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Almost Finite-Time Observers for a Family of
Nonlinear Continuous-Time Systems

Frédéric Mazenc and Michael Malisoff

We provide a new class of observers for a
class of nonlinear systems which are not required to be
affine in the unmeasured states. The observers ensure
exponential convergence of the observation errors to zero,
under linear output measurements. The rate of exponential
convergence converges to infinity, as the growth rate of the
nonlinear state-dependent part of the dynamics converges
to zero, so we call the observers almost finite-time. Under
global Lipschitz conditions on the state-dependent part of
the dynamics, our global result ensures convergence of
the observers, for all initial states. For cases where the
nonlinearity is of order two at the origin, we provide local
results ensuring exponential convergence of the observa-
tion errors to zero, when the initial state is small enough.
We apply the results to a model of a pendulum with friction,
and to dynamics with Lotka-Volterra nonlinearities.

Observers, nonlinear, estimation.

[. INTRODUCTION

BSERVER design is a central area in controls, owing

to its ability to construct estimators of states (called
observers) based on output measurements, and because the
estimators can often be used in place of state variables
in controls for asymptotic stabilization; see, e.g., [1], [2],
and [3]. Although most available observers are limited to linear
systems, there is considerable motivation to build estimators
for systems with nonlinearities. It can also be important to
obtain fixed time observers, i.e., finite-time observers whose
convergence times are independent of the initial state of the
dynamics.

For cases where the nonlinearity only depends on time and
on the output measurements, several observer designs exist,
e.g., those of [4] and [5]. However, the existing finite-time
observers were limited to systems that are linear with respect
to the unmeasured part of the state variable (as was the case
in [5], [6], and [7]) or to systems which have a lower triangu-
lar structure [8]. They give global results. On the other hand,
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many systems do not belong to these families of systems and
may not admit global observers. Hence, the preceding works
left open the important challenge of observer design for more
complex cases where the nonlinearity can depend on the entire
state variable, including the design of observers for systems
containing quadratic terms in the state variables.

Here, we help address the preceding challenge. We design
observers that are almost finite-time, i.e., they ensure expo-
nential convergence of the observation error to zero, with a
rate of convergence that tends to infinity as a growth rate for
the state-dependent nonlinearity converges to zero. Since the
observation error is the difference between the unmeasured
state and observer values, this ensures state estimation. When
the state-dependent nonlinearity is globally Lipschitz, we
obtain a global observer, whose observation error converges
to zero from all initial states for the original system.

For dynamics that can have Lotka-Volterra nonlinearities
(i.e., products of state components), we provide a second the-
orem that is instead local, meaning, it only applies when the
norm of the initial state of the original system is small enough,
and it provides estimates of the basin of attraction. This is an
analog of [9], which solved delay compensation problems for
systems whose nonlinearities may also have order two near
the origin but which did not provide observers.

We use standard notation where the dimensions of the
Euclidean spaces are arbitrary unless otherwise noted, | - | is
the usual Euclidean vector and matrix norm, |h|; (resp., |h]co)
is the corresponding sup norm of a function % over a subset J
of its domain (resp., its entire domain), and M < N for square
matrices M and N means N —M is nonnegative definite. Also,
we set g:(s) = g(t+s) for functions g and all 7 > O and s <0
such that 7 + s is in the domain of g. We use standard defini-
tions of input-to-state stability (or ISS, which we also use to
abbreviate input-to-state stable) [10].

1. GLOBAL OBSERVER DESIGN

We first consider the system

x(1) = Ax(1) + f1 (1, y(@) + f2(t, x()) + 8(1) (1
y(1) = Cx(1)

where x is valued in R”, y is valued in RY, and the unknown
piecewise continuous locally bounded function & represents
uncertainty, where we have separate nonlinearity terms fj
and f> because of the different roles these terms will play
in the observer design. We first assume the following (but
see Section III for local results under more general condi-
tions), where the observability condition is motivated by the
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genericity and so also ubiquity of observable pairs (which
follows from the proof of [11, Proposition 3.3.12]):

Assumption 1: The functions f; and f> are continuous, and
fi (resp., f>) is locally (resp., globally) Lipschitz in its second
argument uniformly in its first variable. Also, the pair (4, C)
is observable, and the uncertainty functions § in (1) are such
that (1) is forward complete.

