relations

are binary (connecting two words), whereas the predicates of natural

language also include (at least) ternary relations (b is between a and

c; x gave y to z). In our simulations of analogies expressed by text,

we introduced a convention for coding subject-verb-object sen-

tences as sets of unidirectional edges in a graph (e.g., “dog chases

cat” becomes the trio of binary relations dog : chase, chase : cat, dog

: cat). This convention captures at least part of the relational

structure conveyed by simple sentences, enabling PAM to predict

the greater difficulty of cross mappings (see Simulation 4 based on

Gentner & Toupin, 1986). The basic approach of translating simple

sentences into a set of unidirectional binary links could be extended

to sentences that include an indirect object (e.g., “The boy gave a

book to the girl”), which express ternary relations. By adopting NLP

techniques that create relatively “flat” syntactic parses (perhaps with

a version of dependency grammar; see Jurafsky & Martin, 2021,

Chapter 14), the general approach could be further extended to

handle sentential complements (a type of sentence embedding), such

as “The woman believed that the boy loved the girl.” Moreover, a

parser could be used to augment semantic relation vectors with

features indicating syntactic (e.g., subject vs. object) and/or thematic

roles (e.g., agent vs. patient).

It remains an open question whether analogical mapping requires

sensitivity to aspects of relations that cannot be fully captured by

semantic relation networks. It has often been claimed that analogical

mapping (at least for older children and adults) depends on repre-

sentations of “higher-order” relations (those that take propositions

as arguments, typically corresponding to verbs that take sentential

complements). Higher-order relations have been assumed to

increase the “systematicity” of mappings (Gentner, 1983). However,

Simulation 4 (Gentner & Toupin, 1986) raises the possibility that at

least some evidence for the impact of systematicity can be explained

without positing access to higher-order relations at all. An
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alternative general explanation is that mapping benefits from greater

text coherence (Kintsch, 1988), which does not necessarily depend

on higher-order propositions. Within the PAM model, mapping

performance will generally be facilitated by any and all textual cues

that establish unambiguous semantic relations between multiple

pairs of interconnected keywords.

In fact, the majority of studies that have been interpreted as

supporting the special importance of higher-order relations in

mapping solely involve the relation cause, which has been treated

as a higher-order relation between propositions describing events

(e.g., Clement & Gentner, 1991; Forbus et al., 2017; Gentner et al.,

1993). However, linguistic evidence casts doubt on this representa-

tional assumption. Verbs that express direct causation commonly

appear in single-clause sentences (e.g., “The boy broke the vase”),

rather than taking sentential complements (Kemmer & Verhagen,

1994; Wolff, 2003). Moreover, other relations that appear syntacti-

cally equivalent to cause (e.g., temporally prior to) do not support

analogical inferences in the same manner (Lassaline, 1996). Indeed,

causal relations have long been viewed as having a special status in

analogical reasoning—not because of their syntactic form, but

because of their pragmatic relevance to goal attainment and hence

analogical inference (Holyoak, 1985; Winston, 1980). Theories of

causal reasoning have treated causal relations not as static predicates

attached to higher-order propositions, but rather as active compo-

nents of causal networks that generate inferences (Holyoak &

Cheng, 2011; Pearl, 2009; Waldmann & Hagmayer, 2013). Ana-

logical inferences are sensitive to such basic distinctions as that

between generative and preventive causes, and predictive (cause to

effect) versus diagnostic (effect to cause) inferences (Holyoak et al.,

2010; Lee & Holyoak, 2008). Thus although causal relations indeed

have special properties, their impact on analogical reasoning may

have little to do with the syntactic form of causal propositions.

Limitations and Future Directions

Whatever role (direct or indirect) that propositions may play in

analogical mapping, such representations are likely to be important

for other aspects of analogical reasoning. In particular, PAM has yet

to be extended to address the later stages, inference and schema

induction. While semantic relation networks enable flexible and

computationally-efficient analogical mapping, more detailed prop-

ositional representations (or at least the syntax of natural language)

may well be required to enable construction of explanations for

mappings, and to aid in the generation of structured analogical

inferences. The immediate output of PAM is simply a set of

mappings between individual keywords from the source and target.

