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Vector Extensions of Halanay’s Inequality

Frédéric Mazenc

Abstract—We provide two extensions of Halanay's inequality,
where the scalar function in the usual Halanay’s inequality is re-
placed by a vector valued function, under a Metzler condition. We
provide an easily checked necessary and sufficient condition for
asymptotic convergence of the function to the zero vector in the
time-invariant case. For the time-varying cases, we provide a suffi-
cient condition for this convergence, which can be easily checked
when the systems are periodic. We illustrate our results in cases
that are beyond the scope of prior asymptotic stability results.

Index Terms—Delay, interval observer, stability.

|. INTRODUCTION

Halanay’s inequality is an efficient stability analysis tool, especially
for systems with time-varying and poorly known delays, because for
such cases, no general Lyapunov—Krasovskii functional construction is
available in general. This celebrated inequality has the following form:

o(t) < —av(t) +b sup v(¥) ()

Left—T,1]

where a > 0, b >0, and 7 > 0 are constants and v : [—7, +oc) —
[0, +-c0) is a scalar function of class C'. Here and in the sequel, deriva-
tives at endpoints are one sided ones. The usual Halanay’s inequality
result [8] is the following: if a > b, then v(t) exponentially converges
to zero as t —+ +oo. In addition to our works in [16] and [17] that relax
the requirement that the decay rate a is strictly larger than the gain b,
several other extensions of this result are available in the literature e.g.,
in [6], [20], [23], and [24]. Time-varying versions have been studied
in [2] and [15].

The fact that v in (1) is scalar valued is a limitation, because when
one analyzes a system with delay, such a function may not be available,
but functions v; : [T, +00) — [0, +00) of class C' and a Metzler
matrix M, and a matrix P with all positive entries, such that

: sup vi(l)
L1 (f) Ul(t) le[t—T.,t]
DolsMm| oz |4P : )
n(t) vn(t) sup wn(l)
le[t—7,t]

Manuscript received May 18, 2020; revised November 11, 2020; ac-
cepted February 23, 2021. Date of publication February 26, 2021; date
of current version February 28, 2022. This work was supported by the
U.S. National Science Foundation under Grant 1711299 (Malisoff) and
Grant 1711373 (Krstic). Recommended by Associate Editor C-Y. Kao.
(Corresponding author: Frédéric Mazenc.)

Fréedéric Mazenc is with the Inria
CentraleSupélec, 91192 Gif-Sur-Yvette,
frederic. mazenc@|2s.centralesupelec.fr).

Michael Malisoff is with the Department of Mathematics, Louisiana
State University, Baton Rouge, LA 70803-4918 USA (e-mail:
malisoff@lsu.edu).

Miroslav Krstic is with the Department of Mechanical and Aerospace
Engineering, University of California, San Diego, La Jolla, CA 92093-
0411 USA (e-mail: krstic@ucsd.edu).

Digital Object Identifie 10.1109/TAC.2021.3062565

L2S-CNRS-
(e-mail:

Saclay,
France

, Michael Malisoff ', Senior Member, IEEE, and Miroslav Krstic

, Fellow, IEEE

for all ¢ > 0 may be available, where the inequality in (2) is com-
ponentwise. Using (2) to obtain a scalar valued function v satisfying
the requirements of Halanay’s theory does not seem to be possible in
general.

These remarks motivate this article, which continues our search for
generalized or relaxed versions of Halanay’s inequality, which we began
in [16] and [17]. While Mazenc ef al. [16] provided less restrictive
versions of Halanay’s inequality, where the gain in the overshoot term
can exceed the decay rate, including applications to systems with
scarce arbitrarily long sample intervals, whereas Mazenc ef al. [17]
covered sampled cases that were beyond the scope of earlier Halanay’s
inequality formulations, such as Mazenc ef al. [16], here we pursue
a very different direction, where the usual scalar decaying function
in Halanay’s inequality is replaced by a vector-valued function. This
provides an analog to the vector Lyapunov function results that is
applicable to stabilization problems that were beyond the scope of
earlier Razumikhin function or diagonal-stability-based methods; see
the work in [10], [22], and [26] for vector Lyapunov functions and
the work in [5] for input-to-state stability (or ISS) for interconnected
systems via combinations of Lyapunov functions, or under small-gain
conditions that we do not require here.