Assumption 1 provides a constant k¢ > 0 such that

[f2(z, @) = fa(t, b)| < kyla — b @)
for all + > 0 and for all a and b in R". We fix such a kf

in what follows. Choosing any constant t > 0, any constant
kr > 0 satisfying the condition from (2), and the matrices

0
Ct=CcTCandM, = | A 5CieMds, 3)

—T
and the constant

semn e[

where the inverse M, I exists because (A, C) is observable

(e.g., by [11, Sec. 3.5]), the final assumption is as follows,

whose condition (5) will allow us to use the trajectory-based

approach from [12, Lemma 1] to prove the first theorem:
Assumption 2: The inequality

kB <1 S)

A ‘dm) ds, @)

is satisfied.
Assumption 2 can be viewed as the smallness condition

kf < 1/B on kr when B # 0. To provide the dynamics of the

observer value X, we introduce the dynamic extension

Li() = -ATLi() + CTy()

Ly() = ALy (8) + f1(2, (D))

L3(t) = AL3(1) + fo(t, X(1))

Ly() = —ATLs(t) + C* Lo (1)

Ls(t) = —A"Ls(t) + C* L3 (1) (6)
for all + > 0, where we assume that the initial times for the
dynamics (6) are o = 0. The global observer design is then:

Theorem 1: Let Assumptions 1-2 hold. Then
50 = M7 Li(0) — e A Ly — D1+ Lo ()
_ _AT
— MLy — e TLy(t — D]+ L3 (D)
_ _AT
— M7 [Ls(t) — e TLs(t — 1)] (7
for all t > t and x(¢r) = 0 when ¢ € [0, 7] is such that: For all
initial values for (1) and (6), the estimate
1n(kfﬁ)

[X(1) —x()| < e =

0,21 + 18lj0.1  (8)

_B
(1 — Bkp)?
holds for all ¢ > 7.
Remark 1: We can write the observer value (7) as
X0 =00, y)

t t
+ M eAT(S_’)Ct< / eA(“'_e)fz(Z,ic(Z))dZ)ds )

-1

for all > 7 in terms of the operator

t
O, y) = M f AT 6D CTy(5)ds
-7

P t
+ M;l/ eAT(S*t)CIi (/ eA(S*Z)fl (E,y(ﬁ))dﬁ)ds.
t—1 s
(10)

IEEE CONTROL SYSTEMS LETTERS, VOL. 6, 2022

This follows by applying the method of variation of parame-
ters to dynamics of the form z(f) = Gz(f) + N(¢) for suitable
constant matrices G and functions N(f), to obtain

Y

when ¢t > r > 0. We choose G, N, and r as follows. First, we
write the single integral in (10) as Li (1) — e "Li(t — 1),
by choosing z = L;, G = —AT, N(©) = C'y(), and
r = t— t in (11). Next, we rewrite the double integral
in (10) as

t t
/ eAW“)cﬁeAM[ / eA“”fl(e,y(e))dE}ds (12)
-7

s

t
2 — e z(r) = f CON @Al

r

whose inner integral can be written as Ly(r) — eA0™9Ly(s)
(by choosing z = Lp, G = A, N(t) = fi(t,y(?)), and r = s
in (11)), and then we pick G = —AT, N(t) = C*L,(t), and
r=1—1 to write (12) as M Ly(t) — (La(t) — e " Ly(1— 7).
We treat the double integral in (9) analogously, using f3 (¢, X(¢))
instead of fi(z, y(f)). Then (9) becomes (7). However, the
expression (7) from Theorem 1 implies that we do not need to
integrate to compute the observer. This may facilitate imple-
menting the observer, because of the ease with which one can
numerically solve systems of ordinary differential equations
such as (6), e.g., using NDSolve in the Mathematica pro-
gram. Also, we have the almost finite-time property that the
rate — In(ksB)/t of exponential convergence of the observa-
tion error to 0 from (8) converges to 400 as k; converges
to 0.