However, if the analogs were presented as structured text, the basic

algorithm of “copy with substitution” (CWS; Holyoak et al., 1994)

can be used to generate analogical inferences. For example, the

mapping between the General story and the radiation problem

(Simulation 5) yields correspondences that include commander →

doctor and army → ray. If the source contains the sentence,

“The commander divides the army,”CWSwould yield the inference

“The doctor divides the ray”—a valuable aid in constructing a

parallel convergence solution to the radiation problem. More gen-

erally, the two types of explicit relation representations (semantic

relations and predicate-centered propositions) may prove to be

complementary. PAM can construct semantic relation networks

and use them to produce a quick sketch of the mapping between

two analogs, coupled with an evaluation of overall mapping quality.

If the mapping appears to be promising, propositional representa-

tions can potentially be used to develop the mapping in greater detail

and to generate inferences from it.

A number of extensions of the PAM model appear feasible. The

relation vectors provided by BART could be improved by training

the model on a broader range of relations, particularly the types of

thematic relations that link verbs with nouns. Mapping could in

principle be based in part on embeddings of concepts derived from

larger units than words, including sentences (Devlin et al., 2019),

and visual embeddings derived from images via convolutional

neural networks. PAM’s procedure for iterative updating of the

mapping matrix could include a “slack” column allowing concepts

that do not map well to go unmatched. The iterative search for an

optimal mapping might allow the value of the α parameter to vary

(i.e., seeking a trade-off between a focus on node vs. edge similarity

that maximizes mapping quality), using the approach of hierarchical

Bayesian modeling. A further extension might allow the search for

an optimal mapping to include variations in the encodings of the

analogs, as suggested by the Copycat model (Hofstadter &Mitchell,

1994). Such extensions are likely to lead to a greater emphasis on

sequential processing, which is likely necessitated by capacity

constraints on human analogical reasoning (Halford, Bain, et al.,

1998; Hummel & Holyoak, 1997; Keane & Brayshaw, 1988).

Although the present paper deals only with verbal analogies,

PAM can be used to perform mapping given any system for

assigning vectors as attributes of nodes and edges in a graph.

The model could therefore be adapted to solve mappings based

on perceptual inputs such as pictures, given that relevant object

features and perceptual relations have been identified. Relation

vectors for meaningful pictures can potentially be formed as hybrids

of features provided by perceptual processes and by semantic

knowledge about concepts (Lu, Liu, et al., 2019). It seems possible

that even formal relations, such as those used in psychological

studies of the acquisition of relational schemas (Halford, Bain, et al.,

1998; Halford & Busby, 2007; Phillips, 2021), as well as those that

occur in mathematics, can also be represented by relation vectors

with semantic content. Indeed, studies such as that by Halford, Bain,

et al. (1998) have shown that learning of new formal relations can be

facilitated by encouraging participants to map them onto known

meaningful relations. Similarly, people’s interpretation and use of

arithmetic operations appears to be guided by semantic alignment

between mathematical and real-life situations. The entities in a

problem situation evoke semantic relations (e.g., tulips and vases

evoke the functionally asymmetric contain relation), which people

align with analogous mathematical relations (e.g., the noncommu-

tative division operation: tulips/vases; Bassok et al., 1998; Bassok &

Olseth, 1995). A similar form of semantic alignment guides the use

of different formats for rational numbers—fractions and decimals.

Adults in the U.S. and South Korea (Lee et al., 2016), as well as

Russia (Tyumeneva et al., 2018), selectively use fractions and

decimals to model discrete (i.e., countable) and continuous entities,

respectively. Favored semantic alignments may reflect selective

similarities between relation vectors that represent mathematical

and real-world relations.

PAM may be able to contribute to efforts to automate the

discovery of analogies in online databases (e.g., by searching an

inventory of patents for inventions). A processing pipeline might use

algorithms for natural language processing to summarize texts
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stored in electronic form and to extract key concepts coupled with

basic syntax. The extracted information would then be processed to

form knowledge graphs with rich semantics for concepts and

relations, which could in turn be passed to PAM to identify potential

source analogs relevant to solving a specified target problem. Our

broader aim is to foster the evolving synergy between theoretical

ideas drawn from AI and from cognitive science, in order both to

understand human reasoning more fully and to enhance the reason-

ing capacities of machines.
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