We propose two extensions of Halanay’s result in the case where
vector Halanay’s inequalities are satisfied. First, we consider a vector
and time-invariant version of this inequality. In Section II, we provide an
easily checked necessary and sufficient conditions for the convergence
of the v;’s to zero as time converges to +oc. Second, we propose
sufficient conditions for this convergence, for a vector and time-varying
version of Halanay’s inequality in Section III. We prove the results
using ideas for Metzler matrices and cooperative systems, e.g., from
Berman and Plemmons [4] and Haddad et al. [7]. Then, in Section IV,
we provide three examples that illustrate how our results add value to
the literature.

We use standard notation, which is simplified when no confusion
would arise, where the dimensions of our Euclidean spaces are arbitrary
unless otherwise noted. The standard Euclidean norm and induced ma-
trix norm are denoted by | - |, and | - | is the usual sup norm. We define
Zi by Ei(s) = E(t +s) forall E, s < 0,and ¢ > 0 for which ¢ + s is
in the domain of 2, N = {1, 2,...}, and | -] denotes the floor function.
For matrices M € R™*? and A € R™*? with entries m; ; and n; ; in
row 7 and column j, respectively, we write M < N whenm,; ; < n; ;
forallz e {1,...,n} and j € {1,...,p}, and similarly for < and for
vectors. A matrix is called nonnegative (resp., positive), provided all
its entries are nonnegative (resp., positive). A matrix is called Metzler,
provided its off diagonal entries are nonnegative, and I is the identity
matrix. A continuous linear system of the form Z(¢) = L(#)=; having
a delay that is bounded above by a constant 7 > 0 is called cooperative,
provided for each initial function satisfying Z(¢) > Oforall¢ € [—7, 0],
the corresponding solution satisfies =(¢) > 0 for all ¢ > 0. We also use
the n-fold product notation [0, +c0)™ = [0, +0oc) % ... [0, +occ) and
usual definitions and properties for the state-transition matrices (i.e.,
fundamental solutions) from [25, Appendix C.4].

0018-9286 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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Il. TIME-INVARIANT CASE
A. Statement of Result and Remarks

Let M € R™*" be a Metzler and Hurwitz matrix and P € R™*" be
a nonnegative matrix. Let 7 > 0 be a constant and V' : [—7, +oc) —
[0, 4-00)™ be C! and

V(t) = MV (t) + PS(V:) 3)

hold for all £ > 0, where V = (v;...v,)" and
S(V;) = sup V(I) (C))

le[t—T,t]
and where
.
sup V()= | sup vi(I) ... sup wvn(l) (5)
le[t—T,t] le[t—T.t] le[t—T.,t]

where v; is the 7th component of V' for each z, and similarly for vector-
valued functions W below. We prove the following.

Theorem 1: All C! solutions V : [—7, +-00) — [0, 4+-c0)™ of (3)
converge exponentially to the origin as ¢ — +oo if and only if M + P
is Hurwitz.

Remark 1: One can prove that if M + P is Hurwitz, then a C*
function V' : [—7, +00) — [0, +0c)™ such that

V(t) < MV (t) + PS(V,) (6)

holds for all £ > 0 converges to 0 as ¢ — +oc. This can be proved
by the following variant of the usual comparison principle. Consider a
function W such that

W (t) = MW (t) + PS(W,) (7

with S(Wy) > 8(Vp), and suppose there was a £, > 0 such that
W(t) > V(t) forall t € [0,t.) and such that thereisai € {1,...,n}
such that v;(t,) = w;(t.). Then, we get the following:

V(te) < eMteV(0) + [1° M te=8 PS(V;)de and
W (t.) = eMtW(0) + [, eM O PS(W,)de (8)

where we used the fact that the Metzler property of M implies that
eMs > 0forall s > 0[11].

If we subtract the equality in (8) from the inequality in (8) and recall
that M= >0 for all s > 0 (so, eM*e is nonzero and nonnegative) and
P > 0, we get the contradiction V' (¢.) < W (¢t.). Hence, W () > V(1)
forallt > 0, and Theorem 1 ensures that W () exponentially converges
to 0 as t — +oc. Hence, since V' is nonnegative valued, V() also
exponentially converges to 0 as £ — 4oc.

Remark 2: We canuse Theorem 1 to find novel sufficient conditions
for the origin to be a globally exponential stable equilibrium on R™ for
systems of the following form:

X(t) = AX(t) + ;1 B.X (t —7i(t)) ©)

with multiple bounded delays 7; for any integer p > 1, including cases
where A is not required to be Metzler and B;’s might not be nonnegative
(see Section IV-B).