Using the simplifying notation
@(1) = fi(t, () + f2(1, x(1)), (13)

we can rewrite the dynamics in (1) as x(f) = Ax(t)+@ () +5(1).
It follows from a variation of parameters argument that

t
x(1) = Ax(s) + / A @) +80))de (14)

N
when ¢+ > s > 0. By left multiplying (14) through by
A =D CteA™D | then integrating the result over s € [r— 1, 1],
and then left multiplying both sides of the result by M- where
M is defined in (3), we obtain

t
x(t) = M;! / ATy (5)ds
-7

13 13
+ M eAT(x—”cﬁ( / eA(S—“>(<p(z)+5(e))dz)ds

—T
for all # > 7. Consequently,

x(t) = O, yr)
P t
+ MT_1/ eAT(S—l)Cﬁ (/ eA(s—K)fz(g’x(E))dﬁ)dS
t—1 s

t t
+ Mt eAT(s—”Cﬁ( / eA“—‘)(S(E)de)ds (15)

-7 N

with ©(¢, y;) defined in (10). Then (2), (9), and (15) give

|X(1) — x(0)]
t
A6 cﬁ) ( / AG=0 ’A(Z)d@) ds

t
< M7 /
-7
t T t
n |Mr_l|/ A (s—t)Ctj‘<f
-1 S

eA(S—“}w(z)me)ds (16)
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for all t > 7, where A({) = k¢|x(£) —x(£)| was used to bound
[f2(€, X(£)) — f2(€, x(£))|. Hence,

|X(1) — x(1)|
t
A =Dt ‘(/ A0 )d@)dsl Alfr—z.1
S

t
<M /
-7
eAT(s—t) Cj‘ (/t
S

t
Vel /
-7
5) = x(0)] < kyBlf = dlie + Bllu—ey  (I8)

and so also

for all t > v with B defined in (4). Since Assumption 2 gives
ke € (0, 1), it follows from the trajectory based approach
(e.g., [12, Lemma 1], applied with w(£) = |x(£+71)—x({+7T)|)
that the required ISS estimate (8) holds.

eA<f—‘f)‘|a(z)|dz>ds, 17)

[1l. LocAL OBSERVER AND FEEDBACK DESIGN

We consider the system

x(1) = Ax(t) + Bu(t) + fi(t, y(©)) + f2(2, x(1)) (19)

y(1) = Cx(1)
where x is valued in R”, y is valued in R?, and u is valued in
RP. We assume that this system is forward complete for each
locally bounded piecewise continuous choice of u(¢), which
we will later specify as the control. The first assumption is:

Assumption 3: The pair (A, C) is observable. Also, there is
a matrix K € RP*" such that H = A 4+ BK is Hurwitz and
BK # 0.

Assumption 3 ensures that there are a symmetric positive
definite matrix Q € R"™*" and constants p > 0, ¢ > 0 and
g > 0 such that

QH+H'Q < —pQ and gl <Q < gl (20)

hold, e.g., using the largest and smallest eigenvalues of Q,
respectively. Using the positive definite quadratic function

V() =708, 1)
the last assumptions are then as follows:
Assumption 4: The functions fi and f, are continuous, fi is
locally Lipschitz in its second argument uniformly in its first
argument, and there is a C! function 6 € K so that

fa(t. @) — fa(t. D) < \0(la— b +VB)la— b (22)

holds for all > 0, a € R"” and b € R".
Assumption 5: There is a function I" of class Ky such that

2xTolfit 0 + 6] s TVEIVE  @3)

for all > 0 and x € R".
Assumptions 4-5 can be interpreted to mean that f; and f>
are of order 2 at the origin. We use the dynamic extension

Le(f) = ALs(1) + BKx(1)

Ly(t) = ALy (1) + CT CLe(1) 24)
for all ¢+ > 0, the matrix M; from (3), the dynamic extension
(6), and any constant T > 0 (which will again serve as the
fixed almost finite convergence time), where the new choice
of the observer value x(f) will be specified in the theorem
below. Fixing H, I', K, 0, O, p, 7, g, and g satisfying the
preceding requirements, we now introduce the constants

2|(BK) " OBK|
P

ke = T |M7'? max |Ce**and ky =

re[—t,7]

(25)

2595

and we choose any positive constants §; and §> such that

5y < r*‘(’f), (26)
4
p
8y = —461, and 27
2= 250 an (27)
Ttky0(81 4+ 82) € (0, 1). (28)
We also set §3 = min{d1, 622}, and we use the function
2|0A
|OA| (29)

p(m) = —— 4+ T'(m).
q

The constants §; for 1 <i < 3 and ¢ and g and the function
p are essential for computing the basin of attraction