We can rewrite (3) in the form V(£) = MV () + Plv(t —
T1(), - - - vn (t — 7, (¢))] " with time-varying delays 7, which is rem-
iniscent of but beyond the scope of [19, Th. 4.1], because Ngoc [19]
was confined to constant delays. Thus, no extension of [19, Th. 4.1] to
(9) is possible. When M is not Metzler or P is not nonnegative, then
the nonnegative orthant may not be positively invariant for (3), and this
motivates our conditions on M and P.

B. Proof of Theorem 1

1) First Part. Necessity: We prove thatif M 4 P is not Hurwitz, then
the asymptotic convergence condition of the theorem does not hold. To
this end, notice that if M 4+ P was not Hurwitz, then the system

X(t)=(M+ P)X(t) (10)

with X = (xy,...,z,)7 is not exponentially stable. Consider a so-
lution V' : [—7,400) — [0, 400)™ of (3) such that v;(r) = 2 for all
i€{l,...,n} and r € [—7,0] and the solution X of (10) with the
initial condition X (0) = (1,...,1)7. Then, X () > 0 for all ¢ > 0,
because M + P is Metzler; see [11, Lemma 1]. We prove that

V(t) > X(t) (11)

for all £ > 0 by proceeding through contradiction.

Let us assume there is a £, > 0 such that V' (¢) > X (¢) forall t €
[0,¢.) and that there is ¢ € {1,...,n} such that v;(¢.) = =;(t.). By
integrating, we obtain the following:
€ eMte=f) pS(V;)d¢ and

t

V(te) = eM*=V(0) + [,

X (t.) = M= X (0) 4 [5° eMt—OPX(£)de. (12)

As in Remark 1, it follows that V'(t.) > X (¢.) because M is Metzler.
This yields a contradiction. Since X (¢) does not converge to 0 as ¢t —
+oo and is nonnegative valued, it follows from (11) that V(¢) also
does not exponentially converge to zero. This proves the necessity of
Hurwitzness of M + P for the convergence condition in Theorem 1.
2) Second Part. Sufficiency: We show that if (3) is such that M + P
is Hurwitz, then the convergence conclusion of Theorem 1 holds. To
this end, we introduce the function W (t) = e~ M*V (¢) for all £ > 0.

Then, (3) gives
W(t) = e MtPS(V,). (13)

By integrating (13) on [t — h, t] forany ¢ > h + T and h > 0, we obtain
the following:
e Mty () = MDY (¢ — h)
+ [i e MEPS(Vy)de (14)
which gives
V(t) = MV (t—h)+ [, eMOPS(Vde.  (15)

For all £ < ¢, the matrix e™ *~9) P is nonnegative, because P > 0 and
M is Metzler; see, e.g., [11, Lemma 1]. Hence, we have the following:

V(t) < MMV (t—h) + [, eMEDPALS, . (V;)

=MW (t—h)+ M (eM" — I) PShir (Vi) (16)
where Sp 7 (V) = SUPye(s_p_rg V (£). Thus
V(t) < (Mt + M 1eMPP 4 R) Shir (Vi) (17)
with
R=—-M"P (18)

By Lemma 1 in the Appendix, the matrix R is nonnegative and
Schur stable. Hence, we can find a real value p > 0 such that R + pH
is Schur stable and positive, where H is the constant n x n matrix
each of whose entry is 1 (because of the continuity of eigenvalues
of a matrix as a function of the entries of the matrix). Also, since
M is Hurwitz, it follows that limp_o |€™"| = 0. Hence, since R
is Schur stable, there is a constant h, > 0 such that for all h > h,,
the matrix eM? + M~'eM" P + R + uH is Schur stable and positive.
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Moreover, (17) is satisfied with e + M~1eMh P L R replaced by
eMh L M~1eMhP 4 R 4 pH, since V is nonnegative valued. Then,
by the nonnegativity and Schur property of e™* + M~1eMPP + R 4+
pH, it follows from the proof of [1, Lemma 1] that V'(¢) converges
exponentially to zero as t — +o0.

lll. TIME-VARYING CASE
A. Studied Problem

Our main assumption throughout this section is given as follows.

Assumption 1: The matrix-valued functions M : R — R™*™ and
P : R — R™*"™ are bounded piecewise continuous functions satisfying
the following properties:

M (t) is Metzler forall t € R, P(¢) is nonnegative for all £ € R, and
the system

X)) =M@)X(t) (19)

is uniformly globally exponentially stable on R™.

Let @ be the state transition matrix of M. Note for later use that,
for all s; < sy, we have ®(sg,s;) > 0 because M is Metzler (e.g.,
by [11, Lemma 1]). Also, there are constants ¢; > 0 and ¢2 > 0 such
that |®(#, s)r| < c;e~c2(t=5) when ¢ > s > 0 for all unit vectors r.

B. General Case

We introduce the following assumption.
__Assumption 2: There are a constant o > 0 and a Schur stable matrix
R > 0 such that

(t,s) + [l ®(t,)P(0)dL <R (20)

foralls > 0andt > s + a.

Since M and P are bounded, it follows from the exponential stability
condition on (19) that we can satisfy Assumption 2 when o > 0 is
large enough and | P| is small enough. Note for later use that since R is
nonnegative and Schur stable, [7, Lemma 2.7, p. 79] implies that there
are a vector { > 0 and a constant g € (0, 1) such that

UTR<qU’. (21)
‘We prove the following.

Theorem 2: Let Assumptions 1 and 2 hold. Consider a constant
7 > 0 and a vector-valued function V' : [0, +00) — [0, +-00)™ of class
C" such that for all ¢ > 0,

V(t) < M@V () + P1)S(V;) (22)

where S(V4) is defined in (4). Then, lim,_, ., V' (£) = 0.
Proof: First Part. First, let us establish that V' (¢) is bounded. By
variation of the parameters, we obtain

V(t) < ®(t,s)V (s) + [ ®(t,m)P(m)S(Vy)dm  (23)
when ¢ > s > 0. It follows that
V() < [@(t, s)+[ ot m)P(m)dm] sup V(£). (24)
Le[s—T,t]
Assumption 2 ensures that forallt > s + o
V(t) <R sup V(). (25)

£e[s—7,t]

Now, consider £, > 0 and ¢ > ¢, + a where « is from Assumption 2.
Then, from (25), it follows that for all m € [t, + «, t], the inequalities

Vim)<R sup V() <R (26)

£efty—7,m]

sup V(£)

£ty —T.1]

are satisfied. It follows that

sup V(m)<R sup V(§). 27N
me[ts +a,t] Le[te—T.t]
Therefore
U sup V(m)<qd' sup V() (28)
me[ty +a,t] ety —T.t]
where U is the vector in (21). Using
sup V(£) < sup V(£)+ sup V() (29)
£ty —.t] Lefty—T.ty+a] Lelty+a,t]
it follows from (28) that
UT sup V(m)<q' sup V()
me[tse+a,t] Lete —T te+ta|
+qu" sup V(). (30)
e[ty t+ant]
Since g € (0, 1), this inequality is equivalent to
U™ sup V(m)<LUT sup V(D). (31)
me[ts +a,t] g Le[te—T,tx+a]
It follows that
U'V(E) < ZUT  sup V(L) (32)

£ty —7 .ty +a]

Hence, since U is a positive vector, V' (¢) is bounded.
Second Part. Let us prove that lim;—, . V' (£) = 0. Let us introduce
the following functions:

N}(a,b)= sup wv;(m)and
me[ata,b]

Ni(a,b)= sup wi(m) (33)
me[a—T,b]

fori = 1ton, having the domains & = {(a,b) € [0,+oc)? : b >a +
a}and& = {(a,b) € [0, +00)? : b > a > 7}, respectively, where we
continue using the notation from Section II-A. We have proved in the
first part of the proof that the functions N f are bounded. Moreover, they
are continuous, nonincreasing in their first argument, and nondecreasing
in their second argument.

Hence, there are bounded functions Z7 () such that

i 3 — T
bBTmN" (a,b) =7 (a) (34)
forj € {1,2} andi € {1,....,n}. The functions 7 are nonincreasing
and lower bounded by 0. It follows that there are constants Z; , >0
such that

lim T!(a) =T} , (35)

a—too

forall j € {1,2}and i € {1,....,n}. Now, recall that for any ¢, > 0,
the inequality (27) is satisfied for all £ > ¢, + o, which we rewrite as

Ni(t.,t) NE(ts,t)
: <R ; (36)
Na(te,t) N (s, t)
It follows that
Zi(t) I3 (t.)
: <R : 37)
Ti(t.) 2(t.)
Since
lim sup  v(m) =TI] (38)

4=t mefata, o)
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and
lim sup  wi(m) =12 (39)
3310 mela—7,+e0) !
we deduce that I} ., = Z7_ foralli € {1,....,n}. Thus
Vi <RV; (40)
withVp = [Z] ,...,Z} . ]". by (37). Hence, U Vr < qUd" Vy. Since

g€ (0,1), it follows that 1}, =0 for all i € {1,...,n}. Thus,
limg 4o SUPme[ata,+o0) vi(m) = O for each 7, so limt_,ﬂo Vi(t) =
0. |