[ 33
— n .
By = {x eR": x| < —569(53” }

which will be the set of all initial states for (19) for which the
observer design will be effective for the given constant 7 > 0.
We will use the observer values

(0 = ML) — e Ly (= D1 + Lo (1)
— M7V[La() — e Lyt — D]+ L3(0)
— M7[Ls@) — e T Ls (0 — 1)
+ Le() — M7 L —e* L — 1] (3D

for all + > t, where the L;’s are the states of (6) and (24)
for 1 <i <7 and t > 0 is the arbitrary constant, and where
we assume that x(r) = 0 for all ¢ € [0, 7] in accordance with
the convention that the observer is initialized at 0 when the
state is unknown (so the values x(s) of the state of (19) and
of the initial observation error x(s) — x(s) are equal for all
s € [0, t]). The constants are also needed to express the rate
of convergence —r of the observer design, where

(30)

7= S In(tk,0 (81 + 82)) (32)
2T

is negative, because of (28). The main result is:
Theorem 2: Consider the system (19) in closed loop with
u(x(t)) = Kx(1). (33)
Let Assumptions 3-5 hold. Then the observer values given
by (31) for all + > t and x(r) = 0 when 7 € [0, t] and the
negative constant (32) are such that: For all initial states having
x(0) € B, for the preceding closed loop system, we have

(34)

Also, (19) in closed loop with (33) is locally exponentially
stable to zero, with the domain of attraction of this closed
loop system including all initial states x(0) € B..

Remark 2: Analogously to Remark 1 above, we can write
the observer value X from Theorem 2 as

X1 =0, y) +J, %)

t t
i Mr_lf eAT(s—t)CIJ(/ eA(‘v—@fz(g,;%(z))dE)ds
t—1 s
(35)

() — 2] < & xjo.0) for all 1 > .

in terms of the operator ® from (10), c*=C"cC, and
t t
J(t,3) =M ! A= ¢ ( / eA“—@)BKfc(e)de)ds. (36)
N

-7
However, the % formula (31) again shows that we do
not need to integrate to compute the observer, which can
again facilitate implementing the observer. Also, the con-
vergence rate —r with the choice 7 from (32) converges to
400 as the growth rate function 6 converges to 0, which
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is an analog of the almost finite-time convergence from
Theorem 1.

The proof has two parts. First, we use the structure of the
observer to obtain a growth rate estimate for the squared norm
|X|? of the observation error ¥ = X — x, and a decay estimate
for V(x(r)) with an overshoot depending on |5c|2. In the sec-
ond step, we use a contractivity argument to ensure that |x(7)|
exponentially converges to zero, which in conjunction with a
small-gain argument, will imply that x(#) also exponentially
converges to 0. The proof is as follows.

First Part: Applying a variation of parameters to (19) gives

e x (1) = e Mx(s)
t
+ / A [BuGm) -+ fi (m, y(m)) + f>(m, x(m)) [dm
N
(37
for all £ > s and s > 0. By left multiplying this equality by

AT 6D CEAS where CF = CTC as before, and then integrating
the result over [t — 7, {] with t > 7, we obtain

t
M,x(t) = / [ 60Ty
-7

t
+ eAT(sfl)Cﬁ/ eA(sfm)[Bu(m) + f1(m, y(m))

+ fo(m, x(m))|dm]ds. (38)

By (38) and the control (33), it follows that with the choice
G, = M7 and the operators (10) and (36), we have

T

x(1) = 6(t, ) + J(t, %)

t t
+ GI/ eAT(St)Cﬁ(/ eA(Sm)fz(m,x(m))dm>ds
-7 s

(39)

for all + > 7. Then, X(t) = —x(¢) for all ¢t € [0, 7], and (35)
and (39) give

t t
50| < |G, / eAT@‘“cﬁ( / eA(S'")fZA(m)dm)ds
-7 N

t t
< ¢|Gy| (/ VZA(m)\dm>ds
-1 s

for all + > 7, where ¢, = maxre[,t,t]|CeA’|2 and fZA(m) =
S2(m, x(m)) — fo(m, x(m)). From Assumption 4, we obtain

t t
5] < clGel / ( / Vn(m)lic(m)ldm)ds
-7 A

t
< 104Gy | f VE (m)|x(m)|dm
-1

IA

(40)