C. Periodic Case

Consider the particular case where M and P are both periodic of
some period w > 0; many systems are periodic. However, one cannot
simply apply the Floquet theory to reduce the periodic case to the
constant coefficient case from Theorem 1, because the Floquet theory
is usually nonconstructive and the time-varying changes of coordinates
from the Floquet theory applied to positive systems do not necessarily
yield a positive system. We propose a stability condition that can be
more easily checked than Assumption 2 in this case. Let us introduce
the following function:

Et)=(I —®(t+w, b))t [} ®(t,m)P(m)dm  (41)

where the existence of the inverse follows from the exponential stability
of (19), because if there were a nonzero vector z € R™ andat > 0 such
that ®(¢ + w, )z = z, then the periodicity and semigroup properties
and the global asymptotic stability of (19) would give the contradiction
z =0t +w,t)fz = ®(t + kw,t)z = 0 as k — +oo with k € N.
‘We also use the following condition.

Condition 1: There is a positive Schur stable matrix B such that

£t)<B (42)

forall ¢ € [0, w].

We state and prove the following result.

Corollary 1: Let Assumption 1 hold, with M and P both periodic
with some period w > 0. Then, Condition 1 is satisfied if and only if
Assumption 2 is satisfied.

Proof: First Part. Assume that Assumption 2 is satisfied. For nota-
tional convenience, we use the following functions:

¢(t,s) = [ ®(t,m)P(m)dm and

A(t,s) = ®(t,s) + (¢, ). (43)

Then, there are h € N and a Schur stable matrix & > 0 such that
&(t,s) +((t,s) <R (44)

foralls > 0and t > s + hw.

Consequently, for all ¢+ > hw where % is any integer larger than h,
the inequality ®(¢, t — hw) + C(£,t — hw) < R holds. It follows from
the semigroup property of & that

w(t, k) + z Sty ®(t,m)P(m)dm < R (45)

with w(t, %) = ®(t, ¢ — w)™. This equality implies that
H(R,t) <R (46)
with H(Rt) = Y0 b [0 &(t,t — kw)®(t — kw,m —

kw)P(m)dm, since w(t,h) > 0 and again using the semigroup

and periodicity properties. Since the matrix M is periodic of period
w > 0, (46) is equivalent to

:I'rl

1

p DCI)(t,t — kw)((t,t —w) <R. (47)
In terms of (41), (47) can be rewritten as follows:
£(t) <R+ w(t, h)(Et —w) (48)
where
kit h) =T —®(t+w, )t —fz:j:cb(t,t—kw). (49)

Foreache > 0, thereis aze [ Nwithi > hsuch that forall Zi,
we have |k(t,ha)((t,t — w)| < e for all £ > 0; this follows because
of the geometric sum formula

Jrfjo@(tw,t)’“ = (I —®(t+w,t))™? (50)
k=0

and boundedness of M and P. Hence, Condition 1 holds.

Second Fart. Let us assume that Condition 1 is satisfied. LetZ > 0
be a matrix such that B + Z is Schur stable. Since (19) is uniformly
exponentially stable, there is ay > 0 such that for all ¢ > s+ ay,
|®(t,5)] < 1.9 and

YT @ (2, m) P(m)dm < (51)

iz
2¢

by picking oy > w such that sup,.[_1 1) (¢, s 4+ £w) is small enough.
Thus, if £ > s + a4, then (43) gives the following:

A(t,s) < [, ®(t,m)P(m)dm +% (52)
with j = [ £2]. We deduce that
Alt,s) < z S 1y ®(t,m) P(m)dm + & (53)

Recalling the periodicity of M and P and using the semigroup property
of @, itfollowsthat ®(¢, ! — kw) = (¢, t — kw)P(t — kw,l — kw) =
®(t,t — kw)®(2,1) forall I € [t — w, 1], and so also

Alt,s) < Jz_jl [L,®(t1—kw)P()dl +Z
k=0

- J_El B(t, ¢ — kw)((tt —w) + T
k=0

<Et)+7T (54
where the last inequality can be deduced from the definition (41) of £,
and (50), the fact that the partial sums in (54) form a nondecreasing
sequence, the nonnegative valuedness of ¢, and the fact that the peri-
odicity of M and the semigroup property of the state transition matri-
ces give ®(t + w, t)* = ®(t,t — w)* = ®(¢,t — kw) for all integers
k = 0.Hence,forallt > s + oy, wehave A(t,s) < &(t) +T < B+T.
Hence, since B + = is Schur stable, Assumption 2 is satisfied with
R=B+E O
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IV. ILLUSTRATIVE EXAMPLES
A. First lllustration of Time-Invariant Case

Consider the n-dimensional dynamics

Zi(t) = —c1Za(t) + Za(t —71)
Zg(t) el —c:gZz(t) 4 Za (t — 1":2]
: (55)

Z.ﬂ.—l(t) : _Cn—lzn—l(t) + Zn(t - Tn—l)
Zn(t) = —enZn(t) + W (D)

with the input W, which occurs in [3, Lemma 2] in the context of
stabilization of linear strict-feedback systems with delayed integrators,
where the constants ¢; and 7; are positive for 2 =1,2,...,n—1
(but similar reasoning applies if the delays 7; and 7;; in this section
are bounded continuous time-varying functions, provided the upper
bound 7 in the following analysis is taken to be a positive constant).
We assume that W takes the form W (t) = d1Z1(t —7n1) + -+
dpZy(t — Thy) for constants 7;; > O0and d; > 0fori =1,2,...,n.
For such a function W, the system (55) is co-operative; see [11,
Lemma 1]. Thus, when proving asymptotic stability properties for
(55), we can restrict our attention to its nonnegative-valued solutions.

Choosing = > 0 such that T > max{71,...,Tp—1,Tn1,-- - Tan} it
follows that all C"! solutions Z : [, 4-00) — [0, 4-00)™ of (55) are
solutions of (6) in the special case where M = diag{—ci,...,—c,}
is a diagonal matrix having —c; as its zth main diagonal entry for
t=1,...,nand P is the n x n nonnegative matrix
g X s @ 0O
801... 0 @
P=1:1 1t 66)
00O0... 0O 1

dide ds ... dn1 dn

Then, we can find conditions on the ¢;’s and d;’s such that the corre-
sponding matrix M + P is Hurwitz, to ensure that all C? solutions
X :[—1,400) = [0,400)™ of (55) exponentially converge to the
origin as t — +o00.

For instance, in the special case where n =2, it follows
from the quadratic formula that M + P is Hurwitz provided
c1+e3—dy >0 and ey(eg —ds) > dy. For n =3, the Hurwitz-
ness condition on M + P is that all roots of the characteris-
tic polynomial XM+P(JL) = A3 - (Cl + 2+ 03 — dg)lz -+ [cg(cg —
da) + c1(es + 2 — ds) — da] +cifea(es — da) —da] —diof M +
P have negative real parts, which is equivalent to the require-
ments (c; + c2 + €3 — ds)[ca(ez — d3) + e1(ca + o — da) — dp] >
Cl[CQ(C:; —dg) —dg] —dy >0 and ey +e3 +c3 —dy >0 (by the
Routh-Hurwitz criterion for the third-order polynomials). The pre-
ceding conditions can be checked even if there is uncertainty in the
positive values ¢; or in the nonnegative values d;, under suitable
conditions on known intervals containing these unknown parameter
values. Moreover, we can allow uncertainty in the positive delays ;
and 7,; (including continuous and time-varying delays), if we know a
bound T > 0 satisfying our conditions above. This illustrates how our
work applies for delayed linear systems with uncertain coefficients and
uncertain delays.

B. Second lilustration of Time-Invariant Case

Consider the following system:

X(8) = AX(t) + 2: B.X(t—mi(t) 7)

for any integer p > 1 with X valued in R™ with constant matrices
A and B; for i =1,...,p where A is Hurwitz (but not necessarily
Metzler), and where 7 > 0 will denote a known bound on the piecewise
continuous delays 7; : [0,+0c) — [0,7] for all <. We provide novel
conditions that are independent of the delays 7;’s and that ensure that
one can build an interval observer whose existence implies that (57) is
globally exponentially stable to the origin; see, for instance, Mazenc
and Bernard [13] for the notion of interval observer. While more com-
plicated than standard analysis for the linear time-invariant systems,
our analysis is called for because of the mildness of the conditions on
the delays and coefficient matrices, which puts this example outside
the scope of existing results for the linear time-invariant systems.
One key ingredient in our interval observer design will be the proof
of [12, Th. 2] for Hurwitz matrices A, which constructs a C'! function
@ : [0, +cc) — R™*™ with a bounded inverse and a constant Metzler
matrix M such that Q()Q(¢)~* + Q(£)AQ(t)" = M forall £ > 0.