(41)

for all t > 7, where V¥(m) = \/0(|5c(m)|2 + V(x(m))). Hence,
it follows from the choice of &, in (25) that
t

0P = ke [ 0(mP + Voo )EmPam - @2)
for all + > 7, by Je;sz:n’s inequality. Also, (33) gives
X(1) = Hx(1) + BKx(1) + f1(t, y(©)) + f2(¢, x(1)).  (43)
Then the time derivative of V along solutions of (43) satisfies
V(t) < —pV(x(0)) + 2x(2) T QIBK(1)
+ filt, y(0) + f2(1, x(1)]

IEEE CONTROL SYSTEMS LETTERS, VOL. 6, 2022

= —pVx@®) + T(Vx®)V(x(®)
+ 2x(t) "OBKx(#) for all t > 0,
by Assumption 5. Hence, by the choice of k; in (25),

V@) < —§V<x<z>) + T (V) V(D)

(44)

+ ;i(t)T(BK)TQBKic(t)

=< _gV(x(t))+F(V(X(t)))v(x(t))+kb X0, (45)

where we applied Cauchy’s inequality to upper bound the

product 2{|x(r) " v/O|v/P/2}{|~/OBKX(1)|/2/p} to bound the
last term in (44). For ¢t > 7, (42) and (45) give
{ O = ka [ (R + Vx(m) Eom)Pdm o
V(1) < =5VE@)+T (V@) Vx®) + kp|%(0)[>.
Second Part: The basin of attraction (30) and the g from (20)
give V(x(0)) < 83/e”@®)T when x(0) € B,. By Lemma A.1
below, this gives V(x(¢)) < 83 for all ¢ € [0, 7). Hence,
V(x(0) <81 and XD = [x(©)]* < & (47)
for all ¢ € [0, ), by the choice §3 = min{§y, 522}. Hence,
|5c(1')|2 < tk,0(82 + 61)82, by (46). Since x is continuous, we
proceed by contradiction. Suppose there were a f. > t such
that
V(x(t)) < 81 and |5c(t)|2 <& (48)

for all ¢ € [0, t.) and either V(x(¢;)) = 8; or |5c(tc)|2 = ).
We observe that (46) and (48) give
tc

R < ke / 6(52 + 81)82dm
te—T

= tk,0(82 + 81)62. 49)
From (28), we deduce that |5c(tc)|2 < &p. It follows that
Vx(t)) = é1. (50)
Also, for all r € [z, 1), we have
V(x(1)) < &, and
V) = =2Vam) +TED8 +kdr, (D)

by (46). By the preceding inequality and (26)-(27), it follows
that

V) < —§V(x(r)) n {z’al + ks

— —g[voc(r))—al] <0 (52)

for all 7 € [z, t.]. Hence, V(s.) < 0, so the function H.(¢£) =
V(x(£)) is strictly decreasing in a neighborhood of £ = ¢.. This
contradicts the first inequality in (48) and (50). Therefore, for
all £ € (0, +00), we have

V(x(£)) < 81 and |)~c(€)|2 < 8. (53)

Next, bearing in mind (46), we deduce that we have

t
RO < ka0(81+82) | [F(m)[*dm
-7
< tha0 (1 + 8)IF_, (54)
for all > 7. Also, (26), (46), and (53) give

V() < —ZV(x(r)) Yk lE() for allr>0.  (55)

Then (28), (54), and [12, Lemma 1] applied to the func-
tion w(t) = |x(t + 1’)|2 (and then taking square roots of
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both sides of the result) provide positive constants ¢, and ¢
such that |X(r)| < c,e”|X|[0,7] for all r > 7. Also, apply-
ing variation of parameters to (55) and using the quadratic
structure of V (and then using the subadditivity of the square
root) provide positive constants cy, c¢2, and c3 such that
Ix())] < c1e="|x(0)| + c3|X|j0.q for all > 7. By combining
the preceding two upper bounds for |x(f)| and |x(f)], it now
follows from standard small-gain arguments (e.g., from [13])
that x(#) exponentially converges to 0.

IV. ILLUSTRATIONS

We illustrate both theorems. Going beyond only provid-
ing dynamics satisfying the assumptions, the examples show
trade-offs between parameter values and robustness, and how
Theorem 2 can lead to arbitrarily large basins of attraction.