To build the interval observer, first note that in terms of any @
that satisfies the requirements from the preceding paragraph, the new
variable Z(t) = Q(t)X (t) satisfies the following:

- P
Z(t) = MZ(t) + Zl Li(t)Z(t — m:(t)) (58)

forallt > 7,where L;(t) = Q(t)B;Q(t — 7,(t)) ' foralliand t > 7.
Next, we introduce the following dynamic extension:

(Z(t) = MZ@®)+ Y Li(t)* Z(t — m:(t))
i=1
- ;} Li(t)"Z(t —m:i(t))
Z(t) = MZ(t)+ gl La()* Z(t — a(8))

- ; L) Z(t — (t))

(59

.

where C* = [max{c; ;,0}] and C~ = CT — C for all matrices C =
[e;,;]- The change of coordinates Z;(t) = —Z(t) yields

(Z(t) = MZ(t) + gl Li(O)*Z(t —m:(t))
+ gl Li(t) Zy(t — (1))
Zy(t) = MZy(t) + gl Lu(t)* Zy(t —m(t))

+ gl Li(t) Z(t — (1))

(60)

Since M is Metzler, it follows that (60) is cooperative; this follows
by a variant of the argument from the appendix in [14], which also
explains why global exponential stability of (60) to the origin follows
if all positive-valued solutions of (60) exponentially converge to the
origin as ¢ — 4-o0.

Thus, we focus on the positive solutions of (60). Let

Z(t) =Z(t) + Zi(t). (61)

Then, we have the following:
LO=MZ0 + S L@ +L(O 12 (t-r().  ©)
Setting S-(Z;)= SUPygefp—r 4 Z () gives the following:
O <MZW)+ 3 [La(t)* + Li(t)) 5-(Z0)

< MZ(t)+LS:(Z:) (63)
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where the matrix L > 0 is such that

P

21 Li)*+Li(t)] <L (64)
for all £ > 0. Hence, if M + T is Hurwitz, then we can apply Remark
1 to conclude that (62) is globally exponentially stable to the origin.
Since Z and Z + are nonnegative valued, it follows from (61) that (60)
is also globally exponentially stable to the origin, so the origin of (59)
is also a globally exponentially stable equilibrium.

Since L; = L} — L, for each 14, the reasoning we used in our
proof of cooperativity of (60) shows cooperativity of the dynamics
for(Zy,Z_.)=(Z — Z,Z — Z).Hence, Z(t) > Z(t) > Z(t) for all
t > 0if we choose any initial functions for Z and Z such that Z(t) >
Z(t) > Z(t) for all ¢t € [—7, 0]. Therefore, (59) provides an interval
observer for (58) and all the solutions Z(t) exponentially converge to
the origin as £ — +4-o0c. The inequality | X (t)| < |Q(#)~'||Z(#)| for all
t > 0 and the boundedness of Q(¢)~! allow us to conclude that the X
dynamics are globally exponentially stable to the origin.

Remark 3: In many cases, we can take () to be constant, no-
tably when all eigenvalues of A are real, by picking @ such that
QAQ ! = M is the Jordan canonical form of A. Then, our sufficient
condition for (57) to be globally exponentially stable to the origin is that
QAQ ! +T is Hurwitz. When A is Metzler, we can take Q@ = I and
then our sufficient condition is that A + 3°F_,[B;" 4 B;] is Hurwitz.
See also [12, Sec. 4.3] for a Hurwitz matrix A that has a conjugate
pair of complex (nonreal) eigenvalues and that calls for a nonconstant
choice of the matrix Q.

C. lllustration of Corollary 1

We show that Corollary 1 makes it possible to prove the exponential
stability in cases where (6) is satisfied and some coefficients of P take
large values at some instants, and without any restriction on the delay
bound, which we believe puts this example outside the scope of previous
results. Given p € N, consider the system

B1(t) = —3vy(t) + (1 —  cos(t))va(t)
+cosin®?(t) sup wa(l)
le(t—T,t]
a(t) = —2v2(t) + 15(1 —sin(t)) sup vi(l)

le[t—T,t]

(65)

where T and ¢, are positive constants, and v; and vy are nonnegative
valued. Let us show that for any ¢, > 0, the origin of (65) is globally
exponentially stable when

c, < 0.12,/1+p. (66)
With the notation of Section III, we can take w = 2
-3 0
M(t) = [ 0 _2] and
_ 0 H(t)
P(t) = [%(1 _sin(#)) 0 } 67)
where H(t) =1 — i cos(t) + c, sin?(¢). Thus
e—3(t—w‘) 0
D(t,r) = [ 0 e‘m“")] . (68)
Consequently
—= 0
(I —&(t+2mt) = [ 1—e o7 1 ] . (69)
0 ==