We consider the dynamics of an unforced pendulum with
friction, namely, for any constant ¢ > 0,

X1() = x2(0)
Jo () = —k(®x2(t) — csin(x1 (1)) + 82(0) (56)
y(@®) = x1(1)
with the friction function
k(1) =0.1 + Ar(®) 57

for a known bounded piecewise continuous function Ay;
see [13, p. 542]. The unknown piecewise continuous locally
bounded function &, represents uncertainty. Then we write

x(1) = Ax(1) + fi(y(®) + /22, x(1)) +8(0)
y(1) = Cx()

with §(7) = [0, 82(r)] T and the following matrices:

0 1
0

0
fl(y) = |:—csin(y)i|’ fZ(tv x) = I:_Ak(t)x2i|- (59

Then the assumptions of Theorem 1 are satisfied with kr =
| Akl[0,00), and the sufficient condition from Theorem 1 is

|Akl0,00) < 1/B. (60)

where B is defined in (4) and depends on the fixed convergence
time 7. Equation (60) exhibits the trade-off that T values that
lead to larger S values will result in smaller allowable upper
bounds for the perturbation Ay of the friction. This is illus-
trated in , where we used (59)-(60) and Mathematica
to plot the allowable upper bounds 1/8 for |Ag|j0,00) On the
vertical axis, as a function of t.

illustrates that by choosing a t value close to 0.4,
we can allow a bound of 0.015 on the allowable pertur-
bation Ay, i.e., about 15% of the constant part 0.1 of the
friction.

Remark 3: 1If the friction k(¢) is instead piecewise continu-
ous, bounded, and unknown but has a known positive lower
bound, then for each compact set C € R, we can find a con-
stant Bc > 0 such that all solutions of the unperturbed system
x1(1) = x0), X, = —k(Dx2(t) — csin(x; (7)) for all initial
states x(0) € R x C satisfy sup,~q |x2(#)] < Bc. This follows
by viewing x,(¢) as a solution of () +k(£)z(t) = —c sin(x; (2)).
Therefore, by writing the friction as k() = 0.1 4+ Ag(¢) + ¢ (?)
for a known A and an unknown function 8, we can write the
dynamics (56) as x1(f) = x2(¢), X2(r) = —(0.1+ Ar(2))x2(¢) —

(58)
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Bounds 1/ on allowable perturbations A as function of .

csin(x;(t)) + 8(r) where 8,(t) = —8;(t)xp(¢f). Then the
preceding example provides an exponential ISS estimate with
respect to 6 when (60) holds, and so also semi-global expo-
nential ISS with respect to §; for initial states x(0) € R x C
(because |82(7)| = |[x2(8)8k(1)| < Bc|8k(2)| for all £ > 0). The
uncertainty §; is motivated by the fact that friction is com-
monly regarded as the most uncertain quantity in mechanical
systems.

System (56) is covered by Theorem 1, because it satis-
fies the required global Lipschitzness condition. By contrast,
Theorem 1 does not in general cover systems of the form

q
x(t) = Ax(t) + Bu() + Y _ yi(OEi()y(®)

i=1

n
+ ) x(ODi(0)x(1)
i=1
y(@) = Cx(1) (61)
for continuous bounded coefficient matrices D; and E;. The
quadratics in (61) are called Lotka-Volterra nonlinearities,
since they naturally arise in predator-prey systems. We next
show how Theorem 2 can cover (61), assuming that the coef-
ficient matrices A, B, and C satisfy Assumption 3. To this end,
we choose the matrices K and Q, V, and the positive constants
P, ¢, and g to satisfy the requirements from Section III-A. It
remains to find functions @ and I" satisfying the requirements
of Assumptions 4-5, where fi(¢, y(t)) and f>(t, x(¢t)) are the
first and second sums in (61), respectively.
To find the needed functions 6 and I', first note that for any
ie{l,...,n}and a and b in R” and ¢ > 0, we have

la;Di(t)a — biD;(t)b]
< |(a; — b))Di(H)a| + |b;D;(t)(a — b)|
< la — bl(IDjlsola — b| 4 2|Dj| 0 |b])

< la = bIV2,/IDilZ |a — b2 + (4/9)|DiZ glbP2

< la = bly/6i(la — b + V(b))

where 6;(s) = 2|D;|3, max{1,4/g}s, (62)
where we used the fact that s + r < /2(s2 4+ r2) for all
s > 0 and r > 0. Hence, Assumption 4 holds with 6(s) =
2n* max; D[, max{1, 4/q}s. Also, if we set D = max; |Dj|oo
and E = max; |Ej|« (which we assume are nonzero), then we
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can upper bound the left side of (23) by
21x1QI(GEICI?|x|? + nDlx|?)

- _ 1

< 1 210I(GEICE + D) 55 t(falD i), (63)
so we can take I'(s) = g.«+/s, where g, is the constant in
curly braces in (63). Then Theorem 2 provides the local almost

finite-time observer and a basin of attraction estimate.
Also, with the notation from Theorem 2, for each constant
B > 0, we can find a constant € > 0 such that if we choose
81 :_AI:_I_(p/_4) in (26) for any constant A € (0, 1), and if

max{D/E, D, E} < €p, then (28) is satisfied and
83 -
éeP(SS)T -
To see why, first note that M, = 8|(BK) ' OBK]|, the func-
tion M(D, E) = 64|Q|*(¢E|C|* + nD)?, and (26)-(27) give
81 = M@ /M@D,E) and 8 = ip*q’ /(MIM(D, E)).
Hence, §3 = 81 Mg, where My = min{l,pzq//\/ll}. Also,
by the choice of 6, (28) can be written as -
20D* max{l, 4/gyn*H M P cip*e’ P
——=——= <1+_>€(071)7
MDD, E) My

(65)
where ¢, = max,e[—r,¢] |CeA’ Hence, since the left side of
(65) converges to 0 as D/E — 0 (because DZ/M(D E)y—0

as D/E — 0), we can satlsfy (28) when D/E < €p for a small
enough eg. Also, (29) gives

2|QA

Pa 1

(64)

PN AMo

p(83) = + (66)
q 4
which does not depend on D or E. Hence,
83 51 My
ger &)t - Z]er(ZlQAI/g+p«/AM0/4) — Foo (67)

as max{D, E} — 0, by the §; formula. This proves the asser-
tion. This can be summarized by saying that Theorem 2
provides arbitrarily large basins of attraction for the system
(61) when the bounds D and E on the D;’s and E;’s are small
enough, if D is also small enough relative to E.

V. CONCLUSION

We provided new observer designs for a large class of non-
linear systems whose nonlinearities can depend on all of the
components of the states. When the nonlinearities are of order
two near the origin (e.g., Lotka-Volterra nonlinearities), we
found local observers and estimates of the basins of attrac-
tion, which led to local feedback stabilization. When one of
the nonlinearities satisfies a global Lipschitzness condition, we
obtain global convergence. The examples illustrate trade-offs
between convergence and growth rates of the dynamics. We
aim to develop event-triggered analogs.

APPENDIX
TECHNICAL RESULT

We used the following in the proof of Theorem 2, where
we continue the notation that from the proof of Theorem 2:
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Lemma I: Let T > 0 be a constant and x(0) satisfy
V(x(0)) < 83/6"(53)7. Then the corresponding solution x
of (19) in closed-loop with (33) satisfies V(x(f)) < 83 for
all £ € [0, 7).

Proof: Let us observe that for all ¢ € [0, 7], we have

x(1) = Ax(1) + f1(t, Cx(1)) + f2(1, x(1)), (A1)
since X = 0 on [0, t]. Hence, by the choice (29) of p, the time
derivative of V(x) along the trajectories of (A.1) satisfies

V() = 2x(H) T QAx(1)
+ 2x(1) T QLA (1, Cx(8)) + fa(t, x())]

= p(Vx@)V(x(1) (A2)
by Assumption 5. We next use the auxiliary system
V(@) = p(v(O)v (). (A.3)

Let v(0) = % and 7. > 0 be such that v(r) < 83 for
all t € [0, tc) and v(t;) = 83. Then v(r) < p(83)v(r) for all
t € [0, t.]. Hence,

p(83)tc — ,p(83)1c
v(t,) <e v(0) =e (ax)t.

Since v(t,) = &3, we deduce that e"’(33)f <
Hence, f. > 1. We deduce from the comparison lemma
(applied to (A.2) and (A.3)) that if V(x(0)) < v(0), then
Vx(t)) < 63 for all + € [0,7). This allows us to
conclude. [ |

(A4)

ep (33)1c .
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