Also, since
(L, £)P(£)
_[e3t0 0 0 H(£)
[ 0 29[ &(1-sin(e) 0
0 e 3-0%(f)
= [%e—w—t)u _sin(®)) 0 (70)
the choice H.(t) = [, e 3O (£)de gives
[, @t e)P(£)de
0 H.(1)
- [1% [l 5. e 2 0(1 —sin(€))de 0 ] ' D
Then, the function
E(t) = (I — ®(t+2m,t))7 ! f:_% ®(t, £)P(£)de (72)
from (41) satisfies
_ | 0 6:1(t) +62(2)
ORI R @3
with the nonnegative-valued functions
01(t) = == ), e 3D (1—Lcos(r))de  (74)
O2(t) = 2= [ 5, € 2¢O sin?P(£)de (75)
and
03(t) = Tore—my Ji o e 270 (1 —sin(£))de. (76)
Then, the simple mathematica calculations give the following:
01(t) = § — 55 cos(t) — 4 sin(t) < 0.413 (77
and
03(t) . -
= torery (1 - e *™) (3+% (cos(t)—2sin(t))) (78)
< 0.853
for all £ € . We deduce that
0 0.413 + 65(¢)
<
€0 < 0.853 0 ()

forall £ > 0. Also, for each p € N and ¢ > 0, we have the following:

02(t) < T2 [, o, sin®(£)dl

< e [ 5in?(£)de.

By the integration by parts formula [wu(£)v'(€)df = u(f)v(£) —
[ v (£)v(€)déwithu = sin?* ! and v = — cos and the formula cos? =
1 — sin?, we solve for the second integral in (80) to conclude that for
all p € N, we have

(80)

2 sin??(£)de = (1 - ﬁ) [iZ sin?@-D(g)de.  (81)

Thus, since In(1 — a) < —a forall a € (0, 1), we get the following:

Jo? s (@)t =3I (1 - 77)

(=

—
=
—_—
—_
(o]
a-l"‘
o
|
b=
Eol
i
N
b Ll

Il
I

[a:]
Ed

Il
I
I
vl

m

(82)
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by applying (81) recursively to reduce the power of sin in the integer
and to 0. Since

i)
> i> P igs—1n(1+p) (83)
k=1

we obtain

z In(14p)
JsinP(O)de < FeT 2 = Fopm. (84)

It follows from (80) that

0(t) < e Lz (85)

Thus, £(¢) < G, where

0 0413+ =3
= =2 . 86
g [0.853 0 (86)
The matrix G is Schur stable if and only if the inequality
dig  JH/2,
(0413 + o 22 ) 0853 < 1 @7)

is satisfied. Condition (87) holds if (66) is satisfied. Hence, Condition
1 is satisfied. Then, Corollary 1 implies that Assumption 2 is satisfied,
so Theorem 2 applies.

V. CONCLUSION

‘We proved extensions of the stability analysis technique based on
Halanay’s inequality, which are suitable for the analysis of intercon-
nected systems. Key features included our allowing time-varying delays
and our novel use of positive systems and interval observers. This
produced vector analogs of Halanay’s inequality. Our results can be
used to study time-varying systems with uncertain time-varying delays
that were beyond the scope of the literature for the linear time-invariant
systems. The ISS property with respect to additive disturbances can
be proved. We hope to obtain extensions for PDEs and sampling,
where instead of continuous time systems, we have continuous-discrete
systems whose states are reset at the sample times.

APPENDIX
A. Schur Stable Matrix

‘We used this lemma in our proof of Theorem 1.

Lemma 1: Let the matrix M be Metzler and Hurwitz. Let P > 0
be a matrix such that M + P is Hurwitz. Then, the matrix —M 1 P is
nonnegative and Schur stable.

Proof: By [21, Prop. 1], —M ! > 0. Hence, —M'P is non-
negative. Also. [21, Prop. 1] provides a vector V > 0 and a real
number ¢ > 0 such that (M + P)V < —cPV. Since — M~ > 0, we
deduce that —M (M + P)V < eM ~'PV, which is equivalent to
—M 1PV < ﬁv. Since ﬁ € (0, 1), [21, Prop. 2] allows us to
conclude. | |
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